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ABSTRACT

The widespread use of mobile devices brings opportunities to cap-
ture large-scale, continuous information about human behavior.
Mobile data has tremendous value, leading to business opportuni-
ties, market strategies, security concerns, etc. Visual analytics sys-
tems that support interactive exploration and discovery are needed
to extracting insight from the data. However, visual analysis of
complex social-spatial-temporal mobile data presents several chal-
lenges. We have created MobiVis, a visual analytics tool, which
incorporates the idea of presenting social and spatial information
in one heterogeneous network. The system supports temporal and
semantic filtering through an interactive time chart and ontology
graph, respectively, such that data subsets of interest can be iso-
lated for close-up investigation. “Behavior rings,” a compact radial
representation of individual and group behaviors, is introduced to
allow easy comparison of behavior patterns. We demonstrate the
capability of MobiVis with the results obtained from analyzing the
MIT Reality Mining dataset.

Keywords: Mobile Data, Social-Spatial-Temporal Data Visualiza-
tion, Information Visualization, Visual Analytics

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques;H.5 [Information Systems]:
Information Interfaces and Presentation—User Interfaces

1 INTRODUCTION

The extensive use of mobile devices has impacted our everyday life,
from how we communicate socially to how we do our work. In
2004, over 600 million handheld devices were sold, which outnum-
bers the amount of personal computers sold that year [1]. This num-
ber will quickly grow to over a billion. If we collect and analyze
data captured by these mobile devices, we can discover communi-
ties, understand social behaviors, and infer important connections
among events. This sort of information has tremendous value, sug-
gesting business opportunities, market strategies, security concerns,
etc. Efforts to collect such data using mobile phones have been on-
going [16, 5], and analysis of the collected data becomes a pressing
problem. We are in need of new methods beyond the traditional
data mining and statistical techniques.

Visualization has been shown to provide good overviews of large
complex data. Visual analytics tools that allow us to “see” the
mobile data and support interactive exploration and discovery are
needed for extracting insights from the data. However, visual anal-
ysis of the mobile data presents several challenges, which demands
new approaches to this important problem. First, mobile data is
complex since it contains social, spatial and temporal information.
All the social and spatial data are time-varying. GPS data provide
subjects spatial locations, and we can infer social relations from
calling data and Bluetooth proximity information. Next, mobile
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data can be very large-scale. For example, the MIT Reality Mining
experiment [5] captures more than 3 million cell phone activities
of one hundred subjects over the course of only nine months. Fil-
tering techniques are necessary to support exploring such a large
data set. Finally, one of the most important topics for social science
study is to classify and compare human behavior patterns. Thus, ef-
fective visualization of individual and group behaviors are desired.
We have studied how to visualize and analyze large social-spatial-
temporal data.

In this paper, we present MobiVis, a visualization system, which
supports intuitive exploration of social-spatial-temporal data cap-
tured by mobile devices. We introduce the idea of using a heteroge-
neous network to present both social and spatial information in one
single 2D graph visualization. In order to support exploring large-
scale mobile data, we have created a visual interface for performing
temporal and semantic filtering. We have also developed “behavior
rings,” which enable an analyst to examine and compare individual
and group behavior patterns. We have evaluated MobiVis using the
MIT Reality Mining data set, and show in this paper that MobiVis
can detect findings that conventional tools cannot reveal directly.

2 RELATED WORK

One of the most important experiments collecting mobile data was
conducted at University of Helsinki. The Context project studied
characterization and analysis of information about users’ context
and its use in proactive adaptivity [16]. ContextPhone was designed
and developed as a software platform consisting of modules to sup-
port logging mobile phone usage and communications. It runs
on mobile phones using Symbian OS (www.symbian.com) and the
Nokia Series 60 Smartphone platform (www.series60.com). Many
mobile data collecting projects based on Context have been con-
ducted. Researchers at MIT Media Lab conducted an experiment
consisting of one hundred subjects. They captured location, com-
munication, Bluetooth proximity and device usage over the course
of nine months [5]. Studies of mobile data that mainly rely on sta-
tistical analysis rather than visual analysis have been conducted.
For instance, in [4], periodic behavior patterns were analyzed and
used to identify social communities. Algorithms that learn routes
between important locations and predict the next location when the
user is moving were introduced in [12]. A few simple visualizations
have been created for the MIT Reality dataset [13, 2]. However,
none of them support advanced visual analysis and exploration.

