
A Fast Volume Rendering Algorithm for Time-Varying
Fields Using a Time-Space Partitioning (TSP) Tree

Han-Wei Shen�

MRJ Technology Solutions / NASA Ames Research Center
Ling-Jen Chiangy

MRJ Technology Solutions / NASA Ames Research Center
Kwan-Liu Maz

University of California, Davis

Abstract

This paper presents a fast volume rendering algorithm for time-
varying fields. We propose a new data structure, called Time-Space
Partitioning (TSP) tree, that can effectively capture both the spa-
tial and the temporal coherence from a time-varying field. Using
the proposed data structure, the rendering speed is substantially im-
proved. In addition, our data structure helps to maintain the mem-
ory access locality and to provide the sparse data traversal so that
our algorithm becomes suitable for large-scale out-of-core applica-
tions. Finally, our algorithm allows flexible error control for both
the temporal and the spatial coherence so that a trade-off between
image quality and rendering speed is possible. We demonstrate
the utility and speed of our algorithm with data from several time-
varying CFD simulations. Our rendering algorithm can achieve
substantial speedup while the storage space overhead for the TSP
tree is kept at a minimum.
Keywords: scalar field visualization, volume visualization, volume
rendering, time-varying fields.

1 Introduction

Visualizing large-scale time-varying fields remains one of the most
challenging research problems. While a majority of the steady-
state visualization techniques can be readily applied to time-varying
fields, the sheer size of data often makes the task of interactive ex-
ploration impossible. The difficulties mainly come from the fact
that only a small portion of data in the entire time series can fit into
main memory at a time, and that the computation cost is often too
high for the algorithm to run in real-time. This paper proposes an
algorithm that addresses both issues to facilitate an efficient render-
ing of three-dimensional time-varying fields. The underlying visu-
alization method is direct volume rendering, which has been widely
used in various areas such as medical imaging, structure analysis,
earth science, and computational fluid dynamics. The advantage of
using direct volume rendering techniques is that both opaque and
translucent structures can be visualized at the same time. Unfor-
tunately, the computation cost of direct volume rendering is often
too high for interactive applications. To improve the performance,
various software and hardware solutions have been proposed in the
past [1, 2, 3, 4, 5]. However, most of those methods focus on the

�Current affiliation: Department of Computer and Information Science,
The Ohio State University, 2015 Neil Ave. 395 Dreese Lab., Columbus, OH
43210 (hwshen@cis.ohio-state.edu)

yNASA Ames Research Center, Mail Stop T27A-1, Moffett Field, CA
94035 (lchiang@nas.nasa.gov)

zDepartment of Computer Science, University of California, One
Shields Avenue, Davis, CA 95616-8562 (ma@cs.ucdavis.edu)

rendering of steady-state volumes, and only a few approaches were
proposed for time-varying volume rendering [6, 7].

In this paper, we present a new algorithm for rapid rendering
of time-varying volumes. We note that temporal coherence is fre-
quently present in a time-series field and, using that coherence ap-
propriately, we can save rendering time and reduce the I/O over-
head. We propose a new hierarchical data structure that is capable
of capturing both the temporal and the spatial coherence. Conven-
tional hierarchical data structures such as octrees are effective in
characterizing the homogeneity of the field values existing in the
spatial domain. However, when treating time merely as another di-
mension for a time-varying field, difficulties frequently arise due to
the discrepancy between the field’s spatial and temporal resolutions.
In addition, treating spatial and temporal dimensions equally often
prevents the possibility of detecting the coherence that is unique in
the temporal domain. Using the proposed data structure, our algo-
rithm can meet the following goals. First, both spatial and tempo-
ral coherence are identified and exploited for accelerating the ren-
dering process. Second, our algorithm allows the user to supply
the desired error tolerances at run time for the purpose of image-
quality/rendering-speed trade-off. Third, the amount of data that
are required to be loaded into main memory is reduced, and thus
the I/O overhead is minimized. This low I/O overhead makes our
algorithm suitable for out-of-core applications.

In the following, we first discuss related work on hierarchi-
cal data structures and time-varying volume rendering. Our new
spatial-temporal hierarchical data structure is then described. We
show how a direct volume rendering method can benefit from the
new data structure. Finally, we present experimental results from
several time-varying volume datasets.

