
Compul. & Graphics Vol. 17, No. 1, pp. 31-37, 1993 0097-8493/93 $6.00 + .00
Printed in Great Britain. © 1993 Pergamon Press Ltd.

Supercomputing and Visualization

PARALLEL VOLUME VISUALIZATION
ON WORKSTATIONS

KWAN-LIU MA and JAMES S. PAINTER
Department of Computer Science, University of Utah, Salt Lake City, UT 84112

Abstract--This paper discusses the use of general-purpose graphics workstations for interactive high-resolution
volume visualization. We survey previous research results in parallel volume rendering as well as commercial
products that take advantage of parallel processing to make volume rendering a practical visualization
method. Our focus is on developing distributed computation methods that can distribute the memory and
computational demands of volume visualization across a network of general purpose workstations. We
describe three distributed computation strategies based on ray-casting volume rendering that can be imple-
mented on either shared-memory multiprocessor workstations or on a network of ordinary workstations.
Multiple views of real-time feature extraction give tremendous insight to the volume data. Multiple variable
visualization helps scientists to capture the interaction between important variables in a simulation. Divide-
and-conquer rendering allows interactive high-resolution volume visualization of large data sets on a network
of midrange workstations, even when the data set is too large for available memory on any single workstation.
Several examples in medical imaging and computational fluid dynamics are shown illustrating the practicality
of these methods.

1. INTRODUC'I'ION
The advance of parallel architecture and software car-
ties computational science into a new dimension in
which scientists have been able to more accurately ap-
proximate and explore the world around us and thus
derive many new scientific discoveries. Scientific vi-
sualization, the use of computer graphics to provide
visual interpretations of simulations of physical phe-
nomena or acquired data from scanning systems, often
requires intensive computation and the management
of enormous amount of data. Over the past few years,
highly commercial and academic interests have led to
the development of many new parallel architectures
and software algorithms for data visualization [l, 2, 3].

Vector supercomputers like the Cray and distrib-
uted-memory supercomputers like the Connection
Machine are expensive to maintain and run, and usu-
ally must be shared between many users. Other special-
purpose architectures, developed in research environ-
ments, are also not generally available to scientists who
may need to conduct visualization procedures daily in
their laboratory. The increase in performance and de-
crease in price of general-purpose graphics workstation
suggest that we could make good use of them for not
only numerical simulations but also data visualization.

In this paper, we describe how general-purpose
graphics workstations, particularly multiprocessor and
networked workstations, can be used to visualize large
or multiple data sets, and to do interactive feature ex-
traction and viewing. We show examples in medical
imaging and combustion simulations making use of
IRIS 4D/240 GTX or multiple IBM RS/6000 Model
520/530 workstations to make the process of data vi-
sualization much more effective and efficient. The ex-
amples shown here use IVES (Interactive Volume Ex-
ploration System) [4, 5], an visualization system based
on ray-casting volume rendering that we have devel-
oped for local scientists.

2. PARALLEL VOLUME VISUALIZATION
Most scientific and biomedical data sets are scalar

or vector fields of three spatial dimensions known as
volume data. Direct volume rendering, creating an
image directly from volume data without constructing
intermediate graphics primitives, has been shown to
be a very effective method for visualizing scalar volume
data[6, 7, 8]. However, volume rendering is compu-
tational expensive and the rendering time grows lin-
early with the size of the data set. As a result, many
algorithms have developed which take advantage of
the coherence in the data and the rendering process [4,
9]. Parallel volume rendering schemes have also been
developed, using special-purpose hardware [l 0, 11] or
supercomputers [12, 13].

The major algorithmic strategy for parallelizing vol-
ume rendering is the divide-and-conquer paradigm.
The volume rendering problem can be divided either
by data space subdivision (DSS) or by image space
subdivision (ISS). While DSS assigns the computation
associated with particular subvolumes to processors,
ISS distributes the computation associated with par-
ticular portions of the image space. DSS is usually im-
plemented on a distributed-memory parallel comput-
ing environment. On the other hand, ISS is most ef-
ficient on a shared-memory multiprocessor computer.
Hybrid methods are also feasible.

