
Discovering Parametric Clusters in
Social SmallWorld Graphs

Jonathan McPherson KwanLiu Ma Michael Ogawa
Institute for Data Analysis and Visualization

University of California at Davis

ABSTRACT

We present a strategy for analyzing large, social small-world
graphs, such as those formed by human networks. Our ap-
proach brings together ideas from a number of different re-
search areas, including graph layout, graph clustering and
partitioning, machine learning, and user interface design. It
helps users explore the networks and develop insights con-
cerning their members and structure that may be difficult
or impossible to discover via traditional means, including
existing graph visualization and/or statistical methods.

Categories and Subject Descriptors

I.3.6 [Computer Graphics]: Methodology and Techniques—
Interaction Techniques; H.5 [Information Systems]: In-
formation Interfaces and Presentation; I.2.6 [Artificial In-
telligence]: Learning

Keywords

Graph clustering, graph layout, histogram, information vi-
sualization, machine learning, self-organizing map, small-
world graph, social networks, user interface design

1. INTRODUCTION

1.1 What is a small world graph?
The subject of small world graphs has received much re-

cent treatment because graphs from a surprising number of
disciplines have been discovered to have small world proper-
ties. When people say “it’s a small world,” they are express-
ing their surprise that they know a stranger through a short
chain of acquaintances. In small world graphs, the average
length of the path from one entity to another is small even
though the graph is often quite large. The two main char-
acteristic qualities of a small-world graph are small average
path length and large clustering coefficient. [18]

The clustering coefficient c of a single node can be com-
puted as follows. Construct a subgraph G′(V ′, E′) of the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC ’05, March 1317, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1581139640/05/0003 ...$5.00.

graph G that contains the node and all its neighbors. The
clustering coefficient is the ratio of the number of edges that
could exist in this graph to the number of edges that actually
do exist in the graph. Thus:

c =
|E′|

(|V ′| × |V ′ − 1|)/2
(1)

The clustering coefficient C of a graph G(V, E) can be com-
puted by letting E = E′ and V = V ′ in the formula above.
The average path length L of a graph is the average of the
values given by an all-pairs shortest path algorithm. Now,
let Lrand be the average path length of a random graph (a
graph with randomly connected nodes), and Crand be the
clustering coefficient of a random graph. A “small world”
graph is a graph in which the following hold true:

1. L ≤ Lrand. In other words, the average path length L
is at least as small, and probably smaller, than that of
a random graph that has the same number of vertices
and edges.

2. C � Crand. In other words, the clustering coefficient
C is much larger than that of a random graph.

1.2 Where are small world graphs found?
Small world graphs are found in a number of interesting—

and unexpected—places. For instance, graph representa-
tions of the following have all been shown to have small
world properties:

• The United States power grid, the collaboration graph
for film actors, and the neural network of the nematode
C. elegans [18]

• The World-Wide Web [3]

• Resource-sharing graphs [8]

2. THE PROBLEM
Since small world networks appear in so many areas, we

would like to exploit their characteristic properties in order
to answer questions about them. Some of these questions
can be answered using tools that are purely mathematical,
but others require a less rigid approach.

These are some of the things that we would like to be able
to discover about a graph [4]:

1. What are the “social groups,” or cliques, present in
the graph? Small world networks tend to consist of
a set of highly connected cliques or clusters, with a

1231

2005 ACM Symposium on Applied Computing

Figure 1: The basic process of visualization alter-
nates between machine processing and human user
processing. The goal is to arrive at a visualization
of a segment of a small world graph which answers
a specific question the user asks.

relatively small set of edges connecting them to the
rest of the graph. In addition to graph clusters, there
may also be data clusters of attribute or other scalar
values. We use the term parametric cluster to refer
to a cluster of data that shares some common set of
properties, which may include membership in a graph
clique. We will discuss this in detail later.

