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Abstract probe locally to obtain specific information is usually 
not avaliable. 

We present local and global techniques to visualize 
three-dimensional vector field data. Using the Line In- 
tegral Convolution (LIC) method to image the global 
vector field, our new algorithm allows the user to in- 
troduce colored “dye” into the vector field to highlight 
local flow features. A fast algorithm is proposed that 
quickly recomputes the dyed LIC images. In addition, 
we introduce volume rendering methods that can map 
the LIC texture on any contour surface and/or translu- 
cent region defined by additional scalar quantities, and 
can follow the advection of colored dye throughout the 
volume. 

1 Introduction 

Visualizing vector field data is challenging because 
no existing natural representation can visually convey 
large amounts of three-dimensional directional infor- 
mation. In fluid flow experiments, external materials 
such as dye, hydrogen bubbles, or heat energy are in- 
jected into the flow. The advection of these external 
materials can create stream lines, streak lines, or path 
lines to highlight the flow patterns. Analogies to these 
experimental techniques have been adopted by sci- 
entific visualization researchers. Numerical methods 
and three-dimensional computer graphics techniques 
have been used to produce graphical icons such as ar- 
rows, motion particles, stream lines, stream ribbons, 
and stream tubes that act as three-dimensional depth 
cues. While these techniques are effective in reveal- 
ing the flow field’s local features, the inherent two- 
dimensional display of the computer screen and its 
limited spatial resolution restrict the number of graph- 
ical icons that can be displayed at one time. In addi- 
tion, interactive guidance that showa +h,- --ser where to 
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Additional techniques for vector field visualization 
include global imaging techniques. Crawfis and Max 
[l] [2] proposed d irect volume rendering methods to 
create images of entire vector fields. Vector ker- 
nels and texture splats are used to construct three- 
dimensional scalar signals from the vector data. van 
Wijk [3] proposed a Spot Noise method using stretched 
ellipses to create two-dimensional textures that can 
be mapped onto parametric surfaces. Max et a1.[4] 
further utilized the spot noise method to visualize 
three-dimensional velocity fields near contour surfaces. 
Cabral and Leedom [5] presented a Line Integral Con- 
volution (LIC) method, which uses a one-dimensional 
low pass filter to convolve a white noise texture based 
on the directional information of the vector field. 
These methods can successfully illustrate the global 
behavior of vector fields; however, little or no user 
probing capability is provided, so specific information 
about the local behavior of the field is limited. Fur- 
thermore, some of these methods are difficult to apply 
to unstructured meshes. 

In this paper, we present methods that integrate 
local and global visualization techniques to explore 
three-dimensional vector field data on regular grids. 
Using the Line Integral Convolution method as the 
underlying algorithm, we enable local probing by al- 
lowing the user to introduce “dyes” of various colors 
into the 2D/3D LIC flow field. The inserted dye prop- 
agates through the flow field, highlighting local flow 
features such as wavefronts, while the standard LIC 
texture still illustrates the global motion. We use 
three-dimensional direct volume rendering techniques 
that can map the LIC textures onto any contour sur- 
faces or translucent region, and also can display the 
propagation of the dye through the volume. 
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We begin the paper by giving an overview of the 
LIC algorithm. Next, we describe the method of dye 
insertion. We propose a fast algorithm that can signif- 
icantly reduce the time needed to recompute the LIC 
images upon insertion of new dye material. We then 
describe the convolution kernel and how to control the 
advection distance of the dye. We also describe di- 
rect volume rendering methods that are used to render 
three-dimensional LIC data. We conclude the paper 
by presenting results of applying the techniques on a 
variety of large-scale scientific data sets. 

2 Background 

In this section, we give an overview of the LIC al- 
gorithm originally proposed by Cabral and Leedom 
[5]. Although the method can be applied to both two- 
and three-dimensional vector data, in this section we 
restrict our discussion to the two-dimensional case to 
illustrate the basic algorithm. We omit the descrip- 
tion of some recent improvements to the LIC algo- 
rithm subsequently proposed by Forssell and Cohen 
[6] and by Stalling and Hege [7]. However, we note 
that these newer methods can be easily adapted to 
our new algorithm. 

