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with Multiple Edge Sets

Abstract

The growing popularity and diversity of social network applications present new opportunities as well
as new challenges. The resulting social networks have high value to business intelligence, sociological
studies, organizational studies, epidemical studies, etc. The ability to explore and extract information
of interest from the networks is thus crucial. However, these networks are often large and composed
of multi-categorical nodes and edges, making it difficult to visualize and reason with conventional
methods. In this paper, we show how to combine statistical methods with visualization to address
these challenges, and how to arrange layouts differently to better bring out different aspects of the
networks. We applied our methods to several social networks to demonstrate their effectiveness in
characterizing the networks and clarifying the structures of interest, leading to new findings.
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1. Introduction

Social network research is one of the fastest
growing academic areas [30] and it continues to
expand within an array of social, physical, and
biological sciences. One key element of this field
of research is social network visualization, which
refers to the use of “sociograms,” or illustrative
diagrams of the ties that connect actors in social
networks. The use of graphical representations is
one of the main defining properties of the field
of social networks [7]. While statistical metrics
can more succinct, the right metric must be ap-
plied. It can be difficult to know a priori what
metric will produce the right result, and it can be
difficult to verify that the results are correct. Re-
searchers use pictorial images of social networks
to help successfully communicate and understand
the content of the network and also to aid in un-
covering novel, structural patterns within social
networks, as well as to guide and confirm statisti-
cal metrics. Nevertheless, visual diagrams of so-
cial networks often suffer from a range of prob-
lems, the most common of which being the high
density of edges and complex structures in large

networks, yielding sociograms that often appear
as indecipherable clouds of nodes and edges.

In the study of aggression network [15], we iden-
tified visualization techniques that can address
problems typical to social network visualization,
and enhanced the techniques to improve clarity
and highlight key structural elements of aggres-
sion network. In particular, we considered social
networks composed of nodes that can be grouped
categorically (i.e., students can be categorized by
gender, grade, etc.). Similarly, the edges in a so-
cial network can often be divided according to cat-
egories (e.g. a friendship is different from an ag-
gression relationship). We used the most common
type of visualization, which directly represents re-
lationships between actors as a node-link diagram.
That is, the resulting sociograms represent actors
with the use of points, or vertices, and the re-
lationships between these actors with the use of
lines, or edges, that connect these points. In this
paper, we present several visualization techniques
tailored to further analyze such social networks.
We show how we incorporate statistical measures
such as sensitivity analysis to filter nodes/edges
from a node-link diagram leading to succinct vi-
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sualizations, and how different layout designs help
bring out structures of interest that would other-
wise hidden. We demonstrate several enhanced
visualization techniques that enable us to better
understand and explain our empirical social net-
work data, and also derive new findings.

2. Related Work

Visual diagrams of network-related data have
a lengthy history [7]. The origins of their ap-
plication in social network research began with
the work of Moreno and Jennings in the early
1930’s, in which the typical focus was on exam-
ining patterns of individuals’ likes and dislikes
[33]. Since those early beginnings, the use of net-
work visualization has developed into its own spe-
cialty field [19, 3]. This area of study currently
receives substantial attention in a range of dis-
ciplines [20, 5, 1, 28, 31]. Considerable recent
work focuses on dynamic visualizations of change
in social networks over time e.g. [32, 11, 39, 36].
Other studies examine methods of producing im-
ages of web-based social networks [22]. Finally,
researchers continue to develop novel software
programs for the production of network images,
each with its own unique characteristics, and sev-
eral publications illustrate the implementation of
novel software routines [39, 22].

One key task in creating visual images of net-
works is to determine the appropriate geometrical
layout of the nodes and edges. There are several
well-defined criteria for assessing the accuracy and
validity of a particular graph layout [11]. Some
common criteria [39, 2] include:

1. edges of the same approximate length,

2. vertices distributed over the area, or

3. reduction of the number of edge crossings.

Nevertheless, optimization of such criteria can be
intractable and often contradictory [39]. For sur-
veys of many modern graph layout algorithms
see Battista, Eades, Tamassia, and Tollis [38] or
Hachul and Junger [21].

