
Visualizing Vector Fields Using
Line Integral Convolution and Dye Advection

Han-Wei Shent Christopher R. Johnsont Kwan-Liu Mat

t Department of Computer Science $ ICASE
University of Utah NASA Langley Research Center
Salt Lake City, UT Hampton, Virginia

Abstract probe locally to obtain specific information is usually
not avaliable.

We present local and global techniques to visualize
three-dimensional vector field data. Using the Line In-
tegral Convolution (LIC) method to image the global
vector field, our new algorithm allows the user to in-
troduce colored “dye” into the vector field to highlight
local flow features. A fast algorithm is proposed that
quickly recomputes the dyed LIC images. In addition,
we introduce volume rendering methods that can map
the LIC texture on any contour surface and/or translu-
cent region defined by additional scalar quantities, and
can follow the advection of colored dye throughout the
volume.

1 Introduction

Visualizing vector field data is challenging because
no existing natural representation can visually convey
large amounts of three-dimensional directional infor-
mation. In fluid flow experiments, external materials
such as dye, hydrogen bubbles, or heat energy are in-
jected into the flow. The advection of these external
materials can create stream lines, streak lines, or path
lines to highlight the flow patterns. Analogies to these
experimental techniques have been adopted by sci-
entific visualization researchers. Numerical methods
and three-dimensional computer graphics techniques
have been used to produce graphical icons such as ar-
rows, motion particles, stream lines, stream ribbons,
and stream tubes that act as three-dimensional depth
cues. While these techniques are effective in reveal-
ing the flow field’s local features, the inherent two-
dimensional display of the computer screen and its
limited spatial resolution restrict the number of graph-
ical icons that can be displayed at one time. In addi-
tion, interactive guidance that showa +h,- --ser where to

O-‘803-3708-S/96 ..$4.00 0 1996 IEEE

Additional techniques for vector field visualization
include global imaging techniques. Crawfis and Max
[l] [2] proposed d irect volume rendering methods to
create images of entire vector fields. Vector ker-
nels and texture splats are used to construct three-
dimensional scalar signals from the vector data. van
Wijk [3] proposed a Spot Noise method using stretched
ellipses to create two-dimensional textures that can
be mapped onto parametric surfaces. Max et a1.[4]
further utilized the spot noise method to visualize
three-dimensional velocity fields near contour surfaces.
Cabral and Leedom [5] presented a Line Integral Con-
volution (LIC) method, which uses a one-dimensional
low pass filter to convolve a white noise texture based
on the directional information of the vector field.
These methods can successfully illustrate the global
behavior of vector fields; however, little or no user
probing capability is provided, so specific information
about the local behavior of the field is limited. Fur-
thermore, some of these methods are difficult to apply
to unstructured meshes.

In this paper, we present methods that integrate
local and global visualization techniques to explore
three-dimensional vector field data on regular grids.
Using the Line Integral Convolution method as the
underlying algorithm, we enable local probing by al-
lowing the user to introduce “dyes” of various colors
into the 2D/3D LIC flow field. The inserted dye prop-
agates through the flow field, highlighting local flow
features such as wavefronts, while the standard LIC
texture still illustrates the global motion. We use
three-dimensional direct volume rendering techniques
that can map the LIC textures onto any contour sur-
faces or translucent region, and also can display the
propagation of the dye through the volume.

63

We begin the paper by giving an overview of the
LIC algorithm. Next, we describe the method of dye
insertion. We propose a fast algorithm that can signif-
icantly reduce the time needed to recompute the LIC
images upon insertion of new dye material. We then
describe the convolution kernel and how to control the
advection distance of the dye. We also describe di-
rect volume rendering methods that are used to render
three-dimensional LIC data. We conclude the paper
by presenting results of applying the techniques on a
variety of large-scale scientific data sets.

2 Background

In this section, we give an overview of the LIC al-
gorithm originally proposed by Cabral and Leedom
[5]. Although the method can be applied to both two-
and three-dimensional vector data, in this section we
restrict our discussion to the two-dimensional case to
illustrate the basic algorithm. We omit the descrip-
tion of some recent improvements to the LIC algo-
rithm subsequently proposed by Forssell and Cohen
[6] and by Stalling and Hege [7]. However, we note
that these newer methods can be easily adapted to
our new algorithm.

