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Figure 1: A dynamic video narrative of a dance sequence from the movie Happy Go Lovely(1951) is constructed as a composition of five
mosaics. Each mosaic comprises several frames stitched together to highlight different stages of a performance.

Abstract

This paper presents a system for generating dynamic narratives
from videos. These narratives are characterized for being compact,
coherent and interactive, as inspired by principles of sequential art.
Narratives depict the motion of one or several actors over time. Cre-
ating compact narratives is challenging as it is desired to combine
the video frames in a way that reuses redundant backgrounds and
depicts the stages of a motion. In addition, previous approaches
focus on the generation of static summaries and can afford expen-
sive image composition techniques. A dynamic narrative, on the
other hand, must be played and skimmed in real-time, which im-
poses certain cost limitations in the video processing. In this paper,
we define a novel process to compose foreground and background
regions of video frames in a single interactive image using a se-
ries of spatio-temporal masks. These masks are created to improve
the output of automatic video processing techniques such as image
stitching and foreground segmentation. Unlike hand-drawn narra-
tives, often limited to static representations, the proposed system
allows users to explore the narrative dynamically and produce dif-
ferent representations of motion. We have built an authoring system
that incorporates these methods and demonstrated successful results
on a number of video clips. The authoring system can be used to
create interactive posters of video clips, browse video in a compact
manner or highlight a motion sequence in a movie.

Keywords: Video exploration, Interactive Editing, Image Com-
positing, Motion Extraction, Graph-cut Optimization

1 Introduction

The purpose of a visual timeline or a narrative is to display the
passage of time by means of a sequence of images. These nar-

ratives are intrinsically linear and they are meant to tell a story.
Schmandt-Besserat, in her book When Writing Met Art [Schmandt-
Besserat 2007], argues that the invention of writing coincided with
the adoption of linear art compositions to tell a story. The structure
borrowed from writing made these compositions linear and direc-
tion became time. The linear flow of images, continuity and selec-
tive repetition of characters are some of the principles that survived
through the middle ages, as seen in the Bayeux tapestry (Fig.2(b)),
to modern days in the form of comics [McCloud 1994]. Scientific
painting and illustrations have also borrowed these design elements
to present unique compositions of extreme scale time lines, such
as the evolution of life and geologic time. An example is The Age
of Reptiles Mural, by Rudolph Zallinger, which depicts the evolu-
tion of reptiles from the Devonian period to the age of dinosaurs
(Fig.2(a)). Despite the changes in perspective and scale, the mural
gives the impression of a single coherent scene.

In today’s era of data explosion, videos and animations are becom-
ing ubiquitous and the ability to display long video sequences in
a single narrative becomes useful. As static representations, these
narratives summarize sports events, help elucidate the plot of a short
movie and contextualize the evolution of a location captured by a
video camera. But as dynamic representations, these timelines also
help understand individual actions within the appropriate context.
The essential characteristics of static timelines have been adopted
as the de facto standard for displaying thumbnails of video clips
in editing software such as iMovie [Apple Corporation 2009]. Be-
cause they are based on individual frames, they lack the compact-
ness and coherence that are characteristic of hand-drawn illustra-
tions. Recent image and video collages [Rother et al. 2006; Mei
et al. 2009] aid to compactness, but do not convey the flow of time.
Static representations of motion [Cutting 2002; Assa et al. 2005;
Goldman et al. 2006] summarize a short action, but do not provide
the means to explore the sequence dynamically. Other dynamic
compositions, such as panoramic video textures and photomontages
[Agarwala et al. 2004; Agarwala et al. 2005] are limited to moving
backgrounds, where there is no need to track individual actions.
This paper presents an interactive system for creating compact rep-
resentations of long video sequences in order to produce a dynamic
narrative. In this sense, a video narrative is a summarization of
a long video sequence generated as a composition of individual
frames in such a way that it indicates motion and flow of time.

We aim to generate compact, coherent and interactive video nar-
ratives. The first two principles, compactness and coherence, have
been selected based on a careful examination of the principles of



(a) Age of reptiles mural (b) Portion of the Bayeux Tapestry

Figure 2: Examples of visual narratives. (a) Age of reptiles mural, as an example of a linear narrative (The Age of Reptiles, a mural by Rudolph

F. Zallinger. Copyright 1966, 1975, 1985, 1989, Peabody Museum of Natural History, Yale University, New Haven, Connecticut, USA. All rights reserved.

