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ABSTRACT
To seek a low-cost, extensible solution for the large-scale data visu-
alization problem, a visual computing system is designed as a result
of a collaboration between industry and government research labo-
ratories in Japan, also with participation by researchers in U.S. This
scalable system is a commodity PC cluster equipped with the Vol-
umePro 500 volume graphics cards and a specially designed im-
age compositing hardware. Our performance study shows such a
system is capable of interactive rendering ���

� and ����
� volume

data and highly scalable. In particular, with such a system, simula-
tion and visualization can be performed concurrently which allows
scientists to monitor and tune their simulations on the fly. In this
paper, both the system and hardware designs are presented.

Keywords: volume rendering, parallel rendering, graphics hard-
ware, visualization, scalable systems, distributed computing sys-
tems, high performance I/O

1. INTRODUCTION
Many scientific and medical applications require the capability to
visualize volumetric data sets. While realtime rendering of ����

volume data can be achieved by using either texture hardware [1] or
special volume rendering hardware like the VolumePro 500 card (Ter-
aRecon, Inc.) [2], large-scale volume rendering (e.g. for ���� vol-
ume data or larger) must utilize a parallel computer. Parallel soft-
ware rendering has proved to be scalable [3, 4, 5, 6, 7] but for
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rendering a large scale data set it must utilize a very large number
of processors to achieve interactive rates. More recently, the use of
multiprocessor, multipipe graphics supercomputer for interactive
rendering of large-scale volume data has been demonstrated [8],
but to most scientific researchers it is not an affordable solution.

In this paper, we present the design of a visual computing system
and preliminary experimental results on the prototype system that
we have built. The proposed system is a commodity PC cluster
with each slave PC equipped with a VolumePro 500 card and an
GeForce 2 card (NVIDIA Corp.). We have also designed and built
a special image compositing hardware which allow us to expand
the system for interactive rendering extremely large-scale volume
such as ����� to ����

� volume data.

While such a visual computing system can be utilized for post-
processing volume rendering, our main objective is to use it for
runtime visualization of large-scale volumetric simulation. In a
time-varying neuron excitement simulation, for example, while the
CPUs of the cluster are responsible for the simulation calculations,
the volume rendering hardware can continuously produce visual-
ization of the current excitement propagation.

The proposed system is highly scalable and will become low cost
as volume graphics cards are becoming commodity parts. Most
importantly, by implementing a high-performance, low-cost visual
computing capability into a commodity PC cluster, we are able to
eliminate the data transfer bottleneck in a conventional runtime vi-
sualization setting. This visual computing capability will change
the way we conduct scientific research and engineering design. In
this paper, we report results of our prototype developement of the
visual computing cluster.

2. PARALLEL VOLUME RENDERING
Volume rendering is a very powerful technique for visualizing voxel
data typically describing physical phenomena in a spatial domain.
It can display more information in a single visualization than tech-
niques such as isosurface or slicing. It is more flexible because it
can also be used to approximate isosurfaces and cut-planes, or a
mixture of them. Most importantly, direct volume rendering is par-
ticularly effective for visualizing fine features and those features
that cannot be defined analytically.

The basic volume rendering algorithm steps through the volume
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Figure 1: Binary tree image composition method.

data, integrating color and opacity along a ray for each pixel. A
straightforward way to parallelize volume rendering is to partition
and distribute the volume evenly among the participating proces-
sors. Each processor performs rendering of local subvolume in-
dependent of other processors. This local rendering step gener-
ates a partial image at each processor, and is followed by a global
composition process which results in the final, complete image
by merging all partial images in a front-to-back or back-to-front
depth order. This is an object-space parallel algorithm. This al-
gorithm works correctly because the composition operator is asso-
ciative [10] which allows us to break each ray into segments, com-
pute them separately, and finally compose them to derive the cor-
responding pixel value. The global composition process requires
communication between processors. Therefore, the key to efficient
parallel volume rendering is to control the computing and commu-
nication cost required by the image composition task.

