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Abstract—Analysis of radio transmissions is vital for military defense as it provides valuable information about enemy communication
and infrastructure. One challenge to the data analysis task is that there are far too many signals for analysts to go through by hand.
Even typical signal meta data (such as frequency band, duration,and geographic location) can be overwhelming. In this paper, we
present a system for exploring and analyzing such radio signal meta-data. Our system incorporates several visual representations
for signal data, designed for readability and ease of comparison, as well as novel algorithms for extracting and classifying consistent
signal patterns. We demonstrate the effectiveness of our system using data collected from real missions with an airborne sensor
platform.

Index Terms—Intelligence Analysis, Coordinated and Multiple Views, Time-varying data, Geographic/Geospatial Visualization

1 INTRODUCTION

The radio frequency spectrum is complex and dense, with thousands
of events occurring simultaneously every second in a typical suburban
environment. These events can include both authorized and unautho-
rized frequency usage from the Federal Communications Commission
(FCC) perspective, potentially criminal activity from a legal perspec-
tive, or even naturally occurring noise phenomena. Differentiation be-
tween signals of interest (SOI) and non-signals of interest (NSOI) is
important not only for domestic radio frequency use management, but
also for military intelligence gathering. For military applications in
particular, rapid analysis of such data is vital. However, this classifica-
tion task is resource intensive because of the wide variety of signaling
systems that are both in use now and expected to become available in
the future. The wide variance in signals has led to the development of
Signal Intelligence (SIGINT) sensors which can capture the informa-
tion from these signals in real-time.

The growing use of SIGINT sensors in today’s military enter-
prise dramatically increases the amount of data flowing into Intelli-
gence, Surveillance, and Reconnaissance (ISR) data processing cen-
ters. Modern SIGINT sensors ingest nearly all signals in the environ-
ment simultaneously and thus produce vast amounts of signal data at
an incredible rate. Traditional tools found in ISR processing centers
can easily overwhelm an operator who is inundated by the volume of
incoming data.

There are also constraints on the amount of processing that can be
done ahead of time. In many situations, signal information is best col-
lected from the air with specialized antennae as a high vantage point
reduces line-of-sight blockage and eases moving the signal collection
platform to the required location. However, the airborne collection
of Radio Frequency (RF) signals puts severe constraints on the size,
weight and power of the equipment, and thus the capabilities that
can be installed. Dedicated streaming hardware is used to continu-
ously sample measurements of the external characteristics of transmis-
sions, including frequency, signal-to-noise ratio (SNR), bandwidth, up
time of the signal, off-time of the signal, and, in a multi-antenna col-
lection system, the direction from which the transmission originates.
However, these per-signal measurements are instantaneous, and sig-
nals need to be comprised of many such samples. So the additional
hardware is often dedicated to compiling these samples into meaning-
ful transmissions. This still leaves the operators with having to sift
through innumerable signals in order to find particular higher order
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patterns (such as communications) that they might be interested in.
Analytics can be applied to pull out specific features, but there are

numerous analytic methods that could be applied, and the potential
for future development of any number of situational analytics. Visual
analytics approaches would provide a framework to manage such an-
alytics, allowing analysts to focus on the more important high level
tasks. We have developed a system that provides a visual workflow
to manage a suite of such analytics by providing summarizations of
potentially interesting signal traffic patterns, while still exposing the
underlying analytics to extract specific patterns that they might be in-
terested, and enabling the development or application of situationally
specific analytic processes. In this manner, our system aims to aid
in deriving solid intelligence in near real-time, providing the ability
for operators to quickly identify combatants and potential opportunists
while discounting allies in time-critical situations.

Due to the scale of the data and the complex relationships be-
tween transmissions, understanding signal data is a nontrivial task.
To our knowledge, the visualization community has not substantially
explored this type of data. We have developed an interactive visual
analysis system to support this task by working closely with expert
analysts to obtain constant feedback and to guide the design and de-
velopment of our system. When talking to analysts, we found that they
were particularly interested in answering the following questions:

• Can we identify communications in the pattern of the signals?

• Is it possible to discover and locate signal repeaters?

• How can we guide analysts to signals of interest?

• What general discovery can we make about the data?

In this paper, we present a system designed to explore and analyze
radio signal data. This system consists of a combination of several vi-
sualizations and algorithms that help analysts answer important ques-
tions. The contributions of our work are:

• A new system for visual representations of radio signal data.

• An interface to manage the workflow of radio signal analytics.

• A novel algorithm for finding repetitive (digital) signal patterns.

• Demonstrations of identifying repeaters, communications, and
repetitive patterns.

Most importantly, we have created an effective visual analytics solu-
tion to a very important application.



2 RELATED WORK

Our work draws from a variety of existing research, including wavelet
visualization, communication visualization, geospatial visualization,
parallel computation system analysis, and the coefficient of variation.

Wavelets analysis Wavelet analysis has a wide range of uses in
computer science [10]. In this section, we focus on its application
to signal processing [22], which is directly applicable to our work.
Miller et al. [19] applied wavelet transformations to custom digi-
tal signals constructed from words within a document. The resulting
wavelets are used to analyze the characteristics of the narrative flow in
the frequency domain, such as theme changes. Faith et al. [9] applies
wavelets to optical wireless signals and then runs PCA on the result-
ing wavelets to create a scatterplot visualization. Barford et al. [3]
used wavelets for anomaly detection. The pseudo-spline filter can ex-
pose distinct characteristics of each class of anomalies: outages, flash
crowds, attacks and measurement failures. Muelder et al. [20] applies
wavelet scalograms to network scan patterns. The resulting wavelets
are used to create a graph in which a node is a scan and an edge exists
between two nodes if they are highly similar. Our wavelet use is in-
spired by these works, but differentiated by the discrete nature of the
signal data to which our system is tailored to.

Communication detection There is extensive research on the du-
ration of gaps, pauses and overlaps in conversations [8, 13, 12] which
focuses on person to person communication. Walkie talkie conversa-
tions do not share the same characteristics as person to person con-
versations, but the research provides some good general rules that are
applicable to our work. While some existing works discuss analysis
of the contents of communication records [4, 5, 7], the data we were
working with only consisted of the signals’ metadata. However, in sit-
uations where the signal contents are available, our system could work
in concert with such approaches as our metadata analysis by extracting
conversations that such content-based techniques could be applied to.