Reproduced with permission. ). A coherent background gives the illusion of gradual change. Despite the differences in scale and perspective,
the scene appears coherent. (b) Seamless composition of sea lines and characters gives the illusion of time flow.

sequential art and visual narratives, as suggested by ancient and
contemporary art forms [Anderson 1961; Eisner 1985; McCloud
1994]. We adopt the idea of seamless transitions to convey continu-
ity. Two different scenes can be composited together by exploiting
natural edges in the images that serve as boundaries. In the Reptiles
mural, for example (Fig.2(a)), trees provide natural boundaries be-
tween geologic eras. In other cases, where the scene backgrounds
are similar, a seamless transition makes them appear continuous.
The interactive requirement is a new component that arises with the
possibilities that interactive media offer. Unlike traditional narra-
tives, we are not limited by a static representation.

Our system allows users to construct a narrative by composing dy-
namic mosaics and combining them in a linear manner. A dynamic
mosaic is a hybrid between a video panorama and a video story-
board. With a set of spatio-temporal masks, our system selects por-
tions of video frames corresponding to different moving objects and
places them within a single panorama. By modifying these masks
in real-time, the user can compose narratives that convey motion
and flow, and perform in-place playback of the video.

2 Related Work

Creating visual summaries of video sequences has been extensively
surveyed by Li et al. [2001]. Following their taxonomy, we can
identify two lines of research, often interwoven, one dedicated to
the decomposition of a video and extraction of salient shots and
another dedicated to the assembly and representation of the video
summary. This work is concerned with the latter. The most com-
mon approach to represent video is through the use of individual
frames, arranged in a meaningful manner. Several layouts have
been proposed, such as structure-depicting icons [Ueda et al. 1993],
video posters [Yeung and Yeo 1997], comic-book presentations
[Boreczky et al. 2000], stained-glass visualizations [Chiu et al.
2004] and the ever-ubiquitous thumbnail sequence in software such
as iMovie [Apple Corporation 2009]. Simakov et al. [2008] ad-
dress the problem of video summarization as retargeting, where a
video is resized into a compact summary without image cropping
or scaling. Recent approaches attempt at constructing a more com-
pact summary using collages. Inspired by image collages such as
Digital Tapestry [Rother et al. 2005] and AutoCollage [Rother et al.
2006], video collages have the additional requirement of maintain-
ing temporal structure. Free-Shaped Video Collages seamlessly as-
semble multiple frames in a variety of shapes without disrupting
their sequence in time [Yang et al. 2008; Mei et al. 2009]. These
approaches are intended to represent the story line in the video, but
they do not satisfy certain desired properties of visual narratives,
such as coherence and continuity. Because these approaches han-
dle individual frames, they seldom convey action and flow.

The representation of motion in static images is a complex task with
roots in art and science [Cutting 2002]. Cutting describes five ways

in which motion can be represented, including broken symmetry,
stroboscopic images, motion blur, forward lean and action lines.
Common in comic books, forward lean and actions lines are sim-
ple mechanisms to make a static image appear in motion [McCloud
1994], and have inspired techniques for video [Kim and Essa 2005].
Action lines often do not convey a wide range of motion. When ap-
plied to video, stroboscopic images seem to be more effective, and
can be obtained optically in the form of long exposure shots. As
an alternative, it is possible to obtain computational time-lapse im-
ages [Bennett and McMillan 2007] by assembling the frames in a
manner that simulates a virtual camera shutter. For general video,
this issue is more complex, as the camera may move in addition to
the moving objects. To obtain such motion representations, a video
sequence is assembled in a single panorama using a motion esti-
mation technique, such as optical flow [Shum and Szeliski 1998]
or feature-based stitching [Brown and Lowe 2003]. Panoramas, of-
ten depicting a static background, have been used for cel animation
[Wood et al. 1997] and to photograph long scenes [Agarwala et al.
2006]. Useful for browsing, video panoramas such as PanoramaEx-
cerpts [Taniguchi et al. 1997] seldom tell a story. More effective
panoramas can be obtained with foreground extraction, as shown
in Digital Photomontage [Agarwala et al. 2004] . Video panoramas
also convey motion with action lines [Irani and Anandan 1998],
storyboarding metaphors [Goldman et al. 2006], and action pose
estimation [Assa et al. 2005]. These video synopses are inherently
static. Panoramic video textures [Agarwala et al. 2005], Dynamo-
saicing [Rav-Acha et al. 2007], dynamic stills [Caspi et al. 2006]
and non-chronological video synopses [Pritch et al. 2008] combine
the compactness of panoramas with dynamic browsing. Dynamo-
saics create dynamic panoramas using 4D min-cuts, but are obliv-
ious to the composition of objects and background. This makes
the approach applicable to many types of video clips, but are not
intended to convey action or tell a story [Rav-Acha et al. 2007].
Aner et al. [2002] use mosaics for video browsing, while Forlines
presents a system for skimming through video frames on the re-
covered background, similar to our skimming technique [Forlines
2008]. However, these assume single mosaics. In our work, we
construct narratives that combine several mosaics in a single com-
position. Instead of single frames, our visual narrative is an assem-
bly of mosaics, or a summary of summaries. We believe that the
result is a considerably more compact representation of video that
manages to show motion and time flow. Concurrently, Barnes et al.
[2010] also draw inspiration from tapestries and linear narratives
to summarize a long video sequence. Using a continuous tempo-
ral zoom, users can quickly browse the video at multiple scales.
Similar to our narratives, seamless blending between frames results
in a compact representation that is both aesthetically pleasing and
space-efficient. In our work, we use narratives to convey an action
of shorter video sequences and tell a story.

