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Abstract--This paper discusses the use of general-purpose graphics workstations for interactive high-resolution 
volume visualization. We survey previous research results in parallel volume rendering as well as commercial 
products that take advantage of parallel processing to make volume rendering a practical visualization 
method. Our focus is on developing distributed computation methods that can distribute the memory and 
computational demands of volume visualization across a network of general purpose workstations. We 
describe three distributed computation strategies based on ray-casting volume rendering that can be imple- 
mented on either shared-memory multiprocessor workstations or on a network of ordinary workstations. 
Multiple views of real-time feature extraction give tremendous insight to the volume data. Multiple variable 
visualization helps scientists to capture the interaction between important variables in a simulation. Divide- 
and-conquer rendering allows interactive high-resolution volume visualization of large data sets on a network 
of midrange workstations, even when the data set is too large for available memory on any single workstation. 
Several examples in medical imaging and computational fluid dynamics are shown illustrating the practicality 
of these methods. 

1. INTRODUC'I'ION 
The advance of parallel architecture and software car- 
ties computational science into a new dimension in 
which scientists have been able to more accurately ap- 
proximate and explore the world around us and thus 
derive many new scientific discoveries. Scientific vi- 
sualization, the use of computer graphics to provide 
visual interpretations of simulations of physical phe- 
nomena or acquired data from scanning systems, often 
requires intensive computation and the management 
of enormous amount of data. Over the past few years, 
highly commercial and academic interests have led to 
the development of many new parallel architectures 
and software algorithms for data visualization [ l, 2, 3 ]. 

Vector supercomputers like the Cray and distrib- 
uted-memory supercomputers like the Connection 
Machine are expensive to maintain and run, and usu- 
ally must be shared between many users. Other special- 
purpose architectures, developed in research environ- 
ments, are also not generally available to scientists who 
may need to conduct visualization procedures daily in 
their laboratory. The increase in performance and de- 
crease in price of general-purpose graphics workstation 
suggest that we could make good use of them for not 
only numerical simulations but also data visualization. 

In this paper, we describe how general-purpose 
graphics workstations, particularly multiprocessor and 
networked workstations, can be used to visualize large 
or multiple data sets, and to do interactive feature ex- 
traction and viewing. We show examples in medical 
imaging and combustion simulations making use of 
IRIS 4D/240 GTX or multiple IBM RS/6000 Model 
520/530 workstations to make the process of data vi- 
sualization much more effective and efficient. The ex- 
amples shown here use IVES (Interactive Volume Ex- 
ploration System) [4, 5 ], an visualization system based 
on ray-casting volume rendering that we have devel- 
oped for local scientists. 

2. PARALLEL VOLUME VISUALIZATION 
Most scientific and biomedical data sets are scalar 

or vector fields of three spatial dimensions known as 
volume data. Direct volume rendering, creating an 
image directly from volume data without constructing 
intermediate graphics primitives, has been shown to 
be a very effective method for visualizing scalar volume 
data[6, 7, 8]. However, volume rendering is compu- 
tational expensive and the rendering time grows lin- 
early with the size of the data set. As a result, many 
algorithms have developed which take advantage of 
the coherence in the data and the rendering process [ 4, 
9 ]. Parallel volume rendering schemes have also been 
developed, using special-purpose hardware [ l 0, 11 ] or 
supercomputers [ 12, 13 ]. 

The major algorithmic strategy for parallelizing vol- 
ume rendering is the divide-and-conquer paradigm. 
The volume rendering problem can be divided either 
by data space subdivision (DSS) or by image space 
subdivision (ISS). While DSS assigns the computation 
associated with particular subvolumes to processors, 
ISS distributes the computation associated with par- 
ticular portions of the image space. DSS is usually im- 
plemented on a distributed-memory parallel comput- 
ing environment. On the other hand, ISS is most ef- 
ficient on a shared-memory multiprocessor computer. 
Hybrid methods are also feasible. 

Splatting is a data-space parallel volume rendering 
algorithm that maps the volume data onto the image 
plane. A full resolution rendering of a data set with 96 
X 128 X 113 grid points takes about one minute on 
either a Sun TACC-1 or four Sun-4s[ 14]. As splatting 
is better suited for coarse to medium grain parallelism, 
a multi-pass shear decomposition algorithm has been 
implemented on the finely distributed-memory Con- 
nection Machine [ 12 ] to approximate real-time rotation 
of the volume data. The rendering uses parallel com- 
putation constructs offered by the Connection Machine 
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which allow the use of sophisticated shading models 
and still maintain high speed throughput. Multiple 
frames per second for data sets of size 64 X 64 X 64 
can be achieved on 64K-processor CM-2. 