Geospatial visualization Visualization of geospatial data (or ‘Geo-
visualization’) has been an ongoing research topic for many years
[17], which has produced many geospatial visualizations and analytics
[1, 2]. Some approaches focus on the particulars of radio signal data.
Han et al. [11] presented a visual analytics system for the development
of signal fingerprinting-based localization systems. Though their ap-
proach works with radio signals, it depends on the intricacies of pre-
cise, indoor signals, and would not scale up to the size or uncertainty of
our data. Wood et al. [27] apply graph/matrix based techniques to the
analysis of pairs of discrete origin and destination locations, such as a
communication network could form. However, our data is too noisy
for such a discrete technique. Rather, we borrow from techniques for
geospatial that can handle uncertainty such as splatting and heat map
techniques, as in the works of MacEachren or Thomson [18, 25].

Parallel computing systems Our signal data visualization prob-
lem shares surprising similarities with parallel computing visualiza-
tion. Each processor, like a frequency band, has a start time and dura-
tion for each task, similar to a signal. For instance, Gantt charts [26]
look very similar to frequency versus time plots (which can be seen
on the bottom of Figure 3). Many scalable performance visualizations
[29, 23, 21] use techniques that show system resource utilization, the
timings and durations of parallel events, or the application executions.
These use the aforementioned Gantt charts and other applicable visu-
alizations such as histograms and Kiviat diagrams. Spear et al. [24]
and Landge et al.[16] focused on node-link diagrams or matrices to
display the communication topology. Communication between pro-
cesses is important as it has direct impact on performance in a parallel
environment. Many toolkits combine both types of visualizations.

Coefficient of variation The coefficient of variation is used in prob-
ability theory and statistics as a way to show the variability of the
mean in relation to the standard deviation. Xu et al. [28] proposed a
new similarity metric called variation coefficient similarity based on
an extension of the Dice and cosine similarity measures. They demon-
strated the effectiveness of their metric by comparing it to three other
prompt similarity metrics. Though the metric shares the same name as
coefficient of variation, it is not the same. Their metric works on a set
of vectors and relies on an alpha value.

Fig. 1. As the data is loaded, several preprocessing steps are applied.
Afterwards, the data is saved in a binary format with the included prepro-
cessing results. The user can either start with the geospatial represen-
tation, timeline or calculate one of the analytic methods. The interactive
process allows the user to define the scope of his alteration, by specify
which views are affected by the interaction.

Fig. 2. A signal location is derived from the sensor’s location, therefore,
an ellipse is drawn to show the error cone (a). A benefit of the error
ellipse is it can show us the relative position of the plane (same angle
as the larger of the two radius). As the area of the ellipse increases, the
opacity is reduced (b). Several ellipses can converge to better approxi-
mate a transmitter’s location (c).

3 SYSTEM OVERVIEW

The overall workflow of our system is shown in Figure 1. Data is
streamed in from the detection platform and accumulated for our sys-
tem. Once the data is loaded and goes through the preprocessing step,
the user can run one or more of the operations to explore and interact
with the views. The system is built around exploration so where the
user starts can depend on the task at hand. Depending on if the user is
interested in repeaters, communication, digital signals, or a combina-
tion, he would run the corresponding algorithms before exploring the
results; if the user is interested in geospatial or data specific (timeline)
information, then he can start to filter and explore through the views
before running any calculations.

Data Collection The data is collected from an airborne detection
platform which continuously ingests detected signals’ properties such
as their strength, their power, their signal to noise ratio (SNR), and the
direction they are coming from relative to the platform. As the collec-
tion platform detects these signals, the platform pre-processes them to
determine geographic locations and to derive continuous signals from
the same location. Since the platform detects transmitters as a direc-
tional ray, computing the geospatial information is dependent on both
the plane’s and transmitter’s locations, as well as the orientation of
the plane. But due to limits to the sensor’s precision, there is an er-
ror cone around this ray, and the source of any terrestrial signal would
lie somewhere in intersection of this cone on the surface of the earth.
For simplicity, this intersection area is approximated by an ellipse, as
shown in Figure 2(a). As the distance between the plane and the source
increases, this intersection elongates as shown in Figure 2(b), and thus
the uncertainty also increases, with an extreme limit when the ray hits
the Earth’s horizon. Interference, such as terrain or other noise can
also affect the size/shape of this ellipse. However, after subsequent
analytics show that multiple signals were detected in the same region,
overplotting these ellipses can aid in identifying more precisely where
the transmitter actually is, as shown in Figure 2(c).



Once the data is loaded, we also apply another preprocessing step,
in order to help reduce noise in the data and pre-compute simple met-
rics. For instance, signals have a minimum frequency difference so
they do not interfere with each other. When a signal is measured, it
can have slight variation in frequency but will be within the legal band
for that signal. So we use this step to bin frequency bands that are
approximately identical. Additionally, the system sorts the data by
frequency bands and time. We also compute additional metrics that
are useful in later, more complicated analytics, such as the proximity
of the plane to the signal. All these calculation and the data are also
converted and stored for faster future loads.

Analytics Our system currently has five implemented analytic
methods; four of them designed around specific tasks, plus one for
more general exploration and discovery. The repeater algorithm finds
signal repeaters by looking for collections of signals that have the same
start and duration times. The communication detection algorithm is a
rule based approach that tries to find a set of signals that make up a
communication pattern based on time between signals and their loca-
tions. The windowed variance analytic algorithm finds series of sig-
nals that have high variance in temporal duration by applying a coeffi-
cient of variation metric. The digital pattern distinction algorithm also
uses the coefficient of variation across a sequence of events, in order
to separate series of signals that make up a digital patterns that ex-
hibit consistently low variance from the remainder of analog signals.
Lastly, the wavelet transformation is for more general analysis instead
of a specific task; it samples the data from time windows defined by
user parameters, then projects the higher dimensional results of the
wavelets to a two dimensional representation using PCA. These ana-
lytics were developed to be modular, so that the user can dynamically
link up the analytics as desired, or easily implement new analytics.

