
Visualizing Social Interaction in Open Source Software Projects
Michael Ogawa∗ Kwan-Liu Ma† Christian Bird‡ Premkumar Devanbu§ Alex Gourley¶

Department of Computer Science
University of California, Davis

ABSTRACT

Open source software projects such as Apache and Mozilla present
an opportunity for information visualization. Since these projects
typically require collaboration between developers located far
apart, the amount of electronic communication between them is
large. Our goal is to apply information visualization techniques
to assist software engineering scientists and project managers with
analyzing the data.

We present a visualization technique that provides an intuitive,
time-series, interactive summary view of the the social groups that
form, evolve and vanish during the entire lifetime of the project.
This visualization helps software engineering researchers under-
stand the organization, structure, and evolution of the communi-
cation and collaboration activities of a large, complex software
project.

Keywords: software visualization, social networks, software engi-
neering, time-varying data, information visualization, collaborative
work

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical User Interfaces; D.2.9 [Software Engi-
neering]: Management—Productivity

1 INTRODUCTION

Building large software systems involves sustained effort by large
teams. Teams of people divide up a large system into manageable
components. Then by collaboratively developing each part, they
in effect develop the whole system. Communication and collab-
oration activities are crucial to this process, and are therefore of
critical interest to software engineering researchers. Just as a large
system is broken into components, for manageability, a large devel-
opment team forms sub-communities of interest in order to collab-
orate in an orderly fashion. In commercial projects, these teams are
organized by management command; however, the actual commu-
nication among team members a) does not necessarily follow orga-
nizational boundaries and b) is difficult to observe. On the other
hand, open source software projects such as Apache, Mozilla and
PostgreSQL conduct software development over the internet, using
spontaneously formed, voluntary teams. All team communication
occurs on public email lists. Developers discuss engineering activ-
ities, bugs, and other issues on the list. Groups of interests form,
evolve and disband spontaneously. The historical archives of these
lists present a unique opportunity to observe first-hand the commu-
nication behavior of software teams. However, the volume of email
is huge, spans several years, and involves hundreds of participants.

∗email: msogawa@ucdavis.edu
†email: ma@cs.ucdavis.edu
‡email: cabird@gmail.com
§email: devanbu@cs.ucdavis.edu
¶email: acgourley@ucdavis.edu

We present a method for visualizing the evolving networks
present in project mailing lists. Past visualizations of these time-
varying networks have used animation or a layered technique to
depict the flow of time. They focused on the representations of in-
dividual timesteps rather than the transitions between them. Our
technique abstracts the individual timesteps and puts the empha-
sis on the transitions. Graph abstraction is accomplished through
clustering. The clusters are represented in a modified Sankey di-
agram with edges showing the transitions between timesteps. We
make our own modifications to the Sankey diagram in order to en-
hance clarity and provide more information, explained in detail in
Section 5. Using Sankey diagrams in a novel way and emphasiz-
ing the transitions between timesteps are the key elements of our
approach. We combine the evolving network visualization with an
easily navigable view of the file repository. Users are able to see
the commit changes for each file, which includes who modified it,
when it was modified, and how many lines were added or removed.
We then present two case studies of open source software projects:
the Apache webserver project and the PostgreSQL database man-
ager project.

2 RELATED WORK

Most work in visualizing software projects concentrates on the
source code. SeeSoft [10] is an early example of visualizing a large
amount of code. Lines, which are pixel-thin, are colored accord-
ing to some statistic, such as how recently it was modified. CVSs-
can [23] uses a history flow [22] to show, at the line level, how
source code changes during the development process. EPOSee [5]
uses infovis techniques such as parallel coordinates, pixelmaps and
node-link diagrams to show file association rules. These works do
not emphasize the social interaction of developers, which we are
interested in.