Spatial-temporal data visualization have been widely studied [3,
11]. GeoTime is a system for displaying and tracking events, ob-
jects and activities over time and geography within a single, inter-
active 3-D view [7, 17]. It focused on visualizing the traces of a
single event rather than group behaviors. For time-varying social
network visualization, SoNIA incorporated innovative graph layout
and animation algorithms to enable a temporally coherent animated
“movie” of the changing social networks [14]. A similar approach
for larger complex networks was introduced in [10].

Different from their work, we introduce a method to put time-
varying spatial and social information all together in one visual-
ization. A heterogeneous network consists of different types of
entities (e.g., person and location) and relations (e.g., calling and
proximity) is used. Visual representation of the heterogeneous net-



work and semantic filtering techniques based on associated ontol-
ogy graphs [18] are incorporated into our system.

Timelines are good for presenting trends of time-varying
data [8]. For example, in [19], univariate time series data are visual-
ized in the form of calendars. Thus, recurrent patterns and trends on
multiple time scales can be observed simultaneously. Timelines can
also be used for temporal filtering. Timebox is a widget supporting
dynamic query on time series data [6]. It allows users to filter data
by selecting arbitrary timespans along the timeline. In MobiVis,
a 2D time chart equipped with more advanced user interactions is
implemented.

3 MOBIVIS

MobiVis is a visual analytics system designed for exploring and
discovery of mobile data. We address the challenges of visualizing
complex social-spatial-temporal data in its design and implementa-
tion. In this section, we first introduce a methodology to formulate
the data into a heterogeneous network. Next, we discuss the inter-
active time chart and ontology graph, which enable temporal and
semantic filtering in MobiVis, respectively. Finally, we introduce
behavior rings that can reveal periodical behavior patterns of indi-
viduals and groups.

3.1 Data Formulation for Visualization

Mobile data contains both spatial and social information. GPS units
on mobile phones record the spatial locations of subjects. Bluetooth
proximity relations and calls can infer social relations among the
subjects. Usually, spatial information is visualized on a geographi-
cal map, and relational information is presented as a social network
in a node-link diagram. Therefore, two different mappings of the
data exist. In experiments performed by Klein et al. [9], they ob-
served that “switching between completely different visualizations
confused the users.” A good visualization system should use a min-
imum number of visualizations and construct in a unified fashion.
We therefore decide to integrate both spatial and social views in a
single visualization. This would also help find the hidden correla-
tion between social and spatial information.

The social information including phone calls and proximity can
be formulated as an undirected graph, where each vertex denotes
a person, and edges denote calls or proximity relations between
persons. Therefore, the edges are time-varying. The spatial in-
formation in mobile data can be defined as SP = {(pi, l j, t) : pi ∈
P, l j ∈ L}, which denotes that person pi is at location l j at time t.
Since it can be thought of as time-varying relations between per-
sons and locations, we can also formulate the spatial information as
an undirected graph. Both persons P and locations L are converted
into vertices. The “locate at” relations, SP, are converted into time-
varying edges. Then, we can integrate the social graph and spatial
graph into one graph, which is a time-varying heterogeneous graph.

An example is illustrated in Fig. 1 to demonstrate this idea. The
spatial view on the top 1 shows that person A moves along the red
line from the CS Department to the Library, and arrives at Train
Station. Person B moves along the blue line from the Univ. Cen-
ter to the Library, and arrives at the Central Park. The social net-
work view at the bottom shows the relations among A, B and the
other two persons. We integrate both views into the heterogeneous
network on the right by converting persons and locations to ver-
tices. In the network, location vertices are drawn as triangles, and
an edge connecting a person and a location denotes that the person
has visited the location. Note that the edges in the heterogeneous
network are time-varying. We draw all of them in the figure for
demonstration purpose. The mobile data often contains other types
of information, such as subjects’ occupations, ages and personal-
ized phone settings. These information can also be integrated into

1The map of University of California, Davis is retrieved from

maps.google.com

Figure 1: Using heterogeneous network to present both spatial and
social information in mobile data. The spatial view at the top and
the social network view at the bottom are integrated into one single
heterogeneous network on the right.

the heterogeneous graph using the similar formulation method (for
more details, please read our previous paper [18]).