Visualizations When creating the visual system we had two goals
in mind: keep the visualization intuitive for our expert users, and allow
the users to gain insights for making crucial decisions. The visual rep-
resentations must be kept simple because of the sheer volume of data
and associated analysis tasks. Many classification tasks are difficult
to compute automatically with certainty, such as determining whether
signals are part of a communication, or if they are digital or analog
transmissions. Rather than making these decisions completely com-
putationally, we use analytics to compute probabilities that a series of
events are one or more of these types of signals. We then plot these
candidates and allow the user to inspect and group them as appropriate.

As Figure 3 shows, our system has three different views: the main,
map and timeline. The main view shows the results of the algorithm
methods and can toggle between different outputs and their views. The
map view provides geospatial information and a reference point for
the results. The timeline allows the user to filter the data based on
attributes in the data and also serves as the overview for the data. The
signal inset is triggered when an aggregate data point is clicked on and
shows the underlying pattern. The workflow panel exposes the data
workflow to the user, and enables the user to connect and combine the
analytics as desired. If the user is interested in a particular analytic or
combination of analytics, he would put the corresponding algorithms
into the workflow and link the results to the visualizations.

4 ANALYTICS METHODS

In this section we describe algorithms we use. Most identify specific
features of interest, such as repeaters or communications, while the
wavelet algorithm is more for general exploration.

4.1 Windowed Variance

The Windowed Variance analytic was developed to measure how
repetitive or consistent the detected signals are. We compute this
works by first creating time windows based on user defined param-
eters: window size and step size, which allows for overlapping win-
dows. We then create lists of events that fall within each window. As
long as events either start or end inside the time window, they are
included in the calculation. While this does duplicate overlapping
events, trimming an event to fit inside the window would introduce

variance into sequences which had little to no variance, such as digi-
tal signals. This would unfavorably bias the algorithm, so instead we
always use the whole signal lengths.

Once we have the sequences of signals per time window, for each
sequence we compute the Coefficient of Variation (CV), defined as
the standard deviation divided by the mean, for both the durations of
each signal and the gaps between signals. Time windows that have
only one or two events are skipped because there is not enough data
to calculate the CV for the gap and duration. The run time of this
algorithm is Θ(2N): one pass to create the time windows and a second
to the calculate the CV. As each band and window is independent, this
process is parallelized to make it even more efficient by using threads.

In this manner, signal patterns of high variance (such as communi-
cations) can be separated from those of low variance (such as digital
signals). This approach is general enough to handle multiple cases in
between these extremes, and provides the spectrum of occurrences to
the user in case there are interesting patterns in the middle somewhere.
However, if the user is only interested in isolating just the digital sig-
nals (or filtering out the digital signals), the DPD algorithm is more
focused to that specific task.

4.2 Digital Pattern Distinction (DPD)
Digital signals often exhibit an extremely regular pattern of consistent
signal durations, whereas analog signals are more varying. That is, we
define digital patterns as sets of signals where transmission durations
and gaps between transmissions are very consistent. Being able to
identify a digital or analog signal pattern can help to reduce the prob-
lem set; for instance, communication should generally only consist of
analog signals when the conversation is among people.

While the goal of the Windowed Variance is to determine how
consistent or inconsistent patterns are within constant sized windows,
the DPD algorithm was designed to detect and classify sequences of
highly consistent sequences of arbitrary length, in order to extract the
digital patterns specifically. To compute the DPD, for each frequency
band, we spawn a thread that iterates over events, keeping track of
a running coefficient of variation (CV) for the durations of both the
signals and the gaps between them. To avoid having to completely re-
calculate the mean and standard deviation at each iteration, we use an
incremental formulation to compute the CV:

E(xn+1) =
n·E(xn)+xn+1

n+1 E(x2
n+1) =

n·E(x2
n)+x2

n+1
n+1

σ(xn) =
√

E(x2
n)− (E(xn))2 CV = σ

E(xn)

(1)

where E(x0) and E(x2
0) are zero and E(x) is the running average.

For each event, if both the gap CV and the signal CV are below
a threshold then the event is appended to the current sequence, and
the algorithm continues on to the next event in the frequency band.
If adding the event to the list would exceed the CV’s threshold, the
algorithm will terminate the current sequence and save the statistical
metrics. The algorithm will then continue with the event that it could
not add and repeats the process. In this manner, repetitive digital sig-
nals will form long sequences of low variance, while analog signals
will not. There is no consensus in the literature of a good CV value.
We use 10 % because there is a slight variance in duration and gap that
can be due to many factors e.g. noise or calibration. The CV can also
be changed by the user to fit their needs.

One constraint of using the CV is that it does not work on interval
scales, but since the durations of both the signals and gaps are positive
ratio scales, we do not run into this problem. Another potential side
effect of this approach is that as more events are added, each new event
has less impact on the mean and standard deviation. Thus, a sequence
of events could start very regular and gradually become more erratic
but still be added to the sequence. As there is some data collection
error though, this actually helps in creating longer sequences, even
if there is some noise or dropped signals. Even in the case where an
event is not captured correctly and a long sequence is split in half, both
parts should still have the same CV in both gap and duration and so



Fig. 3. The system has three primary views (A-C) and several interface tools (D-G). The map view (A) shows the locations of selected signals’
sources geospatially. The main view (B) shows the results of the analytic algorithms, and allows the user to inspect or select them. The timeline
view directly plots a parameter of the signals over time as lines for the signals’ durations (frequency bands shown here), and allows the user to
filter by that property or by time. The menu control (D) provides additional user controls for the three different views. The color editor (E) is used
to create or modify a color gradient and provide histogram of each data property . The algorithm workflow (F) allows the user to visually select the
algorithmic methods by directing the flow of data from source to view. The search window (G) gives the user the ability to draw a specific signal
pattern and search for it in the results. Previously drawn patterns can also be loaded.

would still be plotted together. The run time of this algorithm is O(N),
and like the Windowed Variance algorithm, it is heavily parallelizable
due to the calculation being independent of the frequency band.