The most traditional and commonly used lay-
out algorithm for social network analysis are
force-directed layouts [26], often referred to as

“spring embedders” [13]. In this well-known pro-
cedure, nodes in a network graph are positioned
iteratively, where the edges connecting them are
treated like springs that push and pull on them
until the system converges to an equilibrium.
By directly optimizing on these criteria, force-
directed layouts aim both to distribute nodes
widely in a two-dimensional space, and to simul-
taneously keep connected nodes relatively close to
each other.

However, spring embedder techniques do not
always scale nicely to large graphs [4]. Other ap-
proaches have been developed with the goal to
improve network layout in terms of quality and
algorithmic efficiency, especially for large graphs.
One such technique [39] is based on a variant of
dimension-reduction methods, referred to as mul-
tidimensional scaling [10], in which the goal is to
minimize stress. In this approach, the purpose of
stress minimization is to determine positions for
every node such that the Euclidean distances in
the n-dimensional space resemble the given “dis-
similarities” between the nodes, where dissimi-
larity is determined by graph-theoretic distances,
such as the shortest paths (i.e. geodesics).

A fundamental problem that faces visualization
of very large social networks, particularly those
that use force-directed layouts, is that they of-
ten result in a tangled mess of incomprehensible
lines; this is often referred to as the “hair-ball”
problem. In this paper, we describe two ana-
lytic approaches to reduce clutter and produce
cleaner network visualizations. First, in order to
simplify the contents of a social network, we em-
ploy a type of sensitivity analysis that is based
on commonly used, graph theoretic, network cen-
trality measures. The findings from the sensitivity
analysis [9] are then used in traditional graph lay-
outs and node-link diagrams. Second, we employ
a type of hierarchical clustering procedure called
modularity clustering [8] in order to create an ab-
straction of a network that is particularly useful
in identifying higher level structures.

In this paper, we also show how to apply these
analytic strategies in the application of three vi-
sual design techniques. The first technique is
referred to as “edge bundling” [23]. This tech-
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nique routes similar edges together, which pro-
duces cleaner network displays. Next, we intro-
duce a radial layout design that can effectively
separate a graph into sub-groups, or communities,
for an effective display of network sub-structure.
Finally, we introduce the use of “n-partite net-
work layouts” based on parallel coordinate dia-
grams, which we use to directly compare two or
more distinct graphs or subgraphs, defined on the
same set of nodes.

In the subsequent two sections, we introduce
the techniques we chose to use and explain why
and how we enhance them for achieve our goals.
Then in the following section, we focus on the
study of an aggression network dataset using
these techniques. Here we investigate patterns of
aggression and friendship among high school stu-
dents and use visual sociograms to help address
questions such as the following:

1. Which students are most likely to be the ag-
gressors, and victims of aggression - those lo-
cated on the periphery of the friendship net-
work, or those located more centrally?

2. Are there differences by structural factors in
patterns of aggression, such as grade level,
gender, and race?

3. Do the bulk of aggressive ties occur among
or between racial groups?

The techniques that we use are designed to visu-
ally reveal the answers to these types of questions.

3. Analysis Techniques

To reduce clutter and produce cleaner network
visualizations, we apply two analytic approaches.
First, we show the use of centrality sensitivity
analysis, which measures the importance of one
node with respect to another. The aim of this
technique is to simplify a network based on cen-
trality metrics, which can then be represented us-
ing traditional graph layouts and node-link dia-
grams. Second, we utilize modularity based clus-
tering, which separates nodes into groups based
on the intra and inter group connections. This
creates a hierarchical abstraction of a network
that we can use to depict higher level structures
more clearly.