Visualization of this time-varying heterogeneous graph is used
as the centerpiece in MobiVis. Therefore, we want to intro-
duce formal definition of time-varying heterogeneous graphs. The
graph is defined as G = (V,E,vt,et). The nodes are static, while
edges are dynamic. V = {v1,v2, ...,vn} denotes the vertex set
and E = {(vi,v j, timek) : vi,v j ∈ V} denotes the edge set, where
timek(day,hour) denotes the valid timespan of the edge. The
associated ontology graph is defined as OG = (TV ,TE). TV =
{t1, t2, ..., tm} is a set of vertex types and TE = {(ti, t j) : ti, t j ∈ TV }
is a set of edge types. vt denotes a mapping from V to TV that asso-
ciates a vertex to its type. If v is a vertex in the graph, vt(v) denotes
the type for vertex v. Similarly, et denotes a mapping from E to TE

that associates an edge with its type. If e is an edge in the graph,
et(e) denotes the type for edge e. It is important to note that a het-
erogeneous graph cannot have vertices and edges with types that are
not presented in its associated ontology graph. In other words, TV

and TE are, respectively, supersets of the vertex and edge types that
occur in graph G. Both time-varying heterogeneous graphs and the
associated ontology graphs discussed in this paper are undirected.

3.1.1 MIT Reality Mining Dataset

In this paper, a mobile dataset collected by MIT Media Lab in the
Reality Mining experiment [13, 5] is used. In the experiment, Nokia
6600 smart phones, pre-installed with logging software, were dis-
tributed to one hundred subjects, of which seventy-five are either
students or faculty in MIT Media Laboratory, and twenty-five are
incoming students at MIT Sloan business school. The experiment
was run over the course of the 2004-2005 academic year. Over
500,000 hours of continuous data on daily human behaviors were
captured. Moreover, subjects were asked to take surveys regarding
their social activities and interactions with others. Part of the MIT
Reality Mining dataset is publicly available in the form of MySQL
database. The available dataset is somewhat noisy. After the clean-
ing process, we are able to obtain a dataset that contains social ac-
tivities of 83 anonymous subjects from August 2004 to March 2005.
The dataset contains personal information obtained from the user
survey, Bluetooth proximity relations, phone calls, and locations.

The ontology of the derived heterogeneous network is shown in
Fig. 2. There are 20 types of nodes in the network, including per-
son, location, and 18 survey questions. There are two types of edges
between person nodes: phone calls and proximity relations. In the
dataset, a person’s current location is indicated by the celltower to
which his/her mobile phone connects. Geographic information of
celltower locations are not available. Fortunately, in the experiment,



Figure 2: Ontology graph of the mobile social network derived from
MIT Reality Mining dataset. The data is formulated as a time-varying
heterogeneous network. There are 20 node types, including person,
location, and 18 survey questions. There are 21 edge types. Two
types of edges exist between two person nodes: call and proximity.
Nodes are static, while edges associated to proximity relations, calls,
and locations are time-varying.

subjects are asked to name their current location when a previously
unseen celltower is encountered. We believe, the personalized cell-
tower names (e.g., home, media lab, sloan, and parents) are more
valuable than geographical locations for social behavior analysis.
The problem is that there are too many distinct celltower names. It
is not appropriate to map all of them as location nodes. We decide
to put the names into several major categories, such as home, work,
travel, etc. For example, “Jon home” and “home pearl st” are both
considered “home”. The classification is done automatically based
on manually picked keywords. Those names that cannot be clas-
sified are put into the category “others.” Each category is mapped
to a location node. Edges associated to proximity relations, calls,
and locations are time-varying. Besides person and location, each
survey question is considered as a node type and answers as nodes
of that type. An edge between such an answer node and a person
node indicates that the subject gave such an answer for the particu-
lar survey question.

3.2 Filtering Techniques

The continuous human behaviors captured by mobile devices can be
very large. In MIT Reality Mining dataset, for instance, there are
thousands of Bluetooth encounters during a regular weekday. The
visual analytics tool should allow users to filter the sheer number
of data and isolate subsets of interest. In MobiVis, we incorporate
two filtering methods: semantic filtering using ontology graph and
temporal filtering through a time chart. Their design and implemen-
tation are discussed below.