4.3 Repeater detection

A repeater is a device that receives one set of signals and rebroadcasts
them - often to extend the range between low powered devices or to
cross terrain such as hills that would block communication. In our
signal data, a repeater shows up as a series of events that have the same
start time and duration across at least two different frequencies (i.e.
pairs of the initial transmissions and the rebroadcast transmissions).

To detect these, the repeater algorithm iterates through a sorted list
of all events, and groups events that share the same start time and du-
ration as candidate repeated signals (i.e. synchronous events from two
or more frequency bands). Then we group candidates with identical
frequency bands, as multiple repeated signals on the same frequencies
are likely the same repeater. While it is possible for two different re-
peaters to share some subset of frequency bands, they would generally
interfere with each other if they were operating on the same set of fre-
quencies. This process is straightforward since the initial candidates
have their events sorted by time. We do not incorporate the geographic
information in this computation because of its low precision. Also, it
is possible for a repeater to be mobile. And even pairs of signals in
which both signals lack good geographic information can be relevant
as they can provide insight into the use of the repeater. We group can-
didates together regardless of the elapsed time between them.

By allowing the system to group candidates independent of time,
the algorithm can generate several potential scenarios. The best case
is that many pairings belong to a single repeater, as having more data
improves our chances of triangulating the correct location of the re-
peater. There is the possibility that two or more repeaters that share
frequency bands could get paired together into one repeater. However,
this can easy be seen in the map view, as there will be two or more ge-

ographic centers. Finally, one limitation to our approach is that it can
also group less desired points such as white noise or points with no ge-
ographic information. If there are only a few signals grouped in such
a way, then the user would likely ignore them. But if the signal count
in such a grouping is high, then further investigation could reveal a
repeater whose location was not identified with sufficient precision, as
it is unlikely for so much noise to group together at random. Even in
such cases, where there is not enough information to precisely trian-
gulate the repeater, just knowing that a repeater exists is an important
insight that could warrant another flyby to determine its location.

The most expensive computation here is sorting, which takes O(N ·
log2(N)) where N is the number of elements. Luckily, this step can
be avoided when the data is recorded chronologically (as in real-time
analysis) or when the data is presorted beforehand. The repeater al-
gorithm itself takes O(N) to find candidates and O(M2) to group the
candidates, where M is number of candidates. In large data sets the
grouping step can take longer to compute than finding candidates. A
potential speed up is that once a candidate is found, we could sort
the frequency bands that comprise the candidate, then use the sorted
frequency bands as a key that maps to an array. This would take
O(M ∗ log(K)), where K is the number of keys and K << M.

4.4 Communication detection

For communication, we created a rule based algorithm. We looked
at several papers on the proper duration of gaps and pauses between
communicating individuals. Most of the research, however, is done on
conversation that is either over the phone or in person. Since our data
is comprised of half-duplex(i.e only one transmit at a time) handheld
transceivers, conventional conversation rules do not apply quite as rig-
orously. Thus we applied some more relaxed rules. First, the duration
of each signal in the communication needs to be at least one second.
We found this to be reasonable since any confirmation takes more than
one second to transmit when following radio transmission etiquette



(e.g. “Roger that. Over.”). Similarly, we set the maximal gap between
each signal to be no more than 30 seconds, as pauses longer than that
could signal the end of a conversation. We also require that the initial
signals are from different locations, and thus we ignore any signals
that do not have positional information. However, due to the precision
of the instruments, determining if two signals have the same location is
not that straightforward. We consider points to be in the same location
if their error ellipses overlap, and different locations otherwise. The
communication algorithm runs in O(N). Since the frequency bands are
independent, this algorithm can also be heavily parallelized. In our
system, we use threading to speed up the process, where each thread
is assigned to one frequency band.

4.5 Wavelets and Dimensionality Reduction
One way to look at the data is to analyze patterns of activity according
to their similarity. We can define these patterns by treating each fre-
quency band in the data as a time series. Then the sequence of captured
signals expresses itself as a square wave in this time series and simi-
lar patterns can be detected through frequency analysis. We choose to
use wavelet scalograms [20] both because they are naturally tuned to
such square wave patterns (unlike Fourier analysis which works with
sinusoids), and because wavelets are rather resistant to phase shifts
and noise: similar patterns will have similar wavelet signatures even
if the patterns are shifted slightly or parts of the pattern are missing.
Conversely, different signals should produce different wavelets.

While wavelets are often useful in signal processing applications
for general frequency analyses, in which the data is continuous, the
captured signal data is stored as discrete data made up of events with
start times and durations. To generate time series to use in the wavelet
scalograms, we first sample the data according to sliding time win-
dows, which are defined by user controlled parameters such as win-
dow size, sampling rate and overlap amount. Since the data is sorted
temporally within in each frequency band, these windowed time series
can be generated in a streaming manner. For each frequency band, we
first initialize all sample point values in each window’s time series to 0.
Then we iterate over the events that intersect temporally with the time
window, setting the values in the intersection to 1. Each window’s time
series now comprises the D0 array used in the wavelet calculation. The
scalogram (µ0,µ1, ...) we calculate recursively as:

Dk = (dk,1, ...,dk,2n−k ) = (
dk−1,1+dk−1,2

2 , ...,
dk−1,2n−k−1+dk−1,2n−k

2 )

Sk = (sk,0, ...,sk,2n−k ) = (
|dk−1,1−dk−1,2|

2 , ...,
|dk−1,2n−k−1−dk−1,2n−k |

2 )

µk = ∑
Sk

2n−k

(2)

for 0 < k < n (where n is the smallest number large enough for D0).
At each recursion the µ values are the mean of the corresponding data
series, which approximate the variance at each resolution, and hence
at each frequency scale. More complicated wavelets can be calculated
by changing the functions used to calculate Dk and Sk. We found
that the basic Dk and Sk functions above provided sufficient results
for our signal data. Though we are generating a significant amount of
data from sampling and overlapping, the amount of stored data is only
log2(n) in size per wavelet.