2. What are the properties of these groups? For each,
what is its relative size? relative connectivity? topol-
ogy?

3. How many of these groups are there? Do they have
common properties?

4. How are these groups related to each other?

3. ABOUT THE SAMPLE DATA SET
For simplicity, the approach is first demonstrated with

a simple, synthetic data set with 1,000 nodes and 10,000
edges. This data was generated by a group that is inter-
ested in the use of graphs to model relationships between
entities related to national security—a node, for instance,
might represent a terrorist attack, a terrorist, a meeting,
and so forth. The generated data is very similar in graph
structure to a real-world data set of such entities. Thus, the
ability to discover insights about this synthetic data trans-
lates well to the ability to discover insights in the real-world
data. The Albert-Barábasi [2] small-world graph model was
used to generate this dataset.

4. OUR APPROACH
The approach is based on an iterative process that is de-

signed to allow the raw data to be manipulated naturally
to arrive at a useful view. The process alternates between
machine processing and human user processing. See Fig-
ure 1 for an overview of the process, in which some of the
plausible steps are discussed as follows.

4.1 Initial layout
At the beginning, the user is presented with an initial im-

age of the graph. It is quite difficult to generate a useful
image without some knowledge of what the user is after, so
our goal in generating an initial layout is simply to present
some view of the graph that can be easily manipulated and
observed. Displaying all nodes and all edges is not useful
even for a small graph like our synthetic data set (See Fig-
ure 2(a)). Instead, a spanning tree of the graph is created,

using a simple algorithm that aims to create a “bushy” tree.
Edges must be discarded to present any worthwhile image
of the graph, since any graph of appreciable size will have
more edges than can be meaningfully displayed at once. Us-
ing a spanning tree permits preservation of the structure of
the graph while eliminating the vast majority of the edges;
however, the main goal in generating the tree is to give us
an input to the layout algorithm.

A layout algorithm much like H3 [11] is used to gener-
ate the initial layout. The main difference is that H3 lays
out nodes in hyperbolic space, whereas this algorithm uses
Euclidean space. The decision to use Euclidean space was
made primarily to preserve the user’s “mental map” of the
data. See Figure 2 (b) for an illustration of the layout mech-
anism of hierarchical hemispheres. Every parent hemisphere
is made just large enough for its children to be placed on
its surface. The dimensionality of the layout (3) is impor-
tant because we wish our algorithm to be able to support
graphs as large as possible, and 3D has a size advantage
(and other advantages) over 2D when used to visualize in-
formation nets [17]. Since at this early stage there is more
concern with presenting the largest amount of data possible
than with making the data easy to interact with, it makes
sense to trade interaction ease for sheer quantity of data [14].
Figure 2 (c) shows the initial appearance of the graph.

4.2 Derived attributes calculations
Some useful attributes are derivative; they need not be

included in the raw data because they can be inferred from
it. The clustering coefficient is a good example: it can be
calculated by applying the simple formula discussed earlier.

Another useful calculation is clustering. For example, the
Markov clustering algorithm MCL [15] can be applied to
assign a “cluster id” to each vertex. MCL is a cluster de-
tection algorithm that can detect graph clusters, which are
groups of nodes that are very strongly connected to each
other. These groups represent “cliques” in social networks—
groups of people that all know each other but only have a few
connections with the outside world. MCL can detect clus-
ters at multiple levels of granularity; for instance, a large
cluster might consist mostly of two smaller clusters that are
somewhat well-connected to each other. This kind of group
would be seen as one cluster at a low granularity level and
two clusters at a high granularity level.

4.3 Graph exploration
Now that the user has an initial view of the graph, he

needs some way of extracting information from it. Aside
from the usual zooming, panning, and rotating facilities for
looking at the graph’s topology, two additional mechanisms
are provided for graph exploration. They are designed to
work in tandem.

4.3.1 Attribute mapping

This is simply the process of mapping data values to graph

attributes. The user can choose any source of data in the
graph and map it to any attribute in the graph, as long
as the mapping is meaningful. For instance, a node might
be colored or sized according to its degree, its “cluster id”,
its clustering coefficient, some node attribute present in the
data set, and so forth. Figure 2 (d) displays the graph map-
ping color to cluster id.