An example of a hybrid method is the Pixel-Planes 
5 project. PixeI-Planes 5 [11, 15 ] is a heterogeneous 
multiprocessor graphics system capable of performing 
ray-casting volume rendering. The hardware consists 
of up to 32 graphics processors (40 MHz Intel i860 
microprocessors), up to 16 rendering units, and a con- 
ventional 1280 X 1024-pixel frame buffer, intercon- 
nected by a five gigabit ring network. The volume data 
set is distributed among the rendering units. Each 
graphics processor is assigned a subimage, per- 
forms corresponding rays sampling and requests 
needed voxel values from the rendering units. A se- 
quence of high resolution images can be generated at 
one frame per second. Most of the above methods ei- 
ther use special-purpose hardware or sacrifice image 
quality to achieve interactive to near real-time ren- 
dering. We instead utilize multiple workstations to ac- 
complish interactive high-resolution volume visual- 
ization. 

3. IVES 
Our work in parallel volume visualization is built 

on a locally developed interactive volume exploration 
system, IVES. IVES, based on an image-order front- 
to-back ray-traced volume rendering algorithm [9], 
implements a set of real-time interaction techniques 
that have been developed to permit exploration of a 
volume data set. Within the limitation of a static view- 
point, the user is able to interactively alter the position 
and shape of an area of interest, and modify local 
viewing parameters. A run length encoded cache of 
volume rendering samples provides the means to re- 
render the volume at interactive rates. The user locates 
and plants "seeds" in areas of interest through the use 
of data slicing and isosurface techniques. Image pro- 
cessing techniques applied to volumes (i .e. ,  volume 
processing), can then automatically form regions of 
interest that in turn modify the rendering parameters. 
This "region growing" of "seedlings" incrementally 
alters the image in real-time providing further visual 
cues concerning the contents of the data. These tools 
allow interactive exploration of internal structures in 
the data that may be. obscured by other imaging al- 
gorithms. Currently IVES has been implemented using 
the IRIS Graphics Library (GL), which is also sup- 
ported on the IBM RS/6000 workstations. 

4. PROBLEMS WITH DATA VISUALIZATION 

It is clear that for data visualization, interaction is 
important and motion is even more powerful. Most 
existing parallel volume rendering architectures and 
algorithms have been designed to achieve highly in- 
teractive, or if possible real-time, visualization. One 
problem with present general-purpose workstations is 
the inability in processing speed to support real-time 
high-resolution volume visualization activities. Image 
resolution can be sacrificed to speed up volume ren- 
dering, however this gives the user a poor quality result 
that may not have sufficient detail for interpretation. 

IVES solves this problem partially by providing fast 
rerendering of static views and powerful feature ex- 
traction facilities. 

Another major problem for data visualization on 
workstations is the high memory demands of the vol- 
ume visualization algorithms. Often it is not possible 
to hold the entire data set in memory at one time. For 
example, a typical three dimensional combustion sim- 
ulation produces three components of velocity and a 
dozen of other scalars like temperature of some chem- 
ical concentrations. As a result, a few hundred mega- 
bytes of data is fairly typical. Moreover, a single scalar 
data set may take over 100 megabytes of storage in an 
applications like medical imaging. Further, for inter- 
active volume rendering, we need not only store the 
volume data to be visualized but also values such as 
the surface normals, attribute maps, etc. Efficient al- 
gorithms, which trade space for time, require even more 
memory capacity to cache reusable results. Our work- 
stations are equipped with 16-128 megabytes of main 
memory. Thus the use of a single workstation for in- 
teractive visualization often forces us to reduce the data 
set or to process at most two to three scalars at a time. 
Data reduction may cause serious artifacts in the re- 
suiting images and wash out many details important 
to the scientists. The inability to view multiple related 
data sets simultaneously prevents scientists from cap- 
turing important interactions between certain elements 
in the simulation. 

There are many other important issues with data 
visualization that we have not addressed here, such as 
data formats, user interface, etc. Since our main focus 
in this paper is distributed data visualization on work- 
stations, we waive the discussion of those other issues. 