3.2.1 Semantic Filtering Using Ontology Graph

The heterogeneous network derived from the mobile data can be
too large to visualize with limited screen space and resolution. In
MobiVis, we use the semantic information that resides on the nodes
and edges to filter the data and find subgraphs of interest. The se-
mantic filtering technique introduced in [18] is used. An ontology
graph derived from the heterogeneous network is drawn as a se-
mantic overview (See Fig. 2). It contains all node types and pos-
sible relations between them. The system allows users to interac-
tively select node types in the ontology graph. As soon as node
types T S are chosen, a subgraph including only nodes with selected

types will be derived, i.e., G[T S] = (V ST S,EST S,vt,et) of a selected
set of node types T S ⊆ TV , where V S = {v ∈ V : vt(v) ∈ T S} and
ES = {(vi,v j) ∈ E : vt(vi),vt(v j) ∈ T S}. The subgraph is drawn in
the main visualization window of MobiVis. Fig. 3 shows the sub-
graph consisting of persons, positions and hangout places obtained
by selecting these node types in the ontology graph. Linlog [15],
a force-directed graph layout algorithm, is used, because it is gen-
eral enough to work with many types of networks, relatively easy to
implement, and adaptable to satisfy different requirements. The vi-
sualization shows that there are five major groups of people: Sloan
students, Media Lab graduates, student, new graduates and senior
graduates. Node sizes are determined by their degrees. The three
most popular hangout places are gym, restaurant/bar and friend’s
place.

3.2.2 Temporal Filtering Using Interactive Timechart

For mobile data, presenting and exploring the temporal information
are critical. Human behaviors in mobile data exhibit repetitive pat-
terns and trends. Therefore, the visual representation should make
the repetitive patterns more salient and allow users to select recur-
rent timespans. Traditional 1D timeline is not effective in this case.
In MobiVis, we choose 2D time charts with both axes denoting dif-
ferent time scales, and colors of blocks in the chart denoting time-
varying values (See Fig. 5). In this example, the vertical and hori-
zontal axes denote time and date, respectively. It is ideal for observ-
ing daily patterns. The vertical lines separate weeks, and horizontal
lines denote hours. The color of a block denotes the location of sub-
ject 57 at the time indicated by its coordinates. Red denotes work,
blue is for home, and green is for entertainment places. We can see
that subject 57 usually goes to work around noon, and comes back
home around midnight. Users can change time scales of the axes to
fit their tasks. For example, using days of a week for vertical axis,
and weeks for horizontal axis, makes weekly patterns clearer.

The time chart also enables users to select more than con-
tinuous timespans. Drawing a rectangle on the time chart,
users can specify an advanced time window, which is de-
fined as TW (start day,start hour,end day,end hour). A mo-
ment is in the timewindow (i.e., time(day,hour) ∈ TW ) if day ∈
[start day,end day) and hour ∈ [start hour,end hour). The time
chart is linked with the heterogeneous graph visualization, which
shows an induced graph contains aggregated activities within
the selected timewindow, i.e.,G[TW ] = (V,ESTW ,vt,et), where
ESTW = {(vi,v j, timek) ∈ E : timek ∈ TW}. Such time windows
are very useful in time-varying data analysis. For instance, users
can investigate recent night life of a subject by selecting activities
between 9pm and midnight for the last three weeks (See Fig. 5).
To isolate the same activities, in 1D timeline, users need to select
9pm-midnight timespans for everyday of the last three weeks.

The time chart has two modes. One mode shows the occurrence
of time-varying neighbors of a selected node as the example above,
which shows the location neighbors of person node 57. Another
mode shows the occurrence of the selected node. The occurrence of
a node is defined as the sum of valid time-varying edges connecting
to it at the moment. In other words, it is how many other nodes that
have the selected node as neighbors. Fig. 4 shows the occurrence
of location node “work,” i.e., the number of subjects at work, over
time. This example reveals clear patterns at different timescales.
On a daily basis, the most common working hours are 11am−7pm.
On a yearly basis, there is a large break near the end of December
because of the Christmas holiday season.

3.3 Behavior Rings

The time chart can reveal the behaviors of a single subject or group,
but does not support comparison. For example, we want to com-
pare subjects’ weekly calling patterns. One way is to display mul-
tiple time charts side by side for this purpose but there is a limit on



Figure 3: Network with person, position and hangout places. It shows subjects’ occupations and usual hangout places from the user survey.
There are five major groups of people: Sloan students, Media Lab graduates, students, new graduates, and senior graduates. The three most
popular hangout places are gyms, restaurants/bars and friend’s places.