One of the major issues with traditional graph attribute

1232

(a) (b)

(c) (d)

(e) (f)

Figure 2: Visualization of the synthetic terrorism graph. (a) all nodes and all edges. (b) the layout mechanism
of hierarchical hemispheres. (c) a spanning tree of the graph. (d) mapping color to cluster id. (e) mapping
size to node degree. (f) subgraph selection.

1233

Figure 3: The user interface. Note the brushing
histogram, transfer function for arbitrary size map-
ping, and choice of data sources.

mapping is its poor performance when presented with out-
lying values [6]. For instance, if a node’s size represents its
degree, and one node has a degree much larger than that
of the others, a linear mapping of degree to size will fail to
draw much distinction among the N-1 nodes in the graph.

To resolve this issue and to allow the emphasis of any
parts of the data ranges the user desires, user parameter-

ization of all attribute mappings is implemented. When a
user selects a data source for mapping, he is presented with
a histogram that helps him identify the distribution of that
data. The next step depends on the type of graph attribute
being mapped to:

• If the user is mapping a data source to a color, he is
presented with a gradient editor that corresponds to
and has the same width as the histogram. The gradi-
ent editor supports an arbitrary number of arbitrarily
colored control points, so that the user can create an
arbitrarily complex mapping from the data values to
colors. By displaying the gradient editor in combi-
nation with the histogram, we encourage the user to
explore various “peaks” and “valleys” in the data fre-
quencies by mapping them to smoothly interpolated
color values.

• If the user is mapping a data source to a size, he is
presented with a transfer function editor. This transfer
function, like the gradient editor, permits any level of
size to be mapped to any range of data.

Figure 2 (e) contains an image of the synthetic graph with
attribute mappings. We selected a color mapping that maps
red, blue, green and yellow to different graph clusters, as
detected by MCL. A size map was also created for nodes
that corresponds to node degree. All of these mappings were
defined and applied in real time. Figure 3 contains a screen
capture of the user interface used to make the mappings and
to select subgraphs. It is also helpful to create a size map for
nodes that corresponds to clustering coefficient or for edges
that corresponds to the average degree of the nodes they
connect.

4.3.2 Subgraph selection

It is very unlikely that the user will be able to gather
many useful insights from the initial layout of the graph, for
at least two reasons: (1) the initial layout is not optimized
toward any particular visualization goal—and cannot be,
since there is no initial knowledge of what the user is looking
for—and (2) the insight the user is interested in is likely to
require only certain parts of the graph.

The mechanism we use for subgraph selection is a painting

histogram. The same histogram used for attribute mapping
is used for subgraph selection. It allows the user to “click
and drag” to select a range of data values. The user can
select multiple ranges in the same histogram. Contrast this
with simpler interfaces, e.g. the single-range selection mech-
anisms in [1]. We believe that multiple-range techniques are
necessary for the achievement of some visualization goals;
for instance, imagine that the user wanted to answer the
question “how are the vertices of high degree and vertices
of low degree related in the graph?” This question can be
answered only by selecting both the vertices of high and low
degree in the graph. The subgraph can often be thought of
as a skeleton of the graph built according to a user-controlled
metric, as briefly described in [7].

The use of the histogram is important because it strongly
ties the subgraph selection process to the attribute mapping
process. The idea is that the first will influence the second;
if the user maps some part of a data source to a red color,
for instance, it becomes quite easy to select the parts of the
graph that are red.

Note that we include subgraph selection in the same step
as attribute mapping. This is because these processes are
not necessarily sequential. The first try at subgraph selec-
tion may lead to a realization that the attribute mappings
previously chosen are not useful for discerning appropriate
parts of the graph for selection, or vice versa. The process
may need to be repeated iteratively until the user is pleased
with the subgraph he has selected and the attribute map-
pings he has chosen.

When a subgraph is selected, all the edges in that sub-
graph are displayed, rather than just the spanning-tree edges,
as shown in Figure 2 (f). We selected only the nodes actu-
ally in the red, green, and yellow clusters to be part of the
subgraph. All their edges are shown. The edge confusion
will be resolved by the next stage of visualization, but some
structure is already apparent here. The tree edges may op-
tionally be turned off in order to get a clearer picture of what
the subgraph looks like. When the user is certain that he
has the right subgraph, he can move toward a more useful
layout.