Splatting is a data-space parallel volume rendering
algorithm that maps the volume data onto the image
plane. A full resolution rendering of a data set with 96
X 128 X 113 grid points takes about one minute on
either a Sun TACC-1 or four Sun-4s[14]. As splatting
is better suited for coarse to medium grain parallelism,
a multi-pass shear decomposition algorithm has been
implemented on the finely distributed-memory Con-
nection Machine [12] to approximate real-time rotation
of the volume data. The rendering uses parallel com-
putation constructs offered by the Connection Machine

17:I-B
31

32 KWAN-LIU MA and JAMES S. PAINTER

which allow the use of sophisticated shading models
and still maintain high speed throughput. Multiple
frames per second for data sets of size 64 X 64 X 64
can be achieved on 64K-processor CM-2.

An example of a hybrid method is the Pixel-Planes
5 project. PixeI-Planes 5 [11, 15] is a heterogeneous
multiprocessor graphics system capable of performing
ray-casting volume rendering. The hardware consists
of up to 32 graphics processors (40 MHz Intel i860
microprocessors), up to 16 rendering units, and a con-
ventional 1280 X 1024-pixel frame buffer, intercon-
nected by a five gigabit ring network. The volume data
set is distributed among the rendering units. Each
graphics processor is assigned a subimage, per-
forms corresponding rays sampling and requests
needed voxel values from the rendering units. A se-
quence of high resolution images can be generated at
one frame per second. Most of the above methods ei-
ther use special-purpose hardware or sacrifice image
quality to achieve interactive to near real-time ren-
dering. We instead utilize multiple workstations to ac-
complish interactive high-resolution volume visual-
ization.

3. IVES
Our work in parallel volume visualization is built

on a locally developed interactive volume exploration
system, IVES. IVES, based on an image-order front-
to-back ray-traced volume rendering algorithm [9],
implements a set of real-time interaction techniques
that have been developed to permit exploration of a
volume data set. Within the limitation of a static view-
point, the user is able to interactively alter the position
and shape of an area of interest, and modify local
viewing parameters. A run length encoded cache of
volume rendering samples provides the means to re-
render the volume at interactive rates. The user locates
and plants "seeds" in areas of interest through the use
of data slicing and isosurface techniques. Image pro-
cessing techniques applied to volumes (i .e. , volume
processing), can then automatically form regions of
interest that in turn modify the rendering parameters.
This "region growing" of "seedlings" incrementally
alters the image in real-time providing further visual
cues concerning the contents of the data. These tools
allow interactive exploration of internal structures in
the data that may be. obscured by other imaging al-
gorithms. Currently IVES has been implemented using
the IRIS Graphics Library (GL), which is also sup-
ported on the IBM RS/6000 workstations.

4. PROBLEMS WITH DATA VISUALIZATION

It is clear that for data visualization, interaction is
important and motion is even more powerful. Most
existing parallel volume rendering architectures and
algorithms have been designed to achieve highly in-
teractive, or if possible real-time, visualization. One
problem with present general-purpose workstations is
the inability in processing speed to support real-time
high-resolution volume visualization activities. Image
resolution can be sacrificed to speed up volume ren-
dering, however this gives the user a poor quality result
that may not have sufficient detail for interpretation.

IVES solves this problem partially by providing fast
rerendering of static views and powerful feature ex-
traction facilities.

Another major problem for data visualization on
workstations is the high memory demands of the vol-
ume visualization algorithms. Often it is not possible
to hold the entire data set in memory at one time. For
example, a typical three dimensional combustion sim-
ulation produces three components of velocity and a
dozen of other scalars like temperature of some chem-
ical concentrations. As a result, a few hundred mega-
bytes of data is fairly typical. Moreover, a single scalar
data set may take over 100 megabytes of storage in an
applications like medical imaging. Further, for inter-
active volume rendering, we need not only store the
volume data to be visualized but also values such as
the surface normals, attribute maps, etc. Efficient al-
gorithms, which trade space for time, require even more
memory capacity to cache reusable results. Our work-
stations are equipped with 16-128 megabytes of main
memory. Thus the use of a single workstation for in-
teractive visualization often forces us to reduce the data
set or to process at most two to three scalars at a time.
Data reduction may cause serious artifacts in the re-
suiting images and wash out many details important
to the scientists. The inability to view multiple related
data sets simultaneously prevents scientists from cap-
turing important interactions between certain elements
in the simulation.

There are many other important issues with data
visualization that we have not addressed here, such as
data formats, user interface, etc. Since our main focus
in this paper is distributed data visualization on work-
stations, we waive the discussion of those other issues.