More relevant work with social software collaboration are the
following. The Bloom Diagram [13] visualizes the participation
type and level of developers by first sorting the developers by their
type of contribution, then wrapping them as wedges around a cir-
cle. Within a developer’s wedge, there are animated dots which
show their specific contributions at different points in time. While
the Bloom summarizes the activities of individuals, it does not take
into account their interaction with each other. Erickson and Kel-
logg [11] have created “social proxies” which summarize the situ-
ation between people interacting in an online conversation. While
it is good for casual assessment of social interaction, it is too mini-
mal for analysis of an evolving email network. The Sociable Media
Group at MIT has done much work in visualizing the interactions in
a “networked world.” Their research areas within social media are
varied, comprising online conversations ([20], [9]), emails ([21]),
website activity, textiles, mobile communications, and sociology
relating to our digital world. But of particular relevance to our work
is their “Open Sources” project [24], which seeks “to understand the
relationship between the community’s communication patterns and
the code” of software development. Their approach puts emphasis
on the amount of code each author has contributed, which appear as
stacked bars; much like the history flow diagram mentioned above.
Communication events are represented as icons within the bars.
Though correllation between email activity and code contribution

25

Asia-Pacific Symposium on Visualisation 2007
5 - 7 February, Sydney, NSW, Australia
1-4244-0809-1/07/$20.00 © 2007 IEEE

Figure 1: A view of the overall interface.

can be seen, we cannot see the context or the relationships between
developers. Finally, Augur [8] offers a comprehensive visualization
of a project’s source code, author network, and other development
statistics. In their system, the developer network is represented as a
standard node-link diagram. Its evolution can be visualized by use
of a time slider. This puts it into the “Small Multiples & Anima-
tion” category discussed below. In contrast, our system is able to
display all timesteps in the network history at once.

2.1 Work with Evolving Networks

One of the challenges in our work is to visualize the evolution of the
email network. Previous visualization methods relating to evolving
networks can be grouped into two categories: 1) Small Multiples &
Animation, and 2) Layers.

The Small Multiples technique [17] shows changes in the net-
work by displaying snapshots of the graph at various points in
time. Graph snapshots are laid out side-by-side in series, much like
frames in a movie, so that viewers can see the differences between
snapshots as they move across the page. Naturally, these snapshots
may be viewed one after the other in the same space to produce an
animation of the changing network.

Chen and Morris use spanning trees with small multiples and
animation [6]. Branigan and Cheswick visualize changes in the Yu-
goslavian communications network during a period of war [4]. Fr-
ishman and Tal color and draw bounding boxes around graph clus-
ters to help preserve the mental map between timesteps [12]. Chi
et al. arrange disk tree representations along a timeline. Changes
to the trees are highlighted with color while the structure stays the
same [7].

The problem with small multiples is that, depending on the tem-
poral resolution of the dataset, there may be large differences be-
tween the visual representations of two timesteps. For example, in
a dataset with yearly time slices, there may be a major change in
the topology which causes the graph layouts before and after the
change to appear quite different from each other. A person seeing
this jump would lose context and may assume that everything about

the network changed. This is apparent in [4]’s animation, where
large chunks of the network disappear and reappear spastically. On
the other hand, if the graph is moderately large, the differences be-
tween timesteps may be imperceptible. A visually displayed large
graph is a complex object to behold, and, consequently, small visual
changes between two large graphs are difficult to detect.

The second technique, which we call Layers, stacks planes of
graph representations at incremental timesteps. The stack is viewed
from the top and blended, so that newer planes are in focus and
older planes fade into the background. Brandes and Corman use a
layering scheme to visualize the dynamic discourse between speak-
ers [3]. Nakazono et al. create a difference layer by comparing two
timesteps [15]. The difference layer is then colored and added to
the original layer.

The Layers approach has the drawback of only being able to ef-
fectively visualize a handful of timesteps simultaneously. As the
blended planes pile up, the visibility of each plane is obscured or
cluttered and thus the coherence of the visualization is diminished.

Our approach does not fit squarely within either the Small Mul-
tiples & Animation or Layers category. As such, we believe it to
be a novel representation of evolving networks. It is most akin
to Chi et al.’s Time Tube visualization [7], in that we present dis-
crete representations of the network in series along a spatial axis.
However, our technique for displaying the information emphasizes
the changes that occur between timesteps rather than the individual
graphs within the timesteps. It may be thought of as a variation on
small multiples, where the graph representations are abstracted and
there is linking information displayed between timesteps.

3 EXPLANATION OF THE INPUT DATA

The dataset for each software project consist of two parts: the repos-
itory and the mailing list.

3.1 Repository
Data pertaining to files and authors was gathered from the public
CVS repositories of their respective projects. The data contains the

26

entire collection of files and directory structure of the repository.
Each file comes with a history of edits made by developers (i.e.
who edited what and at when). Each edit also contains information
on the number of lines added and removed.