Note that subgraph selection can also be done based on
topological structure, such as proximity [12] and edge strength [4].
However, this is not discussed in this paper due to the space
constraint.

4.4 Automatic selforganizing layout
There are many algorithms for discovering cliques, and

of course finding “data cliques” of nodes with similar val-
ues for some attribute is a trivially easy task. But what
we are after is the discovery of higher-level cliques. For ex-
ample, imagine that we are looking at the United States
social network and would like our algorithm to find cliques
of “people who know each other well and are paid about the
same amount.” It is easy to find groups of people who are
paid the same amount; it is much harder but still possible to
find groups of people who know each other well. No existing
techniques can directly and automatically discover clusters
whose components have both data and graph nearness.

Our system allows the user to conveniently perform clus-
tering of nodes that possess a combination of data nearness;
that is, values that are nearer to each other than to other
nodes in the graph, and graph nearness; that is, locations

1234

in the graph such that the length of the path from one node
to another is lower than to other nodes in the graph. This
is achieved by using the cluster id numbers discussed ear-
lier. By using the cluster ids, we move the domain of graph
nearness into the domain of data nearness.

4.4.1 Selection of the feature vector

A feature vector represents each node. Selection of at-
tributes for the feature vector must be left to the user, be-
cause the selection of any attribute causes it to be used to
potentially split clusters; therefore, only attributes the user
is interested in ought to be used in the feature vector.

4.4.2 Kohonen maps

A technique called a Kohonen map [9] is used to gener-
ate a layout that automatically finds these kinds of clus-
ters [10]. Kohonen maps—also known as self-organizing
maps, or SOMs—organize high-dimensional data onto a 2-
dimensional grid while preserving the data clusters in higher
dimensions. In a placement of nodes generated by a SOM,
nearness implies similarity, but distance does not imply dif-
ference. Suppose that each node has a d-dimensional feature
vector (normalized so that each dimension is in the range
[0, 1]). The data is organized by the SOM as follows:

1. A grid of hexagonally connected points is created. Each
point on the grid is given a random d-dimensional vec-
tor.

2. An input vector i is compared with each vector g on the
grid. The point on the grid with the lowest Euclidean
distance |g − i| is chosen.

3. The chosen point, and all the points that are near it
on the grid (according to the current neighborhood
size, n) have their vectors made more like that of the
input vector; the amount of adjustment is controlled
by a learning parameter, α. To speed computation,
we use a bubble function rather than the traditional
Gaussian function to relate the level of adjustment to
the distance from the center of the neighborhood.

4. The previous two steps are repeated for each input
vector. n and α are linearly reduced as the map ap-
proaches its final form.

5. The input vectors are presented once more to the SOM
for final placement.

Smaller grids tend to generalize data better than larger
grids, whereas larger grids tend to generate better detection
of fine features. The user interface permits small adjust-
ments to the grid size, and to the learning parameter α.

The main differences between traditional SOM applica-
tions and this application are (1) we are applying the layout
to a graph rather than a set of independent data points, and
(2) by mapping graph clusters found by MCL to scalar val-
ues, we are permitting the use of an algorithm designed to
discover clusters of scalar values to “discover” the encoded
graph clusters as well. Figure 4 shows an example clustering
of the synthetic terrorism data set.

4.5 Usercontrolled forcedirected layout
At this point, we have a layout that has been generated

by the Kohonen map. But:

Figure 4: Automatic clustering. The self-organizing
map has put each node into one of five “parametric
clusters” partitioned by graph nearness and node
degree. We selected a feature vector consisting of
node degree and “cluster id.” The few nodes repre-
sented in this clustering are actually groups of nodes
that have been partitioned according to differences
in their cluster ids and degree values.

Figure 5: Parametric clusters have been pushed
apart by the force-directed layout algorithm after
several iterations.

1. while it may be a fine layout of data points, it is not a
terribly good layout for a graph; and

2. the self-organizing map may place two or more points
at the same location, making it impossible to see how
many data points are actually present and what the
relationship among them is. (Figure 4 illustrates this.)

