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Abstract 

A critical issue in understanding high speed flows is the 
study of shock waves. This paper summarizes our re- 
search on techniques for the detection and visualiza- 
tion of shock waves occuring in simulations of three- 
dimensional flows on unstructured grids. Detection al- 
gorithms based on Mach number, density gradient and 
directional derivatives are compared using a data set 
from calculations of a transonic flow with a weak dou- 
ble shock around an airfoil. Both surface and volume 
rendering techniques are used to display the shocks. 

The issues in this research area are very much like 
those occurring in medical imaging. Since the data 
themselves (in this case the results of the fluid dynam- 
ics simulation) are intrinsically low resolution and noisy, 
properly extracting and visualizing the shock is very dif- 
ficult. In this environment blurry, low-resolution tech- 
niques, like the splatting volume rendering, seem to do 
rather well. More complex schemes, using sophisticated 
numerical shock detectors coupled with polygon render- 
ing, produce visually sharper shocks, but a,lso introduce 
“graphics artifacts,” which complicate understanding of 
the flow physics. On the other hand, visualization re- 
sults produced with techniques like splatting are, in ef- 
fect, relying more on the human visual system to com- 
pensate for limited resolution in the simulation. 

1 Introduction 

As the speed of an airplane increases in the subsonic 
range, the zone of disturbance expands vertically, and 
at a certain point the speed of sound will be exceeded in 
a local region, usually on the upper surface where faster 
flow is needed to provide lift. Still further increases of 
speed then lead to a shock wave, which terminates the 
region of supersonic flow. Such a shock wave can cause 
the boundary layer to separate, the drag to increase 
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abruptly, and the flow to become unsteady. Given these 
consequences, a considerable effort, both experimental 
and numerical, has been devoted to the study of mixed 
subsonic-supersonic flow with embedded shocks. In this 
paper, we describe techniques for detecting and visual- 
izing shock waves in computed three-dimensional flows 
on unstructured grids. 

Determining the exact location and structure of 
shock waves in computed flow solutions is surprisingly 
difficult. Though physical shocks are very sharp, nu- 
merically computed shocks are ordinarily smeared over 
several grid cells, due to errors in the numerical approx- 
imation of the fluid dynamics equations. Moreover, the 
data is available only at the vertices of the grid, which 
rarely coincide with the exact shock location, so inter- 
polation issues arise. Also, once the shock is found, 
there is the issue of appropriately displaying the shock 
in three dimensions. The use of unstructured grids, now 
standard in many kinds of flow calculations, introduces 
additional complications in both the detection and vi- 
sualization of shocks. 

In this paper, we investigate shock detection meth- 
ods baaed on Mach number, density gradient, and di- 
rectional derivatives. A data set from aerodynamic cal- 
culations of transonic flow over an ONERA-M6 wing is 
used for comparing these detection methods as well as 
for comparing the representations and rendering of the 
detected shocks. In general, the quality of the visualiza- 
tion results depends on both the detection and visualiza- 
tion method, as well as the accuracy of the interpolation 
and differencing schemes used. Due to limited space, 
this paper only provides a discussion of the detection 
algorithms and corresponding visualization techniques 
and results. The numerical formulations and implemen- 
tation details of the detection and rendering algorithms 
for unstructured data are provided in [lo]. 

2 Related Work 

A grea,t deal of research has been conducted on the prob- 
lems of capturing and fitting shocks in two-dimensional 
flow simulations [7, 8, 4, 91. However, locating shocks 
in three dimensions is much more complicated than it 
is in two dimensions. The methods used in two dimen- 
sions do not always extend well to three dimensions. In 
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Figure 1: A one-dimensional normal shock. 

particular, the grid.s used for three dimensional prob- 
lems are necessarily coarser (and the geometries more 
complex), so obtaining sufficient resolution in three di- 
mensions is always a problem. 

Visualization of shock waves in three-dimensions has 
been addressed by a number of researchers. One ap- 
proach, embodied in the visualization package Visual3, 
is described in [l]. With this a.pproach, iso-surfaces of 
the Mach-number n.ormal to the shock are created, us- 
ing both the density gradient and Mach number. In [6], 
shocks are determi:ned for hypersonic flows on struc- 
tured grids as the zero-level iso-surfaces of the second 
directional derivative of the density. The shocks are 
rendered as partially transparent surfaces, so that the 
underlying aircraft structure is visible. In [9], a two- 
dimensional shock-fitting algorithm is presented for un- 
structured grids. This idea relies on comparison of den- 
sity gradients between grid nodes, and can be used in 
three dimensions to detect shocks. The next section de- 
scribes three detection methods based on some of these 
ideas. 