3.2 Mailing List
As described in [2], mailing list data was gathered from the public
archives of their respective projects. The format of this data is a list
of emails. Emails which contain a reply-to header are considered as
relationships between senders and receivers. Emails are grouped by
the month in which they were sent. Thus, within each month, the
relationships between senders and receivers form a network. An
evolving network is formed over the timespan of the email list, with
each monthly network being a timestep.

4 VISUALIZING THE FILE REPOSITORY

A standard Windows Explorer-type tree visualization is used to rep-
resent the file repository (Figure 2). Users are free to expand and
collapse the file hierarchy to view the directories they are interested
in. To the right of each file is a sparkline [18] showing the edit his-
tory for that file: its evolution. Time flows to the right, along the
x-axis. Bars are drawn representing the relative size of the file at
each point in time. Thus, an upwards-growing bar depicts a grow-
ing file. Each author’s revision of the file is represented in one bar
and the bars are alternately colored to distinguish successive revi-
sions. Hovering over a bar creates a small popup with the revision’s
author and date. The time scales for each sparkline are correct with
respect to each other so that the user can compare file evolutions.

Figure 2: A view of the file repository. The repository directory hier-
archy structure appears on the left and the file evolution sparklines
appear on the right. The highlighted file shows typical growth.

If the user wants to see more details about a particular file,
double-clicking will bring up a window with more information
(Figure 3). This window contains the sparkline as above, but larger,
and tables of author statistics for the file. These tables are titled
“Most Frequent Authors,” “Most Line Additions,” and “Most Line
Removals.” They are sorted so that the user can easily see who,
for example, contributed the most lines. The user may click on an
author in the table and see the author’s contributions highlighted in
the sparkline.

5 VISUALIZING THE MAILING LIST

5.1 Clustering
In our implementation we use the Markov Cluster Algorithm
(MCL) to cluster each mailing list network timestep [19]. MCL

Figure 3: A file details dialog. The contributions from William A.
Rowe, Sander Striker, and Allan Edwards have been highlighted.

works by starting with the entire edge set, then it iteratively removes
edges based on their weight and topology. For email networks, the
edge weights are equal to the number of messages exchanged be-
tween two people. When all that is left is a collection of trees, the
algorithm stops and considers each tree as a cluster.

5.2 Sankey Diagram

Representing an evolving network is challenging due to the addi-
tional dimension of time. As discussed in Section 2, the techniques
of Layers and Small Multiples & Animation are not ideal for rep-
resenting the changes occurring between timesteps. To address this
issue, we have adapted the well-known Sankey diagram for our pur-
poses.

Sankey diagrams are mainly used to show energy or matter flow
through a physical system. Their representation is a continuous
one, with the flow being split and combined in arbitrary amounts.
We use the diagram to show the flow of people between clusters;
therefore it becomes a discrete Sankey diagram.

In our implementation, time flows downwards in monthly stages.
At each stage, the people participating in the mailing list conversa-
tion are depicted as ovals lined up horizontally, grouped together by
their cluster. Each cluster is drawn in order from largest to small-
est. This sorting allows the viewer to follow the larger core groups
along a straight downwards path. The smaller clusters which rep-
resent “side conversations” are then located, appropriately, to the
side.

As in a regular Sankey diagram, edges are drawn between two
stages if there are people continuing to participate in the mailing
list. They connect two clusters in two different time stages, rep-
resenting the flow of people between the two stages. Each edge
has a certain width, proportional to the number of people stay-
ing within the two clusters. By observing the edges, the user can
achieve insight into the dynamics of the mailing list. For example,
a large cluster may fragment into many smaller edges connecting
to smaller clusters, indicating a fragmenting of conversation. Con-
sistently thick edges across many stages indicates a strong conver-
sational coherence within the group.

We solved the problem of edge occlusion by simply drawing
translucent edges and eliminating exiting edges. Translucent edges
allow the user to see the paths of all edges in a crossing. Further-
more, eliminating the exiting edges reduces the number of edge
crossings. We are able to do this because we do not care where the
exiting flow goes. In this particular application, it is common to
have many people leave the mailing list conversation, so drawing
the exiting flow will not provide much more meaning. However,
the user can still infer the amount of exiting people by visually sub-
tracting the number of people continuing onto the next stage from
the number of people in the current stage.