2 Related Work

Many researchers have proposed the use of hierarchical data struc-
tures to speed up rendering of steady-state volumes. Levoy [4] clas-
sifies the volume into a binary representation based on the underly-
ing voxels’ opacities. Utilizing the classification, a pyramid is con-
structed for the purpose of space-leaping and adaptive termination
of ray tracing. Laur and Hanrahan [3] proposed to store the vox-
els’ mean value and standard deviation at each node of the pyramid.
Given a user-supplied error tolerance, an octree is fit to the pyramid,
and the traversal of the octree allows the volume to be drawn in dif-
ferent resolutions. The idea of storing the error at each node allows
trading the image quality for a faster rendering speed. Wilhelms
and Van Gelder further extend this idea and store voxel and cell
trilinear functions at the octree node [7]. They also show that the
multi-dimensional hierarchical scheme can straightforwardly sup-
port four-dimensional data such as time-varying scalar fields.

To explicitly exploit the temporal coherence, Shen and Johnson

[6] proposed a differential volume rendering algorithm, which em-
ploys a difference encoding scheme to extract the volume’s evo-
lution over time. To start a volume animation, an initial image is
first generated using a regular volume rendering method. For the
subsequent time steps, only pixels that correspond to the voxels
that change values are updated by casting new sampling rays. The
differential volume rendering algorithm can save not only on ren-
dering time, but also on disk space used to store the volume series.
However, the lossless difference encoding scheme might not have
the best performance when floating point data are encountered.

A different approach of volume rendering is proposed by West-
ermann [8]. In his method, a wavelet transform is employed to
construct volumes of multi-resolutions in the form of wavelet co-
efficients. To extract the temporal evolution of the volume data,
Westermann proposed to use the Lipschitz exponents to analyze the
wavelet coefficients in time and to detect local regularity. For those
regions with higher temporal variation, finer resolutions are used,
and volume rendering is performed on the wavelet domain directly.

The technique introduced in this paper primarily focuses on di-
rect volume rendering in the physical domain. We devise a hier-
archical data representation similar to octrees, but one that is more
suitable for capturing both temporal and spatial coherence for time-
varying data. In addition, we pay special attention to the fact that
the size of a typical time-varying dataset often exceeds the capaci-
ties of both texture memory and main memory existing in a work-
station. Furthermore, we believe that the adaptive error control pro-
posed by Laur and Hanrahan, and Wilhelms and Van Gelder, is im-
portant for interactive applications; therefore this capability is built
into our algorithm.

3 Time-Space Partitioning Tree

In this section, we describe our new data structure that is used to
represent a time-varying volume hierarchically in both the spatial
and temporal domains. While the traditional octree data structures
can be extended to four-dimensional trees with one extra dimension
representing time, there are several noteworthy problems. First, the
spatial and temporal resolutions could be very different, and this
discrepancy makes it difficult to locate the temporal coherence in
certain regions. We demonstrate the problem using an extreme but
representative example. Let us assume that there is a time-varying
512� 512� 512 volume with two time steps. It is only possible to
subdivide the four-dimensional array into sixteen256� 256� 256
subvolumes with divisible time, and the subsequent branchings in-
volve only spatial subdivisions. This implies that no temporal co-
herence for subvolumes smaller than256 � 256 � 256 can be de-
tected. Another problem of using the four-dimensional trees is that
coupling spatial and temporal domains makes it difficult to locate
regions with only temporal coherence but not spatial coherence.
This problem can be demonstrated by another example. Let us as-
sume that a subvolume has a dramatic value variation within the
spatial domain but remains unchanged across several time steps. In
four-dimensional space the overall value coherence would appear
to be low even though the temporal coherence alone has a strong
presence. As a result, the temporal coherence can be easily missed.