(a) In the daily view, the vertical axis denotes hours in a day. The most

common working hours are from 11am to 7pm. The periodical vertical breaks

indicate weekends.

(b) In the weekly view, the vertical axis denotes days in a week. The weekly

working pattern is revealed.

Figure 4: Time chart whowing the number of subjects at work. Repetitive patterns can be observed in views of different timescales. In both
views, there are two large breaks: Thanksgiving and Christmas holidays.



(a) A daily ring of calls illustrates the frequency of calls every week

day. Subject 29, 57, and 86 made calls more frequently. In addition, this

example reveals that a subject often made more calls during weekends

than weekdays.

(b) An hourly ring of calls shows the frequency of calls every hour.

Subject 29, 57, and 86 made more calls during night than daytime.

Figure 6: In a behavior ring, occurrences of selected activities are arranged radially around a subject in counter-clockwise order. The rings
provide an abstraction of subjects’ behaviors and allow users to compare across different individuals in the network view. In this example, daily
and hourly rings of phone calls for four subjects are illustrated. More phone calls are made after work, since only phone calls among participants,
who are colleagues, are counted.

Figure 5: Time chart showing the locations of subject 57 over time.
Subject 57 usually goes to work around noon, and returns home
around midnight. Drawing a time window in the time chart, the activi-
ties between 9pm and midnight and within the three-week span from
2004/9/5 to 2004/9/25 are selected.

how many charts can be simultaneously displayed and how much
information can be shown on each chart. An alternative visual rep-
resentation that is more compact and integrable with other repre-
sentations is needed. We have developed a radial-layout design
resembling Florence Nightingale’s coxcomb. We call it behavior
rings. Like coxcombs, we use radially lay-out, pie-shaped wedges
to represent time-varying information, such as some particular ac-
tivity including phone calls, proximity relations, and locations ac-
cumulated over a selected period. The whole period (from August
2004 to March 2005) is used by default. The size of the wedge
can represent the accumulated occurrence of the activity during a
user-specified recurrent time, e.g., every Saturday. Color or texture
may be used to represent other information. Unlike coxcombs, we
reserve a large portion of the inner region to display additional in-
formation. This additional information could be nested behavior
rings or other visual or textual representations. Furthermore, we
use behavior rings to represent nodes of a social network. This is
an interesting and important option. Fig. 6(a) shows an example of
daily behavior rings presenting accumulated occurrences of phone
calls of every day in a week from August 2004 to March 2005.
Each ring contains 7 wedges, which denote 7 days in a week. In the
visualization, the wedges are arranged counter-clockwise, and the
starting point is marked by a longer spike. Subjects 29, 57, and 86
made calls more often than the other two subjects. In addition, we

can also see that these three subjects made more calls during week-
ends than weekdays. We further investigate these subjects’ hourly
calling patterns during the same period by enabling the hourly be-
havior ring. In an hourly ring, wedges denoting every hour in a day
are arranged counter-closewise as in Fig. 6(b). Subjects 29, 57, and
86 made more phone calls during the night than the daytime. Both
daily and hourly calling patterns show that these three subjects call
more often after work. The reason is that only calls among par-
ticipating subjects, who are colleagues, are counted in the dataset.
Therefore, they usually do not need to call each other when they are
at work.

A network of behavior rings display much richer information
about the the involved subjects. Together with cluster operations,
the user can interactively combine nodes to see the behavior of a
large group. In the network view, users are allowed to circle a re-
gion and all person nodes within the region are selected. Then, a
macro ring, which shows the aggregated activities of the selected
person nodes, is drawn. In Fig. 7, we compare the weekly behavior
patterns of subjects with different positions by enabling group be-
havior rings of proximity relations. Subjects are grouped according
to their academic positions. Behavior rings of every group are visu-
alized. Groups including “New Grad”, “Student”, and “Media Lab
Grad” gather together very often, while subjects belonging to Sloan
business school do not. Senior graduate students are often alone.
In addition, we can find that persons are closer to each other during
weekdays when they are at work.

Behavior rings provide abstractions of subjects’ dynamic behav-
iors in the network view and enable users to find subjects with in-
teresting behaviors for further investigation.