Once we have computed the wavelets, we need a visual representa-
tion. Our goal is to place wavelets with similar signatures next to each
other, so there are many possible techniques, such as clustering or di-
mensionality reduction. We chose to use the dimensionality reduction
technique known as PCA [15], as it is simple, but good at extracting
the most prevalent trends in the data. We found that it also arranges
the points based on duration and consistency. While more complicated
dimensionality reduction techniques exist, PCA produced reasonable
results that were sufficient for our analysis.

5 VIEWS

In order to interact with and understand the results of the analytic pro-
cesses, we use a number of visual representations and interfaces.

Fig. 4. A sequence of signals can be represented by plotting them in
1D over time (as in the timeline). The top set of images show this for
a single sequence. We devised a line based method, where signals
are plotted horizontally and gaps are plotted diagonally. Our method
provides easier comparisons between signal event sequences. Small
signal durations sequences can be detected (at left) as well as anoma-
lies. On the right, it is hard to see the two overlapping signals in the top
image while it is very apparent with our method(bottom image).

The timeline, which can be seen in Figure 3.C, provides a series of
simple plots to filter and examine the data. In all timeline plots, the x-
axis corresponds to time, while the y-axis is either one of a number of
derived values or an attribute from the dataset. For instance, plotting
frequency band versus time (as in Figure 3.C) produces a Gantt chart
that provides a simple and intuitive initial summary of the data set.
In this example, the signals are colored via a user defined color map
(defined via the color map editor in Figure 3.E).

One derived values that was found helpful is the proximity of the
airplane to the signal sources, as closer signals are more detected more
precisely. We use two proximity metrics: the first is the standard prox-
imity which we calculate in a similar manner as in [6] and the second
proximity metric divides the signals based on which side of the air-
plane a signal originated from. This allows us to see when the airplane
makes a turn. It also separates entities that look close in proximity
space but are on opposite sides of the airplane. While not that relevant
to the results shown in this paper, our collaborators found this very
helpful in analyzing the behavior of the data collection platform itself.

The map view provides geospatial reference to the user and is
shown in Figure 3.A. We use the Google Maps API to generate the
background map and plot the points using OpenGL. It was neces-
sary to include the map not just to provide geospatial information but
also to help interpret the results from the analytical methods. When
a selection is made in the main view, the map view can provide addi-
tional functionality depending on which metric is being viewed. For
repeaters, we draw lines between pairs of repeated signals. This helps
identify which source is the repeater, as a single repeater would link
to multiple transmitters. For communications, we draw lines between
the initial transmitters and the first responders.

Sometimes the GPS locations are not accurate and thus showing er-
ror ellipses is useful. We map the size of the ellipse to transparency,
where the bigger the ellipse the more transparent it becomes, illus-
trated in Figure 2. This makes accurate GPS information stand out
while the less accurate fades away, and having several overlapping big
ellipses accumulates to give a better approximate signal location.

The main view, pictured in Figure 3.B, holds the visual results com-
puted by our algorithms. As the points in this plot are aggregations,
and not individual signals, we can not employ the same per signal
color mappings used in other views. Instead, color is mapped to an-
other selected property, such as the density on screen or the variance of
the aggregated data. The axes depend on the analytic. For the wavelet
projection, the axes are the first two dimensions of the PCA projec-
tion. For Windowed Variance, the axes are the standard deviations of
the duration of signals and of the gaps between signals for each time
window, on a log scale. For the digital, communication, and repeater
algorithms, we map number of associated events to the x-axis and av-
erage duration of the events to the y-axis.

We also added a search window, shown in Figure 3.G, which pro-
vides the capability to look for a particular signal pattern in conjunc-
tion with the wavelet view. The user either draws a pattern in the top
segment of the panel or loads a previously saved pattern to commence
a search. The system then calculates the wavelet scalogram of the



search pattern, and uses the PCA’s component matrix to project the
search pattern into the wavelet visualization. We use a cross-hair rep-
resentation as a glyph to help the user identify where in the PCA space
the pattern is located, with a circle of a fixed radius around the tar-
get pattern to both make the target more easily visible and to indicate
neighbors. Results inside the circle are displayed under the search but-
ton in the search window, ranked by proximity to the target signal pat-
tern. Saving patterns from one dataset and loading them into another
dataset allows the user to see how it is mapped in the different space,
which is important since PCA is not consistent between datasets.

In the signal inset, there are two ways of showing the underlying
signal pattern, which is shown in Figure 4. The standard way to visu-
alize signal data is to draw lines that represent the start and end time
of each signal on the x-axis. The y-axis splits the window up based on
how many sets of signals are portrayed. Our method keeps the same
x-axis setup but changes the y-axis so that each sequential event is
above the previous one. Then we connect all the signals events form-
ing something similar to a line plot. Steep slopes represent a quick
succession of events, while gradual slopes show long pauses between
events. One benefit of our method is it provides a visual metaphor for
the signal patterns. For instance, digital patterns, on the left in Figure
4, show up as staircases. It can also show anomalies in the data. On
the right, we can see that there is two signals overlapping each other,
something not apparent in the standard view.

With a context menu, the user can pick which representation he
wants to view. The same point can be viewed in both representations
by opening two separate windows. Some patterns might look similar
but have different temporal size. To differentiate them, we overlay
a timeline and label the temporal spacing. For comparison, the user
can either open different signal inset for each point or view multiple
points in one signal inset. The viewer selects which method to use.
Opening up different insets lets the user look at the general patterns
while maintaining the same scale. Placing multiple points in one inset
provides one-to-one comparison.