3 Shocks Detection 

3.1 Normal Mach number 

Shocks are abrupt changes in flow field quantities such 
as pressure, density and velocity. In particular, the ve- 
locity component normal to the shock wave jumps from 
supersonic (Mach number > 1) to subsonic (Mach num- 
ber < 1) as flow passes through the shock, as shown in 
Figure 1. The Mach number A1 is the ratio between 
flow velocity (u) and sonic velocity (a). 

Consequently, the first and simplest idea that comes 
to mind for detecting shocks, is to connect all points in 
the flow where the Mach-number equals one, because by 
definition a shock wave marks the transition of the flow 
velocity from supersonic to subsonic. Unfortunately, 
this “sonic-surface” does not, in general, represent a 
shock. The normal shock wave is actually only a special 
case of the broa.der cla.ss of flow discontinuities called 
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Figure 2: A one-dimensional oblique shock. 

oblique shock waves which are found in most supersonic 
flows. Figure 2 shows an oblique shock. Flow passing 
through an oblique shock wave can remain supersonic, 
and conversely, there are many cases where the sonic 
line is not a. shock. 

The next idea would then be to create a surface of 
all points where the normal Mach number equals one. 
This idea is correct, but raises a difficult chicken-and- 
egg problem: in order to find the shock-surface, t#he nor- 
mal direction to this surface is needed to check whether 
the normal Mach-number jumps from A4 > 1 to A4 < 1; 
however, this normal direction remains unknown until 
the surface has been found. We can resolve this problem 
by approximating the direction normal to the shock with 
the density gradient Vp, which should be normal to the 
shock. This idea, which is also used by PLOTSD: the 
CFD-plotting program developed at NASA Ames [!j], is 
the basis for the first detection algorithm. 

The algorithm works as follows. At all points in the 
flow domain, it computes the Mach-number M in the 
direction of the density gradient, defined by M = $k, 
where the vector 11611 is th e velocity 21 in the direction of 
the density gradient, or, in other word, the projection of 
v onto the density gradient. Now, a shock-surface can 
be found by connecting the points in the flow where this 
expression for A4 equals one. 

3.2 Directional derivatives thresholding 

In [6]) density gradients in the direction of local flow field 
velocity are used to determine shock locations. Suppose 
some scalar function f, such as density, has been ap- 
proximated by a numerical solution at a few grid points. 
A discontinuity in f generally does not coincide with one 
of these grid points. The discontinuity is smeared out 
across a few grid points, and frequently under- and over- 
shoots appear. The location of the discontinuity cart be 
approximated by taking the position of the steepest gra- 
dient of the curve through the data points. This can be 
found, in this one-dimensional example, by taking nu- 
merically the second spatial derivative of the scalar f: 
2 The points where the second derivative off is zero 
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and the first derivative g is non-zero a.re taken to be 
the position of the discontinuity. 

To apply this method in three-dimensions, we can 
compute the derivative of the density p in the direc- 
t,ion of the local velocity vector ZI, by taking the inner 
product of the density gradient Vp and the normalized 
velocity: 

v - 
bP = m. VP 

Tha.t is, Sip denotes the first derivative of the density 
of t*he gas in the direction of the local velocity. 

This quant#ity 6ip supplies much information regard- 
ing the flow. First of all, for extracting shock waves, we 
are mostly interested in the extrema of this quant,ity. 
We will describe a method to determine these extrema 
shortly. Secondly, the sign of 6ip indicates whether a 
flow is compressing or expanding. When 61~ > 0, the 
velocity and the density gradient are oriented in the 
same direction. This means that the gas is compressing 
in this region. Conversely, if 6ip < 0, the density in- 
crease is in the opposite direction to the velocity, which 
means that the gas is expanding. Since only those parts 
of the flow field where the flow is compressing indicate 
the possible presence of a shock wave, we are mainly in- 
terested in positive values of Sip. Instead of looking for 
extrema of hip, we can restrict ourselves to the (local) 
maxima. This is the basic idea behind this detection 
algorithm. 

