
Software Evolution Storylines

Michael Ogawa
∗

VIDI Lab
University of California, Davis

Kwan-Liu Ma
†

VIDI Lab
University of California, Davis

ABSTRACT

This paper presents a technique for visualizing the inter-
actions between developers in software project evolution.
The goal is to produce a visualization that shows more de-
tail than animated software histories, like code swarm [15],
but keeps the same focus on aesthetics and presentation.
Our software evolution storylines technique draws inspira-
tion from XKCD’s “Movie Narrative Charts” and the aes-
thetic design of metro maps. We provide the algorithm, de-
sign choices, and examine the results of using the storylines
technique. Our conclusion is that the it is able to show more
details when compared to animated software project history
videos. However, it does not scale to the largest projects,
such as Eclipse and Mozilla.

Categories and Subject Descriptors

H.5.m [Information Interfaces and Presentation]: Mis-
cellaneous

General Terms

Design

Keywords

Software Visualization, Software Evolution, Storylines

1. INTRODUCTION
Animated visualizations of version control system (VCS)

data, such as code swarm and Gource [15, 5], have appeared
in recent years. Though characterized as non-analytical,
they have been useful for presenting the scale of develop-
ment to viewers not familiar to the particular project, as
well as project-specific events to those who are. A problem
with animation is that, while it provides an overall mental

∗msogawa@ucdavis.edu
†ma@cs.ucdavis.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOFTVIS’10, October 17–21, 2010, Salt Lake City, Utah, USA.
Copyright 2010 ACM 978-1-4503-0028-5/10/10 ...$10.00.

Figure 1: Exceprt from the XKCD comic “Movie
Narrative Charts” [14].

picture of a project’s evolution, the glimpses into the data
at individual timesteps are fleeting.

Considering these animations, we wondered if the same
information could be represented in a static image, so that
a viewer can see all timesteps at once. This approach could
potentially add analysis capabilities, since a viewer is able
to explore an image at leisure.

Previously, we found that the most important aspect of
the data to present was the developer interactions. Our vi-
sualization needs to show how developers work together on
a software project over time. In our search for techniques
that accomplish this, we came across the webcomic XKCD’s
“Movie Narrative Charts” [14] (an excerpt is shown in Figure
1). This chart shows the interactions between movie char-
acters as lines going from left to right. When characters are
in the same film location, their lines are grouped together.
The XKCD chart was drawn by hand, and it is likely that
considerable time was spent planning the layout.

So the question is: Can we apply the idea of a narrative
line chart to software project data to produce visualizations
automatically? In this paper we explain the technique and
show the results of software evolution storylines.

2. THE STORYLINES TECHNIQUE
In this section we describe the data processing require-

ments, visual design and layout, and results of the technique.

2.1 Data Processing
The raw input data for our visualization comes from soft-

ware projects’ version control systems. There are many ver-
sion control systems that projects may choose from, such as
CVS, Subversion, Git, Mercurial, Bazar, and so on. Each
of these systems have their own log output format. There-
fore, being able to read the histories of different projects will
likely result in having to parse different log formats.

In order to minimize the complexity of programming for
all the different systems and their log formats, we use one
separate format. This common XML format is the same as
the one accepted by code swarm, with data on each com-
mit, its author, time and modified files. The parser is also
separate from the visualization program.

2.2 Layout Heuristic
From studying the XKCD chart, we derived general rules

for an aesthetic layout of lines:

1. Clustered developers must be placed in contiguous, ad-
jacent lines.

2. Clusters should be spaced apart from each other.

3. Existing tubes should change y-position very little, if
at all.

4. Tube crossings are inevitable, but avoid them if possi-
ble.

What follows is a concise description of the algorithm.
Some details, such as specific data structures, have been left
out. (We emphasize that this paper is about the design of
the visualization technique and not about its implementa-
tion. The heuristics changed much during the prototyping
process and there is no reason to believe that this is the best
way to achieve the desired layout.)

Divide the y-axis into discrete tube slots.