Although we focus on the interactive assembly of narratives, video
summarization techniques are relevant. Li et al. [2001] survey the



most important methods, which extract different properties of indi-
vidual video frames, shots or segments, such as saliency [Teodosio
and Bender 1993], visual attention [Ma et al. 2002] and motion
[Sawhney and Ayer 1996]. In our work, we extract metrics from the
individual frames and panoramic scenes to convey desired proper-
ties of narratives as identified by studies of sequential art [Anderson
1961; Eisner 1985; McCloud 1994; Tufte 1990]. Unlike previous
research, which derive information theoretic descriptors of individ-
ual frames, we use motion. By ensuring that motion is uninter-
rupted from scene to scene, we attain the illusion of flow, one of the
key properties of visual narratives.

3 Design Principles of Dynamic Narratives

At the core of visual narratives is the fact that art and writing are
interwoven [Eisner 1985]. Hence, many principles are shared with
writing styles. Here, we extract some of the properties that help us
discern visual narratives from other types of compositions such as
collages and thumbnails.

Continuity. Continuity refers to the re-use of backgrounds to con-
vey the idea of time. The Bayeux tapestry, an 11th century tapestry
detailing the Norman conquest of England (Fig.2b), was created
to convey, not a single instance of time, but rather two stages of
a journey: a sea voyage and their landing on the coast. The sea
line remains continuous throughout the tapestry to remind us of the
continuity of time. The Age of Reptiles mural (Fig. 2a) comprises
millions of years in a single panorama to convey the idea of grad-
ual change. Notice the use of trees to naturally break the scene
into different periods. Comic books often use panels to enforce a
change and break continuity. This seems more an artistic choice
than a necessary condition. In this paper, we focus on the creation
of continuous narratives.

Linear flow. Schmandt notes that visual narratives seem to have
appear contemporary to writing [Schmandt-Besserat 2007]. This
explains why the flow of time often follows a conventional reading
direction. Although videos and films often depict time as a complex
network, and moving back and forth in time is a common narrative
device, it is not our intent to depict the chronological time within a
film, but rather the linear flow of the video.

Indication of motion. Unlike static or moving panoramas, narra-
tives tell a story, which are collections of interconnected actions.
In a video, actions can be understood as motion. For the sake of
compactness, showing every single moment of an action is not pos-
sible. Instead, narratives use several strategies to convey motion
in a static manner, such as broken symmetry, stroboscopic images,
affine shear, blur and action lines [Cutting 2002]. Some of them,
such as broken symmetry, are inherently static, but stroboscopic
images and action lines, on the other hand, can also be very pow-
erful when one allows them to become dynamic. In our work, we
apply this idea for interactive playback of video narratives.

Based on these principles, we focus on narratives as seamless dy-
namic compositions. We explore the use of natural boundaries to
provide sharper transitions where possible and smooth blending
where it is not. Aesthetically, video narratives are more compact
and coherent than a simple layout of mosaics.