The shock can now be located by searching for ex- 
trema of the quantity 61~. This can be accomplished by 
determining zero-values of its directional derivative &p, 
defined as: 

62p - Ilull. 
- AL vblp = -J&v -zL.VP 

II4 ( ) lbll 
This is just the second directional derivative of the den- 
sity p. We have seen from the one-dimensional example 
explained above that a discontinuity in density can be 
found by looking for zero values of the second derivative. 
In other words, we can now find shocks by constructing 
zero-level iso-surfaces of this second directional deriva- 
tive 62~. 

There is, however, a difficulty with this approach. 
Although it is true that the second directional deriva- 
tive 62~ is zero at the shock, the converse is, in general, 
not true. Unfortunately, the quantity bzp also vanishes 
in smooth regions with few disturbances, causing erro- 
neous shock detection. Therefore, we have to somehow 
select those parts of the 62~ = zero-surface which co- 
incide with a shock and discard those parts where no 
actual shock is present. In [6] it is shown that this can 
be done by thresholding the first derivative blp by some 
constant E > 0, thus filtering those regions where the 
flow is relatively undisturbed. The procedure to find 
the shock thus becomes: 

1. compute both Sip and 62~ at all points in the flow 

2. construct a zero-level iso-surface of the quantity Ssp 

3. discard those parts of this surface where Sip < c 

This approach can be problematic, since the value of 
E > 0 critically influences the quality of the results. 
Setting c too large creates numerous holes in the shock 
surface, since Sip can be fairly small at many intersec- 
tion triangles on the shock. Conversely, setting E too 
small causes spurious shocks to be found in the smooth 
regions of the flow field. Setting a value for E is therefore 
a problematic trial-and-error procedure. 

Hence, we have used another criterion to decide 
which parts of the 62~ = zero surface coincide wit,h a 
shock. Instead of looking at values of Sip, we used the 
normal Mach number to decide which parts of the sur- 
face should be discarded. We have seen previously that 
the normal Mach-number (the component of the Mach- 
number in the direction of the density gradient) should 
cross one across a shock. We can use this to improve 
step 3 in the above algorithm. For numerical reasons, 
we ca,nnot expect the normal Mach number to be ex- 
actly one in a shock, so again we ha.ve to look for values 
in a small neighborhood of one. The procedure to find 
a shock thus now becomes: 

1. perform the first two steps of the above algorithm 

2. discard those parts of the surface where the n~ormal 
Mach-number is not close enough to one 

Again, there is the issue of how to choose this neigh- 
borhood of one. However, when this neighborhood has 
been chosen properly, this algorithm produces, in some 
cases, better results than the algorithm which uses t&p 
to decide which parts of the surface coincide with the 
shock. This will be demonstrated in Section 4, where 
we compare the behavior of these algorithms. 

3.3 Weighted density gradient 

In [9], an adaptive method combining the advantages 
of shock-capturing and shock-fitting is described. The 
shock detector using density gradients at the grid points 
warps the computational grid to yield shock-fitted ac- 
curacy. A grid point is in the vicinity of a shock if its 
density gradient exceeds a weighted average of density 
gradients of its neighboring grid points. All such grid 
points are then transformed closer to the shock using 
an attraction force, which depends on the local grid size 
and the density in neighboring points. Next, the solu- 
tion is recomputed using the new grid and in this way 
the grid is iteratively adapted to the shocks. Using grid- 
control functions to prevent the generation of very thin 
grid cells, the grid is ultimately fitted to the shock. This 
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technique has been successfully applied in two dimen- 
sions for the adaptaltion of grids to shock locations while 
the flow simulation is marching to steady state. 

Extending the same algorithm to three dimensions 
would imply the implementat,ion of a three-dimensional 
flow solver. Since the goal of this research is to find 
shock waves in give:n, precomputed data sets, we use the 
core of the algorithm, which is easily extended to three 
dimensions, as the basis for a shock detection algorithm. 

The crucial part of the algorithm described in [9] is 
the part where it is determined which points are :in the 
vicinity of a shock. This is clone with the following 
algorithm, which is performed at each grid point n: 

1. compute a weig;hted a.verage of the norm of the den- 
sity gradients at the point,s neighboring n. 