3.1. Sensitivity Analysis

There are four commonly used centrality met-
rics: Eigenvector [6, 27], Markov [40], Between-
ness [29, 18], and Closeness [25, 34]. Each of
these measure vertices’ overall importance with
respect to the whole network. Sensitivity analysis
measures a vertex’s importance to the structure
of the network relative to other vertices in the
graph [9]. This metric is essentially the deriva-
tive of centrality, and as such can be calculated
similarly for any type of centrality. In this work,
we used Eigenvector sensitivity. Eigenvector cen-
trality is a measure of the importance of a node
in a network, and is used by the PageRank [6]
and Hyperlink-Induced Topic Search [27] algo-
rithms. Rather than basing the importance of
a node solely on how many connections it has,
eigenvector centrality also takes into account the
weights of connections to other nodes; a single
connection to a highly important node can carry
more weight than many connections to nodes of
low importance. Eigenvector centrality sensitiv-
ity extends this notion to derive the importance
of nodes relative to each other. While centrality
gives one value per node, sensitivity gives a value
for every possible pair of nodes in a network. To
calculate a reference node’s sensitivity to a target
node, the reference node’s initial centrality is cal-
culated, each edge of the target node is removed
one at a time, and the centrality of the reference
node is recalculated after each removal. The neg-
ative changes in centrality of the reference node
give a measure of how important the target node
is to the reference node – in other words, how
sensitive the reference node’s centrality is to the
target node. For instance, if removing a target
node’s edges results in large decreases in the ref-
erence node’s centrality, then the reference node
is said to be highly sensitive to the target node
– that is, the target node has high importance
relative to the reference node. This can be sum-
marized in the following equation [9]:

∂x

∂ti
= −Q+∂Q

∂ti
x

where x is eigenvector centrality, ti is the degree
of vertex i, Q is the subtraction of the identity
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matrix from the adjacency matrix of the network
(Q = A I), and Q+ is the pseudoinverse of Q.

Since every node has a centrality derivative
with respect to every other node, centrality sensi-
tivity can be thought of as a complete, weighted
network. From this network, we can derive a
skeleton network based on edge existence, high
centrality derivatives, and overall connectivity
(e.g. using a spanning tree). This skeleton net-
work can then be thresholded to be as sparse or
as dense as needed, and can be used for a wide
variety of purposes, such as simplifying/clarifying
layouts, visualizing only the most important con-
nections, or finding important relationships be-
tween nodes with no direct connections.

3.2. Modularity Clustering

Another way to simplify large, complex net-
works is to cluster tightly connected groups of
nodes together and consider the resulting ab-
stracted super-network. However, trivial applica-
tion of this approach would completely remove the
finer details of the network. Therefore, instead of
using a single level of clustering, we employ hier-
archical clustering. With hierarchical clustering,
the level of clustering can be adjusted dynami-
cally, or multiple clustering levels can be shown at
the same time. We employ the “Fast Modularity”
clustering algorithm[8] of Clauset, Newman, and
Moore, as it is a hierarchical clustering algorithm
that has been shown to be effective on real-world
networks, and comparable to force directed energy
functions [35]. Modularity is a metric that evalu-
ates a specific proposed clustering of a network by
measuring the density of cluster interiors and the
sparsity of inter-cluster connections. Specifically,
given a network with a proposed clustering, the
modularity Q is defined as:

Q =
1

2|E|
∑
i,j

[
Ai,j −

kikj
2|E|

]
δi,j

where ki, kj are the degrees of nodes i and j, Ai,j

is 1 if there is an edge between nodes i and j and
0 otherwise, and δi,j is 1 if nodes i and j are in
the same cluster and 0 otherwise.

The “Fast Modularity” clustering algorithm
starts with each node in its own cluster, then

(a) Graph without bundling (b) Graph with bundling

Figure 1: A graph of the MIT dataset, where each node
represents a person and an edge is a call made between
individuals. The right images shows how bundling can
tease out hidden structure in the graph.

greedily merges pairs of clusters such that the
change in modularity ∆Q is maximized. In this
way, the most tightly connected nodes are clus-
tered together earlier. The end result is a binary
hierarchy of clusters, which can be utilized in vi-
sualization techniques such as edge bundling (de-
scribed in section 4.1).

4. Visualization Techniques

Direct visualization of large, complex networks
using force-directed layouts often leads to the
well-known “hairball problem.” That is, the re-
sulting visualization consists of a tangled mess of
incomprehensible lines. We address this problem
by introducing enhancements to common visual-
ization techniques. First, we combine the use of
modularity clustering and edge bundling to group
edges to tease out high-level patterns. Second,
we use centrality sensitivity to remove less impor-
tant edges, at least for the layout process. We also
demonstrate a radial layout based design that can
effectively separate a graph into sub-groups for
comparison, and an n-partite layout that allows
comparison between multiple networks.