5. MULTIPLE-VIEW RENDERING

AS mentioned above, real-time rotation of volume
data, using direct volume visualization, on general-
purpose workstations is still not generally achievable.
IVES is a single-view visualization system that is very
effective in capturing features in the volume data. The
use of multiple workstations or a multiprocessor
workstation like the IRIS 4D GTX or VGX allows the
user to watch multiple views of a particular structure
in the data. Figure 1 displays four different views of
the vascular structure within the brain of a patient suf-
fering from an aneurysm. This data set was acquired
from Magnetic Resonance Angiography (MRA), in
which the focus of attention is on exploring the vascular
structure within the brain or other regions of the body.
MRA techniques are used to diagnose malformations
and aneurysm within the brain's blood supply, and to
plan surgical and catheterization procedures. The in-
tricate nature of the vascular structure as well as the
somewhat noisy data capture require the ability to focus
attention on specific vessels as potential anomalies are
discovered.

All four renderings use one single large seed in the
center of the volume to capture most of the vessels
while eliminating the vessels at the outer edges which
complicate and obscure the interior. Multiple views in
this case help the physicians identify certain structures

Parallel volume visualization on workstations 33

Fig. 1. Multiple views of vascular structures.

and anomalies. IVES gives rapid re-rendering by cach-
ing ray samples for a particular view, and thus allows
interactive feature extraction. The real-time feature
extraction available through volume seedlings[5] is
even more powerful when multiple views are simul-
taneously available.

Volume seedling is in essence a feature extraction
technique for scalar field data. Current research in
progress extends IVES to handle vector field data [16],
which further illustrates the effectiveness of multiple
views displayed concurrently. Figure 2 shows the vi-
sualization of the data from the simulation of a full-

Fig. 2. Multiple views of flow velocity.

34 KWAN-LIU MA and JAMES S. PAINTER

scale utility boiler using IVES. These power generation
systems typically stand 300 feet high, 30 feet wide and
generate 500 mega-watts of electricity. The upper-left
picture is a combination of isosurface and two-dimen-
sional color contour rendering. The upper-right picture
is an ordinary ray-casting volume rendering of the ve-
locity magnitude. The lower-left and right pictures give
two views of the vector field. A "seed" has been planted
in the volume and is grown into a seedling based on
the direction and magnitude of the velocity at each
voxel. The seedling grows from the seed as though an
opaque dye was being emitted from the seed point in
the fluid. The seedling growth occurs dynamically and
can be viewed in real time. The rate and direction of
the seedling growth can provides many cues about the
flow field, particularly when several views are available
simultaneously. The ability to watch flow movement
in real-time is extremely powerful and far less expensive
than experimental flow visualization in laboratories.

Because of this real-time activity, workstationsi~on-
nected with an Ethernet network do not provide suf-
ficient bandwidth to update multiple view in real time.
A shared-memory multiprocessor such as the IRIS 4D/
240 GTX is more appropriate for the task. The above
multiple-view rendering has been implemented in the
IRIX parallel programming primitives, which is a sub-
set of the Sequent parallel programming primi-
tives [17]. IRIX supports calls for creating processes
that can execute in parallel, synchronization primitives
such as locks and semaphores, and shared memory
allocation routines. As IVES requires extra memory
space for caching ray samples, the number of views
can be rendered and displayed simultaneously is lim-
ited by available memory.

6. MULTIPLE-VARIABLE VISUALIZATION
AS previously discussed, the ability to view multiple

related data sets simultaneously allows scientists to re-
late important interactions in the simulation. For ex-
ample, a simulation of a pilot utility boiler conducted
by a local scientist produced 35 scalar data sets. To
hold all the data sets in main memory for concurrent
viewing is difficult. What we can do is to distribute the
35 scalar data sets to multiple networked workstations.
One workstation with high-resolution graphics support
is used as the host, and displays the main user interface
and desired images. Remotely computed images are
sent back to the host for display. Figure 3 shows four
images each of which describes a scalar from the sim-
ulation of the industrial broiler. The upper-left one
displays the wall structure, the upper-right the tem-
perature, the lower-left CO concentration and the
lower-right CO2 concentration in the furnace. While
examining these four pictures, the user can submit an-
other job that renders a different combination of sea-
lars. The level of interactivity depends on the processing
power of each workstation and the image quality de-
sired. Usually a 640 X 640-pixel image of reasonable
resolution, casting one ray for every other pixel, takes
about two minutes on an IBM RS/6000 Model 530.
A smaller image can be rendered within seconds.