The LIC algorithm takes a vector field and a texture
as inputs. The input texture is usually white noise
data with the same resolution as the vector field. The
output of the algorithm is a scalar field resulting from
a local blurring of the input noise texture. The LIC
algorithm carries out the local blurring by applying a
one-dimensional Kow pass filter convolution through-
out the input texture. The convolution kernel follows
the direction of the streamlines originating from the.
corresponding grid points of the vector field in both
positive and negative directions. As a result, the in-
tensity values of the output scalar field are strongly
related to the vector field’s local flow direction. This
convolution can be expressed as follow:

Where

J
s,+As,

h,; = K(w)dW (2)
si

l Fout(z, y) is the output pixel value
at point (z,y).
l Fi,(Pi) is the input pixel value
at point Pi.
l 1 and 1’ are the convolution distances along

the positive and negative directions, respectively.
l Pi represents the ith cell the Streamline
steps in the positive direction, and P,f represents
a step in the negative direction.
l PO = (X,Y).

l hi and hi are the weighting variables
computed from the exact integral of the
convolution kernel K(W).
l k(w) is the low pass filter used for the LIC.
l Asi is the arc length between the
point si and si+l along the streamline.
l so := 0.

The low pass filter used in [5] is a Hanning ripple
function, which has a period of 2~. By shifting the
phase of the filter function while performing the con-
volution, t:he algorithm can generate a sequence of LIC
images to create a periodic motion effect.

3 Dye Injection

The intensity value of each LIC output cell can be
represented as an average of input texture values along
the streamline. This leads to the result that each out-
put cell has an intensity correlated with cells along the
streamline, but not with other cells. The use of the
white noise input to the LIC algorithm assures that
the boundaries of neighboring streamlines are not ob-
scured. In. addition, the LIC algorithm changes the
phase of the convolution filter to “push” the noise tex-
ture along streamlines.

Through enhancing the individual streamlines and
moving the noise texture, the LIC algorithm provides
an excellent visual representation of the flow motion in
the vector field. However, because of the nature of the
LIC method, the correspondence between neighboring
streamlines is difficult to observe. Sometimes, the user
needs an observable correspondence in order to track
local flow features, such as wavefronts. To resolve this
discrepancy, we propose to use local flow visualization
techniques, namely the introduction of foreign materi-
als into the flow, and to observe the advection of these
materials within the flow field. In the next section, we
present a technique for injecting dye into the LIC field
to highlight the flow field’s local features.

3.1 Dye Smearing

The LIC algorithm can be used to create a “smear-
ing” effect by convolving the filter with regular images.
This allows the user to generate motion blur and addi-
tional artistic effects, as demonstrated in [5]. The dye

64

insertion method utilizes the LIC’s natural “smear-
ing” to simulate advection of dye within the flow field.
We simulate the dye injection by assigning colors to
isolated local regions in the input white noise texture.
Cells whose streamlines pass through such regions re-
ceive color contributions from the dye. In addition,
the phase shifting of the LIC algorithm can push the
concentration of the dye along the streamlines. This
creates the effect of dye propagation. In the standard
LIC algorithm, the convolution for each cell is per-
formed in both positive and negative streamline di-
rections to conserve symmetry. If we directly apply
the standard LIC method to the input dyed texture,
the upstream of the dyed area will be colored because
the cells’ positive streamlines in that area will pass
through the dyed area and obtain the color contribu-
tion. However, to create a correct motion effect, the
dye should smear only in the forward direction of the
flow field. Therefore the dye should color only those
cells in the downstream direction that correspond to
cells whose negative streamlines pass through the dyed
areas. To overcome this difficulty, initially a regular
LIC image Fout(x, y) for each animation step is com-
puted using the white noise input. When the user
injects the dye, we apply the LIC convolution using
the dyed texture input to those cells that will be af-
fected by the dye. The convolution is applied along
these cells’ backward streamline directions to ensure
that the dye will only smear forwards. The results are
then stored into Dout(xC, y). The final image of the
LIC with dye advection can be obtained by using the
formula:

Fin&ut(z, Y) = Rmt(x, Y) @ Fout(z, Y) (3)
The operator @ overwrites the standard LIC pixel val-
ues by the dyed values.