Techniques that decouple temporal and spatial domains for a bet-
ter utilization of the temporal coherence have been proposed in dif-
ferent applications. Shen proposed a temporal hierarchical index
tree [9] for isosurface extraction in time-varying scalar fields. The
tree recursively bisects the time domain and classifies data cells into
different time spans based on the cells’ temporal coherence. Shen
uses the data structure to reduce the size of the isosurface cell search
index and to reduce the I/O overhead. A similar approach was pro-
posed by Finkelsteinet al. in generating multiresolution videos
[10]. In their method, a binary tree in the time domain, called time
tree, is employed to store image frames corresponding to different

[0,3]

[0,1]

t=0 t=1 t=2 t=3

Figure 1: The TSP tree’s skeleton is an octree, and each of the TSP
tree nodes is a binary time tree. In the example here, the time-
varying field has four time steps.

time spans. The image frame at each node of the binary tree is rep-
resented by a quadtree data structure which can capture the spatial
coherence. For frames in different time steps with temporal coher-
ence in certain regions, links between the nodes in the time tree are
created to express the relationships. Both data structures mentioned
cannot be readily adopted for direct volume rendering. The tempo-
ral hierarchical index tree does not necessarily maintain the spatial
locality of the volume cells, but this locality is fairly important for
volume rendering. In the case of Finkelsteinet al.’s time tree, the
fixed links between nodes preclude the possibility of adjusting the
error tolerance that is used to define the coherence at run time. In
addition, given the fact that voxels need to be drawn in an appro-
priate visibility order in direct volume rendering, the procedure of
following the links to access all the necessary subvolumes in correct
order would be very complicated.

In the following, we present a new data structure calledTime-
Space Partitioning (TSP)tree. The TSP tree is designed to hier-
archically represent a time-varying volume both in temporal and
spatial domains. The temporal coherence is exploited based on the
idea that, if the data in the volume are unchanged in a given time
span, it is only necessary to perform rendering once and to reuse
the same image for the animation sequence.

3.1 Data Structure

The TSP tree is a time-supplemented octree. The skeleton of a TSP
tree is a standard complete octree, which recursively subdivides the
volume spatially until all subvolumes reach a predefined minimum
size. The difference between a TSP tree and a regular octree is that
the TSP tree node contains both spatial and temporal information
about the underlying data in the subvolume, while a regular octree
node only contains the spatial information. To store the temporal
information, each TSP tree node itself is a binary tree. Similar to
Finkelsteinet al.’s time tree [10] and Shen’s temporal hierarchical
index tree [9], the binary tree bisects the time span[0; t] associated
with the time-varying field until a unit time step is reached. Figure 1
depicts the TSP tree and one of its tree nodes in the form of a binary
time tree. A quadtree is used in all the figures throughout the paper
only for the purpose of illustration. The TSP tree adopts a reverse
approach for combining spatial and temporal hierarchies compared
to Finkelsteinet al.’s time tree [10] which uses the binary time tree
as the main skeleton and encodes a spatial quadtree into each time
tree node, as shown in Figure 2. The intention behind our design
is to maintain the visibility order and spatial locality among the
subvolumes while traversing the TSP tree.

Every node in the binary time tree associated with a TSP tree
node represents the same subvolume in the spatial domain but a
different time span. The information stored in a binary time tree
node includes:

� The mean value of the voxels within the subvolume in the
given time span

[0,3]

[0,1]

Figure 2: Finkelsteinet al.’s time tree has a reverse combination of
the octree (quadtree) and the binary time tree.

� A measurement of the subvolume’s spatial error in the given
time span

� A measurement of the subvolume’s temporal error in the given
time span

To measure the spatial error, we use the coefficient of variation,
which can be seen as a normalized version of the standard
deviation. This spatial error measurement serves as an indication
of the subvolume’s spatial coherence. That is, the lower is the
spatial error, the higher is the spatial coherence. The coefficient of
variation can be computed straightforwardly:

m =

P
i;t

vi;t

N

s =

sP
i;t

vi;t
2

N
�

�P
i;t

vi;t

N

�2

� Coefficient of Variation= s

m

wherevi;t is the value of voxeli at time stept,N is the total number
of voxels in the subvolume across all the time steps,m is the mean
value of the voxels, ands is the subvolume’s standard deviation.