27

5.3 Interaction
We allow users to interact with the Sankey diagram in a number
of ways. When the diagram is first presented, the space between
timesteps (where the edges exist) is set to a moderate length. Since
the length of the entire diagram is proportional to the space be-
tween timesteps, it is not possible to view the entire diagram with-
out scrolling. The user may want to see an overview of the entire
dataset. We provide a slider widget so the user can interactively
control the amount of space between timesteps. Setting a small
amount of space compresses the diagram and allows the user to see
more timesteps at once (Figure 4). The edges may be hidden via
a checkbox for a simplified view. The user may want to see more
detail of what happens between a few timesteps. Setting a large
amount of space expands the diagram and allows the user to see the
edges more clearly (Figure 5).

Figure 4: Compressing the diagram displays more timesteps at once.
Hiding edges provides a cleaner visualization.

The user will likely want to see which people comprise the nodes
and edges. Casual queries about who is participating in the discus-
sion is accomplished by hovering the mouse over a particular node
or edge. The corresponding person’s name will then appear in a
popup next to the cursor. Direct selection of the node and edge
components are done through mouse clicks. If the user clicks on a
person’s node or edge with the left mouse button, the correspond-
ing person is selected. Then throughout the diagram, the node and
edges containing that person are highlighted (Figure 6). If the user
is looking to select a specific person by name, we provide a list in-
terface to the side which contains the names of all people appearing
in the network.

Multiple selections of people are allowed as well (shown in Fig-
ure 7). Using the right mouse button to click on nodes or edges adds
each corresponding person to the selected collection (as opposed to
replacing it). The user can easily manipulate the selected collection
via the list interface. People can be moved back and forth between
the unselected and selected groups. The selected list may also be
cleared by pressing a button.

The user can choose to see the details of conversations between
particular people in a particular month. Double-clicking on a devel-
oper or edge will pop up a window containing information on the
mail sender, receiver, date, and subject (Figure 8). The subject is

Figure 5: Expanding the diagram shows more edge detail.

especially relevant because it allows the user to see the context of
the mailing list clusters.

5.4 Combining Views
We combine the two views—the repository view and the mailing
list view—in one user interface, shown in Figure 1. In addition to
those views, we provide a list interface for selecting and deselecting
developers. Linking between the repository view and the mailing
list view is accomplished through the people. For example, double-
clicking a file in the repository view selects the developers who have
worked on that file and highlights them in the mailing list view.

6 CASE STUDY: THE APACHE PROJECT

To evaluate our visualization technique, we examined the developer
email archive of the Apache Project [1]. Apache is a well-known
open source web server application. The archives are publicly ac-
cessible via the web and contain all emails dating back to March,
1995. They were processed into a time-varying graph dataset for
use with our system. The nodes of the graph are people who posted
to the email list and the edges are replies between two posters. A
message is considered a reply if the “reply-to” field is used. Edges
are then weighted by the number of replies between two people.
Inconsistencies in the dataset arise when individuals use different
names or addresses to represent themselves. Bird et al. [2] used
both fuzzy string matching and manual post-processing to alias the
data. In all, there were 2008 unique people posting to the mailing
list. The vast majority are casual posters asking questions and only
a fraction are active developers. Our dataset contains over 68,000
email messages.

We begin our study by examining the overview of the network
(Figure 9). Immediately we can see the growth of the core group
during the early years (1995–1999). The core group remains close-
knit during that period, as evidenced by the lack of other clusters
besides the largest one. Then two-thirds of the way up, we can see
satellite clusters becoming more prevalent. The core group con-
tinues to dominate the clusters until about one-third of the way up
(2000–2002), where it begins to diminish in size. This continues
all the way to the bottom, with the core group shrinking and the
smaller clusters becoming more numerous (2003–2005).

We note an unusual period with increased clusters beginning in
September, 1998 and ending in March, 2000 (Figure 10). It is un-

28

Figure 6: An example of selection highlighting. The selected person’s
nodes and edges are colored in red.