4.1. Edge Bundling

Hierarchical edge bundling [24] is now a well
known approach to create cleaner network visual-
izations that convey high-level patterns without
completely sacrificing low-level details. This ap-
proach routes edges according to the clustering hi-
erarchy, using cluster centroids as control points

4



(a) B = 0.0 (b) B = 0.2 (c) B = 0.5 (d) B = 1.0

Figure 2: As the bundle strength increases, the lines interpolate from straight position to the control points. The ideal
B is usually somewhere between 0.8 and 1 where the lines can be followed and discerned through the bundles.

for spline curves, as shown in Figure 1(b). The
control points that define an edge between two
nodes comprise a path in the clustering hierar-
chy tree from the first to the second node, pass-
ing through their least common ancestor. In this
work, we apply this approach using the modular-
ity clustering to construct the tree.

There are a number of different spline mod-
els for interpolating between control points.
We chose Catmull-Rom and B-spline because
Catmull-Rom is computationally simple and of-
fers a high level of control, but B-spline provides
smoother lines. This is attributed to Catmull-
Rom guaranteeing that the curve goes through
the control points while B-spline does not. An-
other difference is that Catmull-Rom works nat-
urally with as few as two control points, whereas
some B-Splines require more. For the B-Spline,
we usually use a B-Spline of degree 3. When the
number of the control points is 3 or 2, the degree
is automatically reduced to 2 or 1, respectively,
since it is required that the degree is lower than
the number of control points.

We can loosen these tight bundles by introduc-
ing a bundling strength. As shown in Figure 2, the
bundling strength is a user-specified parameter
B ∈ [0, 1], and controls the amount of bundling
by linearly interpolating between a straight line
at B = 0 and the spline defined by the path from
node to node through the least common ancestor
at B = 1. This is accomplished by defining a new
set of points, evenly spaced along the straight line
between the two nodes, then linearly interpolat-

ing each control point between the linear point
and the corresponding cluster-defined point, and
finally rendering the spline according to the inter-
polated points.

4.2. Sensitivity Based Layout

In many networks, there are some nodes and
edges that are particularly important to the struc-
ture of the network, but many that are less so.
When a layout algorithm uses all of the edges, the
resulting visualization can look like a bird’s nest,
without any apparent structure beyond simple
core-periphery pattern, as shown in Figure 3(a).
By filtering edges based on sensitivity analysis, we
can consider a simplified skeleton network that re-
tains the structural properties of the original net-
work. Since this skeleton network is much sparser
than the original network, it can be effectively
laid out and visualized using a traditional node-
link diagram, as shown in Figure 3(b). The lay-
out of this skeleton network is often much better
than a layout defined by the whole network, so we
can use the skeleton network’s layout and reintro-
duce the original edges to produce an improved
node-link diagram of the entire graph, as shown
in Figure 3(c). This new skeleton network can
also be used to improve both modularity cluster-
ing by adding weights to the calculation, and edge
bundling by routing edges through the more cen-
tral paths.

4.3. Radial Representation

Sometimes, merely improving the layout algo-
rithm is insufficient for showing particular aspects
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(a) Normal Graph. (b) Sensitivity
Cutoff.

(c) Sensitivity Cut-
off with all edges.

Figure 3: (a) Full MIT dataset. (b) shows the reduced
network from our sensitivity cutoff and (c) with all the
edges reintroduced.

of a network. Specifically, social networks can be
divided into groups according to discrete prop-
erties besides connectivity, such as gender, race,
school grade, or others. However, the density of
ties in most traditional node-link diagrams make
it difficult to distinguish in inter-group patterns
from intra-group patterns. Therefore, we intro-
duce enhancements to a radial representation that
arrange nodes according to additional properties
as well as connectivity, as shown in Figure 4.
Nodes are placed around a circle, grouped into
discrete arcs based on the selected data attribute,
and ordered within each group by connectivity
with the use of modularity clustering. This new
representation also delegates the two kinds of con-
nections to separate regions of space: intra-group
edges are displayed outside the circle while inter-
group edges are drawn in the middle. The label
on each group shows the number of inter-group
and intra-group connections, respectively.