2. compare this weighted average with the norm of 
the density gradient IIVp,II at n itself. If IIVP~II 
exceeds the weighted average of the neighboring 
points, point n is assumed to be in the vicinity of 
the shock. 

This idea can be us,ed in three dimensions as well. We 
will now discuss this method in more detail. 

The weighted average at a grid point n is computed 
using the following weight function: 

W<[ = I(Z - Z) Vpn 1 

where fi is the location vector of point R, and a’ is the 
location vector of a neighboring grid point a. This 
quantity w, is thus, the weight of neighbor a at node 
n. The motivation to this weighting is the assumption 
that the density gradient will be normal to the shock 
surface; therefore, neighboring nodes located in the di- 
rection of the density gradient are assigned relatively 
large weights. The weighted average c, is now defined 
as: 

Those points n where IIVp, II exceeds cn are assumed 
to be in the vicinit:y of a shock. At those points, the 
difference IIVp,)I - c, is computed. This difference can 
now be used to sea,rch for shocks. Unlike the detec- 
tion algorithms discussed in the previous sections, this 
algorithm does not produce a surface which can be vi- 
sualized using surfa.ce-rendering techniques. A direct 
volume rendering seems more appropriate, as we will 
demonstrate later. 

The disadvantage of this algorithm is that it is not 
able to distinguish shocks from other regions where high 
density gradients occur, for instance at the nose or tip 
of the wing. In order to improve this algorithm and 
achieve accurate detection, this scheme would need to 
use additional flow-:field charact,eristics to properly lo- 
cate the shocks. 

Figure 3: Boundary grids of the ONERA-M6 wing. 

4 Visualization Results 

For comparison, we apply the detection algorithms de- 
scribed in the previous section to the same data set. 
Although it is physically impossible to have disctonti- 
nuities in fluid properties, the normal shock is nearly 
discontinuous. The t,hickness of a shock is in the order 
of 10m5in., roughly four times the mean free path of the 
gas molecules. The detected shocks are thus represented 
a.s three-dimensional t,riangular meshes which can be 
efficiently rendered with a high-performance graphics 
workstation, like an SGI Indigo 2. A hardware splat- 
ting technique [2] is also used to derive shock surlbces 
as semi-transparent cloud, which may very well .be a 
better approximation to the physical nature of a sh.ock. 

The data set was generated from a multigrid com- 
putation on a transonic flow over an ONERA-M6 wing 
with free-stream Mach number 0.86 and 3.06 degrees an- 
gle of attack. This is a well-known test-case in aerospace 
science. The multigrid solver is described in detail in [3]. 
The data set stores density, momentum and energy at 
the grid nodes. The grid consists of 53961 nodes and 
287962 tetrahedral elements. Figure 3 depicts the grid 
on the wing and part of the symmetry surface of the 
problem domain. Due to the high grid density on the 
wing (over 20000 boundary elements), the wing shows 
up almost as a black solid shape. 

On top of the wing, one expects to see a double shock 
arising in a V-shaped pattern. In the color pictures to 
be presented, the wing shows up as a grey body and the 
shock-wave surfaces a,re shaded according to Mach num- 
ber. Depending on the detection algorithm used, scalar 
quantities representing some aspect of a shock, such as 
shock strength, can also be used to shade the surface. 
To facilitate the comparison, all visualization results, are 
shown from the same viewpoint with the sam.e lighting 
settings. 

Figure 4 (Color Plate 1) shows an iso-surface of the 
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Mach-number in the direction of the density gradient 
with Mach-number mapped onto it. The iso-level is one 
(sonic level). The surfaces can be constructed by using a 
“marching tetrahedra” algorithm, which linearly inter- 
polates vertex-values on all six edges of a tetrahedron 
to find possible iso-level intersection points. A tetra- 
hedron can either have three or four such intersection 
points. In the latter case, the corresponding intersec- 
tion quadrilateral is split into two triangles to allow for 
easier rendering. 