An important issue that must be addressed stems
from the fact that every time the user injects a new
dye, only a small portion of the cells are affected by the
dye. In the next section, we propose a fast searching
algorithm to rapidly locate those cells affected by the
injection of new dye.

3.2 Fast Searching Algorithm

From our previous description, we know that only
cells whose negative streamlines pass through the dyed
region within a distance of the convolution length re-
ceive color contributions from the dye. We define a
relation:

Definition 1 For cells cr and /3, a-+/3 if and only if
there is a backward streamline flowing through CI and

stepping into j3

Given a dyed cell cr, the set of cells, Q(a), that are
affected by this dye can then be expressed as:

Axiom 1 fl(cr) = {pIp+cr,d(p,c~) 5 L}

where d(p, Q) is the arc length of the streamline from
point p to point Q, and L is the convolution length.

Given a cell o, the goal is to quickly locate the
set of cells a(o) without searching through the entire
field. A brute force method is to create a list for each
cell. The list contains all the cells that step backwards
along streamlines into that cell. This information can
be gathered while we first perform the standard LIC,
since all the necessary streamlines are computed at
that time. To decide upon the set Q(a), we can simply
traverse through the list and retrieve the cells.

While the above method is simple, the memory re-
quirement to perform it would be overwhelming. This
is because each cell’s list would contain many cells
along the streamlines. To resolve this, we have de-
signed a new algorithm. First, we define a new rela-
tion:

Definition 2 For cells a and ,B, LY < p if cr-+/3 or

~{PO,Pl,...Pn), such that (Y-PO, po+pl,. . .pn+/3.

From definition 1 and definition 2, we know that:

Axiom 2 if a-+,B then cy > ,B.

Note that the above axiom does not necessarily hold
in the backward direction. Secondly, define a set w as:

Definition 3 W(Q) = {pip i CT, d(a, cy) 5 L}

From axiom 2, we know that:

Axiom 3 w(a) 2 a((~).

Our fast searching algorithm can locate the cells in the
set w(o) that are a superset of R(o). In practice, the
difference between the number of cells in the set R(o)
and the set u(o) is very small. To locate the cells in
w, we define a new relation:

Definition 4 A cell Q 4 p if and only if a+@ and
a is p’s direct neighbor.

We call this relation a direct flow-back relation. The
direct neighbors of a cell are those cells that are di-
rectly adjacent to that cell in the physical space. For
example, a cell has eight direct neighbors in a two-
dimensional Cartesian grid, and has 26 direct neigh-
bors in three-dimensional space.

The direct flow-back neighbors for each cell can be
obtained and stored when we first use the standard

65

Figure 1: Streamlines and dye

Figure 2.: Flow-back directed graph

LIC algorithm. Given a root cell Q, the cell and its re-
cursive direct flow-back neighbors actually constitute
a directed graph. The nodes in this directed graph are
then the members of the set w. Therefore, the w(o)
can be.found by using:

Algorithm 1 A member ofw(cr) can be found by us-
ing a Breadth First Search method starting from cell
cr arid traversing through its direct flow-back neighbors
recursively.

Figure 1 shows an example of a flow field. The
shaded cell is the original dyed cell. Figure 2 illustrates
the resultant directed graph if we only consider the
streamline A, B, and C.

Our new algorithm is considerably more memory
efficient than the brute force method because only the
direct flow-back neighbors need to be stored for each
cell. The number of direct flow-back neighbors will
usually be much lower than the actual number of the
direct neighbors for a cell, with the exception of cells
near critical points. We have found that the average
number of direct flow-back neighbors for each cell in
our experimental three-dimensional flows is approxi-
mately two or three.