7. DIVIDE-AND-CONQUER VOLUME RENDERING
Volume data sets can be quite large, often too large

for a single workstation to hold in memory at once.
Such data sets can still be rendered by a divide-and-
conquer algorithm: divide the data up into smaller
subvolumes, render them separately, and combine the
resulting images. If multiple workstations are available,

Fig. 3. Visualization of multiple scalars in a combustion simulation.

Parallel volume visualization on workstations 35

a parallel algorithm results by distributing the sub-
problems to different machines. The memory demands
on the workstations are modest since each workstation
need only hold a subset of the total data set. This ap-
proach can be used to render high resolution data sets
in an environment with many midrange workstations
(e.g., equipped with 16 megabytes memory) on a local
area network. Many scientific and engineering com-
puting environments have an abundance of such
workstations that could be harnessed for volume ren-
dering provided that the memory usage on each ma-
chine is reasonable.

7.1. Data subdivision
The divide-and-conquer algorithm requires that we

partition the input data into subvolumes. There are
many ways to partition the data; the only requirement
is that an unambiguous front-to-back ordering can be
determined for the subvolumes to establish the required
order for compositing subimages. Ideally each sub-
volume will require about the same amount of com-
putation. Further, if the viewpoint is known, we should
subdivide in a manner that minimizes the overlap be-
tween the images resulting from the subvolumes. This
will reduce the cost of merging since compositing need
only be applied where subimages overlap.

The simplest method is to partition the volume along
planes parallel to the coordinate planes of the data. If
the viewpoint is fixed and known when partitioning
the data, the coordinate plane most nearly orthogonal
to the view direction can be determined and the data
can be subdivided into "slices" orthogonal to this plane.
When orthogonal projection is used, this will tend to
produce subimages with small overlap. If the viewpoint
is not known, or if perspective projection is used, it is
better to partition the volume equally along all coor-
dinate planes. This can be accomplished using a k-D
tree structure [18], with alternating binary subdivision
of the coordinate planes at each level in the tree as
indicated in Fig. 4. Front-to-back image compositing
order can be determined hierarchically by a recursive
traversal of the k-D tree structure, visiting the "front"
child before the "back" child. This is similar to well-
known front-to-back traversals of BSP-trees [19, 20]
and octrees[21, 22]. In addition, the hierarchical
structure provides a natural way to accomplish the
compositing in parallel: Sibling nodes in the tree may
be processed concurrently.

/ \

I k k + l n

Subvolum

F:ig. 5. Volume boundary replication.

As shown in Fig. 5, when a volume of grid points
(voxels) is evenly subdivided into, for example two
subvolumes, each subvolume may contain half of the
total grid points. Note that each voxel is located at a
corner of the grid. Consequently, those ray samples
that lie between the cut boundary region (the dotted
region) are lost. If the view vector is parallel to the cut
plane, a black strip will appear at each cut boundary
in the composited image. Therefore, we need to du-
plicate one layer of the boundary grid at each subvol-
ume so the composited ray-casting image does not drop
out features originally in the volume. For the case
shown in Fig. 5, one possible arrangement is that Sub-
volume l includes layer 1 to layer k and Subvolume
2 includes layer k to layer n; that is, in $2, layer k is
replicated.

7.2. Subvolume rendering
Note that we use ray-casting volume rendering. Each

workstation can perform raytracing independent of
other workstations. There is no data communication
required during the subvolume rendering. All subvol-
umes are rendered using an identical view position and
only rays within the region covering the corresponding
subvolume are cast and sampled. Since we sample
along each ray at a predetermined interval, consistent
sampling locations must be ensured for all subvolumes
so we can reconstruct the original volume. As shown
in Fig. 6, for example, the location of the first sample
$2,~ on the ray shown in Subvolume 2 should be cal-
culated correctly so that the distance between $2,, and
S~.n is equivalent to the predetermined interval. Oth-
erwise, small features in the data might be enhanced
in an erroneous way.

7.3. Image merging
In order to apply the divide-and-conquer algorithm

we must develop a method for merging the images

/ \

/ 'X / %, 1 % , f "~,

Subvolume 2

S2.1

Fig. 4. K-D tree subdivision of a data volume. Fig. 6. Correct ray sampling.