Traditional graph layout algorithms are not appropriate for
use here, for they will disturb the clustering that the Koho-
nen map created in their attempt to create an evenly spaced
layout. Nor can the user be forced to manually move things
about until he is happy with the result—this is awkward
and likely too time-consuming a task.

To resolve the issue, a hybrid algorithm is used: a user-

controlled force-directed layout. The force-directed algo-
rithm is based heavily on the one described by Fruchterman
in [5]. At any point, the user can do either of the following:

1. perform small number of iterations of a force-directed

algorithm with limited displacement. This has the ef-
fect of pushing apart nodes that are placed close to-
gether and attracting groups of nodes that have a lot
of edges between them. It moves the system closer to a
state of even distribution of nodes in the visualization

1235

space. Force-directed layouts of grouped nodes are an
established practice for effective visualization [13].

2. move a group of nodes to anywhere in the visualization

space. The user can select one or more nodes and drag
them to a new space. Dragging nodes outside the space
merely enlarges the space and re-scales it, so a group
of nodes may be dragged “outside” the space. Moving
nodes about also provides an important pre-attentive
cue: motion. By selecting a group of nodes and mov-
ing them around a bit in small, quick increments, the
relationship between the nodes and anything else in
the graph moves and therefore “pops out.”

After some number of applications of the above two steps,
the user will likely have reached a final visualization of the
graph that contains the insight he was seeking (or, even
better, an insight he was not seeking).

Observe the final view of the graph achieved in Figure 5.
This figure was generated by clustering both on “cluster
id” and on node degree. We can make some interesting
observations from it. First, Each of the three clusters (red,
yellow, and green) seems to have a “master node” that is of
much higher degree than the others, and is connected to the
other “master nodes”. Second, the yellow cluster talks to
the red cluster almost entirely through its “master node”;
there are virtually no connections between the yellow and
red groups.

5. CASE STUDY: KAZAA FILESHARING

GRAPH
This data set consists of a graph of activity on the Kazaa

file-sharing network [8], containing about 2,400 nodes (users)
and 13,300 edges (connections between users). Like many
socially-based networks, it exhibits small-world properties.
Figure 6 shows some of the visualization results. We found
that there are several tightly connected cliques, and that big
neighborhoods have the similar clique structure as smaller
neighborhoods. .

The images in figures 7 and 8 represent a potential user’s
exploration of the dataset. While it could conceivably be
possible to get answers to many of the user’s questions us-
ing other techniques, the key here is that the user is able
to quickly adjust the visualization to find answers. It would
take programming, statistics collection, and analysis by a
skilled user to answer these questions mathematically; here,
an unskilled user can answer quickly and with minimal knowl-
edge about the data.

6. COMPUTATIONAL COMPLEXITY
The self-organizing and force-directed layouts are the two

most computationally intensive tasks that are performed
while the user is interacting with the system. For a graph
of size n and a self-organizing map of size m (the size of
the map is user-controlled), these take time O(n2) and time
O(nm), respectively. In practice, these run on modern hard-
ware (a 2GHz Pentium) in under a second on subgraphs of
500 nodes.

When the graph description is first loaded, by far the
longest computational cost is incurred in the MCL algo-
rithm. See [15] for a detailed discussion of MCL’s computa-
tional complexity. It is about O(kn2), where k is a parame-
ter to MCL that specifies the number of nonzero entries per

stochastic sparse matrix column (typically 500–1000). In
practice, MCL takes about an hour to cluster a 30,000 node
graph, but under a minute to cluster a 3,000 node graph.

7. CONCLUSION
To design our approach, we first considered the sub-tasks

involved, and experimented with some of the existing tech-
niques to solve each, adapting or modifying those techniques
to suit the design goals. The resulting set of algorithms and
methods seems complex, but it reflects what we believe will
be an increasing trend in the design of information visu-
alization systems: the collaborative effort of many pieces
of already-discovered methods into something greater than
the sum of its parts. The information visualization field is
young, but already there exists a rich selection of methods
that accomplish specific tasks. The study of how to apply
this explosion of discovery in real-world systems and situa-
tions deserves more treatment than it has been given.