(e.g. A 100-pixel axis may be divided into

twenty slots each five pixels high.)

For each timestep in the dataset,

Obtain a set of clusters of that timestep’s

developers through the co-commit graph.

For each cluster,

Based on already-placed developer tube

positions, find the weighted average

y-position (desired position) of the developers.

Add the cluster and its desired

position to a list.

Sort the list of clusters by desired position.

For each cluster in the list,

Attempt to assign it its desired place,

s.t. most existing lines do not shift position

and it is spaced away from already-placed

clusters.

If the desired place is taken,

search around the desired place until a

suitably empty area is found.

For each "veteran" developer in the cluster,

Place developer as close to their previous

timestep position as possible.

For each "newcomer" developer in the cluster,

Place where there is an empty tube in the

cluster’s defined region.

This is for the general case, where there a previous timestep
has been laid out. For the intial case, we simply place the
first timestep’s developers in spaced-out positions centered
on the middle of the y-axis.

The timestep duration we use is one month. This unit was
chosen by experimenting with different durations and seeing

what effect they had on the visualization. Shorter dura-
tions lead to developers appearing to drop in and out of the
project, while longer durations lead to everyone appearing
in one large cluster.

Notice that we do not specify the specific clustering method
used for clustering each timestep’s developers. It is not
important, so long as the clustering makes sense from a
data perspective. In our prototype implementation, we use
JUNG’s [22] Weak Component Clusterer algorithm. It was
chosen because it does not require an arbitrary edge removal
number or set number of clusters to generate. On the other
hand, it tends to generate large superclusters with software
project-specific data.

We considered other possible classes of algorithm for this
layout problem.

Force-Directed Graph Layout.
One may consider the developer storylines as a graph.

Each developer appearance in a timestep is a node, and
nodes are connected in the x-direction by author and con-
nected in the y-direction by co-commits with other authors.
By constricting the node positions to their respective timesteps
on the x-axis, but leaving them free to move in the y-direction,
we can use a force-directed graph layout algorithm to at-
tempt to reduce the number of edge crossings. This idea
was not followed because of the force-directed algorithms’
tendency to settle in local minima. For aesthetic reasons,
we wanted to keep the distance between inter-cluster lines
uniform, which a force-directed algorithm cannot guarantee.

Genetic Algorithm.
One may also consider the developer storyline positions

as a combinatoric problem. At each timestep there is an
ordering of lines such that there is a minimum of changed
positions considering the previous and next timestep order-
ings. A genetic algorithm can be used to find an efficient
ordering across all timesteps, where there is a minimum of
changed positions and line crossings. This is the fitness met-
ric. We chose not to use this class of algorithm because of
the programming complexity, but it is a good candidate for
future work.

Although some reasons are given for not using these par-
ticular algorithm classes, that is not to say that they will
not provide a good solution. We only wanted to produce
a proof of concept and using a heuristic approach was the
fastest. We encourage others to explore the results from
force-directed, genetic, and other algorithms.

2.3 Visual Elements

Tubes and Colors.
Initially, we tried to copy the pencil line drawing style of

the XKCD chart. That is, the developer lines were drawn
as colored thin curves separated by whitespace. While that
style worked for the movie chart, it did not scale for the
larger amount of lines and crossings. The thinness of the
lines made it difficult to follow each line, as in the “hairball”
problem that network visualizations experience.

Instead of thin lines, we were inspired by metro maps

(i.e. schematic diagrams of public transportation routes)
to thicken the lines and use bold colors. The amount of
space between connected lines was decreased, to mimic the
metro map convention showing collinear routes.

The default color scheme for storylines is a hash of a de-
veloper’s VCS username, transformed into a hue. An alter-
native scheme is to color each storyline by its developer’s
combined file modifications, using a user-defined map of file
type to color. As an example, a core developer may be col-
ored red while a lead documenter may be colored blue.