To quantify a volume’s temporal error in a given time span
[t1; t2], we propose to use the mean of the individual voxels’
coefficients of variation over time. That is, we treat each voxel as
an independent variable and compute its coefficient of variation
among thet2 � t1 + 1 samples in the time span[t1; t2]. We
then compute the average value of the coefficients of variation
from all the voxels in the given subvolume and use this value as a
measurement for the subvolume’s temporal error. Mathematically,
that is:

m(vi) =

P
t=t2

t=t1
vi;t

t2�t1+1

s(vi) =

sP
t=t2

t=t1
vi;t

2

t2�t1+1
�

�P
t=t2

t=t1
vi;t

t2�t1+1

�2

c(vi) =
s(vi)
m(vi)

� Temporal Error=

P
i
c(vi)

n

wherem(vi) is the voxelvi ’s mean value in the time span[t1; t2],
s(vi) is the voxelvi ’s standard deviation in the time span[t1; t2],
c(vi) is the voxelvi ’s coefficient of variation, andn is the num-
ber of voxels within the subvolume. This formula is more effective
in capturing the temporal coherence because the data variation in
the spatial domain does not affect the result. This characteristic is

important for identifying the temporal coherence that is uniquely
present in a time-varying volume series that does not have any spa-
tial coherence.

The mean, spatial error, and temporal error associated with each
binary tree node in the TSP tree are used for the tree traversal during
the volume rendering process, which is explained in the following
sections.

3.2 Tree Traversal

For a time-varying volume series, the TSP tree only needs to be
constructed once and can then be employed repeatedly. To perform
volume rendering at run time, the TSP tree is first traversed to iden-
tify the subvolumes that satisfy the user-supplied error tolerances.
The located subvolumes are then rendered in the correct order to
construct the final image. In this section, we focus on the process
of tree traversal. The volume rendering process is explained in the
next section.

Our tree traversal algorithm consists of traversing the TSP tree’s
octree skeleton and traversing the binary time tree associated with
each encountered TSP tree node. At run time, the user specifies the
time step and the tolerances for both the spatial and temporal errors.
The tolerance for the spatial error provides a stopping criterion for
the octree traversal so that the regions having tolerable spatial vari-
ations are rendered using their mean values. The tolerance for the
temporal error, i.e., mean of the individual voxels’ coefficients of
variation over time, is used to identify regions where the render-
ing results can be reused for multiple time steps due to their small
temporal variations.

The idea of the TSP tree traversal is similar to the traversal of a
standard octree. That is, starting from the root of the TSP tree’s oc-
tree skeleton, we recursively walk down the tree and check whether
the encountered node’s spatial and temporal errors satisfy the user’s
error tolerances. Because each TSP tree node is in fact a binary
time tree, the error checking of a TSP tree node requires a traversal
to the TSP tree node’s corresponding binary time tree. This time
tree traversal is performed using the following algorithm. Starting
from the root of the time tree, we perform:

� Step 1. Temporal error checking: Check whether the tem-
poral error at the current time tree node is smaller than the
user-supplied tolerance. If not, we traverse down to the branch
of the time tree that spans the current time step and repeat the
process in this step. Otherwise, we mark that the subvolume
has an acceptable temporal coherence in the time span repre-
sented by the current time tree node and go to the next step.

� Step 2. Spatial error checking: Check whether the spatial
error at the current binary time tree node is smaller than the
user tolerance. If yes, we stop the traversal and report that
the error checking for the TSP tree node has succeeded. Oth-
erwise, we traverse down to the branch of the time tree that
spans the current time step and go back to the process in step
1. If the current time tree node is a leaf node, we report that
the error checking for the TSP tree node has failed.

If the current TSP tree node has passed the error checking, we can
use the precomputed mean value stored at the current time tree node
to represent the subvolume. Otherwise, we recursively walk down
to the TSP tree node’s eight children in the octree skeleton. If the
current TSP tree node is a leaf node, we need to use the actual
volume data to represent this region.

When the recursive TSP tree traversal is completed, a series of
subvolumes with different sizes and characteristics of spatial and
temporal coherence are collected. Some subvolumes have low spa-
tial variations and, therefore, are represented by their mean values.

[0,3]

t=1 t=2 t=3 t=4

Figure 3: The volume rendered image can be shared among several
time steps if the TSP tree node has a high temporal coherence.

On the other hand, for the subvolumes that have high spatial vari-
ations, the actual voxel data are used. Based on their temporal co-
herence, the partial rendering results from the subvolumes are used
to construct the final image either for only one time step, when their
temporal coherence is low, or for several time steps due to the sub-
volumes’ high temporal coherence. In the next section, we describe
the process of volume rendering.