usual because the months preceding and following this period are
relatively “calm,” with the core group changing very little. In con-
trast, this period contains many edge crossings and people breaking
off from the core group to join satellite conversations. At the very
end of the period, there is a sudden merging of many small clusters
into the large core cluster. To figure out the cause of this activity, we
examined the release history of Apache. It turns out that in 1998,
plans were being finalized for the development of Apache 2.0. This
version would be written from scratch and was highly anticipated.
Using our interface to look at 1998 mail headers, we indeed find
many messages related to Apache 2.0 (such as those in Figure 8).
In March of 2000, the alpha version (Apache 2.0a1) was released.
This coincides exactly with all of the smaller clusters merging into
one large cluster. Again, looking at the mail headers for this month,
we find much discussion about preparing for the alpha release. It
is interesting that, before the alpha release, the participants formed
small groups throughout the entire period. Perhaps this is due to the
division of labor between developers; each group working on one
component of the project. Or perhaps people outside the project
were emailing questions and suggestions. We find these smaller
clusters to be discussing specific subjects such as “patch to force
name virtual hosts,” “10x performance increase patch #9,” “C com-
piler for NT,” and “XML apache conf.” These subjects indicate that
the former hypothesis above is more likely: that there was a divi-
sion of labor between developers. The alpha release then caused the
participants to merge into one large cluster. It could be that, once
everyone had a point of reference for discussion, the conversation
became more organized. It is difficult to tell the nature of this large
cluster, as the subject headers are many and varied among techni-

Figure 7: Multiple people may be selected.

Figure 8: Email header information corresponding to Ben Laurie in
September, 1998.

cal issues. It appears that the division of labor seen previously has
coalesced into a swarm-like group, with everyone having a hand
in the different development sections. It is also interesting to note
that, according to the online mailing list archives, there were 586
emails in February (the month before release) and in March there
were 1504: a huge difference. Yet despite the large volume, the
clusters converged, rather than split off.

We can easily visualize the involvement of notable figures within
the Apache Project. For example, Rob McCool, while at NCSA,
wrote the original HTTP daemon which Apache was based off of.
Figure 11 shows that he contributed to the email list for one year
from the beginning of the project, then moved on. Ken Coar (a.k.a.
Rodent of Unusual Size) joined the Apache email list at the end
of 1996. Figure 12 shows his activity starting from that time. He
contributes to the list regularly until 2003, after which there are
some months when he does not post at all.

Coar’s activity is similar to other large contributors, such as Ben
Laurie and William A. Rowe, Jr. Their email postings had been
consistent and within the core group until about 2003, when the
frequency of emails subside and they are more often grouped with

29

Figure 9: Overview of the Apache email network.

Figure 10: The period leading up to the alpha release of Apache 2.0
in March, 2000. The graph appears uniform at the top, then more
small clusters form as each month passes. There is a dramatic frag-
mentation of clusters in February, 2000, before finally returning to
uniformity.

Figure 11: Rob McCool, author of the original HTTP daemon, helped
the Apache project during its infancy, then left the discussion.

Figure 12: Ken Coar (highlighted in red) joined the email list in De-
cember, 1996. He is still a regular code contributor, though his email
list involvement has become more sporadic.

30

smaller clusters. This is perhaps because the Apache software has
become stable enough such that code updates are not needed as
frequently.

7 CASE STUDY: POSTGRESQL
In our second case study, we examine the email network of the Post-
greSQL project. PostgreSQL is an open source database manage-
ment system. Like Apache, their email list archive is publicly ac-
cessible. The email network we analyzed contains 3295 unique
people and runs from 1998 to 2006. The dataset contains over
86,000 email messages.

We started with the compressed overview shown in Figure 13.
For the most part, the network remains consistent: a large core
group with very few smaller clusters in each timestep. There are,
however, two anomalies that occur at 1999-04 and 2000-04 (Fig-
ure 14). They are characterized by a sudden drop off in the core
group population and an increased number of smaller clusters. We
are yet unsure of the exact cause of the anomalies. One possible
explanation is the fact that the dates coincide with the beta releases
of versions 6.5 and 7.0. But the question remains: Why does this
pattern not occur at other beta release periods?

It appears that the core group is quite large. On closer inspec-
tion, that is not the case. Using the selection tools we determined
that most casual emailers (those who only post a few times) were
grouped by the clustering algorithm into the largest cluster. What
this indicates is that the casual poster’s message was replied to not
by a single developer, but by multiple developers. The community
aspect of the PostgreSQL project is therefore quite strong.

There is a noticeable difference in appearance between the
Apache and PostgreSQL email networks. Whereas the Apache net-
work contains many edge crossings and waxings and wanings of
the core developer group, the PostgreSQL network remains rela-
tively constant with few edge crossings and a steady core group.
The reason may be summed up in a quote by Jolly Chen, an early
PostgreSQL developer: “This project needs a few people with lots
of time, not many people with a little time.” In other words, it
takes a lot of effort to understand the backend code enough to make
a useful contribution. We believe that this is why there is a core
group of developers who stay together and why there are few side
conversations.