4 Technical Approach

A dynamic narrative can be defined as a linear collection of mo-
saics, blended together to ensure seamless transitions. A mosaic, in
turn, is a panoramic summary of a short video sequence occuring
over a common background. Therefore, the generation of a narra-
tive can be decomposed into three parts: (1) A pre-processing of

the video to stabilize individual frames. Frames that share a back-
ground are grouped into the same mosaic. (2) Mosaic generation
using spatio-temporal masks, and (3) Narrative composition using
graph cut blending.

4.1 Pre-processing

As a first step, we obtain frames that have been stabilized for mo-
tion. We accomplished this following the approach by Lowe et al.
[2003] for matching frames and computing image panoramas. Sim-
ply stitching frames at the seams does not produce a compelling
representation of the video, due to the presence of moving fore-
ground objects. We use their approach for finding matches between
frames and stabilizing them against the common background. This
operation can be expensive and it is therefore computed a priori.
For each frame we compute scale invariant features (SIFT) and use
a translational and zoom model to find matches between consecu-
tive frames. Two consecutives frames are matched together if the
extracted SIFT features can be modeled as a translation and a uni-
form zoom. The outcome of this step is a set of registered images,
each having the same size as the corresponding mosaic.

4.2 Mosaic Generation using Spatio-Temporal Masks

A mosaic M can be defined as the composition of a background
B and selected parts of individual registered frames Ik into a sin-
gle image. The individual parts should correspond, in principle,
to moving foreground objects. To find these moving parts, we fol-
lowed the approach by [Kaewtrakulpong and Bowden 2001], where
a Gaussian Mixture Model is used to tag pixels as either foreground
or background. A similar approach is followed by Pal and Jojic
[2005] to extract moving objects from security video. The result is
a series of Gaussian blobs and a set of foreground masks, binary
images which indicate if a pixel is considered as foreground when
it has value 1 or background, otherwise. We construct the mosaic
from these blobs. Our mosaics are dynamic, therefore this genera-
tion stage is a time-dependent process.

Let us consider the output of the foreground estimation stage a set
of blobs Blobs(k) for a given registered frame Ik and a foreground
mask Fk. A blob j in a frame k can be characterized by a spatial 2D
mean µk j and a spatial standard deviation σk j.

The process of creating a mosaic can be defined as the application
of a spatio-temporal mask to the image Ik. A spatio-temporal mask
is a grayscale image representing the alpha or opacity of a region in
an image, which depends on both space and time. Here, we define
three main masks for every frame Ik.

Blob Mask (Gk j). This mask defines the extents around a detected
blob i ∈ Blobs(k), defined as a Gaussian blur with mean µk j and
standard deviation σk j. This mask blends the parts of the frame that
corresponds to blobs with the background.

Rim Mask (Rk). This mask assumes that foreground objects tend to
be centered in a frame and therefore defines the mask as a smooth
rim of width r. This rim mask is 0 for pixels in the edge of the
frame, 1 for pixels at a distance r from the edge of the frame, and
smoothly interpolated in between.

Temporal Mask (Tk). This mask specifies the temporal behavior
of the composited mosaic. A static mosaic has a constant temporal
mask of 1. In other cases, however, it is desired to make foreground
objects more transparent when they correspond to older frames, and
make clear the direction of motion. The user can perform interac-
tive playback on the mosaic by interacting with the parameters of
this mask. Setting the mask transparent for certain frames is use-
ful when only key poses need to be shown, while semi-transparent
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Figure 3: Using spatio-temporal masks to generate mosaics. (1) Frame stabilization ensures that corresponding pixels from consecutive
frames are in close proximity (2) We run a foreground estimation algorithm to tag pixels as foreground or background, the result is the
foreground image Fk and a series of blobs per frame. We apply a temporal mask and a Gaussian mask per blob to obtain the frame mask αk.
(4) The mosaic is then the composition of a background and the opacity modulated frames αkIk.

masks help us simulate motion blur. Please refer to the accompa-
nying video for examples. Details are given in Section 4.3.

Figure 3 shows the process of generating a mosaic. After stabilizing
the frames, we show the foreground masks Fk obtained for a number
of frames. These masks correspond to Gaussian blobs, shown as
images Gk. Also, note the temporal mask applied to the rim mask
as images RkTk. In this case, there is a falloff that makes older
frames more transparent and highlight only the newer ones.