We have described a cohesive, step-by-step process for
exploring small-world graphs, along the way we have pre-
sented several novel concepts, including specific methods of
subgraph selection and attribute mapping; a unification of
data and graph closeness; and a simple layout method that
takes advantage of neural networks, physically-inspired au-
tomatic layouts, and user interaction. Our study forms a
good basis for further study in this area.

8. FUTURE WORK
We will continue refining our system design by incorpo-

rating more effective clustering algorithms [12] and inter-
active focus+context techniques for visualizing small-world
graphs [16]. Other specific directions for future work are
summarized as follows.

8.1 Better graph clustering algorithm
The method of generating identical values for every mem-

ber of a cluster as located by a single run of MCL at a
pre-set granularity level could use improvement. The issues
associated with this method include the following:

1. clusters can only be detected at a single, pre-set level
of granularity;

2. the nearness in the “cluster ids” created has nothing
to do with their graph nearness; and

3. the clustering can take quite some time for a large
graph, even on modern hardware.

To solve these problems, we would like to find a fast algo-
rithm to generate some vector Dk for each node k, such that
the following relationship holds:

∀i, j ∈ V : |Dj − Di| ∝ C(i, j) (2)

where C(i, j) returns the “graph nearness” of i and j; that
is, the length of the shortest path from i to j. We want
this property so that we can use the Dk values in our self-
organizing map to allow it to automatically find graph clus-
ters. It seems unlikely that a scalar value for Dk could be
found for every node in the graph to satisfy the above condi-
tion, but what about a two-dimensional (or three-dimensional)
vector value? If an N-dimensional (N � |V |) vector can
represent Dk values that meet the above inequality, how
can we find N for some G = (V, E) and derive all the Dk

values in a reasonable time?

1236

(a) (b)

(c) (d)

Figure 6: Visualization of the Kazza dataset. (a) displaying all nodes and all edges with uniform size and
color. (b) each node has been assigned a color based on its cluster id and a size based on its degree. Only
edges connecting nodes with high clustering coefficients are displayed. These are tight neighborhoods of
file-sharers. (c) result of applying a SOM and one iteration of the force-directed layout. (d) after more
iterations of the force-directed layout.

8.2 SOM improvements

8.2.1 Better SOM implementation

The current SOM implementation has two shortcomings,
both of which were intentional sacrifices of quality for speed:
(1) it only goes through the input data once, which means
that the earlier input vectors get an unfair emphasis as N
and α decline, and (2) it uses the “bubble function” rather
than a Gaussian to regulate the strength of vector adjust-
ment as distance from the epicenter increases. We should
be able to remove these shortcomings without significantly
impacting the interactivity of the system.

8.2.2 Weighted featurevector components

Currently, when SOM is clustering the data, it assigns
an equal weight to each component of the feature vector;
that is, if we include “node degree” and “cluster id” in our
feature vector, a group is just as likely to be split over either.
We would like to find weights w1, w2, . . . , wn for each of the
n dimensions of the feature vector, such that the weight
wi represents the importance of separating groups based on
attribute i.

9. ACKNOWLEDGMENTS
This work has been sponsored in part by the U.S. National

Science Foundation under contracts ACI 9983641 (PECASE

award), ACI 0325934 (ITR), ACI 0222991, and CMS-9980063;
and Department of Energy under Memorandum Agreements
No. DE-FC02-01ER41202 (SciDAC), No. B523578 (ASCI
VIEWS), and No. B537770. The authors would like to
thank Jens Schneider for his helpful comments. The au-
thors would like to thank Edmond Chow at Lawrence Liv-
ermore National Laboratory for generating the sample data
set, Adriana Iamnitchi at the University of Chicago for her
helpful suggestions and for providing the Kazaa data set,
and Stijn van Dongen for the use of his MCL implementa-
tion.

10. REFERENCES
[1] Ahlberg, C., and Shneiderman, B. Visual

information seeking: Tight coupling of dynamic query
filters with starfield displays. In Human Factors in

Computing Systems. Conference Proceedings CHI’94

(1994), pp. 313–317.