5. MULTIPLE-VIEW RENDERING 

AS mentioned above, real-time rotation of volume 
data, using direct volume visualization, on general- 
purpose workstations is still not generally achievable. 
IVES is a single-view visualization system that is very 
effective in capturing features in the volume data. The 
use of multiple workstations or a multiprocessor 
workstation like the IRIS 4D GTX or VGX allows the 
user to watch multiple views of a particular structure 
in the data. Figure 1 displays four different views of 
the vascular structure within the brain of a patient suf- 
fering from an aneurysm. This data set was acquired 
from Magnetic Resonance Angiography (MRA), in 
which the focus of attention is on exploring the vascular 
structure within the brain or other regions of the body. 
MRA techniques are used to diagnose malformations 
and aneurysm within the brain's blood supply, and to 
plan surgical and catheterization procedures. The in- 
tricate nature of the vascular structure as well as the 
somewhat noisy data capture require the ability to focus 
attention on specific vessels as potential anomalies are 
discovered. 

All four renderings use one single large seed in the 
center of the volume to capture most of the vessels 
while eliminating the vessels at the outer edges which 
complicate and obscure the interior. Multiple views in 
this case help the physicians identify certain structures 
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Fig. 1. Multiple views of vascular structures. 

and anomalies. IVES gives rapid re-rendering by cach- 
ing ray samples for a particular view, and thus allows 
interactive feature extraction. The real-time feature 
extraction available through volume seedlings[5] is 
even more powerful when multiple views are simul- 
taneously available. 

Volume seedling is in essence a feature extraction 
technique for scalar field data. Current research in 
progress extends IVES to handle vector field data [ 16 ], 
which further illustrates the effectiveness of multiple 
views displayed concurrently. Figure 2 shows the vi- 
sualization of the data from the simulation of a full- 

Fig. 2. Multiple views of flow velocity. 
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scale utility boiler using IVES. These power generation 
systems typically stand 300 feet high, 30 feet wide and 
generate 500 mega-watts of electricity. The upper-left 
picture is a combination of isosurface and two-dimen- 
sional color contour rendering. The upper-right picture 
is an ordinary ray-casting volume rendering of the ve- 
locity magnitude. The lower-left and right pictures give 
two views of the vector field. A "seed" has been planted 
in the volume and is grown into a seedling based on 
the direction and magnitude of the velocity at each 
voxel. The seedling grows from the seed as though an 
opaque dye was being emitted from the seed point in 
the fluid. The seedling growth occurs dynamically and 
can be viewed in real time. The rate and direction of 
the seedling growth can provides many cues about the 
flow field, particularly when several views are available 
simultaneously. The ability to watch flow movement 
in real-time is extremely powerful and far less expensive 
than experimental flow visualization in laboratories. 

Because of this real-time activity, workstationsi~on- 
nected with an Ethernet network do not provide suf- 
ficient bandwidth to update multiple view in real time. 
A shared-memory multiprocessor such as the IRIS 4D/ 
240 GTX is more appropriate for the task. The above 
multiple-view rendering has been implemented in the 
IRIX parallel programming primitives, which is a sub- 
set of the Sequent parallel programming primi- 
tives [ 17 ]. IRIX supports calls for creating processes 
that can execute in parallel, synchronization primitives 
such as locks and semaphores, and shared memory 
allocation routines. As IVES requires extra memory 
space for caching ray samples, the number of views 
can be rendered and displayed simultaneously is lim- 
ited by available memory. 

6. MULTIPLE-VARIABLE VISUALIZATION 
AS previously discussed, the ability to view multiple 

related data sets simultaneously allows scientists to re- 
late important interactions in the simulation. For ex- 
ample, a simulation of a pilot utility boiler conducted 
by a local scientist produced 35 scalar data sets. To 
hold all the data sets in main memory for concurrent 
viewing is difficult. What we can do is to distribute the 
35 scalar data sets to multiple networked workstations. 
One workstation with high-resolution graphics support 
is used as the host, and displays the main user interface 
and desired images. Remotely computed images are 
sent back to the host for display. Figure 3 shows four 
images each of which describes a scalar from the sim- 
ulation of the industrial broiler. The upper-left one 
displays the wall structure, the upper-right the tem- 
perature, the lower-left CO concentration and the 
lower-right CO2 concentration in the furnace. While 
examining these four pictures, the user can submit an- 
other job that renders a different combination of sea- 
lars. The level of interactivity depends on the processing 
power of each workstation and the image quality de- 
sired. Usually a 640 X 640-pixel image of reasonable 
resolution, casting one ray for every other pixel, takes 
about two minutes on an IBM RS/6000 Model 530. 
A smaller image can be rendered within seconds. 