The other way to parallelize volume rendering is to partition and
distribute the image space among participating processors — an
image-space parallel algorithm. Each ray is computed by a single
processor. Communication is required before the resampling step

Figure 2: CT lung: ���� voluem data (rendered in �������)

Table 1: Image composition time (ms) for � � �.
# of pixels communication blending

100BASE Myrinet computation
������� 62 2.5 35
������� 230 9.7 143
������� 514 21.5 323

to move data to the processor responsible for the corresponding
projected image area. Consequently, this algorithm is more com-
monly used for shared-memory parallel architectures due to its high
communication requirement. When memory space is abundant,
replicating the whole volume data among processors can elimi-
nate the communication cost [11]; however, this approach is not
feasible for rendering large-scale data. In our design, we use
the object-space parallel volume rendering algorithm. As shown
in Fig 1(a), a subvolume (��) is distributed to each processors
by the binary object-space partitioning. A depth priority value is
assigned for each subvolume by considering the spatial relation be-
tween the camera position and the subdivision surface (��). Vol-
ume rendering and image composition of subimage (��) is carried
out as shown in Fig. 1(b). That is, pairs of subimages are compos-
ited concurrently through ������ stages where � is the number of
processors. A software implementation of this binary-tree image
composition ought to be inefficient. The problem is that at each
phase of composition, half of the processors become idle. Finally,
at the top of the compositing tree, only one processor is active, do-
ing the final composite for the entire image. Table 1 compares the
communication and computing time for compositing two subim-
ages (� � �) using our PC cluster (Pentium III 800 MHz CPU).
An image of the test data set, ���� lung CT volume data, is dis-
played in Fig. 2. Theoretically, the numbers in Table 1 increase
in proportion to ������. It is clear that the communication time of
100BASE-TX Ethernet is too slow to achieve the interactive ren-
dering speed. Even if we use a high-speed network, Myrinet (1.28
Gbits/s) [12], the compositing operation is sufficiently slow which
hampers interactive rendering.
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Figure 3: Visual computing cluster structure

//=========  Host PC Process  =========//
ProcessServer()
{
  Load_and _Send_Subvolumes() ;
  for (;;) {                                                          // Start of Loop
    Broadcast_Camera_Info() ;
    MPI_Barrier() ;                                            // Synchronization
    Receive_Image_from_IFB() ;                      // Composition Start
    Display_Image_by_GB() ;
  }                                                                     // End of Loop
}

//=========  Slave PC Process  ========//
ProcessNode()
{
  Recieve_Subvolume();
  for (;;) {                                                          // Start of Loop
    Recieve_Camera_Info() ;   
    Compute_Priority_from_Camera_Info() ;
    Render_Subvolume_by_VGB() ;
    MPI_Barrier() ;                                            // Synchronization
    Send_Image_To_IFB() ;                              // Composition Start
  }                                                                     // End of Loop
}

Figure 4: Pseudo-code of control program in the prototype sys-
tem.

In this way, when running on a massively parallel computer with
a large number of processors, composition would become a se-
rious bottleneck. As a result, several parallel image compositing
algorithms [5, 13] have been introduced for scalable parallel soft-
ware volume rendering. For hardware implementation, however,
this simple binary-tree approach is in fact desirable.

3. PROTOTYPE SYSTEM
3.1 Visual Computing Cluster

To realize steerable volumetric simulation, we propose a PC clus-
ter system with a powerful volume graphics functionality (visual
computing cluster) [14]. This system implements the image com-
position parallel rendering method by using commercially avail-
able volume graphics cards (VolumePro 500) to achieve realtime
rendering, as well as employing a specially developed image com-
positing hardware to eliminate the computation bottleneck of the
image composition.

Figure 3 shows the structure of the visual computing cluster. The
host PC divides a volume data among eight slave PCs to perform
volume renderings in parallel. The subimage generated by each
volume rendering engine (VGB) is sent to the image compositing
hardware via the interface board (IFB) on the PCI bus, and merged
with the other subimages based on their depth priorities. The re-
sultant image is displayed by writing it into the frame buffer of
the graphics board (GB) via the PCI interface board (IFB) of the
host PC. Repeating this procedure generates an animation. Figure
4 shows the pseudo-code of the animation generation.

3.2 Image Compositing Hardware
There were special image compositing hardware devices employ-
ing either a pipeline [15] or bus [16] architecture, but they were de-
signed for polygon rendering, in which composition may be done
in arbitrary order by using the z-buffer technique. To support the
depth order composition for the translucent volume rendering, our
compositing hardware faithfully implements the binary-tree subim-
age composition process explained in Fig. 1 into a hardware.

Figure 5 shows the block diagram of the image compositing hard-
ware. Slave PCs send the priority and color (R, G, B, A) infor-
mation of the subimages into the input channel of the compositing
hardware (CH. n) as a command sequence. The priority informa-
tion is sent prior to the frame data (Fig. 7) and used to control
the selector (SEL). According to the size of the priority values, the
selector decides which one is superimposed over the other. The
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ing hardware.

merger (MERGER) performs the compositing operation of all color
channels (R, G, B). Since each input channel can be enabled or dis-
abled by the command sequence, the number of slave PCs is vari-
able. The merged image is sent to the host PC from the output
channel of the compositing hardware.