3.3 Volume Rendering

During the tree traversal, the nodes in the TSP tree are recursively
visited in the front-to-back visibility order according to the viewing
direction. For a regular Cartesian grid volume, this visibility order
among octree nodes can be straightforwardly determined [11]. Our
rendering algorithm adopts a divide-and-conquer paradigm. That
is, the subvolumes that are collected during the traversal process
are rendered independently. The final image is then constructed
by compositing the partial images’ colors and opacities. We note
that there is no restriction on the type of rendering algorithms to be
used for generating the partial results, and the TSP tree data struc-
ture can readily adopt suitable accelerating techniques. It is also
worth mentioning that in order to produce a correct rendering re-
sult, the adjacent subvolumes need to have overlapping boundaries
if the trilinear interpolation scheme is used. This is to ensure that
there is no gap between subimages.

To accelerate the time-varying volume rendering process, we
store the partial images generated from the subvolumes in their as-
sociated nodes in the TSP tree. The time span that corresponds to
the subimage according to the subvolume’s temporal coherence is
also saved. When the user chooses to render the volume at a dif-
ferent time step, the tree traversal process described above is per-
formed again. During the traversal, in case that the viewing param-
eters remain the same, if a subvolume that has high temporal co-
herence is encountered and if the subimage cached previously has a
time span containing the current time step, this cached image is di-
rectly used, and the rendering of the subvolume is entirely skipped.
The utilization of previously cached images due to the high tempo-
ral coherence of the subvolume allows us to save on rendering time.
In the example shown in Figure 3, the image that is generated for
the time span[0; 3] at the TSP tree node can be used for the under-
lying four time steps if the node has enough temporal coherence.

The performance of our rendering algorithm depends on the de-
gree of temporal coherence existing in the data and can be con-
trolled by the user. If the user desires to preview the volume anima-
tion in a coarse resolution, a higher temporal error tolerance can be
used. On the other hand, if the data is highly coherent in time, even
when the user demands full accuracy, our algorithm can still detect
the coherence and perform the rendering efficiently.

3.4 Memory Optimization and Out-of-Core Ren-
dering

It is known that octrees can incur substantial memory overhead due
to the sheer size of the tree nodes. This overhead often prevents
the use of octrees for visualizing large-scale time-varying data. To
reduce the memory overhead, we restrict the size of the subvolumes
in the TSP tree by stopping the volume subdivision when the leaf
node reaches a predefined minimum size during the tree construc-
tion. We found that using this “shallow” octree as the TSP skeleton
can significantly reduce the tree size.

In fact, using “shallow” TSP trees is necessary for reducing the
rendering overhead. In our rendering algorithm, the TSP tree nodes
are rendered independently, and the subimages are composited to
form the final image. Without limiting the subvolume size, a great
number of very small volumes can be generated as the result of
the tree traversal. This will incur a huge overhead in the image
compositing.

The TSP tree algorithm is suitable for out-of-core volume ren-
dering because of its high degree of memory access locality
[12, 13]. Due to the divide-and-conquer paradigm used by our al-
gorithm, each subvolume is rendered separately. Therefore, it is
not necessary for the entire volume to remain in main memory at
the same time. When employing the TSP tree algorithm in an out-
of-core application, the basic I/O unit, also calledbrick, is the leaf
node in the TSP tree. A brick needs to be loaded into main memory
only when the subvolume is being rendered and its spatial coher-
ence is too low so that the original data is needed. When rendering
a time series, the utilization of the temporal coherence in our algo-
rithm further reduces the amount of brick I/O because the rendering
of those bricks that do not change over time is avoided. We have in-
corporated the application-control demand paging system proposed
by Cox and Ellsworth [13] into our implementation. Performance
studies are shown in the next section.