7. DIVIDE-AND-CONQUER VOLUME RENDERING 
Volume data sets can be quite large, often too large 

for a single workstation to hold in memory at once. 
Such data sets can still be rendered by a divide-and- 
conquer algorithm: divide the data up into smaller 
subvolumes, render them separately, and combine the 
resulting images. If multiple workstations are available, 

Fig. 3. Visualization of multiple scalars in a combustion simulation. 
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a parallel algorithm results by distributing the sub- 
problems to different machines. The memory demands 
on the workstations are modest since each workstation 
need only hold a subset of the total data set. This ap- 
proach can be used to render high resolution data sets 
in an environment with many midrange workstations 
(e.g., equipped with 16 megabytes memory ) on a local 
area network. Many scientific and engineering com- 
puting environments have an abundance of such 
workstations that could be harnessed for volume ren- 
dering provided that the memory usage on each ma- 
chine is reasonable. 

7.1. Data subdivision 
The divide-and-conquer algorithm requires that we 

partition the input data into subvolumes. There are 
many ways to partition the data; the only requirement 
is that an unambiguous front-to-back ordering can be 
determined for the subvolumes to establish the required 
order for compositing subimages. Ideally each sub- 
volume will require about the same amount of com- 
putation. Further, if the viewpoint is known, we should 
subdivide in a manner that minimizes the overlap be- 
tween the images resulting from the subvolumes. This 
will reduce the cost of merging since compositing need 
only be applied where subimages overlap. 

The simplest method is to partition the volume along 
planes parallel to the coordinate planes of the data. If 
the viewpoint is fixed and known when partitioning 
the data, the coordinate plane most nearly orthogonal 
to the view direction can be determined and the data 
can be subdivided into "slices" orthogonal to this plane. 
When orthogonal projection is used, this will tend to 
produce subimages with small overlap. If the viewpoint 
is not known, or if perspective projection is used, it is 
better to partition the volume equally along all coor- 
dinate planes. This can be accomplished using a k-D 
tree structure [ 18 ], with alternating binary subdivision 
of the coordinate planes at each level in the tree as 
indicated in Fig. 4. Front-to-back image compositing 
order can be determined hierarchically by a recursive 
traversal of the k-D tree structure, visiting the "front" 
child before the "back" child. This is similar to well- 
known front-to-back traversals of BSP-trees [ 19, 20 ] 
and octrees[21, 22]. In addition, the hierarchical 
structure provides a natural way to accomplish the 
compositing in parallel: Sibling nodes in the tree may 
be processed concurrently. 

/ \ 

I k k + l  n 

Subvolum 

F:ig. 5. Volume boundary replication. 

As shown in Fig. 5, when a volume of grid points 
(voxels) is evenly subdivided into, for example two 
subvolumes, each subvolume may contain half of the 
total grid points. Note that each voxel is located at a 
corner of the grid. Consequently, those ray samples 
that lie between the cut boundary region (the dotted 
region ) are lost. If the view vector is parallel to the cut 
plane, a black strip will appear at each cut boundary 
in the composited image. Therefore, we need to du- 
plicate one layer of the boundary grid at each subvol- 
ume so the composited ray-casting image does not drop 
out features originally in the volume. For the case 
shown in Fig. 5, one possible arrangement is that Sub- 
volume l includes layer 1 to layer k and Subvolume 
2 includes layer k to layer n; that is, in $2, layer k is 
replicated. 

7.2. Subvolume rendering 
Note that we use ray-casting volume rendering. Each 

workstation can perform raytracing independent of 
other workstations. There is no data communication 
required during the subvolume rendering. All subvol- 
umes are rendered using an identical view position and 
only rays within the region covering the corresponding 
subvolume are cast and sampled. Since we sample 
along each ray at a predetermined interval, consistent 
sampling locations must be ensured for all subvolumes 
so we can reconstruct the original volume. As shown 
in Fig. 6, for example, the location of the first sample 
$2,~ on the ray shown in Subvolume 2 should be cal- 
culated correctly so that the distance between $2,, and 
S~.n is equivalent to the predetermined interval. Oth- 
erwise, small features in the data might be enhanced 
in an erroneous way. 