This image composition requires the synchronization of sending
and receiving timings of images. As shown in Fig. 4, we are us-
ing MPI Barrier() command for this synchronization; however, it
causes time discrepancy around 20 micro-seconds for each PC in
case of Myrinet (Fig. 6). To compensate this timing mismatch, we
put a FIFO (256K depth, 36 bits width) for each input channel as
shown in Fig. 5.

3.3 Communication Architecture
The connection between the interface board and the compositing
hardware uses LVDS (Low Voltage Differential Signaling), which
converts parallel data into serial to avoid clock skew inherent to the
high-speed data transfer. We used commercially available chips
(National Semiconductor, DS90CR483/484) for the conversion be-
tween the CMOS/TTL data and LVDS. Since the LVDS assigns 6
bits data stream in a conductor, we can transfer up to 36 bits data
by a cable having 7 conductors (six LVDS data streams and one
clock channel). To perform this serial transmission, we converted
the base frequency of the PCI bus clock (33 MHz) to 33�6 MHz.
The transmission rate for a conductor is 198 Mbits/s and we can
achieve 1.19 Gbits/s using 6 conductors, which is sufficiently fast
to send the data via PCI whose throughput is 1.064 Gbits/s. The
compositing hardware receives the serial data and converts it back
to parallel.

Figure 8 shows the component parts of the visual computing cluster
prototype. Figure 8(a) shows the input interface board, which is
inserted in the PCI slot of the host computer. Figures 8 (b) display
the inside of the compositing hardware. The daughter board does
the compositing operation of two subimages, and a motherboard
and four daughter boards construct the compositing hardware for
eight slave PCs. Figure 8(c) shows the outside of the compositing
hardware, an LVDS cable and an interface board of a slave PC.

The image compositing hardware consists of a 21-stage pipeline of
36 bits band-width. Table 2 shows the assignment of command and
status signals to the 36 bits data. The most of the circuits of the
interface boards and the compositing hardware were implemented
by using Field Programmable Gate Array (FPGA) of ALTERA,
Co. Ltd., whose logics were reprogrammable by using VHDL lan-
guage. Figure 9 shows the outside look of our prototype system,
and the system specification is given in Table 3.
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Table 2: Assignment of 36 bits Data
Bit 35� � � 32 31� � � 24 23� � � 16 15� � � 8 7� � � 0

Dummy Command 0 - - - -
Pixel Data 1 Red Green Blue Alpha
Channel Enable 2 1 - - -

Command Channel Disable 2 2 - - -
Set Priority 2 4 - Priority (9 bits)
FIFO Reset 2 8 - - -
Frame Start 2 16 - - -
Frame End 2 32 - - -
Channel not Ready 4 1 - - -

Status Pixel Count Mismatch 4 2 - - -
Illegal Command 4 4 - - -

4. PERFORMANCE STUDY
We evaluated the rendering performance of the visual computing
cluster by using a CT lung dataset (���� volume data). We wrote
all of our test programs in C++ language using MPICH-SCore.
SCore [17] is a Linux based operating system developed at the
Parallel and Distributed System Software Laboratory of the Real
World Computing Partnership (RWCP) in Japan, which employs:

� a user-level zero-copy message transfer mechanism between
nodes and one copy message transfer mechanism within a
node based on high performance communication facility called
PM,

� a high-performance MPI implementation called MPICH-SCore
that integrates both zero-copy message transfer and message
passing facilities in order to maximize performance,

� and a multi-user environment using gang scheduling with-
out degrading the communication performance realized by
an operating system daemon called SCore-D.

Table 4 shows processing times of sub-processes, i.e., hardware
subvolume rendering (H/W Rend.), image composition (H/W Com-
posit.) and image drawing (Draw Pixel), and frame rates for three
different image resolutions. Each number is an average of 100
flames by varying the view angle. We achieved an interactive frame
rate of 16.1 Hz for ������� image resolution. The hardware im-
age composition took 5 ms for this image, however, this is spent
for the memory access via the PCI bus and the latency of the im-
age compositing hardware is only 0.64 micro second (21 clocks
of 33MHz). Table 4 shows that the hardware rendering time have
rooms for further improvement. This problem is caused by the pixel
format conversion between VolumePro 500 and the compositing
hardware. We believe that the hardware rendering time can be re-
duced as the order of DrawPixel time by tuning up the firmware of
the compositing hardware.

We decided the size of FIFOs of the compositing hardware suf-
ficiently large to compensate the synchronization mismatch, and
confirmed that the image compositing hardware worked both cases
of Myrinet and 100 BASE-TX Ethernet. Therefore, we can build
low-cost and high performance visual computing cluster without
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(a) Interface board for host PC. (b) Inside of the image compositing hard-
ware.