4 Results and Discussion

We have implemented a time-varying volume rendering algorithm
using the TSP tree data structure. Our implementation adopts a
straightforward ray casting paradigm in which a sampling ray is
cast from each pixel into the volume space. The sampling pro-
cess includes trilinear interpolations, lighting calculation, and color
mapping. In this section, we present experimental results on the
TSP tree algorithm for steady-state and time-varying volume ren-
dering. The performance measurements were done on an SGI
Onyx2 workstation with a 195MHz MIPS R10000 processor and
512 megabyte memory. The main focus of our studies is on un-
derstanding the performance gains that can be achieved using the
TSP tree under various user-supplied error tolerances. We are also
interested in studying the trade-offs between rendering speed and
image quality. Three regular Cartesian grid datasets, as shown in
Table 1, were used in our studies. The shock wave dataset was
generated from a simulation of the unsteady interaction of a planar
shock wave with a randomly-perturbed contact discontinuity [14].
The shear flow dataset was obtained from a study of the generation
and evolution of turbulent structures in shear flows. The delta wing
dataset was computed on a curvilinear grid in physical space and
rendered in its corresponding computational space. Table 2 shows
the size of the TSP tree, the percentage to the original dataset, and
the TSP tree construction time for each of the test datasets. The
Branch-On-Need (BON) method [15] was used in the construction
of the TSP skeleton, and the minimum block size for the TSP tree
node was restricted to16 � 16 � 16. It can be seen that the space
required by the TSP tree is fairly small, namely lower than eight
percent of the original data, and the preprocessing time for the tree
construction is not overly excessive.

Data Set # Time Steps Dimensions
Shock Wave 30 512� 64� 64
Shear Flow 40 128� 128 � 128
Delta Wing 50 67� 209� 49

Table 1: Experimental datasets

Data Set TSP Tree Size Percentage Time
Shock Wave 18.3 7.3% 116
Shear Flow 20.01 5.9% 156
Delta Wing 0.53 0.39% 59

Table 2: TSP tree sizes (in megabytes), the percentages to the orig-
inal datasets, and the construction time (in seconds)

The TSP tree can be used to speed up the rendering of a steady-
state volume by utilizing the spatial coherence. Table 3 shows the
rendering speed of the TSP tree algorithm for a single time step of
the shock wave dataset. The image size is300 � 300. We used
four different spatial error tolerances, which are the minimum co-
efficients of variation allowed for the volume blocks. It can be seen
that the TSP tree is capable of utilizing the spatial coherence ex-
isting in the dataset for speeding up the rendering. The loss of the
image quality is visually tolerable for the shockwave dataset, as
shown in the Color Plate. We are currently investigating the de-
sign of appropriate error metrics to measure the degradation of the
image quality due to the error introduced during the rendering. Ta-
ble 4 and Table 5 show the results for the delta wing and the shear
flow datasets. The delta wing dataset has a higher spatial coher-
ence, so even with very low error tolerances we can still obtain a
good speedup. The turbulent shear flow data are much less coher-
ent. Therefore, higher error tolerances were used in order to obtain
speedup. However, the loss of certain fine features became visible.
The Color Plate shows the volume rendered images for each of the
datasets.

One of the TSP tree’s main goals is to accelerate the render-
ing of large-scale time-series volumes. To test the effectiveness of
our algorithm, we performed volume rendering on each of the test
datasets by sequentially stepping through each time step of the vol-
umes and measuring the rendering speed. Table 6 lists the rendering
time of five selected time steps of the shock wave dataset. The error
tolerance for the temporal coherence was0:01, and we used zero
error tolerance for the spatial coherence so that we can concentrate
on analyzing the utilization of the temporal coherence. For the first
time step of the volume, a complete rendering was needed, so no
speedup was gained. However, for the subsequent time steps, the
temporal coherence was utilized, and only a portion of the volume
bricks at each time step needed to be rendered. As a result, it can
be seen from the table that we can achieve speedup factors of4:7
to 6:9. A snapshot of the animation sequence for the time-varying
shock wave data is shown at the bottom of the Color Plate, where

Shock Wave
Error Tolerance 0 0.01 0.05 0.08
Rendering Time (seconds) 7.32 2.45 2.35 1.99
Speedup Factor 1 2.99 3.11 3.67

Table 3: Rendering time and speedup factors with four different
spatial error tolerances for a single time step of the shock wave
dataset

Delta Wing
Error Tolerance 0 0.005 0.02 0.03
Rendering Time (seconds) 15.8 10.7 4.4 4.38
Speedup Factor 1 1.47 3.59 3.61

Table 4: Rendering time and speedup factors with four different
spatial error tolerances for a single time step of the delta wing
dataset