5.1 Opacity Tone Mapping
Our approach renders large amounts of data to the screen, often results
in many points or lines overplotting. A common way to resolve this
overplot is to make them semitransparent and use alpha blending to
combine them. However, this very quickly runs into limitations as the
number of elements increases. The standard 8-bit alpha buffer only
allows for a maximum overplotting of 256. Furthermore, the opacity
has to be set so low that outliers are nearly invisible. In order to keep
both the opacity of outliers high and the combined opacity of dense
overlap from overflowing the alpha buffer, we utilize opacity scaling
techniques similar to [14]. In our implementation of this technique,
we first render to a high precision density buffer D which keeps track
of the total amount of overplot and to a high precision color buffer C
which blends the input color information with opacity inversely pro-
portional to the density information to result in an average color that
is fully opaque. We then combine these buffers with a transfer func-
tion to render the final pixels P to the screen. In order to be able to
handle many orders of magnitude variance in the data density, we then
combine these buffers with a logarithmic transfer function to render
the final pixels P to the screen, which is defined as :

Px,y =Cx,y×
(

omin +(1−omin)×
log(Dx,y)
log(Dmax)

)
(3)

Where omin is a user defined minimum opacity level and Dmax is the
maximum level of overplotting that occurred. By calculating the final
opacity in this manner we guarantee that any outliers will have at least
opacity omin, that no overplotting exceeds the maximum opacity and
that the system can handle orders of magnitude of overplotting.

In several views, we alternately use just the density buffer to gener-
ate a density heat map, discarding the initial color mapping. As before,
we apply a logarithmic transfer function, but then we use the resulting
value as a lookup into a 1D color map texture. In this heat map, the
pixels are computed as:

Px,y =ColorMap
(

log(Dx,y)
log(Dmax)

)
(4)

6 EXPLORATION AND INTERACTION

We aimed to keep our UI and interaction design as simple as possible.
Within the main window, the user can mouse over or click on a point
in the main view to create an signal inset that shows the underlying
signal pattern(s) that the algorithm used to compute that point. Several
of these windows can be opened with a click for comparison. The
window can be resized or moved, and each window points back to
the aggregated value. For a direct comparison, multiple points can be
loaded into one window.

We use the rectangle and lasso selection in our system. The rectan-
gle selection is used in the timeline while lasso is used in the other two
views. In the timeline, the user is interested in a particular range for
a given attribute, so it makes sense to use rectangle selection. Lasso
selection is used when the selection process is difficult, as is the case
in the other views where the user has to sort through multiple points to
get the selection he wants.

The control menu, pictured in Figure 3.D, has three tabs. The main
tab controls which calculated view is shown, allows minor visualiza-
tion adjustments, and changes global selection properties such as con-
figuring which operations affect which views (e.g. the user might want
to exclude all repeaters from the map but still keep them in the time
view). There are three types of selections: filter, highlight, and ex-
clude. The filter and exclude selections have to be handled carefully
in algorithms where the data is aggregated. Removal of one signal
from within an aggregated group of signals would invalidate or at least
change the value of the group’s derived metric. To avoid such errors,
we simply remove the derived point when this happens. For highlight-
ing, color interactions are applied only to their representation within
the detailed signal insets instead of the aggregate point.

The user can adjust the colors by selecting a premade colormap or
by manually changing the colormap, and can select which property to
map to each color. The left color wheel provides color selection for
the highlighting, and the color legend shows the current color map.
The color legend is fully customizable with abilities to add new color
or change existing ones. Any changes made to the color legend are
saved, even when switching between colormaps. The calculation tab
allows parameters to be changed and the algorithms to be queued up.
For wavelet calculation, size of time window, sampling and overlap
can be set. The last tab is the interface to the time view and controls
what attribute is plotted.

6.1 Algorithm Workflow

We had two goals in mind when designing the algorithm workflow:
easy to use and modular. We achieve these goals by providing the user
with a visual metaphor while at the same time making it easy to add
new operations to the system. For instance, for a programmer to add
a new layout calculation, they would just need to inherit the operation
class and fill in the virtual functions to create this new layout.

Figure 3.F shows the workflow view. The drop down menu adds
operation panels. Selecting an operation displays its parameters at the
bottom. Each operation has its own rules on how many and which
operations it can be connected to. Clicking on another operations links
them together. Operations can chain together, feeding the results of
one operation as input into others. A link or operation can easily be
removed with right click. The view has standard panning, zooming
and moving of operations. Any changes are saved and loaded when the
system is rebooted. The user can also choose to load a saved workflow
or export the current workflow.

There are two unique operations, the data and output operation. The
data operation is the starting point and does not take any input. The
output operation grabs the preferred x and y axis of its input. When
the compute button is pressed, all outputs are added to the drop-down
menu for viewing. There, the user can select which results he wants to
see and change x and y variables if he wants.

7 CASE STUDIES

To evaluate our system, we provide case studies demonstrating each
type of algorithm and their effectiveness. The particular data sets used



Fig. 5. The repeater candidates algorithm plots the number of signals
versus their average duration for each sequence. The plot’s density is
mapped to color as in a heat map. For many likely candidates (those
with high counts), selecting the sequence of signal pairs and plotting
it in the map view shows that most of their pairs of matched signals
approximately share one end point (within error ellipses) indicating likely
locations of repeaters.

in this work were collected during test flights of a spectrum measure-
ment detection platform in two geographical areas in the US. The data
includes real world environmental noise and large volume of events
from NSOIs that make the separation of real transmissions from noise
induced transmissions difficult. Each flight generated a large log of
transmission events, composed of geospatial information (including
uncertainty ellipse), start/end times, signal quality, bandwidth, and
Signal to Noise Ratio (SNR).

7.1 Repeaters

In this case, we use our system to explore one of the datasets collected
from flight tests performed near the U.S.-Mexico border. We start by
applying the repeater detection algorithm, and plotting it in the main
view, as shown in Figure 5. Since we compute potential candidates,
not every point is necessarily a repeater. For instance, some of the
selected points do not have enough GPS data to determine whether
they are repeaters or not, while others contain noise signals. For in-
stance, there is a large concentration of noise points in the bottom left,
as there is a high chance of finding incidental pairs with low count
and duration. The points in the regions that extend almost asymptot-
ically along both axes are more likely to be of interest. While this
plot is rather skewed, it is these tails that are important, so it would be
counter-productive to address this by applying a log-log scale.