7.3. Image merging 
In order to apply the divide-and-conquer algorithm 

we must develop a method for merging the images 

/ \ 

/ 'X / %, 1 % ,  f "~, 

Subvolume 2 

S2.1 

Fig. 4. K-D tree subdivision of a data volume. Fig. 6. Correct ray sampling. 
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resulting from the subvolumes. In order to correctly 
merge subimages into the final total image, we need 
to store not only the color at each pixel but also the 
accumulated opacity there. The rule for merging sub- 
images is based on the under compositing operator of  
[ 23 ]. Under operator is associative. To prove that the 
composited samples along a single ray onto a total vol- 
ume is equivalent to the merging of  multiple rays onto 
subvolumes, let's consider the following case. If we have 
n samples along a single ray, which are 

CIOLI ,  C 2 0 ! 2 ,  C30L3 . . . . .  C n - l O l n - l ,  Cno~n ,  

then the accumulated color of  the ray C is 

Cioq + (1 - -  oq)[C2o:2 + (1 - -  a2) 

X [ C 3 a  3 Jr- . . .  CnOln]  ; 

that is, 

n i - I  

C= Z Ciai rI ( 1 -  aj). 
i=1 j = l  

Suppose we subdivide the total volume evenly into 
two subvolumes. The color of  the ray segment in the 
front subvolume is 

According to the under operation, 

where 

C = G + ( 1 -  -i)G, 

hi2 i - I  

o~= E - , l q  (1 - ' 0 .  
/=1 j = l  

Therefore, we can derive 

C = C f +  ( 1  - ~z)Cb 
n/2 

= C f +  ( r I  ( 1  - oo))C b 
j = l  

hi2 n 

= Cs+ (I]  (1 - , 0 )  E 
j = l  i - n l2+ l  

hi2 i 1 

= E C i a i I - I ( 1 - a f t +  
i=1 j - I  

n i - I  

= E c , , ~ ,  1--[ ( 1  - ~s )  
i=1 j - I  

in which 

i 1 

Ci°~i  H ( 1 - -  o t j )  
j=n/2+I  

n i 1 

E CicqrI(1-aj )  
i=n/2+l j = l  

,'112 i I 

C}= ~ Ciai ]-I ( 1  - m), 
i=1 J=l  

and the color of  the ray segment in the back subvolume 
is 

n i - I  

c~= E c , , ,  1-I ( I - - 'O "  
i=n/2+l j=n/2+l  

n/2 i -  I 

( 1  - -  otf) = 1 - -  ~ oti [ - [  (1  - a ) )  
i - I  j - I  

n/2 i I 

= 1 - o q ) ( 1  - E o~, ] - [  ( 1  - . j ) )  
i - 2  j=2  

n/2 i - I  

= 1 - o q ) ( 1  - o~2)(1 - ~ - i  1-I(1 - o0)1 
i - 3  J=3 

Fig. 7. Subimages and their composite. 
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n/2 

= l - l ( 1  - ,~j)(J - o )  
j i 

n/2 

= 1 ] ( l  - . j )  
j--1 

Figure 7 shows images for eight subvolumes and 
their composited volume in the middle. The compos- 
ited image should be identical to the image that is ren- 
dered directly from the total volume if numerical errors 
can be avoided, for example by using fixed point arith- 
metic. According to our experimental results, optimal 
linear speedup can be easily obtained on networked 
workstations since the rendering of  a smaller volume 
can better take advantages of  the locality of  memory 
access; in addition, the t ime needed to composite sub- 
images can be negligible since a carefully coded corn- 
positing operation takes in milliseconds compared with 
seconds to minutes needed for the rendering of  all the 
subimages. 

This divide-and-conquer scheme is best suited for 
mid and large-grain parallelism. For massively parallel 
computers, which may have many thousands of  pro- 
cessors, the image compositing t ime may become sig- 
nificant. A set of workstations connected with Ethernet 
or token ring network are best suited for processing 
large data sets that a single workstation cannot handle 
efficiently. If a fiber optic network is available, then 
even real-time rendering can be achieved on small to 
medium scale data sets. 

8. CONCLUSIONS 
We have described methods that utilize general- 

purpose graphics workstations to do interactive, high- 
resolution volume visualization. We have demon- 
strated that the memory and computational demands 
can be distributed across multiple workstations, allow- 
ing a network of  workstations to be harnessed for high 
performance, high resolution volume visualization of  
large data sets. We have shown examples applying these 
methods and have demonstrated their effectiveness and 
practicality. The ability to perform feature extraction 
in an interactive manner  offered by IVES makes these 
multiprocessing schemes even more powerful and at- 
tractive. Currently we are developing graphics user in- 
terface for managing distributed volume rendering on 
networked workstations. We are also investigating the 
practicality of applying these methods to other volume 
visualization algorithms. 
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