I--- AL---l
to e

t1 B

t2 e

t3 M

Figure 3: Phase shift of the box filter

3.3 Convolution Kernel

The Hanning windowed filter used in [5] can not
be easily adopted by our algorithm to create natural
dye advection effect. This is because that the Ban-
ning ripple function is a periodic function with multi-
ple peaks, and the Hanning window function atte:nu-
ates the values of the incoming function values at two
ends. Even though several parameters of these two
functions could be modulated, it is still difficult, to
construct a good combination of the parameters such
that the concentration of the dye can advect along the
streamline smoothly. In our implementation, we use a
simple box filter instead of the Hanning filter so that
the appearance of the dye advection can be controlled
more easily. The equation 2 becomes:

S,SAS.
hi =

J
Idw = Asi (4)

s,

To add the ability to shift the filter box to create
flow motion in the animation sequence, we revise the
equation 1 to:

Fout(I, 2, Y) =

,I& &,(pi)hiT(I, si) + Cf’=, Fi,(Pi’)h:T(I, s:)

- Cf=, hiT(I, si) + Ct’=, h:T(I, s:)

(5)
Where

T(I, Si) =
1 if si E’ [&L, &L + AL]
0 otherwise

l Q is the number of LIC animation steps
l I E [O, cp - l] is the current animation step
l AL is the length of the filter box

Figure 3 shows the phase shift of the box filter.
In equation 5, T(I,si) is a predicate that deter-

mines if the current pixel is within the range of the
filter box [&L, f L + AL]. Note that if 4 L + AL, is
greater than L, this value needs to be wrapped around

66

so that it become (;L + AL) mod L. The new nota-
tion E’ that we use above is therefore based on this
relationship.

It is known that the box filter could cause artifacts
when the boxes reenter the interval. A solution to
avoid this problem can be found in [7].

3.4 Advection Length

In the standard LIC algorithm, there is only a sin-
gle convolution length defined for all cells in the field.*
This global convolution length determines the distance
that the dye can travel and this distance is often de-
sired to be long enough so that the local flow features
can be clearly highlighted. However, extending the
convolution length globally would decrease the con-
trast of the LIC texture and slow down the computa-
tion. In our algorithm, we allow the user to specify
convolution lengths separately for the dye advection.

To use a longer convolution length for the dye ad-
vection, more LIC animation steps are needed to com-
plete the animation. Assuming that the global convo-
lution length is L, the number of animation steps for
the standard LIC convolution is @ and that the con-
volution length for the dye is I, then Z = @ x $ is the
number of animation steps required. Here we assume
that I is always a multiple of L. We revise the LIC
formula for the dyed advection: DoUt(I, X, y) =

(6)

Where

T’(I, Si) = 1 if si E’ [$I’, $I + AL]
0 otherwise

l &(Pi) is the input dyed texture
l DoUt(l, z, y) is the output value
for the dyed cell(z, y) at step I.
l I E [O,Z - l] is the current animation step
l AL is the length of the filter box.

Note that for those cells that are not affected by
the dye, only @ steps of LIC output are computed. To
combine these standard LIC outputs with the results
from the LIC dye advection, we can use the formula:

Final out(~, 2, Y) =

*To simplify our explanation here, we omit the variation
that the convolution length can be scaled based on the vector
magnitudes.

where the meaning of the operator @ is explained in
section 3.1.

4 3D LIC Rendering

While the output of the three-dimensional LIC al-
gorithm is a scalar field, standard visualization tech-
niques, such as isosurface extraction or volume ren-
dering, cannot be directly applied to the output. This
is because the values of the LIC volume consists pri-
marily of noise signals that are used to construct the
vector textures and do not themselves have any physi-
cal meaning. In this section, we present direct volume
rendering methods that can render three-dimensional
LIC textures on arbitrary surfaces or regions derived
by additional scalar quantities, and also can display
the propagation of the dye through the volume. In
the sections that follow, we first introduce a h-variate
volume rendering model and then describe the meth-
ods used to image the dye propagation.

4.1 Bi-Variate Volume Rendering

To render the the LIC texture onto local regions,
our volume rendering process takes two volume data
sets with separate transfer functions as the input. A
scalar variable, such as the magnitude of velocity, or
pressure, or of vorticity, is used as the primary data.
The opacity map of the primary data, which is ma-
nipulated in the same way as in the standard volume
rendering method, is used to define the transparency
of each voxel in the volume. The LIC texture, which
serves as the secondary data, has its own color map but
uses the transparency defined by the primary data. To
render these two input data sets, we define a volume
mixture, which is similar to what is used in [8], to blend
these two input data sets. The color of each voxel V,
CV, comes from the contributions of both data sets
and can be expressed as:

cv = p x cp + (1 -P) x cs, (8)

where C, is the color from the primary data at voxel
V and C, is the color from the secondary data. The
/3 E [0, l] is a weight between the primary and sec-
ondary data specified by the user. When ,0 is 1, the
volume mixture is equivalent to the scalar volume;
when ,0 is 0, the volume mixture is the same as the LIC
volume. A gradual shifting of this parameter from 1
to 0 enables the user to track features from the scalar
data at the beginning and visualize the counterpart

67

of the vector data and vice versa. Our new render-
ing model allows the user to interactively change the
weighting parameter and visualize the results.