To inspect these results in the map view, we select points from the
upper left of the plot, as candidates that have more signal pairs are
more likely to be repeaters. By mousing over each point, we can
use the signal inset to inspect each pattern. Once a good candidate
is found, it can be selected. Then, we draw lines on the map between
each pair of events that have the same start time and duration. Ideally,
we expect to see star patterns, where several client transmitters are uti-
lizing one central repeater. In Figure 5, we show two different repeater
candidates. The top candidate has most of the signal pairs pointing to
a small region of space, while there are a few pairs that point a bit to
right. When looking back at the signal inset we see a large amount of
signal pairs and then a long break followed by a couple more signal
pairs. This indicates that the first set of signals is the repeater on the
left and the small set is either the same repeater moved or more likely a
different repeater using the same set of frequency bands. In the bottom
candidate, we can see constant stream of signal pairs which all points
to a signal region, indicating a highly likely repeater location.

Fig. 6. The communication detection algorithm plots number of trans-
missions versus the overall duration of the conversation, and investigate
two candidates. (a) The star burst pattern represents communications
between a number of different places and one central hub, which is likely
some sort of dispatch center. (b) The detected communication goes
back and forth between two different locations. While the error ellipses
are fairly large, their overlap refines the precision of the locations.

7.2 Communications

This case searched for communication patterns using the communica-
tion detection algorithm to extract likely candidates, and plotting the
number of transmissions versus the total length of the conversation
for each candidate. We found that communication patterns occur less
frequently than any of the other patterns. While this could be due to
our algorithmic settings being too strict or not inclusive enough, it is
also quite possible that there were simply very few conversations oc-
curring when the data was collected. Further verification with ground
truth knowledge would be needed to confirm either way.

As before, we inspect the candidates using the geospatial view. By
plotting a line between communication transmitters in series on the
map, one would expect the line to simply go back and forth between
the communicators as they take turns talking. In Figure 6, we see two
examples of this representation. By selecting group A, a star pattern
is created by one transmitter that is mostly stationary and a number of
surrounding transmitters. As there were multiple, temporally distinct
conversations, and as one party was stationary, it is possible that this is
a ‘dispatch’-type communication. Selecting group B reveals a similar
nearby pattern that at first would look like the communication comes
from many locations, but displaying the error ellipses reveals that it is
possible for the communication to simply be between two parties. The
combination of the error ellipses better triangulate their locations than
any single transmission by itself.

7.3 Wavelet Algorithm

In Figure 7, we show the results from the wavelet calculation mapping
color to density heat map. We have opened up several signal insets for
comparison. The wavelets separate windowed samples of the signal
by pattern behavior, with longer duration signals tended towards the
right, analog patterns toward the bottom, and digital patterns towards
the top. This comes from the wavelet scalograms, in which digital
patterns have a sharp spike in one or two dimensions in a scalogram
while analog patterns are more even across dimension.

Wavelets are useful when the user is looking for a general pattern
about the dataset. For instance, Figure 7 show wavelet structure of
two different dataset. The image on the bottom has far fewer points
in the top region, indicating that it has less long digital-like patterns.
A benefit of the wavelets is that the user can filter map and timeline
views based on durations or digital and analog behavior.



Fig. 7. The wavelet view plots sequence segments projected down
from a high dimensional space. Inspection reveals that sparser patterns
ended up towards the left, with more digital-like patterns at the upper
right and more analog patterns in the lower right. Different datasets
have different distribution of signal types. From the lack of points in mid
upper region of the bottom image, it is clear that the top dataset has
more digital signals than the bottom dataset.

Fig. 8. The Windowed Variance distributes patterns based on their vari-
ance in gap and duration. The y-axis is the variance in the gap while the
x-axis is the variance in duration. Analog patterns are found in the top
right because they have large variance in both gap and duration.

7.4 Repetitive Patterns
We examine both the DPD algorithm, Windowed Variance and their
views. We first start with the Windowed Variance. We set the window
size to 60 seconds with no overlap between windows. Figure 8 shows
the results of the Windowed Variance computation. The big cluster of
patterns to the top right are analog signal patterns as they have large
variation in both gap and duration. However, the striated groups to
the left and bottom of the plot are generally digital signals, with low
variation in signal length, gaps, or both.

The Windowed Variance view is useful when the user is looking
for a pattern that is not entirely digital. For instance, there might be a
series of events that have the same duration but different gap times. By
plotting the SD of the gap and duration, the user can quickly decide
how much variance to allow in either direction through selection. This
gives Windowed Variance an advantage over DPD where it has to be
recomputed. Another potential use for the Windowed Variance is to
look at analog signal patterns. Just like in the digital selection, the
user can decide how much variation to allow.

We computed the DPD algorithm with a 10% CV. The results are
shown in Figure 9. Most digital signals would have high signal counts
of low duration. So one unexpected feature of this dataset is that there
are several peaks of high signal counts with moderate to high average
duration. What is also interesting is that these high average high counts
have low frequency bands, as normally digital signals are found in the
higher frequency bands. We look at two low frequency bands points

and notice that we can triangulate their position. With this piece of
information, it would be possible to commence another fly-by to gather
more information if warranted.

7.5 Combining Approaches

Our discussion so far has focused on each algorithm separately, and
how each one can help the user find a particular pattern or generally ex-
plore a dataset. We also have shown how the time view and map view
can be used in conjunction with the results to facilitate in the discovery
of patterns. However, repeaters, communication and DPD/Windowed
Variance can also be combined to find more complex patterns.

For instance, the user could combine the DPD and repeater algo-
rithms. This would find digital patterns mirrored across multiple fre-
quencies. While this could be a digital signal being retransmitted,
it could also be a broadcast from a single source of a digital pattern
across multiple frequencies, such as an alert or beacon. First, we
would construct our workflow that would go from the data, into the
digital algorithm and pipe those results into the repeater algorithm.
We filter the map based on candidates we found, as shown in Figure
10. Mousing over the points, we notice candidates that have many
error ellipses overlapping, indicating very likely candidates as all the
signals are coming from the same location, as would indicate a beacon
instead of a digital repeater. Zooming in on the candidates reveals that
the signals originate from the McClellan airfield. Thus, it is reasonable
to deduce that this is an air-control navigational beacon.

Each combination of algorithms would detect different patterns. A
repeater communication would use a repeater to extend the range of a
conversation. A common example situation is near mountains where
the handheld devices would be communicating over a repeater at the
top of the mountain. Digital communication could be two or more
machines interfacing with each other. A combination of all three is
possible as well: Two machines could be communicating over a re-
peater to extend the range or broadcast to other frequency bands.