Now let p define a pixel position in the mosaic M consisting of N
registered frames. Since the frames are registered, this pixel po-
sition is also defined in frames Ik. For a time value t ∈ [1,N], we
can find the resulting color MN(p) of the mosaic as a back-to-front
blending of the background and the registered images after apply-
ing the resulting spatio-temporal mask αk. This can be expressed as
the recursive application of linear blending of the registered frames:

M0(p, t) = BN(p) (1)

Mk(p, t) = αk(p, t)Ik(p)+(1−αk(p, t))Mk−1(p, t) (2)

where BN is the extracted background. The suffix N refers to the
fact that this generated background is also the product of the blend-
ing of the N frames in the mosaic, although with different masks.
αk is the spatio-temporal mask for a given frame k, computed as the
product of the rim and temporal masks with the overall foreground
mask, defined as the sum of the Gaussian blobs in the image and
the foreground image. This sum is useful as the foreground estima-
tion may not always produce a precise mask. When a foreground
object remains still for a while, some pixels are often mistaken as
background pixels. In this case, we ensure that most of the object
will be represented in the mosaic by adding the Gaussian mask:

αk(p, t) = Rk(p)Tk(p, t − k)

(

Fk +
Blobs(k)

∑
j=1

Gk j(p)

)

(3)

The background BN can be extracted in numerous ways. Assa et
al. [2005] use the temporal median. More sophisticated methods
have been proposed [Granados et al. 2008]. Motion segmentation
approaches already provide an estimate of the background, but the
result may contain artifacts due to mis-registration. Instead, we
follow a similar approach to the one above, where the background

is the composition of different regions of each frame. Instead of
choosing masks corresponding to foreground objects, we choose
the inverse mask. Fig. 4 compares our approach for computing
the background with the extracted background using the method in
[Kaewtrakulpong and Bowden 2001] and the temporal average. On
top, we see that the foreground extraction method is not intended to
compute a perfect background, but rather track the moving objects.
We see some artifacts towards the left part of the mosaic. The tem-
poral average, on the other hand, is blurry. Our approach produces
a single background without the blur, by using stabilized portions
of the frames that are not considered foreground (after applying the
masks). We compute the background using a back-to-front compo-
sition scheme. For each frame Ik:

B0(p) = B̂(p) (4)

Bk(p) = βk(p)Ik(p)+(1−βk(p))Bk−1(p) (5)

where the background mask is:

βk(p) = Rk(p)

(

1−
Blobs(k)

∑
j=1

Gk j(p)

)

(6)

and B̂ is an initial guess of the background, which can be the one
obtained from the foreground estimation method, the temporal me-
dian or the temporal mean. In our case, the temporal mean gives us
acceptable results, since the blurry portions are likely to be masked
by βk. Note that the background, in this case, does not depend on
time. This is intended to provide a single background for the mosaic
and avoid artifacts when exploring the video dynamically.

4.3 Dynamic Exploration of the Mosaic

Unlike previous attempts to produce visual summaries of videos,
spatio-temporal masks allow us to produce dynamic explorations of
the mosaic. This is achieved by modifying the parameter t, which
controls the frame currently displayed in the video, and the tempo-
ral mask Tk. Since the mosaic is defined in terms of t, the result
varies depending on the shape of function Tk. For example, one
can enable in-place playback of the video while leaving a semi-
transparent trail of the previous frames as a stroboscopic image,



Figure 4: Comparison of background generation methods. Left: A
few video frames. Right, from top: (1) The output from foreground
estimation process may contain errors due to overlapping intensi-
ties, (2) The temporal average is blurry, (3) Our results.

(a) (b)

(c) (d)

Figure 5: Different effects can be obtained by manipulating the
temporal mask. The temporal mask indicates an opacity for each
time t. (a) A mask is used to simulate motion blur and make explicit
the difference in velocity of the two moving actors. (b) A mask to
highlight the trajectory of motion (c) Using a temporal falloff helps
us identify who moved first (the more transparent bicycle appears
earlier) (d). We can invert the falloff to change the temporal rela-
tionship. Now, the other bicycle appears to have moved first.

using a smooth falloff function Tk. We use an exponential falloff:

Tk(p, t − k) = e−(t−k)2/2σ 2

(7)

where the parameter σ controls the falloff. In this case, the falloff
produces stroboscopic images of the frames preceding and succeed-
ing the frame at time t. By modifying the parameter t, the user can
produce a stroboscopic playback of the video. In many cases, ex-
cessive use of this effect introduces clutter and the motion is no
longer visible. Instead, one can introduce temporal filtering to sam-
ple sparse frames, as shown in Figure 5.