[2] Albert, R., and Barabási, A.-L. Statistical
mechanics of complex networks. Rev. Mod. Phys. 74

(2002), 47–97.

[3] Albert, R., Jeong, H., and Barábasi, A.-L.

Diameter of the world wide web. Nature 401 (1999),
130–131.

[4] Auber, D., Chiricota, Y., Jourdan, F., and

Melancon, G. Multiscale visualization of small world

1237

Figure 7: Vertices of high degree were selected.
Large clusters are blue, average clusters are red,
and small clusters are green. The question is: “How
are users who are very well-connected to others dis-
tributed in the neighborhoods?” The visualization
makes it clear that they are roughly equally dis-
tributed. Note, however: (1) a neighborhood size
that tends to attract a disproportionate number of
well-connected users, and (2) one user who has a
very large number of connections for someone from
such a small neighborhood.

Figure 8: The question is: “Do users who have a lot
of connections tend to be part of tightly connected
neighborhoods?” The answer was found by apply-
ing a size map to the nodes, so users with lots of
connections showed up as large spheres—e.g. the
trio in (2)—and selecting a subgraph consisting of
nodes with very high clustering coefficient so that
tightly connected neighborhoods—e.g. (1)—were
shown. It is clear that the highly connected users
are rarely part of the tightest-knit neighborhoods,
since the spheres and clusters do not coincide.

networks. In Proceedings of the 2003 IEEE Symposium

on Information Visualization (2003), pp. 75–81.

[5] Fruchterman, T. M. J., and Reingold, E. M.

Graph drawing by force-directed placement. Software

- Practice and Experience 21, 11 (1991), 1129–1164.

[6] Herman, I., Marshall, M. S., and Melancon, G.

Density functions for visual attributes and effective
partitioning in graph visualization. In INFOVIS

(2000), pp. 49–56.

[7] Herman, I., Marshall, M. S., Melancon, G.,

Duke, D. J., Delest, M., and Domenger, J.-P.

Skeletal images as visual cues in graph visualization.
In Data Visualization ’99, E. Gröller, H. Löffelmann,
and W. Ribarsky, Eds. Springer-Verlag Wien, 1999,
pp. 13–22.

[8] Ianmitchi, A. Resource Discovery in Large

Resource-Sharing Environments. PhD thesis, The
University of Chicago, 2003.

[9] Kohonen, T. Self-Organization and Associative

Memory, 3rd ed. Springer-Verlag, Berlin, 1989.

[10] Meyer, B. Self-organizing graphs: A neural network
perspective of graph layout. In Proceedings of the 6th

International Symposium on Graph Drawing (1998),
pp. 246–262.

[11] Munzer, T. Exploring large graphs in 3d hyperbolic
space. In IEEE Computer Graphics and Applications,

Vol. 18, No. 4 (1998), pp. 18–23.

[12] Noack, A. An energy model for visual graph
clustering. In Proceedings of the 11th International

Symposium on Graph Drawing (2003), pp. 425–436.

[13] Six, J. M., and Tollis, I. G. Effective graph
visualization via node grouping. Proceedings of the

2001 IEEE Symposium on Information Visualization

(2001), 51–59.

[14] Stasko, J. T., and Wehrli, J. F.

Three-dimensional computation visualization. In Proc.

IEEE Symp. Visual Languages, VL (24–27 1993),
E. P. Glinert and K. A. Olsen, Eds., IEEE Computer
Society, pp. 100–107.

[15] van Dongen, S. Graph Clustering by Flow

Simulation. PhD thesis, University of Utrecht, 2000.

[16] van Ham, F., and van Wijk, J. J. Interactive
visualization of samll world graphs. In Proceedings of

the 2004 IEEE Symposium on Information

Visualization (2004), pp. 199–206.

[17] Ware, C., and Franck, G. Evaluating stereo and
motion cues for visualizing information nets in three
dimensions. ACM Transactions on Graphics 15, 2
(1996), 121–140.

[18] Watts, D., and Strogatz, S. Collective dynamics
of small-world networks. Nature 393 (1998), 440–442.

1238