This detection algorithm gives a good indication of 
the shock location, though it misses a part of the first 
shock, which in reality extends all the way to the left- 
hand side of the wing. In addition, the region on the 
right-haad side of the wing is quite unc1ea.r. The two 
shocks seem to blend together over some distance and 
it is not clear in this region where the shocks actually 
meet. However, taking the relative simplicity of the 
detection algorithm used into account, this picture is a 
very reasonable result. 

Figure 5 (Color Plate 2) displays the result of the 
algorithm described in Section 3.2. The zero-level iso- 
surface of the second directional derivative is thresh- 
olded against the first directional derivative Sip. the 
value chosen for the thresholding is Srp > 1 on a scale 
of -34.8 < brp < 17.6. this value was chosen by a 
trial and error procedure. When a smaller value for 
the thresholding is selected, the shock which appears 
green in this figure, starts to “grow” in vertical direc- 
tion, making it appear larger than it really is. Also, 
in other regions, surfaces start to appear which do not 
correspond to shock waves. There are the regions in the 
flow where both second and first directional derivatives 
are almost zero. As we know from the one-dimensional 
example described in Section 3.2, these regions do not 
necessarily correspond to extrema of the density gradi- 
ent. Conversely, when a larger value for the threshold- 
ing is used, the surfaces develop holes or are excluded 
altogether. 

Note that this algorithm erroneously detects a shock, 
color blue, in front of the wing. This is a region of strong 
compression, but not a shock. On the other hand, the 
first shock on top of the wing now extends all the way 
across the wing. While this algorithm does a better job 
of defining the actual shocks, it also detects erroneous 
shocks. 

Figure 6 (Color Plate 3) was created using the same 
algorithm as Figure 5, but with different thresholding. 
In this case, the normal Mach-number was thresholded 
for values larger than 0.95, meaning that triangles with 
normal Mach-number smaller than 0.95 were excluded. 
Compared with the previous Figure 4 and 5, fewer er- 
roneous surfaces are detected, but the first shock again 
does not extend to the left-edge of the wing. 

In Figure 4, 5, and 6, the detected surfaces have a 

jagged look about their edges. Especially the surfaces 
in Figure 5 and 6, which are thresholded iso-surfaces, 
are not very smooth at all. This is a result of the linear 
interpolation used to construct the surfaces. The al- 
gorithms do not really construct surfaces; each tetrahe- 
dron is tested separately for an intersection with the iso- 
surface. If this intersection polygon meets t,he threshold 
criterion, the polygon is included in the surface. Neigh- 
boring intersection triangles that meet the threshold cri- 
terion joint,ly form the surface. Therefore, t,he border of 
a surface is formed more or less arbitrarily, depending 
on the shape of the triangles at the edges of the surface. 
Improving the smoothness of the surface border will be 
a difficult procedure because one would first have to find 
out which triangles of the surface are boundary t#rian- 
gles. If this is known, a smoothing procedure could be 
applied to those boundary triangles. One would have to 
be careful to ensure, however, that the resulting surface 
is still a valid representation of the shock, not just of a 
visualization trick. 

Finally, Figure 7 (Color Plate 4) is the result of the 
splatting technique. The opacity of the splats is set ac- 
cording to positive values of the first directional density 
derivative 6ip using a linear transfer function. As was 
explained in Section 3.2, hip is an important indicator of 
possible shock locations, Posit,ive values of 61~ indicat.e 
a compression in the flow, while negative values corre- 
spond to an expansion. Therefore, if we discard those 
regions in the flow where 6ip < 0 and only use the pos- 
itive values of hip for the opacity mapping, splats will 
only be drawn in compression regions. 

The color of the splats is set a.ccording to the Mach 
number, in order to compare to the previous three im- 
a.ges. This seems to be the image tha.t best displays the 
shocks, although they may be somewhat too fuzzy. If 
the opacit#y of the splats is increased, other regions in 
the flow where Sip > 0 start to appear, notably in the 
region where Figure 5 finds the blue surface. This is un- 
avoidable since the compression occurring in this region 
results in a positive value of 61~. 