4.4 Alpha Matting

In our approach, we attempt to maximize the probability of seg-
menting the foreground objects by considering a Gaussian blur that
covers most of the foreground pixels, but that also includes some
background pixels. One issue with the Gaussian blur added to the

No matting Matting

Figure 6: Alpha matting can be used to improve the blending of
foreground objects. Left: no matting results in bleeding of back-
ground pixels to the other replicas. Right: matting results in crisper
foreground objects (Video courtesy of Dan B Goldman).

foreground mask is the bleeding of background pixels into other
foreground replicas when creating stroboscopic images. This is
seen in Figure 6-left. Here, the second replica of the walking person
(from left to right) is blended with the background. We can see a
greenish halo (from the grass) emanating from the first replica. This
can be alleviated when the background does not move and the stabi-
lization of the frames is accurate enough. We use an alpha matting
approach, where we compute a new mask α̂k by solving the matting
equation for every pixel p:

Ik = α̂k(αkIk)+(1− α̂k)BN (8)

This equation states that the new alpha mask should statisfy the
matting equation for the foreground image αkIk, where αk is the
one obtained using the spatio-temporal masks and the background
image BN . The result can be seen in Figure 6-right, where individ-
ual foreground replicas can be shown at full opacity without intro-
ducing background halos.

4.5 Narrative Composition

A full narrative of a video is a composition of mosaics in a linear
manner. One can try to put all mosaics in sequence to signify the
separation of disparate scenes. However, representing this narrative
as such a sequence does not produce compact images. In our ap-
proach, we allow overlap to create compact and seamless transitions
between mosaics. To blend the two mosaics in the intersection re-
gion, we use a modified version of the graph-cut seams introduced
by [Boykov and Kolmogorov 2004]. This method considers the pix-
els in the overlap area as a graph, where edges are defined between
the horizonal and vertical immediate neighbors of each pixel. The
optimal seam (or minimum cut) is one that maximizes flow [Kwatra
et al. 2003], which depends on the cost of each edge.

The traditional application of graph cuts does not ensure the conti-
nuity of dynamic narratives, since an overlapping mosaic may ob-
scure an important action of the occluded mosaic. On the other
hand, performing the graph cut optimization on-the-fly may be
costly. Instead, we define a cost function that blends two mosaics
Msrc and Mdst and adds a penalty, in terms of the motion masks Asrc

and Adst , that increases the cost in regions with motion. The mo-
tion mask image is a grayscale image that composes the aggregate
mask of all the frames in a mosaic. That is, for a given mosaic M,
the corresponding motion mask A is computed using back-to-front
compositing as:

A1(p) = α1(p,1)

Ak(p) = αk(p,k)+(1−αk(p,k))Ak−1(p,k)

for k ∈ [1,N], where N is the number of frames in the mosaic. No-
tice how we apply the temporal parameter t of αk as the time k. This
is done with the intention of obtaining the highest mask for that



(a) Graph cut (b) Motion-aware Graph cut

(c) Unfeathered graph cut (d) Feathered graph cut

Figure 7: Motion-based graph cuts. (a) Traditional graph cut may
be placed through moving characters. (b) With a motion term, we
prevent the seam from being placed along the moving characters.
As a faster alternative to gradient-domain blending, we use feath-
ering around the graph cut proportional to the local gradient. (c)
with no feathered cuts, we get visible seams, especially when the
lighting varies. (d) feathered graph cuts produce acceptable results
with little cost and preserves sharp edges (wall paintings). (Video

courtesy of the White House, public domain)

frame and avoiding missing important actions due to the temporal
falloff. One can alternatively define A as a temporal motion mask,
which changes as we change time. Therefore, graph cuts need to be
computed for each frame. This approach, however, might produce
popping artifacts. The result of incorporating motion in the graph
cut blending is shown in Figure 7(a-b).