8 DISCUSSION AND FUTURE WORK

Since we run a separate MCL clustering process on each timestep,
clustering the graph is essentially a greedy algorithm. That is,
it chooses the clusters based on information found only in one
timestep. The question is, when taken together as a whole, is the
resulting Sankey diagram an accurate representation of the dynam-
ics between developers? To determine the accuracy, experts who
have worked within the project or studied the history of the project
should evaluate the clusterings. Are major splits, fragmentations
and merges of social groups correctly depicted? It may be insightful
to see the clusterings that other algorithms, besides MCL, produce.

For now, we use transparency to show how edges cross. It works
well for the small datasets we use because there are only about two
edges per crossing. We surmise that for larger datasets, there will
be more clusters and thus more edge crossings. Thus a way to ar-
range the nodes within each timestep is needed to minimize the
number of edge crossings, in addition to transparency. Riehmann
et al.’s paper [16], which uses Mansfield’s technique [14] for draw-
ing edges with circular corners and parallel lines, may be useful
for more clearly drawing edges and their crossings. It would also
remedy the problem of having narrow edges when their angles are
steep.

Our system currently arranges cluster nodes by their size. That
is, the largest cluster node in a timestep is on the left and the small-
est is on the right. This is likely not the optimal arrangement for a

Figure 13: Overview of the PostgreSQL email network.

Figure 14: Two anomalies at 1999.04 and 2000.04 in the PostgreSQL
email network.

31

global minimization of edge crossings. A brute-force algorithm ex-
ists for finding the optimal arrangement between two timesteps, but
there is a larger problem: The cluster node layout of one timestep
affects the ones immediately above and below it. Therefore, arrang-
ing the clusters in one timestep optimally may lead to suboptimal
arrangements in later timesteps. Simulated annealing, though ex-
pensive, may be one way to obtain a satisfactory arrangement of
nodes.

In order to visualize an email network, which is a time-varying
graph, we use the Sankey diagram as our visual construct. We be-
lieve that Sankey diagrams can be used to show the evolution of
clusters in any time-varying graph. These include evolving social
networks, citation networks, and any other “living” network. We
would like to perform more case studies to determine our method’s
effectiveness at capturing the characteristics of these additional net-
works.

Ideally we would like to include both repository and mailing list
information in one coherent visualization construct. This would
provide a better overview of the entire software process. The chal-
lenge will be to represent a hierarchy (the repository) and a network
(the mailing list) together in the same view and link them together.
We are currently working on such a representation. We would also
like to incorporate other aspects of software projects, such as the
source code. Data such as the specific lines changed by each au-
thor and the function call graphs may prove useful in the study of
relationships between design, collaboration and communication in
software engineering.

9 CONCLUSION

Network visualization and graph drawing are well-studied fields.
However, as discussed in Section 2, there are few existing methods
for visualizing evolving networks. We believe that the time-varying
aspect of graphs will be increasingly desirable to analyze because
most real-world graphs are evolving (e.g. the internet, social net-
works and citation networks).

We have applied the Sankey diagram—a classic visualization of
energy flow—in a novel way to visualize network evolution over
time. Specifically, we abstract the individual graph timesteps with
clustering and draw edges to emphasize the transitions between
timesteps. We have also added our own modifications to the Sankey
design, such as discretized nodes and translucent edges, which en-
hance comprehension. We created a system which allows the ex-
ploration of these diagrams with simple, intuitive interaction mech-
anisms. We then presented case studies which apply our technique
to the domain of open source software development. In those case
studies we found examples of social behavior which we related to
events in the project’s development. The ability to visualize a large,
evolving social network is of great use to software engineering re-
searchers and open source project participants. Our system allows
them to make sense of the complex dynamics of evolving networks
and see features that would otherwise remain unnoticed.

ACKNOWLEDGEMENTS

This work is sponsored in part by the National Science Founda-
tion under contracts CCF 0222991, OCI 0325934, IIS 0552334,
and CCF 0634913.

REFERENCES

[1] Apache mailing list: dev@httpd.apache.org.
[2] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and M. Gertz. Min-

ing email social networks. In ICSE 2006 Workshop on Mining Soft-
ware Repositories (MSR 2006), 2006.

[3] U. Brandes and S. R. Corman. Visual unrolling of network evolu-
tion and the analysis of dynamic discourse. Information Visualization,
2(1):40–50, 2003.