The LIC algorithm takes a vector field and a texture 
as inputs. The input texture is usually white noise 
data with the same resolution as the vector field. The 
output of the algorithm is a scalar field resulting from 
a local blurring of the input noise texture. The LIC 
algorithm carries out the local blurring by applying a 
one-dimensional Kow pass filter convolution through- 
out the input texture. The convolution kernel follows 
the direction of the streamlines originating from the. 
corresponding grid points of the vector field in both 
positive and negative directions. As a result, the in- 
tensity values of the output scalar field are strongly 
related to the vector field’s local flow direction. This 
convolution can be expressed as follow: 

Where 

J 
s,+As, 

h,; = K(w)dW (2) 
si 

l Fout(z, y) is the output pixel value 
at point (z,y). 
l Fi,(Pi) is the input pixel value 
at point Pi. 
l 1 and 1’ are the convolution distances along 

the positive and negative directions, respectively. 
l Pi represents the ith cell the Streamline 
steps in the positive direction, and P,f represents 
a step in the negative direction. 
l PO = (X,Y). 

l hi and hi are the weighting variables 
computed from the exact integral of the 
convolution kernel K(W). 
l k(w) is the low pass filter used for the LIC. 
l Asi is the arc length between the 
point si and si+l along the streamline. 
l so := 0. 

The low pass filter used in [5] is a Hanning ripple 
function, which has a period of 2~. By shifting the 
phase of the filter function while performing the con- 
volution, t:he algorithm can generate a sequence of LIC 
images to create a periodic motion effect. 

3 Dye Injection 

The intensity value of each LIC output cell can be 
represented as an average of input texture values along 
the streamline. This leads to the result that each out- 
put cell has an intensity correlated with cells along the 
streamline, but not with other cells. The use of the 
white noise input to the LIC algorithm assures that 
the boundaries of neighboring streamlines are not ob- 
scured. In. addition, the LIC algorithm changes the 
phase of the convolution filter to “push” the noise tex- 
ture along streamlines. 

Through enhancing the individual streamlines and 
moving the noise texture, the LIC algorithm provides 
an excellent visual representation of the flow motion in 
the vector field. However, because of the nature of the 
LIC method, the correspondence between neighboring 
streamlines is difficult to observe. Sometimes, the user 
needs an observable correspondence in order to track 
local flow features, such as wavefronts. To resolve this 
discrepancy, we propose to use local flow visualization 
techniques, namely the introduction of foreign materi- 
als into the flow, and to observe the advection of these 
materials within the flow field. In the next section, we 
present a technique for injecting dye into the LIC field 
to highlight the flow field’s local features. 

3.1 Dye Smearing 

The LIC algorithm can be used to create a “smear- 
ing” effect by convolving the filter with regular images. 
This allows the user to generate motion blur and addi- 
tional artistic effects, as demonstrated in [5]. The dye 
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insertion method utilizes the LIC’s natural “smear- 
ing” to simulate advection of dye within the flow field. 
We simulate the dye injection by assigning colors to 
isolated local regions in the input white noise texture. 
Cells whose streamlines pass through such regions re- 
ceive color contributions from the dye. In addition, 
the phase shifting of the LIC algorithm can push the 
concentration of the dye along the streamlines. This 
creates the effect of dye propagation. In the standard 
LIC algorithm, the convolution for each cell is per- 
formed in both positive and negative streamline di- 
rections to conserve symmetry. If we directly apply 
the standard LIC method to the input dyed texture, 
the upstream of the dyed area will be colored because 
the cells’ positive streamlines in that area will pass 
through the dyed area and obtain the color contribu- 
tion. However, to create a correct motion effect, the 
dye should smear only in the forward direction of the 
flow field. Therefore the dye should color only those 
cells in the downstream direction that correspond to 
cells whose negative streamlines pass through the dyed 
areas. To overcome this difficulty, initially a regular 
LIC image Fout(x, y) for each animation step is com- 
puted using the white noise input. When the user 
injects the dye, we apply the LIC convolution using 
the dyed texture input to those cells that will be af- 
fected by the dye. The convolution is applied along 
these cells’ backward streamline directions to ensure 
that the dye will only smear forwards. The results are 
then stored into Dout(xC, y). The final image of the 
LIC with dye advection can be obtained by using the 
formula: 

Fin&ut(z, Y) = Rmt(x, Y) @ Fout(z, Y) (3) 
The operator @ overwrites the standard LIC pixel val- 
ues by the dyed values. 

An important issue that must be addressed stems 
from the fact that every time the user injects a new 
dye, only a small portion of the cells are affected by the 
dye. In the next section, we propose a fast searching 
algorithm to rapidly locate those cells affected by the 
injection of new dye. 