Shear Flow
Error Tolerance 0 0.7 0.9 0.95
Rendering Time (seconds) 30.6 19.6 14.2 12.8
Speedup Factor 1 1.56 2.15 2.39

Table 5: Rendering time and speedup factors with four different
spatial error tolerances for a single time step of the shear flow
dataset

we compare the volume rendered images of time step14 generated
using0 and0:01 temporal error tolerances. It can be seen that the
degradation of the image quality is fairly small while the rendering
time was reduced6:84 times when0:01 error tolerance was used.
Table 7 and Table 8 show the results for the delta wing and the shear
flow datasets. The temporal error tolerances were0:001 for the
delta wing dataset and0:8 for the shear flow dataset. The turbulent
shear flow dataset is less coherent in the temporal domain so higher
temporal error tolerances were used and image degradations were
visible. The delta wing dataset can be rendered efficiently without
an excessive amount of feature missing due to its high degree of
temporal coherence.

To understand the suitability of the TSP tree algorithm for out-
of-core applications, we measured the sparseness of the data access
in the TSP tree algorithm. The data used in our experiments was a
four-time-step1024� 128� 128 shock wave dataset, and we used
32�32�32 as the minimum brick size. The results were measured
on an SGI Maximum Impact workstation with128 megabyte main
memory and a 195 MHz MIPS R10000 processor. We incorporated
the application-controlled demand-paging algorithm proposed by
Cox and Ellsworth [13] into our TSP tree implementation. In the
test, we used a0:01 error tolerance for the temporal coherence.
Table 9 shows the rendering time and the number of the bricks that
were needed at each time step. It can be seen that the temporal
coherence existing in the dataset allows us to load only about13%
of bricks during the volume animation, and the rendering speed was
also accelerated. This sparse traversal characteristic makes the TSP
tree algorithm a good candidate for out-of-core applications.

5 Conclusions and Future Work

We have presented a fast volume rendering algorithm for three-
dimensional time-varying fields. The core component of our al-
gorithm is a new data structure called Time-Space Partitioning tree
which can capture the temporal coherence more effectively than the
conventional high-dimensional octrees. This effectiveness mainly
comes from the fact that we decouple the temporal and the spatial
domains when analyzing the time-varying data so that the coher-
ence uniquely existing in the time domain can be identified. Our
new algorithm successfully achieves the following goals. First, both
the spatial and the temporal coherence are utilized for accelerating
the time-varying volume rendering. Second, the amount of volume
data I/O is reduced, and the locality of the data access is improved.
Third, the user has flexible control of the errors so that it is possible

Shock Wave
Time Step 0 7 14 21 28
Rendering Time 7.87 1.66 1.15 1.14 1.21
Speedup Factor 1 4.74 6.84 6.90 6.50

Table 6: Rendering time (in seconds) and speedup factors for five
different time steps of the shock wave dataset. The temporal error
tolerance was0:01.

Delta Wing
Time Step 0 12 24 36 48
Rendering Time 15.7 6.3 2.86 2.87 5.3
Speedup Factor 1 2.5 5.4 5.4 3.1

Table 7: Rendering time (in seconds) and speedup factors for five
different time steps of the delta wing dataset. The temporal error
tolerance was0:001.

to trade the image quality for the rendering speed.
Future work includes further studies of the applicability of our

algorithm for out-of-core applications. The relationship between
the TSP tree brick size and the rendering time and the I/O overhead
will be investigated. We are also incorporating the TSP tree into a
hardware volume rendering program using three-dimensional tex-
ture mapping. Focus will be on reducing the data traffic between the
main memory and the texture hardware and rendering very large-
scale data on machines with a limited texture memory capacity.

Acknowledgments

This work was supported in part by NASA contract NAS2-14303.
We would like to thank Ravi Samtaney, Neal Chaderjian, and John
Shebalin for providing the datasets. Special thanks to Randy Kaem-
merer for his meticulous proofreading of this manuscript and valu-
able suggestions. We also thank David Ellsworth, Tim Sandstrom,
and other members in the Data Analysis Group at NASA Ames Re-
search Center for their helpful comments and technical support.

References

[1] P. Lacroute and M. Levoy. Fast volume rendering using a
shear-warp factorization of the viewing transformation. In
Proceedings of SIGGRAPH 94, pages 451–458. ACM SIG-
GRAPH, 1994.