4 RESULTS

Organizational behavior patterns in MIT Reality Mining data are
analyzed to demonstrate the capability of MobiVis for visual anal-
ysis of mobile data. Moreover, examples of using MobiVis to find
and resolve inconsistencies and uncertainties in data are presented
in this section.

4.1 Inferring Friendship Network From Observed Be-
haviors

One of the key issues in social network analysis is friendship. So-
cial scientists usually obtain the friendship network by user survey.



Figure 7: Comparison of group behaviors using behavior rings. Per-
sons are divided into groups by their academic positions. Rings of
proximity activities are enabled. The visualization reveals that per-
sons in group “Student”, “Media Lab Grad”, and “New Grad” are of-
ten close to someone else. People are closer to each other during
weekdays.

In addition to the self-reported information, we can also infer the
friendship network from observed human behaviors. For example,
persons who often hang out together during weekends are likely to
be friends. In Fig. 8, examples are presented to show how MobiVis
can help isolate important social behaviors and infer the friendship
network.

First, we try to infer the friendship network from phone calls.
The assumption is that friends often call each other. We select all
person nodes and phone calls among them. Positions are also added
into the visualization (See Fig. 8(a)). Each edge denotes the call-
ing relation between two persons, and its width denotes the total
duration of calls between them. There are two closely connected
friendship groups. The group at the bottom left consists of students
from Sloan business school, and the one at top right is from Media
Lab. Comparing the connection density of two groups, we can con-
clude that students from Sloan are more likely to make friends with
each other. Inside the group of Media Lab, senior graduate students
have less friends.

Besides phone calls, friends also tend to hang out with each other
in their spare time. We choose to examine the proximity relations
during Saturday nights, which are defined as periods between 11pm
on Saturday and 3am Sunday morning. All Saturday nights are se-
lected on the time chart. Person nodes, position nodes, and prox-
imity edges are added into the visualization (See Fig. 8(b)). The
friendship network presented here is very similar to the one inferred
from phone calls. People from Sloan rarely get together with those
from Media Lab on Saturday nights.

From the study above, we can draw the conclusion that in the
MIT Reality Mining experiment, subjects are more likely to make
friends with their colleagues under the assumption that phones and
proximity relations on Saturday nights can infer friendships.

4.2 Comparing Group Behavior Patterns

We are also interested in comparing the daily behavior patterns of
different groups in the friendship network. First, we enable the be-
havior rings of proximity relations for each group (See Fig. 9(a)).
Each ring has twelve wedges, which denote the activities during
every hour in a day. The size of each wedge indicates how close a

group of subjects are to others. In the behavior ring of Sloan stu-
dents at bottom left, the wedge size increases at 9am, while in those
rings of Media Lab students, the wedge increases around 12pm.
Thus, the group of Sloan students gather together two hours ear-
lier than those groups of Media Lab students. Because subjects are
closer to each other during work hours, their closeness can sug-
gests whether they are at work or not. Therefore, we further study
the daily working pattern by enabling the behavior rings of the time
for which subjects stay at location “work.” In Fig. 9(b), the be-
havior ring of Sloan students shows that they go to work around
9am. In the rings of Media Lab students, the wedges become sig-
nificant around 10am. Therefore, we can draw the conclusion that
Sloan students go to work earlier than those from the Media Lab. In
addition, senior graduate students spend the longest time at work,
because all the wedges in their behavior ring are of considerable
size.

4.3 Resolve Errors and Uncertainties in the Data

The locations of a subject in the dataset are derived from user-
defined celltower names. We use a fairly simple approach to clas-
sify the names based on manually selected keywords, which left
many names unrecognizable. The analysis of individual behaviors
using MobiVis can actually help us gain a better understanding of
the celltower names and improve our classifier. Fig. 10 shows lo-
cation occurrence of subject 24. We can see that most of time the
subject is at location “others,” which means the celltower name can-
not be determined using our keywords. Moving the mouse over
those blocks, we can see the actual celltower name: “Burton con-
nor.” We observe that subject 24 can be seen at this location every
night. Therefore, it is most likely his/her home. Searching “Burton
connor” online, we find that it is an undergraduate dorm at MIT.