3.2 Fast Searching Algorithm 

From our previous description, we know that only 
cells whose negative streamlines pass through the dyed 
region within a distance of the convolution length re- 
ceive color contributions from the dye. We define a 
relation: 

Definition 1 For cells cr and /3, a-+/3 if and only if 
there is a backward streamline flowing through CI and 

stepping into j3 

Given a dyed cell cr, the set of cells, Q(a), that are 
affected by this dye can then be expressed as: 

Axiom 1 fl(cr) = {pIp+cr,d(p,c~) 5 L} 

where d(p, Q) is the arc length of the streamline from 
point p to point Q, and L is the convolution length. 

Given a cell o, the goal is to quickly locate the 
set of cells a(o) without searching through the entire 
field. A brute force method is to create a list for each 
cell. The list contains all the cells that step backwards 
along streamlines into that cell. This information can 
be gathered while we first perform the standard LIC, 
since all the necessary streamlines are computed at 
that time. To decide upon the set Q(a), we can simply 
traverse through the list and retrieve the cells. 

While the above method is simple, the memory re- 
quirement to perform it would be overwhelming. This 
is because each cell’s list would contain many cells 
along the streamlines. To resolve this, we have de- 
signed a new algorithm. First, we define a new rela- 
tion: 

Definition 2 For cells a and ,B, LY < p if cr-+/3 or 

~{PO,Pl,...Pn), such that (Y-PO, po+pl,. . .pn+/3. 

From definition 1 and definition 2, we know that: 

Axiom 2 if a-+,B then cy > ,B. 

Note that the above axiom does not necessarily hold 
in the backward direction. Secondly, define a set w as: 

Definition 3 W(Q) = {pip i CT, d(a, cy) 5 L} 

From axiom 2, we know that: 

Axiom 3 w(a) 2 a((~). 

Our fast searching algorithm can locate the cells in the 
set w(o) that are a superset of R(o). In practice, the 
difference between the number of cells in the set R(o) 
and the set u(o) is very small. To locate the cells in 
w, we define a new relation: 

Definition 4 A cell Q 4 p if and only if a+@ and 
a is p’s direct neighbor. 

We call this relation a direct flow-back relation. The 
direct neighbors of a cell are those cells that are di- 
rectly adjacent to that cell in the physical space. For 
example, a cell has eight direct neighbors in a two- 
dimensional Cartesian grid, and has 26 direct neigh- 
bors in three-dimensional space. 

The direct flow-back neighbors for each cell can be 
obtained and stored when we first use the standard 
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Figure 1: Streamlines and dye 

Figure 2.: Flow-back directed graph 

LIC algorithm. Given a root cell Q, the cell and its re- 
cursive direct flow-back neighbors actually constitute 
a directed graph. The nodes in this directed graph are 
then the members of the set w. Therefore, the w(o) 
can be.found by using: 

Algorithm 1 A member ofw(cr) can be found by us- 
ing a Breadth First Search method starting from cell 
cr arid traversing through its direct flow-back neighbors 
recursively. 

Figure 1 shows an example of a flow field. The 
shaded cell is the original dyed cell. Figure 2 illustrates 
the resultant directed graph if we only consider the 
streamline A, B, and C. 

Our new algorithm is considerably more memory 
efficient than the brute force method because only the 
direct flow-back neighbors need to be stored for each 
cell. The number of direct flow-back neighbors will 
usually be much lower than the actual number of the 
direct neighbors for a cell, with the exception of cells 
near critical points. We have found that the average 
number of direct flow-back neighbors for each cell in 
our experimental three-dimensional flows is approxi- 
mately two or three. 
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Figure 3: Phase shift of the box filter 

3.3 Convolution Kernel 

The Hanning windowed filter used in [5] can not 
be easily adopted by our algorithm to create natural 
dye advection effect. This is because that the Ban- 
ning ripple function is a periodic function with multi- 
ple peaks, and the Hanning window function atte:nu- 
ates the values of the incoming function values at two 
ends. Even though several parameters of these two 
functions could be modulated, it is still difficult, to 
construct a good combination of the parameters such 
that the concentration of the dye can advect along the 
streamline smoothly. In our implementation, we use a 
simple box filter instead of the Hanning filter so that 
the appearance of the dye advection can be controlled 
more easily. The equation 2 becomes: 