To compute a useful ordering for the nodes, we
first construct a clustering hierarchy using the
modularity of the entire network, as shown in
Figure 5. This tree does not take into account
the data attribute of interest, and thus could be
pre-calculated. However, nodes that are next to
each other in the tree might be in distinct groups
based on the property of interest. Therefore, we
replicate the clustering tree, creating one for each
group, and proceed to filter each tree so that it
only contains one group. This is done by travers-

Figure 4: A simple example of our radial layout approach.
Intra-group edges are drawn outside the circle while inter-
group edges are drawn through the middle. The color of
the edge represents the source of the edge. The first label
on each group shows the number of inter-group, while the
second number shows the number intra-group.

ing the tree and removing any cluster that does
not contain at least one leaf node from the de-
sired group. This creates trees that have many
nodes with only one child. To reduce the depth
of the tree, we trim the tree by also removing
intermediate clusters which only have one child
(thereby reducing the number of control points
needed for the spline code). Once all the trees are
trimmed, we link them all together with one root
node to create a single tree where each branch
from the root represents a sub-tree for an indi-
vidual group. It would alternatively be possible
to run modularity clustering on each group sepa-
rately to improve the arrangement within groups,
but this would ignore inter-group edges and hence
hinder the ability to analyze inter-group relation-
ships. Once this clustering is finished, we traverse
the tree to generate an ordering which can then
be used to arrange nodes around the circle.

In order to visually separate inter-group and
intra-group edges, they are drawn in separate re-
gions of space. To connect edges, we modify the
edge bundling by defining custom control points
for the two types of edges separately. We uti-
lize both previously stated types of splines: B-
splines for the exterior edges and Catmull-Rom
for interior edges. Inter-group edges are routed
through the inside of the circle, so control point
locations are calculated in polar coordinates, us-
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Figure 5: First, we construct a tree from the network
using modularity clustering, where the color of the nodes
represents which group they belong to. To do so, we split
up the two colors into smaller subtrees. Then the trees are
trimmed and combined under a central root node.

ing weighted centroids for the angles, and the clus-
tering depth for the radius. However, if the cal-
culated route included every node of the tree up
through the LCA (least common ancestor), then
every edge would go through the center of the cir-
cle, since all edges routed through the center of
the circle are inter-cluster and thus have to cross
the root of the tree. To avoid this issue, we imple-
ment a cutoff value, which allows the user to re-
move control points, providing more distinct bun-
dles between groups. This cutoff can be counted
either from the start/end nodes (as number of
points to keep) or from the root (as number of
nodes to prune). We found that defining the cut-
off from the root usually produces better results.
For intra-group nodes, we also use polar coordi-
nates, with the angle defined by the weighted cen-
troids and the radius defined by level, but we ex-
tend the edges outside the circle instead of the
inside. In this case, using the LCA would be ac-
ceptable, since each tree is distinct. However, due
to the strong curvature of most edges outside the
circle, we found it most effective to use only the
leaf nodes and the LCA to define control points,
bypassing intermediate control points.

4.4. Parallel Coordinates

Sometimes networks contain more than one
kind of edge, defining 2 or more unique networks
on the same set of nodes. In such cases, a layout
that is good for one set of edges might not be good
for another. Alternately, with one unified layout,
sparser networks may get lost inside denser ones.
Here, we describe a representation based on n-
partite network layouts, where groups of nodes
are laid out parallel to each other. We extend

(a) Parallel with no bundling (b) Parallel with bundling

Figure 6: Both parallel coordinates diagrams show ag-
gression network on the left and friendship network on the
right. All three axes are ordered the same and are grouped
by grade level. By bundling the edges, the diagram on the
right is easier to read. It suffer from less visual clutter
than the unbundled version. By looking at the diagram
on the right we can see that the two networks look very
similar, indicating that aggression mimics friendship.

this concept to multiple networks on the same set
of nodes by replicating the nodes, and considering
each network a bipartite graph from the full set of
nodes to a duplicate set of nodes, which creates
an n-partite network where n is one more than
the number of edge sets. We can then lay out this
n-partite network in a series of columns by evenly
spacing the nodes in each column. Edge direction-
ality is also shown in this representation, since all
edges proceed from left to right. While hierarchi-
cal layouts such as Sugiyama [37] or Dig-Cola [12]
could be used instead, we have the unique situa-
tion of each group of nodes being identical, and
thus it is more natural for each column to have the
same ordering. Thus, we reuse the afore calcu-
lated modularity clustering to cluster the nodes,
and traverse this hierarchy to define a universal
ordering.