5 An Interactive Shock Analysis 
System 

From the above discussion, it is clear that there is no sin- 
gle best shock detection (and visualization) algorithm 
allowing us to implement a generally accurate, auto- 
mated computational technique for locating (and visu- . 
alizing) three-dimensional shock waves. Therefore, we 
have implemented an interactive shock analysis envi- 
ronment which incorporates multiple detection and vi- 
sualization schemes. An interactive setting allows us 
to experiment with different detection and visualization 
methods in a more efficient manner and to derive useful 
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visualization results more quickly for analysis. 
This interactive visualization system is implemented 

in C++, Motif and ‘GL for running on an SGI worksta- 
tion. At present, it reads data in PLOTSD file format. 
Important considerations for implementing such system 
include: 

l simple and friendly user interface 

0 interactivity 

l flexibility 

The graphical user interface is greatly simplified by 
keeping on screen only those int*erface objects that are 
currently needed. Interactivity is achieved by making 
use of the SGI’s excellent hardware rendering support 
and by intelligently reducing the number of graphics 
primitives that must be processed. 

Flexibility means the ability to use different detection 
schemes and add new ones. The current system allows 
the user to experiment with different det,ection schemes 
based on predefined scalars. That is, a particular de- 
tection scheme is normally not hard-coded. Instead, 
a detection process is completed by selecting multiple 
individual scalar variables for mapping to appropriate 
graphics primitives and transfer functions. Therefore, a 
user of such system is usually the scientist who performs 
the numerical flow simulation and is knowledgeable in 
shock detection. 

In addition to the ffive variables read from the solution 
data file, which are: 

l density 

0 velocity x component 

0 velocity y component 

0 velocity z component 

l energy 

there are a number of predefined scalars that can be 
computed using the flow solution variables. These 
scalars are: 

l Mach number 

l speed of sound 

l first directional derivative 

l second directional derivative 

l normal Mach number 

0 pressure 

The modula.rity of the C++ source program makes the 
insertion of new sca,lar calculations straightforward. Be- 
sides, several thresholding capabilities are provided for 
filtering out certain data items. 

As to the visualization capabilities, the current sys- 
tem provides hardware surface rendering and splatting 
so it is capable of displaying cutting planes, isosurfaces 
and semi-transparent volumes. The interactivity of the 
system is limited by the processing power and memory 
capacity of t,he SGI worksta,tion used. There is no sup- 
port for handling exceptionally large data set#s. T’hus, 
for example, interactive visua.lization of a dat,a set with 
millions of grid cells would be impossible now on an SGI 
Indigo 2 with 128 megabytes of memory. 

5.1 Calculations of derived quantities 

For shock analysis, it is necessary to comput.e derived 
quantities such as Mach number, pressure or gradients. 
In particular, computing gradients accurately on un- 
structured g;rids is less straightforward than it is on 
structured grids. One effective and frequently used ap- 
proach is to compute a divergence theorem surface in- 
tegral at a point P, with the polyhedron formed by its 
neighboring points as a control-volume V: 

p. n,dS 

where 5’ denotes the surface of V and n, the x- 
component of the outward normal t,o S. The com.po- 
nents @ and +? ay az are found analogously to jointly form 

*p=(* dp dp,. 
dx’ ay’ az 

This approximation was used because it is exact for lin- 
ear functions. 

Let 7’1, . . . . . T, be the set of terahedra forming the 
polyhedral control-volume V for some point P. The 
outer surface of V is composed of the outer faces Si 
of each tetrahedron Ti. These faces Si are defined by 
their three vertices ~1, ~2, vis. Using this notation, the 
surface integral can be approximated by: 

where ~~T~~~ denotes the volume of tetrahedron Ti and 
/ISill the surface area of Si. The density on t.he surface 
S’i is approximated by ta.king the average of the density 
in the three vertices of the surface: 

The outward normal n = (n.,, ny, n,) can be computed 
from the coordinates of the points, with the additional 
constraint that it should point away from P. 
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The actual computation of this expression is still 
quite complicated. One major problem is that we have 
to know which points neighbor point V, information 
usually not directly available. Moreover, when this com- 
putation is performed at all points in the field, the vol- 
ume of the tetrahedra and the surface areas will be com- 
puted several times at each point. It is clear that this 
approach would 1ea.d to a very slow algorithm. 