8 EXPERT USER COLLABORATION

This project was aimed at the development of a visual tool for expert
analysts to use to derive actionable insights from large data sets of sim-
ple raw measurements, with the goals of providing them with highly
efficient, interactive analytic methods and an interface that would be
intuitive enough for them to learn. As such, throughout the devel-
opment we worked very closely with expert users in the signal intel-
ligence field, who have extensive experience in working with the air-
borne signal collection platform and interpreting its results. This inter-
action directly guided the development of the analytics which directly
addressed their questions. And our joint exploration of the data re-
vealed unanticipated applications to detection of hardware issues such
as installation or measurement errors, which they used to further the
development of the collection platform.

Due to the specific expertise of the target user base, it was unfeasi-
ble to find a sufficient number of users for a formal user study. Also,
many potential applications for our system involve sensitive or clas-
sified data, so critical evaluation of the analysts’ work flows or tool
usage is also not viable. However, through regular user tests and feed-
back from the few expert users we were working with, we were able
to informally evaluate the utility and intuitiveness of the tool. Here,
we describe examples of their usage of most major components in the
system, many of which led to concrete insights.

The analysts found the tools easy to use. In general, the frequency
view was a clear base for the analyst to work from, as the users found
it easy to understand. In particular, the time vs frequency view was
often the initial view of choice of the signal environment. Previously,
the analysts interacted with the data one frequency at a time. The
timeline representation made understanding patterns out of a dense
environment much easier while retaining the users’ mental picture of
the data space. The color editor allowed subtle shading within a data
type and helped to highlight or exclude outliers visually. Features of
the color wheel such as saving of the color wheel settings were found
helpful for repeated analysis over several sessions or for collaboration.



Fig. 9. The DPD view shows the count in the y-axis and average dura-
tion in the x-axis. Normally large counts of digital patterns have short
average duration and are found in the higher frequency (blue). In this
dataset, there are several high count patterns that have both high aver-
age duration and are found lower frequency bands (red).

The addition of highlighting and filtering greatly improved the ex-
pert users exploration of the data set over their previous methods.
Rapid selection of different data types and zooming into detail fea-
tures for more in-depth analysis allowed the analysts to rapidly ex-
plore the features of the environment from the macro viewpoint down
to detailed perspectives of related events.

Some of the data analytics (such as communication) often only
identified a few events. The ability to see those events within the con-
text of the entire frequency set allowed the users insight into whether
the algorithm had selected a true communication channel or not. Be-
cause the number of such events may only be a few dozen out of the
500K to 1M events in the data, finding the related events needed to
be efficient. Highlighting was sufficient for analytics with about 100
events. Filtering was important with fewer events. A common process
was that the fast filtering would be used to remove all nonselected data
and then zooming would be used to get closer to the selected data.
Restoring all the events was a single button press which would put all
the data back in the display. This sequence was intuitive to the users
and helped in the rapid validation of low event analytic output.

The repeater analytic produced interesting results that still needs
more analysis. The algorithm required absolute time synchronicity
of the events that were put forward as candidates. On zooming into
the details of the events, the expert users rapidly hypothesized new
analytic algorithms for refined or different results.

Novel axis definitions in the digital, communication and repeater
analysis helped translate the algorithms results into operator-centric
understandings. The analytics produced many candidates and the
novel axis definitions helped the experts in navigating those candi-
dates, since they related to the experts’ understood signal concepts.
For example, one axis of the digital detection metric is the signals’
mean duration, which lets users utilize their domain knowledge to sep-
arate digital signals into different duration subclasses. For the commu-
nication analytic the number of events in the communication was used
as an axis, which allowed the users to easily distinguish by numbers
of interchanges. These flexibilities made exploration of highly likely
signals easier for the expert users to select, highlight, filter and map.

While not one of the original goals, the expert users also found the
tool helpful for identification of subtle installation and measurement
errors at a macro level. Our tool revealed indicators at the overview
level which guided the users to drill down into specific times and mea-
surements from a multi-variable perspective using colorization by data

Fig. 10. An example of combining algorithmic methods. In this case,
we ask the system to find us digital repeaters, a digital signal that spans
multiple frequencies. The system presents several candidates. Exam-
ining the results, we find two promising clusters. Most of the signals
originate from the McClellan airfield.

type and filtering and selection across the views. Although the data
analysis was done on datasets after the flight tests were over, this anal-
ysis was able to point to subtle installation issues that were specific to
particular frequencies and aircraft flight dynamics. These phenomena
were not visible with previous data centric analysis methods as these
subtle errors had not been previous hypothesized or analyzed.

9 CONCLUSION

In this paper we have presented a visual analysis system for exploring
and analyzing radio signal meta-data. We showed how the visual rep-
resentations help analysts identify, understand, and compare different
signal patterns. In designing our system, we have developed novel al-
gorithms for quantitative detection of patterns such as digital transmis-
sion or communications. We have shown how combinations of such
algorithms along with visual interactions can lead to further insights.
We have also demonstrated the usefulness of our system, particularly
the algorithms and visualizations, with experimental results derived
from data collected from actual airborne sensor platform tests. Such
a system could only be more powerful when put into the hands of an-
alysts who need to understand intercepted radio transmission patterns
in the field, either forensically or in real-time.

Though the work in this paper has been focusing on exploring of-
fline data, in the future, our system will move towards integration with
real-time data collection. Our current analytics aim to be efficient
enough for real-time usage, but future situations or additional ana-
lytics might necessitate further scaling and acceleration techniques,
such as GPU techniques or out-of-core processing capabilities. Incor-
porating relevant real-time properties such as the location/orientation
of the plane could also be relevant in real-time situations. Lastly, the
contents of recorded signal data is generally sensitive information, so
we only had access to the signal metadata. However, when the signal
contents are available, their analysis would be a beneficial subsequent
step; our approach can be used to identify sequences of signals that
could form a communication, at which point the analyst would apply
other communication analysis approaches based on content.
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