As shown in an application of this technique in
Figure 6(a), the number of edges between each
column can become quite dense. Therefore, we
apply edge bundling to clarify the result, as shown
in Figure 6(b). The same modularity clustering
that defines the ordering can be utilized, but as in
the radial layout, control points need to be com-
puted. Here, the y values of the control points are
defined by weighted centroids, but the x coordi-
nates are defined by level. As in the radial view, a
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(a) Graph using Eigen Sensitivity cutoff (b) Graph with bundling

Figure 7: Long Island friendship dataset shown in directed node-link graph. In both graphs, the edges are colored by
the source node. Bundling the edges, helps us see the relationship between groups. For instance, 11th and 12th grader
are highly connected to each other. Most of the edges from the 8th grader group are red implying that more 8th graders
say they are friends with higher grades than vice versa.

level cutoff is employed, otherwise all edges would
go through the center of each region.

5. A Study of a Friendship/Aggression
Network Datasets

To demonstrate the effectiveness of these tech-
niques, we have applied them to the visualization
of two friendship/aggression network datasets.

5.1. Data sets

The first dataset, the Contexts of Adolescent
Substance Use (hereafter, Contexts), is a longi-
tudinal study of adolescents in three counties in
North Carolina. At the start, all students in the
6th, 7th, and 8th grades in all public schools in
the three counties were asked to participate. Data
on a wide range of health factors and risk behav-
iors (for a recent example of research using the
data, see Ennett et al.[14] ) were collected every
six months for six waves, followed by a final wave
of data collection one year later. At each wave,
students were asked to nominate up to five of their
closest friends, and after wave 3, were also asked
to nominate up to five schoolmates they “picked

on or were mean to and up to five whom they
“picked on or were mean to. Students were in-
structed to only consider serious incidents of cru-
elty, and disregard playful teasing. The aggres-
sion and victimization networks were combined,
such that we considered there to be an aggres-
sive tie from A to B if either A nominated B as
a victim, or B nominated A as an aggressor (for
research on the aggression network data, see Faris
and Felmlee[15]).

The second dataset, the Long Island School
Study, was intended to replicate and extend the
Contexts data, albeit in a single school and over
a shorter time frame. Data were collected on a
biweekly basis over a two month period from a
single Long Island public school in an affluent
suburb of New York City. The nearly exclusively
white and highly affluent nature of the Long Is-
land school differentiate it from the disproportion-
ately African-American, rural, and lower socioe-
conomic status of the Contexts study population.
Importantly, students were again asked to nom-
inate friends, victims, and aggressors, using the
same language as the Contexts study, but were
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(a) Node-link graph colored by gender. (b) Radial layout grouped by grade level and colored
by gender.

Figure 8: The Node link graph on the left runs into limitation when trying to compare multiple properties, since only
one property can be mapped to color at a time. This makes it hard for the user to look at both gender and grade level.
In the radial layout on the right, we group by grade and map color to gender. The visualization starts with 8th grade on
top and continues counter-clockwise with 12th grade at bottom right and unknown to the top right. The radial layout
shows that gender plays less of a role as kids get older(there is more mixing of gender in higher grades).

allowed to nominate more of their peers (10 in
the case of friends, and 8 victims and aggressors).
See Faris and Felmlee [16] and Felmlee and Faris
[17] for more information.

5.2. School Friendship/Aggression networks

When looking at the Long Island friendship
dataset using the sensitivity-based force-directed
layout and coloring by grade, the 8th grade cluster
is distinctly separate from the rest of the grades.
This makes sense, since 8th graders are just en-
tering into the school and thus have not had time
to make as many friends outside of their grade.
While 9th grade is relatively distinct at the bot-
tom of the graph, 10th, 11th, and 12th graders are
harder to distinguish. Applying sensitivity anal-
ysis to remove some of the edges from the force
calculation results in a cleaner layout, as shown in
Figure 7. All edges are still rendered, maintaining
the completeness of the graph. However, there is
a better separation between grades, though 11th
and 12th grade are still tightly connected to each
other. Since the sensitivity cutoff removes less
important edges, we know that this pattern is im-

portant to the structure graph. This shows that
as students get older, age plays less of a role when
it comes to friendships.