[2] K.-L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh. Par-
allel volume rendering using binary-swap image composi-
tion. IEEE Computer Graphics and Applications, 14(4):59–
68, 1994.

[3] D. Laur and P. Hanrahan. Hierarchical splating: A progressive
refinement algorithm for volume rendering. InProceedings of
SIGGRAPH 91, pages 285–287. ACM SIGGRAPH, 1991.

[4] M. Levoy. Efficient ray tracing of volume data.ACM Trans-
actions on Graphics, 9(3):245–261, 1990.

[5] B. Cabral, N. Cam, and J. Foran. Accelerated volume ren-
dering and tomographic reconstruction using texture mapping
hardware. InProceedings of 1994 Symposium on Volume Vi-
sualization, pages 91–98, 1994.

Shear Flow
Time Step 0 9 18 27 36
Rendering Time 31.1 7.2 7.9 12.3 6.1
Speedup Factor 1 4.3 3.9 2.5 5.1

Table 8: Rendering time (in seconds) and speedup factors for five
different time steps of the shear flow dataset. The temporal error
tolerance was0:8.

Shock Wave (1024 � 128 � 128)
Time Step 0 1 2 3
Bricks Loaded 561 73 75 72
Percentage 100% 13.0% 13.3% 12.8%
Rendering Time (in seconds) 51.5 26.1 27.1 27.9

Table 9: Number of bricks needs to be loaded into main memory in
the time-varying volume rendering for the shock wave dataset. The
brick size was32� 32� 32.

[6] H.-W. Shen and C.R. Johnson. Differential volume rendering:
A fast algorithm for flow animation. InProceedings of Visu-
alization ’94, pages 188–195. IEEE Computer Society Press,
Los Alamitos, CA, 1994.

[7] J. Wilhelms and A. Van Gelder. Multi-dimensional tree for
controlled volume rendering and compression. InProceed-
ings of 1994 Symposium on Volume Visualization, pages 27–
34. IEEE Computer Society Press, Los Alamitos, CA, 1994.

[8] R. Westermann. Compression domain rendering of time-
resolved volume data. InProceedings of Visualization ’95,
pages 168–178. IEEE Computer Society Press, Los Alamitos,
CA, 1995.

[9] H.-W. Shen. Isosurface extraction in time-varying fields using
a temporal hierarchical index tree. InProceedings of Visual-
ization ’98, pages 159–166. IEEE Computer Society Press,
Los Alamitos, CA, 1998.

[10] A. Finkelstein, C.E. Jacobs, and D.H. Salesin. Multiresolution
video. InProceedings of ACM SIGGRAPH ’96, pages 281–
290, 1996.

[11] S. Fang, R. Srinivasan, S. Huang, and R. Raghavan. De-
formable volume rendering by 3d texture mapping and octree
encoding. InProceedings of Visualization ’96, pages 73–80.
IEEE Computer Society Press, Los Alamitos, CA, 1996.

[12] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan. In-
teractive ray tracing for isosurface rendering. InProceedings
of Visualization ’98, pages 233–238. IEEE Computer Society
Press, Los Alamitos, CA, 1998.

[13] M. Cox and D. Ellsworth. Application-controlled demand
paging for out-of-core visualization. InProceedings of Visu-
alization ’97, pages 235–244. IEEE Computer Society Press,
Los Alamitos, CA, 1997.

[14] D.I. Meiron and R. Samtaney. 3D simulations of the
Richtmyer-Meshkov instability with re-shock.Bulletin of the
American Physical Society, 43(9):2104.

[15] J. Wilhelm and A. Van Gelder. Octrees for faster isosurface
generation.ACM Transactions on Graphics, 11(3):201–227,
July 1992.

Color Plate: Image Comparisons of Steady and Time−Varying
 Volume Rendering using the TSP Trees

Time−Varying Shock Wave (error = 0, 0.01, time step = 14)

Steady Shock Wave (error = 0, 0.01, 0.05, 0.08 from left to right)

Steady Delta Wing (error = 0,0.005,0.02,0.03 from left to right)

Steady Shear Flow (error = 0,0.7,0.9,0.95 from left to right)