The cost function between two neighboring pixels p and q is there-
fore defined as

ωV (p,q,Msrc,Mdst)+(1−ω)(Asrc +Adst) (9)

for two overlapping mosaics Msrc and Mdst and their respective al-
pha masks Asrc and Adst , and ω a weighting factor to give more
weight to the image features or the motion. When ω = 1, the result
is that of traditional graph cut blending, i.e., ignoring the motion.
The term V is formulated as in AutoCollage [Rother et al. 2006],
known to work better for disparate overlapping images:

V (p,q,Msrc,Mdst) = min(
||Msrc(p)−Mdst (p)||

ε+||Msrc(p)−Msrc(q)||
,

||Msrc(q)−Mdst (q)||
ε+||Mdst (p)−Mdst (q)||

)

where ε is a small number to prevent division by zero. The numer-
ators on this equation corresponds to pixel differences between the
two mosaics at any given point for two neighboring pixels p and
q. The denominators define the image gradient in the direction of
the neighbor. Therefore, this equation is minimum when either the
pixel differences are small, representing a seamless transition, or
when the gradient is high, representing a hard edge where the cut
can be placed.

Feathered Graph Cuts. In image stitching and panorama gen-
eration, seams obtained with graph cuts are usually blended us-
ing gradient-domain approaches [Rother et al. 2006]. The same
can be used in our approach. As a fast alternative, our author-
ing system uses feathered graph cuts, which also consider the gra-
dient of the image to define a smooth interpolation between two

Figure 8: Our authoring system consists of three windows. The top
window shows the scenes detected by the stabilization process. On
the top right corner we provide the original video clip. The main
window, the narrative view, contains all the clips selected by the
user. In this example, the user has selected two clips, which the
user can explore dynamically.

overlapping mosaics. This is especially necessary for disparate
mosaics or mosaics with slightly different backgrounds (possibly
due to light variation). The effects of not using blending is seen
in Fig 7(c). To alleviate this, we define an exponential falloff of

e−max(||∇Msrc||,||∇Mdst ||))/σ 2

for two mosaics Msrc and Mdst , where
σ2 defines the steepness of the falloff, and ∇Msrc and ∇Mdst are
the gradients of the source and destination mosaics at a pixel in
the seam, respectively. When the gradients are high, the falloff is
small, which preserves the sharp graph cut at that point. When the
gradients are low, the falloff is larger and the seam is replaced by a
smooth transition. An example is shown in Fig. 7(d).

4.6 Interaction

Unlike hand-drawn narratives and image collages, our system pro-
vides interactive video playback and skimming. The user can play,
pause or rewind different portions of the narrative at any time. A
snapshot of the authoring system is shown in Figure 8, and consists
of three windows: the thumbnail view, which hosts all the scenes
detected by our system, the original video playback window (top
right corner) and the narrative view, which is the main canvas where
the user places the different clips. In there, we provide the follow-
ing capabilities for building an effective narrative:

Narrative Assembly. The user creates a narrative by selecting clips
from the thumbnail view and placing them on the narrative view.
Dragging one clip left or right allows the user to control the size
of the narrative. In the figure below, the two clips in Fig. 8 are
collapsed in a shorter narrative. Notice how the ticket machine on
the left provides the transitional seam between the two scenes.

Playback. Dynamic video narratives can be played back and
skimmed in real-time. We provide a playback bar (bottom) that the
user can slide right or left to go forward or backward, respectively,
in time. Below, the user interactively rewinds the second clip.

Temporal Exploration. The user can explore the temporal aspects
of a clip to highlight an action or movement. This is obtained in



our system using the temporal mask. We enhance the playback bar
with yellow dots representing the distribution of foreground objects
used in the narrative. In the example below, the user chooses five
replicas. Each replica has a motion tail, represented as vertical line
segments. Dragging the mouse over this section allows the user to
change the distribution of replicas or the density of the tails. Here,
the user increases the density of the tail.

Temporal Ordering. Since some clips have the moving objects
that approach the camera while others go away from it, the temporal
order of frames is important. As described before, this ordering
can represent different temporal aspects. In this example, the user
switches the order to show the correct motion up the stairs.

5 Discussion and Limitations

Our approach offers a variety of possibilities for generating effec-
tive visual narratives with little effort. For the purposes of creating
narratives, the nature of the video bears some importance. In our
case, our approach is more effective for videos that capture an ac-
tion in both space and time. We believe a wide range of video
clips fall into that category, including performance capture (such
as dance), sportscasts, action sequences in movies and shots from
TV shows. Professional movie clips usually have clear shots of the
foreground objects and are centered. Home made movies are often
shot from a single person’s perspective and may not be suitable for
extracting narratives. In contrast, animated shorts often have static
backgrounds and color uniformity is the norm.