Figure 8(a) depicts the Long Island network
colored according to gender. In the 8th grade
cluster, there is a clear segregation according to
gender. In the 9th grade, the males are clustered
in the center while females are in small groups
around the males. 10th grade also divides some-
what by gender, but 11th and 12th grades show
almost no gender segregation.

Our radial layout can show both gender and
grade patterns at the same time. In Figure 8(b),
we separate the groups by grade and color the
nodes by gender. This allows us to look at the
grades completely separately, which we could not
do in the node-link graph since 11th and 12th were
mixed together. This representation clearly shows
that there is more gender mixing as individuals
get older. This change happens rather abruptly
between the 10th and 11th grades. Also inter-
esting is the fact that modularity clustering has
fairly strongly separated the group of unreported
grades according to grade levels. Therefore, we
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predict that the clustering can infer the grades of
the students in the unreported group with rela-
tively high accuracy.

We were also interested in finding out if there
were any correlations between the friendship and
aggression networks. We confirmed that there
were. This can be seen using the parallel co-
ordinates view shown in Figure 6(b), with the
friendship network on the right and the aggres-
sion network on the left. The ordering for the
axis is defined by the modularity clustering of the
combined network, albeit separated and colored
according to grade level. When the connections
are drawn as straight lines, patterns are not in-
visible due to clutter. But, by applying the edge
bundling technique to the connections, the pat-
terns become more clear. In this view, it becomes
more readily apparent that the majority of edges
stays within grades. Interestingly, the aggression
network seems to mimic the friendship network.
This at first might seem unintuitive, but if aggres-
sion is a way of jockeying for social status [15],
then we might hypothesize that much aggression
occurs between rivals who may be members of the
same social groups.

We wanted to see how race played a role in
aggression. Figure 9 shows several schools from
the Contexts dataset, each with a different racial
breakdown. We colored and grouped each graph
by race. Both Figure 9(a) and Figure 9(c) show
similar acts of aggression with Whites being the
majority in one and Blacks in the other. In both
cases, members of the predominant race victimize
everyone more or less equally, while the minority
group has much less internal aggression. This in-
dicates that race itself does not play a large role
in aggression. Rather, aggression behavior is in-
fluenced by the relative size of the racial compo-
sition. Interestingly, when the school is broken
down by gender and colored by race, as seen in
Figure 10, individuals tend to group according to
race, and aggression is also apparent primarily in-
ternal within races. There also seems to be no dif-
ference between gender aggression. Both gender
have the same internal and external aggression.

Figure 10: Aggression radial layout shows one of the Con-
texts schools grouped by gender and colored by race. The
female gender is shown on top. Aggression occurs mostly
within the same race, and students generally group with
people of the same race.

6. Conclusion

We have described how to apply visualization
approaches to social network problems, as well as
how to enhance them by incorporating statistical
measures and tailor different layout methods to
particular analysis tasks. In particular, we have
demonstrated visualization that can not only uti-
lize standard statistical metrics, but which can
be used to select appropriate statistical metrics,
evaluate or confirm their results, or in some cases
even improve them (e.g. in the case of missing
data).

These approaches have been applied to the
analysis of networks with multiple categorical
breakdowns, both in node categories and edge
categories. Social networks of all varieties are pat-
terned by the categorical distinctions among their
members, the most well-known being homophily
according to demographic characteristics. These
visualization techniques readily reveal patterns
that are difficult to discern with traditional vi-
sualization approaches.

Moreover, we have addressed the “hairball
problem endemic to dense networks that are typi-
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(a) (b)

(c) (d)

Figure 9: Four schools from the Contexts dataset showing the aggression network. Each school has a different race
breakdown and is grouped and colored by race. The label shows the number of inter- and intra-group connections.
Comparing the four graphs, we can see that race does not play a major rule in aggression. A more telling factor is the
size of the groups. Bigger groups tend to victimize everyone more or less equally, while minority groups have less internal
aggression.
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cally visualized with spring-embedder algorithms.
Critically, our sensitivity cutoff approach reveals
structural properties that would have otherwise
remained invisible. While no single approach can
succinctly reveal everything about any one large
network, our approaches provide useful tools for
social network analysis.
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