S,SAS. 
hi = 

J 
Idw = Asi (4) 

s, 

To add the ability to shift the filter box to create 
flow motion in the animation sequence, we revise the 
equation 1 to: 

Fout(I, 2, Y) = 

,I& &,(pi)hiT(I, si) + Cf’=, Fi,(Pi’)h:T(I, s:) 

- Cf=, hiT(I, si) + Ct’=, h:T(I, s:) 

(5) 
Where 

T(I, Si) = 
1 if si E’ [&L, &L + AL] 
0 otherwise 

l Q is the number of LIC animation steps 
l I E [O, cp - l] is the current animation step 
l AL is the length of the filter box 

Figure 3 shows the phase shift of the box filter. 
In equation 5, T(I,si) is a predicate that deter- 

mines if the current pixel is within the range of the 
filter box [&L, f L + AL]. Note that if 4 L + AL, is 
greater than L, this value needs to be wrapped around 
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so that it become (;L + AL) mod L. The new nota- 
tion E’ that we use above is therefore based on this 
relationship. 

It is known that the box filter could cause artifacts 
when the boxes reenter the interval. A solution to 
avoid this problem can be found in [7]. 

3.4 Advection Length 

In the standard LIC algorithm, there is only a sin- 
gle convolution length defined for all cells in the field.* 
This global convolution length determines the distance 
that the dye can travel and this distance is often de- 
sired to be long enough so that the local flow features 
can be clearly highlighted. However, extending the 
convolution length globally would decrease the con- 
trast of the LIC texture and slow down the computa- 
tion. In our algorithm, we allow the user to specify 
convolution lengths separately for the dye advection. 

To use a longer convolution length for the dye ad- 
vection, more LIC animation steps are needed to com- 
plete the animation. Assuming that the global convo- 
lution length is L, the number of animation steps for 
the standard LIC convolution is @ and that the con- 
volution length for the dye is I, then Z = @ x $ is the 
number of animation steps required. Here we assume 
that I is always a multiple of L. We revise the LIC 
formula for the dyed advection: DoUt(I, X, y) = 

(6) 

Where 

T’(I, Si) = 1 if si E’ [$I’, $I + AL] 
0 otherwise 

l &(Pi) is the input dyed texture 
l DoUt(l, z, y) is the output value 
for the dyed cell(z, y) at step I. 
l I E [O,Z - l] is the current animation step 
l AL is the length of the filter box. 

Note that for those cells that are not affected by 
the dye, only @ steps of LIC output are computed. To 
combine these standard LIC outputs with the results 
from the LIC dye advection, we can use the formula: 

Final out(~, 2, Y) = 

*To simplify our explanation here, we omit the variation 
that the convolution length can be scaled based on the vector 
magnitudes. 

where the meaning of the operator @ is explained in 
section 3.1. 

4 3D LIC Rendering 

While the output of the three-dimensional LIC al- 
gorithm is a scalar field, standard visualization tech- 
niques, such as isosurface extraction or volume ren- 
dering, cannot be directly applied to the output. This 
is because the values of the LIC volume consists pri- 
marily of noise signals that are used to construct the 
vector textures and do not themselves have any physi- 
cal meaning. In this section, we present direct volume 
rendering methods that can render three-dimensional 
LIC textures on arbitrary surfaces or regions derived 
by additional scalar quantities, and also can display 
the propagation of the dye through the volume. In 
the sections that follow, we first introduce a h-variate 
volume rendering model and then describe the meth- 
ods used to image the dye propagation. 

4.1 Bi-Variate Volume Rendering 

To render the the LIC texture onto local regions, 
our volume rendering process takes two volume data 
sets with separate transfer functions as the input. A 
scalar variable, such as the magnitude of velocity, or 
pressure, or of vorticity, is used as the primary data. 
The opacity map of the primary data, which is ma- 
nipulated in the same way as in the standard volume 
rendering method, is used to define the transparency 
of each voxel in the volume. The LIC texture, which 
serves as the secondary data, has its own color map but 
uses the transparency defined by the primary data. To 
render these two input data sets, we define a volume 
mixture, which is similar to what is used in [8], to blend 
these two input data sets. The color of each voxel V, 
CV, comes from the contributions of both data sets 
and can be expressed as: 

cv = p x cp + (1 -P) x cs, (8) 

where C, is the color from the primary data at voxel 
V and C, is the color from the secondary data. The 
/3 E [0, l] is a weight between the primary and sec- 
ondary data specified by the user. When ,0 is 1, the 
volume mixture is equivalent to the scalar volume; 
when ,0 is 0, the volume mixture is the same as the LIC 
volume. A gradual shifting of this parameter from 1 
to 0 enables the user to track features from the scalar 
data at the beginning and visualize the counterpart 
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of the vector data and vice versa. Our new render- 
ing model allows the user to interactively change the 
weighting parameter and visualize the results. 