This approach can be much improved by looping over 
all tetrahedra instead of over all points P. At each tetra- 
hedron we compute the contribution of each vertex of 
this cell to the integral a.nd store this at the vertices. 
Also we c0mput.e the volume of the cell once and store 
this at its vert,ices. When this has been done for all 
tet,rahedra, we loop once more over all vertices a.nd add 
up the contributions to the integral of a.11 tetrahedra at 
each point V a,nd divide this by the sum of the vol- 
umes of the tetrahedra. Special care has to be taken 
for boundary-cells, in which case the additional contri- 
bution of the boundary face should be added to the 
vertices. Note that the current implementation handles 
vertex-based data only. For cell-centered da.ta., data at 
vertices can be calculated by interpolation, though this 
introduces additional interpolation errors. 

5.2 Splatting for unstructured-grid data 

Splatting was first introduced by Westover [ll] and has 
been used as a fast approximation technique for ren- 
dering data on uniformly-spaced rectilinear grids. An 
image is formed by determining the screen space contri- 
bution of each grid point-a footprint-and cornpositing 
the footprints on top of each other in the visibility or- 
der. For parallel projection, a single footprint table ca.n 
be pre-calculated and shared by all the voxels. 

Applying splatt(ing to unstructured-grid data allows 
us to ignore the type of computational cells we are deal- 
ing with. However, because of the unstructured nature 
of the grid, a separate footprint must be constructed 
for each grid point. Using parallel projection, further 
approximation has been taken by always representing a 
footprint with a circle. So each footprint is now defined 
by the scalar value (e.g. density or pressure) and co- 
ordinates of the corresponding grid point, and a radius 
va.lue which is the average distance from the point to 
all other immediately neighboring points. In this way, 
we can approximate each footprint, for example, as an 
octagon, with a set of hardware Gouraud-shaded trian- 
gles as described in [Z]. Cornpositing is done with the 
hardware blending support. 

The multiple levels of approximation taken certainly 
degrade the quality and accuracy of visualization re- 
sults. The goal is to have a quick view of the data 
and the detected shock. Although our hardware splat- 
ting approach provides a crude approximation of the 
actual physical phenomena, it gives the viewer a pretty 

good impression about the size, shape, location and cor- 
responding scalar quantities of the shock. After using 
splatting to preselect viewing and rendering parameters, 
we can always apply more accurate rendering methods 
such as a ray-casting or cell-projection algorithm to gen- 
erate high-quality visualization results for further anal- 
ysis of the extracted data. 

6 Conclusions 

Summarizing our previous discussion, if the direction 
of the density gradient is sufficiently accurate, the first 
two algorithms described in Section 3.1 and 3.2 give 
a good indication of the shock locat,ion. Using direc- 
tional derivatives to find shocks yields satisfactory re- 
sults, when used in combination with a proper thresh- 
olding mechanism. 

Note that the performance of the algorithms relying 
on t,he direction of the density gradient is affected by 
the accuracy of the gradient computation. When the 
direction is too much off, it becomes too unreliable to 
use as the basis of a detect’ion scheme. Finally, the 
weighted avera.ge scheme is useful for locating regions 
with high density gradients, but when interpreting the 
results of this algorithm one has to keep in mind that 
not every region with high density gradients corresponds 
to a shock. 

Splatting is a natural way of rendering shock surfaces. 
Using the positive first directional derivative to set the 
opacity of the splats will show the shocks more clearly 
than using, for instance, the norm of the density gra- 
dient, because discarding the negative values of the di- 
rectional derivative ensures that regions where the flow 
expands do not contribute to the opacity of the splats. 

It can be hard to grasp the three-dimensional set-up 
of a visualization result by looking at a single picture. 
Although the three-dimensional perception can be im- 
proved by lighting the surfaces or combining the sur- 
faces with, for example, cutting planes, the best way 
to get a good idea of the three-dimensional structure 
of the flow field and its features such as shocks is to 
interactively examine the flow field by doing real-time 
rotations, translations and magnifications. In this re- 
search, a shock analysis system has been implemented 
a.nd different approaches for shock detection and visu- 
alization can be experimented with in this interactive, 
visual environment. Details and features of this system 
ca.n be found in [lo]. 
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Figure 6: Szp, thresholded by normal Ma.ch number 

Figure 7: 61~ and Mach number using splatting 
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Color Plate 2: 
2nd directional derivative 
thresholded by 1st 
direction derivative. 

Color Plate 1: 
1 st dirtxticwal derivative 
(opacity) and Mach 
nuniber (colors using 
q-darting. 
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