Our bi-variate volume rendering method uses the
standard front-to-back cornpositing method, where
the final color at pixel p can be expressed by the fol-
lowing formula

n
cp = c W(i)Cv,, (9)

i=l

where CV, is the color contribution at the i-th sample
point E. W(‘) 2 is the light attenuation factor, which
is computed from the formula:

i-l

W(i) = cr(K)[l - c W(j)]. (10)
j=o

a(K) is the opacity at the point K and is defined by
the primary data sets opacity map and its data value
at that point. We can replace the CV, in equation 9
with the volume mixture in equation 8 and obtain:

n

c;, = c W(d)Cv, =
i=l

c W(i)[P :x G,(p) + (1 -P) x Ciq,)] =
i=l

P& ~wv.,;~,l + (1 -B)& ~W”,(s,l. (11)
i=l i=l

Here Cl,,(,) is the color contribution at point K from
the prirnary data set and Cv,(,) is the color contri-
bution from the secondary data set. Equation 11
reveals a very interesting fact: when we render the
volume mixture, we can render each volume sepa-
rately. The mixture image can be generated by a sim-
ple two-dimension.al image blending. This facilitates
the changing of the weighting parameter ,0 and allows
for rapid rendering.

The bi-variate volume rendering model can be used
to intermix the scalar and vector information. More-
over, the user can interactively adjust the volume
blending parameters to track important features from
one variable and visualize the counterparts of the other
variable.

4.2 Dye Rendering

It is helpful to display the LIC texture onto local re-
gions such as isosurfaces and translucent areas. How-
ever, this could give the user the wrong impression

that the flow is always along the surface or local re-
gions. This problem can be remedied if we can visu-
alize the dye propagation through the volume. In our
method, we allow the user to specify opacity to the
injected dye. The opacity values in the LIC dye in-
put are convolved in the same way that we convolved
the pixel values. As a result, the output volumes of
the LIC computation consist of both color and opacity
information.

To take the dye opacity into consideration when
performing volume rendering, the bi-variate rendering
model need.s to be slightly modified. This is because
that now the LIC volume, as a secondary data, also af-
fects the volume’s opacities. When rendering the LIC
volume, we calculate the opacity value at each sample
point as the sum of the opacities from the primary
data and from the LIC volume. The color contribu-
tion of the LIC voxel at that sample point is then com-
puted using this opacity. Following is pseudo code for
rendering the LIC volume using ray casting.

for (each ray from the image plan) (
for (each sample step along the ray) (

opacity = primary opacity + dye opacity
accumulate the LIC color
accumulate the opacity;

3
3

A simple but useful extension of the dye rendering is
that the color of dye can be determined by additional
scalar variables. In this way both the flow direction
and scalar distribution can be visualized at the sa.me
time.

5 Results and Discussion

We have implemented our algorithms using C-t+
and OpenCL. The software combines modules of
Line Integral Convolution with Dye Injection and Bi-
variate volume rendering. In our current software
implementation, the user can inject dye by slicing
through the three-dimensional LIC output and spec-
ifying the dye locations. Our fast search algorithm
can rapidly recompute the LIC output based on the
dye position and then feed the results back to the vol-
ume renderer module. We have found that our fast
search algorithm can reduce the compute time, on av-
erage, by over 90% when compared to the standard
LIC method for recomputing the animation sequence
of the LIC data. The output of the LIC volume con-
tains red, green, blue and opacity components for each

68

voxel. For the volume rendering module, we define a
C++ volume renderer class. The renderer instance
of this class can be either a primary data renderer
or a secondary data renderer. Through a software
pointer between the primary data renderer and sec-
ondary data renderer, the secondary renderer can ac-
cess the primary renderer’s transfer function, volume
data, and other auxiliary data structures to facilitate
the bi-variate rendering model. A secondary renderer
class instance is created for each LIC output in the
animation sequence. These renderer objects can be
dispatched to different processors in a multiprocessor
environment to perform a coarse grain parallel volume
rendering.