Our bi-variate volume rendering method uses the 
standard front-to-back cornpositing method, where 
the final color at pixel p can be expressed by the fol- 
lowing formula 

n 
cp = c W(i)Cv,, (9) 

i=l 

where CV, is the color contribution at the i-th sample 
point E. W( ‘) 2 is the light attenuation factor, which 
is computed from the formula: 

i-l 

W(i) = cr(K)[l - c W(j)]. (10) 
j=o 

a(K) is the opacity at the point K and is defined by 
the primary data sets opacity map and its data value 
at that point. We can replace the CV, in equation 9 
with the volume mixture in equation 8 and obtain: 

n 

c;, = c W(d)Cv, = 
i=l 

c W(i)[P :x G,(p) + (1 -P) x Ciq,)] = 
i=l 

P& ~wv.,;~,l + (1 -B)& ~W”,(s,l. (11) 
i=l i=l 

Here Cl,,(,) is the color contribution at point K from 
the prirnary data set and Cv,(,) is the color contri- 
bution from the secondary data set. Equation 11 
reveals a very interesting fact: when we render the 
volume mixture, we can render each volume sepa- 
rately. The mixture image can be generated by a sim- 
ple two-dimension.al image blending. This facilitates 
the changing of the weighting parameter ,0 and allows 
for rapid rendering. 

The bi-variate volume rendering model can be used 
to intermix the scalar and vector information. More- 
over, the user can interactively adjust the volume 
blending parameters to track important features from 
one variable and visualize the counterparts of the other 
variable. 

4.2 Dye Rendering 

It is helpful to display the LIC texture onto local re- 
gions such as isosurfaces and translucent areas. How- 
ever, this could give the user the wrong impression 

that the flow is always along the surface or local re- 
gions. This problem can be remedied if we can visu- 
alize the dye propagation through the volume. In our 
method, we allow the user to specify opacity to the 
injected dye. The opacity values in the LIC dye in- 
put are convolved in the same way that we convolved 
the pixel values. As a result, the output volumes of 
the LIC computation consist of both color and opacity 
information. 

To take the dye opacity into consideration when 
performing volume rendering, the bi-variate rendering 
model need.s to be slightly modified. This is because 
that now the LIC volume, as a secondary data, also af- 
fects the volume’s opacities. When rendering the LIC 
volume, we calculate the opacity value at each sample 
point as the sum of the opacities from the primary 
data and from the LIC volume. The color contribu- 
tion of the LIC voxel at that sample point is then com- 
puted using this opacity. Following is pseudo code for 
rendering the LIC volume using ray casting. 

for (each ray from the image plan) ( 
for (each sample step along the ray) ( 

opacity = primary opacity + dye opacity 
accumulate the LIC color 
accumulate the opacity; 

3 
3 

A simple but useful extension of the dye rendering is 
that the color of dye can be determined by additional 
scalar variables. In this way both the flow direction 
and scalar distribution can be visualized at the sa.me 
time. 

5 Results and Discussion 

We have implemented our algorithms using C-t+ 
and OpenCL. The software combines modules of 
Line Integral Convolution with Dye Injection and Bi- 
variate volume rendering. In our current software 
implementation, the user can inject dye by slicing 
through the three-dimensional LIC output and spec- 
ifying the dye locations. Our fast search algorithm 
can rapidly recompute the LIC output based on the 
dye position and then feed the results back to the vol- 
ume renderer module. We have found that our fast 
search algorithm can reduce the compute time, on av- 
erage, by over 90% when compared to the standard 
LIC method for recomputing the animation sequence 
of the LIC data. The output of the LIC volume con- 
tains red, green, blue and opacity components for each 
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voxel. For the volume rendering module, we define a 
C++ volume renderer class. The renderer instance 
of this class can be either a primary data renderer 
or a secondary data renderer. Through a software 
pointer between the primary data renderer and sec- 
ondary data renderer, the secondary renderer can ac- 
cess the primary renderer’s transfer function, volume 
data, and other auxiliary data structures to facilitate 
the bi-variate rendering model. A secondary renderer 
class instance is created for each LIC output in the 
animation sequence. These renderer objects can be 
dispatched to different processors in a multiprocessor 
environment to perform a coarse grain parallel volume 
rendering. 