36 KWAN-LIu MA and JAMES S. PAINTER

resulting from the subvolumes. In order to correctly
merge subimages into the final total image, we need
to store not only the color at each pixel but also the
accumulated opacity there. The rule for merging sub-
images is based on the under compositing operator of
[23]. Under operator is associative. To prove that the
composited samples along a single ray onto a total vol-
ume is equivalent to the merging of multiple rays onto
subvolumes, let's consider the following case. If we have
n samples along a single ray, which are

CIOLI , C 2 0 ! 2 , C30L3 C n - l O l n - l , Cno~n ,

then the accumulated color of the ray C is

Cioq + (1 - - oq)[C2o:2 + (1 - - a2)

X [C 3 a 3 Jr- . . . CnOln] ;

that is,

n i - I

C= Z Ciai rI (1 - aj).
i=1 j = l

Suppose we subdivide the total volume evenly into
two subvolumes. The color of the ray segment in the
front subvolume is

According to the under operation,

where

C = G + (1 - -i)G,

hi2 i - I

o~= E - , l q (1 - ' 0 .
/=1 j = l

Therefore, we can derive

C = C f + (1 - ~z)Cb
n/2

= C f + (r I (1 - oo))C b
j = l

hi2 n

= Cs+ (I] (1 - , 0) E
j = l i - n l2+ l

hi2 i 1

= E C i a i I - I (1 - a f t +
i=1 j - I

n i - I

= E c , , ~ , 1--[(1 - ~s)
i=1 j - I

in which

i 1

Ci°~i H (1 - - o t j)
j=n/2+I

n i 1

E CicqrI(1-aj)
i=n/2+l j = l

,'112 i I

C}= ~ Ciai]-I (1 - m),
i=1 J=l

and the color of the ray segment in the back subvolume
is

n i - I

c~= E c , , , 1-I (I - - 'O "
i=n/2+l j=n/2+l

n/2 i - I

(1 - - otf) = 1 - - ~ oti [- [(1 - a))
i - I j - I

n/2 i I

= 1 - o q) (1 - E o~,] - [(1 - . j))
i - 2 j=2

n/2 i - I

= 1 - o q) (1 - o~2)(1 - ~ - i 1-I(1 - o0)1
i - 3 J=3

Fig. 7. Subimages and their composite.

Parallel volume visualization on workstations 37

n/2

= l - l (1 - ,~j)(J - o)
j i

n/2

= 1] (l - . j)
j--1

Figure 7 shows images for eight subvolumes and
their composited volume in the middle. The compos-
ited image should be identical to the image that is ren-
dered directly from the total volume if numerical errors
can be avoided, for example by using fixed point arith-
metic. According to our experimental results, optimal
linear speedup can be easily obtained on networked
workstations since the rendering of a smaller volume
can better take advantages of the locality of memory
access; in addition, the t ime needed to composite sub-
images can be negligible since a carefully coded corn-
positing operation takes in milliseconds compared with
seconds to minutes needed for the rendering of all the
subimages.

This divide-and-conquer scheme is best suited for
mid and large-grain parallelism. For massively parallel
computers, which may have many thousands of pro-
cessors, the image compositing t ime may become sig-
nificant. A set of workstations connected with Ethernet
or token ring network are best suited for processing
large data sets that a single workstation cannot handle
efficiently. If a fiber optic network is available, then
even real-time rendering can be achieved on small to
medium scale data sets.

8. CONCLUSIONS
We have described methods that utilize general-

purpose graphics workstations to do interactive, high-
resolution volume visualization. We have demon-
strated that the memory and computational demands
can be distributed across multiple workstations, allow-
ing a network of workstations to be harnessed for high
performance, high resolution volume visualization of
large data sets. We have shown examples applying these
methods and have demonstrated their effectiveness and
practicality. The ability to perform feature extraction
in an interactive manner offered by IVES makes these
multiprocessing schemes even more powerful and at-
tractive. Currently we are developing graphics user in-
terface for managing distributed volume rendering on
networked workstations. We are also investigating the
practicality of applying these methods to other volume
visualization algorithms.