Figures 4-6 show several LIC images with dye prop-
agation. Figure 4 shows three different colored dye
propagating through a two dimensional vector field.
Figure 5 is an animation sequence of dye advection in
a 32 x 30 x 30 vector field from a three-dimensional
combustion simulation. Figure 6 is an animation se-
quence of dye advection in a 96 x 96 x 96 tornado data
set. The dye is colored based on the magnitude of the
vector field.

6 Conclusion and Future Work

We have presented new algorithms to visualize
three-dimensional vector fields using Line Integral
Convolution methods. Our algorithm allows the user
to insert dye into the flow field to enhance local flow
features. Given a region with dye, our algorithm can
rapidly locate the cells that are on the path of the dye
propagation. Therefore, the LIC computation needs
to be applied only on a small subset of the entire field.
We proposed a bi-variate volume rendering method to
display three-dimensional LIC textures on arbitrary
contour surfaces or translucent regions that are de-
rived from additional scalar quantities. The new ren-
dering methods can also be used to render the dye
propagation through the volume.

Future work includes providing more flexible con-
trol for modeling the behavior of the dye. This in-
cludes using different filter kernels to control the ap-
pearance of the dye. An additional useful feature
would be to provide a natural and effective way for
the user to probe the three-dimensional space and in-
ject the dye. Finally, we plan to utilize the coher-
ence between LIC volumes in an animation sequence
to speed-up the volume rendering and allow for inter-
active data exploring.

Acknowledgments

This work was supported in part by awards from
the NSF, NIH, and by ICASE under NASA contract
NASl-19480. We would like to thank C. Hansen, K.
Coles, R. McDermott, and the reviewers for their help-
ful comments and suggestions. Furthermore, we ap-
preciate access to facilities that are part of the NSF
STC for Computer Graphics and Scientific Visualiza-
tion.

References

PI

PI

[31

PI

[51

PI

[71

PI

R. Crawfis and N. Max. Direct volume visualiza-
tion of three-dimensional vector fields, In Proceed-
ings of 1992 Workshop on Volume Visualization,
pages 55-60. IEEE Computer Society Press, Los
Alamitos, CA, 1992.

R. Crawfis and N. Max. Texture splats for 3d
scalar and vector field visualization. In Proceedings
of Visualization ‘93, pages 261-265. IEEE Com-
puter Society Press, Los Alamitos, CA, 1993.

J.J. van Wijk. Spot noise: Texture synthesis for
data visualization. Computer Graphics, 25(4):309-
318, 1991.

N. Max, R. Crawfis, and C. Grant. Visualizing
3d velocity fields near contour surfaces. In Pro-
ceedings of Visualization ‘94, pages 248-255. IEEE
Computer Society Press, Los Alamitos, CA, 1994.

B. Cabral and C. Leedom. Imaging vector fields
using line integral convolution. In Proceedings
of SIGGRAPH 93, pages 263-270. ACM SIG-
GRAPH, 1993.

L.K. Forssell and S.D. Cohen. Using line inte-
gral convolution for flow visualization: Curvilin-
ear grids, variable-speed animation, and unsteady
flows. IEEE Transaction on Visualization and
Computer Graphics, 1(2):133-141, 1995.

D. Stalling and H.-C. Hege. Fast and resolution
independent line integral convolution. In Proceed-
ings of SIGGRAPH 95, pages 249-256. ACM SIG-
GRAPH, 1995.

R.A. Derbin, L. Carpenter, and P. Hanrahan. Vol-
ume rendering. In Proceedings of SIGGRAPH 88,
pages 65-74. ACM SIGGRAPH, 1988.

69

Figure 4: 2D LIC images with dye

Figure 5: Dye advection in a 30 combustion simulation

Figure 6: Dye advection in a 3D tornado simulation

70

Figure 4: 2D LIC images with dye

Figure 5: Dye advection in a 3D combustion simulation

Figure 6: Dye advection in a 3D tornado simulation
Visualizing Vector Fields Using Line Integral Convolution and Dye Advection
Han-Wei Shen, Christopher R. Johnson, Kwan-Liu Ma

102