Figures 4-6 show several LIC images with dye prop- 
agation. Figure 4 shows three different colored dye 
propagating through a two dimensional vector field. 
Figure 5 is an animation sequence of dye advection in 
a 32 x 30 x 30 vector field from a three-dimensional 
combustion simulation. Figure 6 is an animation se- 
quence of dye advection in a 96 x 96 x 96 tornado data 
set. The dye is colored based on the magnitude of the 
vector field. 

6 Conclusion and Future Work 

We have presented new algorithms to visualize 
three-dimensional vector fields using Line Integral 
Convolution methods. Our algorithm allows the user 
to insert dye into the flow field to enhance local flow 
features. Given a region with dye, our algorithm can 
rapidly locate the cells that are on the path of the dye 
propagation. Therefore, the LIC computation needs 
to be applied only on a small subset of the entire field. 
We proposed a bi-variate volume rendering method to 
display three-dimensional LIC textures on arbitrary 
contour surfaces or translucent regions that are de- 
rived from additional scalar quantities. The new ren- 
dering methods can also be used to render the dye 
propagation through the volume. 

Future work includes providing more flexible con- 
trol for modeling the behavior of the dye. This in- 
cludes using different filter kernels to control the ap- 
pearance of the dye. An additional useful feature 
would be to provide a natural and effective way for 
the user to probe the three-dimensional space and in- 
ject the dye. Finally, we plan to utilize the coher- 
ence between LIC volumes in an animation sequence 
to speed-up the volume rendering and allow for inter- 
active data exploring. 

Acknowledgments 

This work was supported in part by awards from 
the NSF, NIH, and by ICASE under NASA contract 
NASl-19480. We would like to thank C. Hansen, K. 
Coles, R. McDermott, and the reviewers for their help- 
ful comments and suggestions. Furthermore, we ap- 
preciate access to facilities that are part of the NSF 
STC for Computer Graphics and Scientific Visualiza- 
tion. 

References 

PI 

PI 

[31 

PI 

[51 

PI 

[71 

PI 

R. Crawfis and N. Max. Direct volume visualiza- 
tion of three-dimensional vector fields, In Proceed- 
ings of 1992 Workshop on Volume Visualization, 
pages 55-60. IEEE Computer Society Press, Los 
Alamitos, CA, 1992. 

R. Crawfis and N. Max. Texture splats for 3d 
scalar and vector field visualization. In Proceedings 
of Visualization ‘93, pages 261-265. IEEE Com- 
puter Society Press, Los Alamitos, CA, 1993. 

J.J. van Wijk. Spot noise: Texture synthesis for 
data visualization. Computer Graphics, 25(4):309- 
318, 1991. 

N. Max, R. Crawfis, and C. Grant. Visualizing 
3d velocity fields near contour surfaces. In Pro- 
ceedings of Visualization ‘94, pages 248-255. IEEE 
Computer Society Press, Los Alamitos, CA, 1994. 

B. Cabral and C. Leedom. Imaging vector fields 
using line integral convolution. In Proceedings 
of SIGGRAPH 93, pages 263-270. ACM SIG- 
GRAPH, 1993. 

L.K. Forssell and S.D. Cohen. Using line inte- 
gral convolution for flow visualization: Curvilin- 
ear grids, variable-speed animation, and unsteady 
flows. IEEE Transaction on Visualization and 
Computer Graphics, 1(2):133-141, 1995. 

D. Stalling and H.-C. Hege. Fast and resolution 
independent line integral convolution. In Proceed- 
ings of SIGGRAPH 95, pages 249-256. ACM SIG- 
GRAPH, 1995. 

R.A. Derbin, L. Carpenter, and P. Hanrahan. Vol- 
ume rendering. In Proceedings of SIGGRAPH 88, 
pages 65-74. ACM SIGGRAPH, 1988. 

69 



Figure 4: 2D LIC images with dye 

Figure 5: Dye advection in a 30 combustion simulation 

Figure 6: Dye advection in a 3D tornado simulation 
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Figure 4: 2D LIC images with dye 

Figure 5: Dye advection in a 3D combustion simulation 

Figure 6: Dye advection in a 3D tornado simulation 
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