Errors in the dataset can be revealed during the interactive explo-
ration using MobiVis. Fig. 11 shows locations of subject 92. We
can see that from July 2004 to October 2004, the subject appears to
have stayed at home all the time, which is abnormal. We checked
the original database and found the following record:

starttime endtime location

2004-07-10 17:57:22 2004-10-07 17:57:54 Home

indicates that subject 29 stays at home from July 10th to Oct. 7th,
which cannot be true. We believe this is an error in the log file. The
ending date of the timespan is probably 2004-07-10. The month
and day got switched for some reason.

5 CONCLUSION AND FUTURE WORK

In this paper we present MobiVis, a visual analysis system for ex-
ploring and understanding social-spatial-temporal mobile data. In
MobiVis, both spatial and social data are transformed into relational
data and presented as a heterogeneous network. In order to handle
the sheer number of observed activities, an interactive time chart
and an ontology graph are incorporated for temporal and semantic
filtering, respectively. The time chart provides an overview of time-
varying activities in the network, reveals repetitive behavior pat-
terns, and enables filtering based on advanced time windows. The
ontology graph is used as a guide for exploration based on semantic
information of nodes and links in the network. The resulting net-
works are intuitively displayed and respond to user interaction. We
developed behavior rings to allow users to easily compare behavior
patterns of individuals and groups in the network view. Visual an-
alytics systems such as MobiVis are expected to enable important
discoveries in data exploration of emerging mobile data.

MobiVis are suitable for both expert and novice users. The next
step is to incorporate more advanced data analysis methods, so that
the system is capable of performing more sophisticated analytic
tasks. For example, clustering the subjects based on their eigenbe-
haviors [4] can help identify common behavior patterns, determine



(a) Calling network during the whole period. There are two closely connected

groups. The one at the bottom left consists of subjects from Sloan business

school, and the other one indicates Media Lab. Senior graduate students are

less connected than others.

(b) Network of proximity relations on Saturday nights. There are also two

clusters: Sloan business school and Media Lab.

Figure 8: Inferring friendship network from observed behaviors. Phone calls and proximity relations on Saturday nights indicate that subjects are
more likely to call or hangout with colleagues, respectively. With the assumption, that phone calls and gathering during weekend night can infer
friendships, we can conclude that subjects are more likely to make friends with their colleagues in the MIT Reality Mining experiment.

(a) Comparison of daily proximity patterns of groups in the friendship net-

work. The group of Sloan students at bottom left gather earlier than those

groups of Media Lab students.

(b) Comparison of daily working patterns of groups in the friendship net-

work. The total time of groups of persons staying at location “work” are

illustrated by behavior rings. Students of Sloan business school go to work

earlier than those from Media Lab. Senior graduate students spend the longest

time at work.

Figure 9: Comparison of behavior patterns of groups in the friendship network derived by phone calls. Group behavior rings are added to
Fig. 8(a). For each group, its behavior ring illustrates the total frequency of a certain activity during every hour of a day. Both visualizations reveal
that students of Sloan business school have different working hours from those of Media Lab.



Figure 10: Location occurrence of subject 24. The subject stays at
a location with a unrecognizable name, “Burton connor,” every night.
Based on the the pattern of staying time, it is inferred to be home for
the subject. Investigation results of “Burton connor” confirm that it is
an undergraduate dorm in MIT.

Figure 11: Location occurrence of subject 92. Visualization shows
an abnormal activity, i.e., the subject stays at home all the time from
July to October. Checking the original data reveals an error in the
dataset.

behavioral similarity between both individuals and groups, and en-
able accurate classification of group affiliations.

For mobile data that contain activities over a very long period
of time, the scalability of the time chart could be an issue. The
visibility of behavior patterns relies on the number of pixels per
cell entry in the chart. A zoomable interface for the time chart can
solve the problem.

In our study of the MIT Reality Mining dataset, we came across
a large number of errors and uncertainties in the data. For exam-
ple, the survey answers entered by subjects contain typos, and user
defined celltower names are too abstract to understand. Other er-
rors may be caused by crashes of the capturing software running
on mobile phones. These errors are surely common in mobile ex-
periments. MobiVis can manifest errors and uncertainties in the
raw data set throughout the analysis process. It would be useful
to incorporate supervised machine-learning methods into the sys-
tem. Therefore, when an uncertainty is resolved manually by users,
similar ones will be automatically identified and resolved.
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