Acknowledgments--This work has been supported in part by
NSF/ACERC and an IBM grant for Scientific Visualization.
The Medical Imaging Laboratory at the University of Utah
provided the MRA data set. Dr. Philip Smith at ACERC pro-
vided the furnace data set. Elena Driskill implemented an
early version of the data slicer used in IVES. Mihir Mehta
integrated an isosurface program into the data slicer. Special
thanks go to Dr. Michael Cohen for his guidance during the
development of IVES.

REFERENCES
1. P. Dew, R. Earnshaw, and T. Heywood, (Eds.) Parallel

Processing for Computer Vision and Display. Addison
Wesley, Reading, MA (1989).

2. J. Foley, A. V. Dam, S. K. Feiner, and J. F. Hughes,
Computer Graphics: Principles and Practice. Addison
Wesley, Reading, MA (1990).

3. S. Green, Parallel Processing for Computer Graphics. MIT
Press, Cambridge, MA (1991).

4. K.-L. Ma, M. F. Cohen, and J. Painter, Volume seeds:
A volume exploration technique. J. Visual. Comp. Anim.
2(4), 135-140 (1991).

5. M. F. Cohen, J. S. Painter, M. Mehta, and K.-L. Ma,
Volume seedlings. In Proceedings o[the ACM Interactive
3D Graphic~ (March 1992).

6. R. A. Drebin, L. Carpenter, and P. Hanrahan, Volume
rendering. Computer Graphics (Proceedings ~1 SIG-
GRAPH 1988) 22(4), 65-74, (1988).

7. M. Levoy, Display of surfaces from volume data. 1EEE
Computer Graphics and Applications, 29-37 (May 1988).

8. C. Upson and K. M., V-buffer: Visible volume rendering.
Computer Graphics (Proceedings ~)[SIGGRAPH 1988)
22(4), 59-64 (1988).

9. M. Levoy, Efficient ray tracing of volume data. ACM
Transactions on Graphics 9(3), 245-261 (1990).

10. A. Kaufman and R. Bakalash, Memory and processing
architecture for 3D voxel-based imagery. IEEE Computer
Graphics and Applications 8(6), 10-23 (1988).

11. H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather,
D. Ellsworth, S. Molnar, G. Turk, B. Tebbs, and L. Israel,
Pixel-planes 5: A heterogeneous multiprocessor graphics
system using processor-enhanced memories. Computer
Graphics (SIGGRAPH "89 Proceedings) 23(3), 111-120
(1989).

12. P. Schroder and J. B. Salem, Fast rotation of volume data
on data parallel architectures. In Proceedings of Visual-
ization '91, 50-57 (October 1991).

13. T.T. Elvins and D. Nadeau, NetV: An experimental net-
work-based volume visualization system. In Proceedings
q[lisualization '91. 239-245 (October 1991).

14. L. Westover, Interactive volume rendering. In Proceedings
qf Chapel tlill H~rkshop on Volume Visualization. 9-16
(May 1989).

15. T. Yoo, U. Neumann, H. Fuchs, S. Pizer, T. Cullip, J.
Rhoades, and R. Whitaker, Achieving direct volume vi-
sualization with interactive semantic region selection. In
Proceedings ~[Visualization '91, 58-68 (October 1991).

16. K.-L. Ma and P. J. Smith, Virtual Smoke: An interactive
3d flow visualization technique. In Proceedings of [Tsu-
alization '92, 46-53 (October 1992).

17. A. Osterhaug, Guide to Parallel Programming on Sequent
Computer Systems. Sequent Computer Systems, Inc.
(1986).

18. J. Bentley, Multidimensional binary search trees used for
associative searching. Commun. ACM 18(8), 509-517,
(1975).

19. H. Fuchs, Z. M. Kedem, and B. F. Naylor, On visible
surface generation by a priori tree structures. In Proceed-
ings ~f SIGGRAPtt 1980, 58-67 (1980).

20. H. Fuchs, G. Abram, and E. D. Grant, Near real-time
shade display of rigid objects. In Proceedings ~?/ SIG-
GP~4PIl 1983. 65-72 (1983).

21. L. Doctor and J. Torborg, Display techniques for octree-
encoded objects. 1EEE Comput. Graphics and Appl. 1,
29-38, (July 1981).

22. D. Meagher, Geometric modeling using octree encoding.
~2)mput. Graphics Image Process. (USA) 19, 129-147
(June 1982).

23. T. Porter and T. Duff, Compositing digital images. Com-
puter Graphics (Proceedings of SIGGRAPH 1984) 18(3),
253-259 (1984).