(c) Image compositing hardware,
LVDS cable and interface board for
slave PC.

Figure 8: Visual computing cluster parts

Figure 9: The prototype of the visual computing cluster.

employing Myrinet.

5. CONCLUSIONS
In this paper, we present the design and the performance study of
our visual computing cluster. The prototype system shows the per-
formance of rendering up to ���� volume data at interactive rate by
using eight VolumePro 500 boards in parallel.

The latency of the image compositing hardware is 0.64 micro sec-
ond, which is sufficiently small comparing to the volume rendering
time of each PC. Therefore, a hierarchical connection of the com-
positing hardware allows the massively parallel processing without

Table 3: The specification of the visual computing cluster
CPU Pentium III 800 MHz ��
Memory 512MB ��
Video Card nVIDIA GeForce 2 ��
VG Card TeraRecon VolumePro 500��
Network Myrinet (1.28 Gbits/sec), 100BASE-TX
OS SCore 3.3

( Real World Computing Partnership )
Linux kernel 2.2.14

Graphics API XFree86 4.0.3, GtkGLarea-1.2.2,
nVIDIA OpenGL driver for Linux

Table 4: Rendering performance of visual computing cluster.
Rendering time (ms)

# of pixels H/W H/W Draw Frame Rate
Rend. Composit. Pixel (Hz)

������� 52 5.0 5.1 16.1
������� 80 18.1 19.5 8.5
������� 139 28.0 43.4 4.8

reducing the visualization frame rate (Fig. 10). Figure 11 plots the
expected latency for up to 32768 processors.

Current rendering speed is not sufficiently fast for the large screen
visualization; however, this problem will be solved by tuning up
the firmware of the image compositing hardware. Because of the
bandwidth limitation of the PCI bus, it takes the compositing hard-
ware 61 ns to process each pixel. As a result, our system can ren-
der 512�512 image at about 60 frames per second, or 1024�1024
image at about 15 frames per second for ���� volume data. The
performance would become a few times better as the next genera-
tion 64 bits 66 MHz PCI becomes available. We are also planning
to use a pipeline technique to overlap sub-processes (i.e. rendering,
composition and drawing) for further speed-up of the animation
generation.

For postprocessing rendering, our target application is in medicine.
Recently, very high resolution volume data sets, over ����� volume
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data, have been produced by using techniques such as corn-beam
CT. There is no good way to visualize such huge datasets. Our
system is promising for such a demanding application. Using the
proposed cascading, a 64-CPUs system should allow for interac-
tive medical image processing and visualization of ����� or �����

volume data.

For runtime visualization of 3-d simulation like the 3-d cellular au-
tomata, our system is even more attractive. Since the latency of the
cascade connection of the compositing hardware is negligible, the
runtime visualization of very complicated chemical system like a
human brain simulation is possible. Figure 12 is the nerve excite-
ment simulation on a volume data of the lateral geniculate nuclei
neuron of a rat (���������	� volume data) obtained by a con-
focal laser-scanning microscope [18]. The state transition of each
voxel is determined by the states of neighboring 27 voxels by using
a 3D cellular automata, which approximates the Hodgkin-Huxley
equation 1. The 512-CPUs system of Fig. 10 will make the simu-
lation and visualization of cerebral tissue of 1 ��� size possible
at an interactive rate. Conducting a volumetric simulation at this
scale would make possible understanding of the effectiveness of
medicine or elucidation of the information processing mechanism

�A differential equation which models the dynamics of sodium
(Na) and potassium (K) ion channels on a nerve cell membrane.
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Figure 11: Expected composition latency.

of human brain.

Our prototype system uses Myrinet and VolumePro 500 card which
are considerably expensive. However, since the volumetric simu-
lations only need communication between neighboring processors,
we can avoid using Myrinet by putting simple inter processor com-
munication functionality into the image compositing hardware.

It is also possible to avoid using VolumePro 500 by using texture
mapping hardware of polygon graphics cards for the low-cost vol-
ume rendering. We are presently investigating the use of GeForce
2 cards along with our compositing hardware for parallel volume
visualization. While the image quality is not as good as VolumePro
500’s, this low-cost alternative is very attractive.

Nonetheless, it is clear volume graphics cards will be more widely
adopted, and thus their price will drop significantly which makes
our visual computing design an affordable solution regardless of
the graphics hardware used.

Increasingly, scientists become less dependent of centralized super-
computers, and are able to build their own volume simulation en-
gine at low cost. Using our design, they can put together a scalable
system supporting both simulation and visualization. Using such
a personal visual computing system would help scientists achieve
higher productivity, obtain profound insights, and reach new dis-
coveries sooner.
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