Examples of narratives created using our approach are shown in
Figures 10-12. Figure 10 illustrates the use of narrative to show
directions in a video clip that follows a person from one place to
another. Figure 11 shows the ability to tell a story from a cartoon
short, and the use of temporal effects to highlight speed and motion.
Figure 12 shows the capabilities of video narratives to summarize
general footage, in this case an equestrian show. Our system is more
effective for video shots where the motion has a clear directionality
in the 2D plane (panning and zooming) and the foreground objects
are clearly visible. There are certain cases where our approach has
limited use when composing a narrative:

Motion parallax and fast camera motion. Since we rely on frame
stabilization, our system is subject to the limitations of current sta-
bilization algorithms. At this stage, we handle panning and zoom-
ing camera motions, and our work can be extended to other more
complex camera motions, including rotation. Motion parallax re-
mains an issue, and our approach is limited by the accuracy of the
foreground estimation process under such conditions. Other com-
plicated cases are those with fast moving sequences where consec-
utive frames cannot be stitched together in a single mosaic. In such
cases, our approach is left with a collection of disparate frames of
low compactness, and the resulting narratives appear more like a
collage, similar to those in [Yang et al. 2008]. Other limitations are
more unique to our approach:

Figure 9: Limitations. (a-b): Occluding motion may not be con-
veyed properly using our approach (a). As an alternative, we can
split a scene with occluding motion into separate scenes and apply
our narrative assembly mechanism to reduce the effects of occlu-
sion (b). (c-d): Moving background. Here, a palm moving in the
wind is handled by the system as a collection of individual mov-
ing blobs, resulting in a discontinuous motion. Compare to the two
moving actors, which are properly segmented.

Occluding motion. Since we do not modify the relationship be-
tween the foreground object and the background, overlapping mo-
tion may not help depict an action. An example is shown in Fig-
ure 9(a). As an alternative, we can split a scene into smaller sub-
scenes, in which case our approach can exploit the narrative assem-
bly mechanism to deal with occlusion (Figure. 9(b)).

Moving background. When the moving objects cannot be clearly
segmented, such as with large moving backgrounds (e.g., waves
of the ocean) or large deformable objects (e.g., the palm leaves in
Figure 9(c)), the temporal masks do not align with clearly defined
objects. The resulting narrative will contain blurry regions repre-
senting the parts where the background changes.

6 Conclusions and Future Work

We have successfully addressed several key challenges in produc-
ing compact and dynamic narratives from video clips. Narratives
created with our approach follow certain key design principles.
Coherence is ensured by stitching the background into a single
panorama. We use motion estimation algorithms to recover the
camera motion from a video clip and foreground estimation to ex-
tract foreground pixels. We decompose the generation of narratives
as the blending of foreground and background regions in a way
that depicts the flow of time. We have shown how to create a se-
ries of spatio-temporal masks that can be used to extract a crisp
background without the blurriness of temporal averages and to also
indicate the foreground regions that are extracted from individual
frames. Through interactive manipulation of these masks, we have
successfully created a playable and interactive mosaic that also lets
users explore temporal effects. This enables interactivity and dy-
namism and overcomes the limited communicative value of static
counterparts. We ensure compactness by allowing mosaics to be
blended together in a seamless manner. We use a novel variation
of the graph cut algorithm for building seams, which now uses the
motion masks to prevent cuts along moving objects.

In the spirit of usability, our system makes a lot of automatic
choices about the foreground and background. Our spatio-temporal
masks are constructed to alleviate the artifacts that may appear
when a static background cannot be retrieved accurately or moving
objects cannot be segmented with precision. With manual inter-



Figure 10: Video narrative of a sequence (7 minutes) depicting directions from a parking lot to a particular office room. Our approach is
able to compress the video and exploit hard edges, such as the parking machine and door frames, to provide seamless transitions.

vention, such as specifying regions as either foreground and back-
ground, our results can naturally be improved to obtain even more
visually pleasing images. Although the generation of narratives that
tell a story remains a craft, our system gets us closer to automatic
video summarization and provides a test-bed to conduct studies
about the expressive power of visual narratives and the principles
of sequential art.
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