[4] S. Branigan and B. Cheswick. The effects of war on the yugoslavian
network, 1999.

[5] M. Burch, S. Diehl, and P. Weissgerber. Visual data mining in software
archives. In Proceedings of the 2005 ACM Symposium on Software
Visualization (SOFTVIS’05), 2005.

[6] C. Chen and S. Morris. Visualizing evolving networks: Minimum
spanning trees versus pathfinder networks. infovis, 00:9, 2003.

[7] E. H. Chi, J. Pitkow, J. Mackinlay, P. Pirolli, R. Gossweiler, and
S. K. Card. Visualizing the evolution of web ecologies. In CHI ’98:
Proceedings of the SIGCHI conference on Human factors in com-
puting systems, pages 400–407, New York, NY, USA, 1998. ACM
Press/Addison-Wesley Publishing Co.

[8] C. de Souza, J. Froehlich, and P. Dourish. Seeking the source: soft-
ware source code as a social and technical artifact. In GROUP ’05:
Proceedings of the 2005 international ACM SIGGROUP conference
on Supporting group work, pages 197–206, New York, NY, USA,
2005. ACM Press.

[9] J. Donath. A semantic approach to visualizing online conversations.
Commun. ACM, 45(4):45–49, 2002.

[10] S. G. Eick, J. L. Steffen, and J. Eric E. Sumner. Seesoft-a tool for
visualizing line oriented software statistics. IEEE Trans. Softw. Eng.,
18(11):957–968, 1992.

[11] T. Erickson, C. Halverson, W. A. Kellogg, M. Laff, and T. Wolf. So-
cial translucence: designing social infrastructures that make collective
activity visible. Communications of the ACM, 45(4):40–44, 2002.

[12] Y. Frishman and A. Tal. Dynamic drawing of clustered graphs. In
INFOVIS ’04: Proceedings of the IEEE Symposium on Information
Visualization (INFOVIS’04), pages 191–198, Washington, DC, USA,
2004. IEEE Computer Society.

[13] B. Kerr, L.-T. Cheng, and T. Sweeney. Growing bloom: design of
a visualization of project evolution. In CHI ’06: CHI ’06 extended
abstracts on Human factors in computing systems, pages 93–98, New
York, NY, USA, 2006. ACM Press.

[14] P. A. Mansfield. Programmatic rendering of directed, weighted
graphs. In Proceedings of 2nd Annual Conference on Scalable Vec-
tor Graphics, 2003.

[15] N. Nakazono, K. Misue, and J. Tanaka. Nel2: Network drawing
tool for handling layered structured network diagram. In K. Misue,
K. Sugiyama, and J. Tanaka, editors, Asia Pacific Symposium on Infor-
mation Visualisation (APVIS2006), volume 60 of CRPIT, pages 109–
115, Tokyo, Japan, 2006. ACS.

[16] P. Riehmann, M. Hanfler, and B. Froehlich. Interactive sankey dia-
grams. In Proceedings of the 2005 IEEE Symposium on Information
Visualization (INFOVIS’05), 2005.

[17] E. Tufte. Envisioning Information. Graphics Press, 1990.
[18] E. Tufte. Beautiful Evidence. Graphics Press, 2006.
[19] S. van Dongen. Graph Clustering by Flow Simulation. PhD thesis,

University of Utrecht, 2000.
[20] F. B. Viegas and J. S. Donath. Chat circles. In CHI ’99: Proceedings

of the SIGCHI conference on Human factors in computing systems,
pages 9–16, New York, NY, USA, 1999. ACM Press.

[21] F. B. Viegas, S. Golder, and J. Donath. Visualizing email content:
portraying relationships from conversational histories. In CHI ’06:
Proceedings of the SIGCHI conference on Human Factors in comput-
ing systems, pages 979–988, New York, NY, USA, 2006. ACM Press.

[22] F. B. Viegas, M. Wattenberg, and K. Dave. Studying cooperation and
conflict between authors with history flow visualizations. In CHI ’04:
Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, pages 575–582, New York, NY, USA, 2004. ACM Press.

[23] L. Voinea, A. Telea, and J. J. van Wijk. Cvsscan: visualization of code
evolution. In SoftVis ’05: Proceedings of the 2005 ACM symposium
on Software visualization, pages 47–56, New York, NY, USA, 2005.
ACM Press.

[24] A. R. Zinman. Open sources:
http://smg.media.mit.edu/projects/opensources/.

32