Labels.
Each developer tube is labeled with their repository user-

name. There are two types of labels: angled and inline. An-
gled labels appear at the beginning of most tubes. They are
angled at 45 degrees to distinguish them from the mostly-
horizontal tubes. In-line labels appear inside the tubes when
there is enough horizontal room. The appearance of these
labels is controlled by a minimum spacing distance, to ensure
that they do not become too cluttered. (Although in times
when there are many new developers, as seen in Figure 3,
the cluttering is unavoidable.)

Furlough Lines.
A fairly common occurrence in open source development

is when a developer does not commit during a timestep, but
resumes work in a future one. These furloughs from activ-
ity ought to be visually differentiated from a developer who
leaves the project permanently. We use dashed lines to con-
nect develoeprs’ timesteps during their temporary absence
(pictured below). The XKCD chart uses these lines before
a character’s first appearance to imply their prior locations
are unknown.

Commit Histogram.
As the storylines indicate the number of developers but

not the amount of commits, we place a commit histogram
at the bottom. This shows the number of file-commits (the
sum of files in each commit). Each bar is one timestep and
is divided into color categories, defined by the user. In the
histograms in this paper, the colors are red for core source
code, yellow for modules, and blue for documents.

Interaction.
The storylines visualization is designed to be viewable as

a static image. However, unlike metro maps which usually
have under fifteen lines, the number of developers in a given
project may number in the tens or hundreds. The poten-
tially large number of developers can lead to visual clutter
and difficulty tracking individual developer storylines. In
our prototype implementation, when the user mouses over

a storyline, only that developer’s storyline is colored and
the rest are turned to grayscale (pictured below). This sig-
nificanly reduces the visual burden and allows the user to
easily follow a developer’s activity. In addition, the selected
developer’s activity in the commit histogram is highlighted
through this interaction.

2.4 Results
We produced visualizations for a variety of open source

projects. These include Python, Apache, Ant, Eclipse and
PostgreSQL. The results for the Python dataset can be seen
in Figures 2 and 3. We do not include high-resolution im-
ages of other project results in this paper for space rea-
sons, but we will make them available online at http://

vis.cs.ucdavis.edu/~ogawa/storylines. Implementation
was done in the Processing1 language. It displays an in-
teractive visualization window and can export to PNG and
PDF formats. (We are currently working on a feature to ex-
port to SVG so that web users can experience the interactive
elements.)

Looking at the result for Python (Fig. 2), we see that
Guido (van Rossum, in red) starts the project in 1990. He
commits alone for two years, then is joined by a few other
developers. They“weave” in and out, sometimes working to-
gether, sometimes not. For Jack (Jansen, in blue), this pat-
tern is understandable because he created the MacPython
port. From the histogram, we see that documentation is
given more attention right before 1994 and at the beginning
of 1995.

What we did not expect to see, based on code swarm’s de-
piction, is Fred Drake connected to Guido most of the time.
As the lead documenter, we expected Fred to be separate
from the core developers and not work on any code. By
interacting with the visualization, we find that Guido com-
mits a fair amount of documentation and that Fred commits
a fair amount of code. This was not obvious in the Python
code swarm video2.

In the year 2000, a large number of newcomers enter the
project. This did not happen organically; the project mi-
grates to SourceForge and many people are now able to ac-
cess the VCS. This pattern again happens in 2005, when the
project migrates to Subversion.

Post-migration to SourceForge, development activity is
dominated by a large core cluster with small, specialist con-
tributions on the periphery. The Python code swarm video
also showed the large core, but the peripheral contributions
were lost in the flurry of activity.

2.4.1 Scale

We found that the storylines method works best with
small- to medium-sized projects. Apache, Python, and Post-
greSQL can be considered medium-sized. Larger projects,
like Eclipse, Mozilla and Linux, create problems for cluster
separation, which in turn creates problems for readability
and aesthetics. We think that when a project has a large

1http://processing.org
2http://vis.cs.ucdavis.edu/~ogawa/codeswarm

Figure 2: Python’s Storylines (left half). Guido van Rossum (red) begins the project in 1990. He is joined
later by a few developers. Development often fluctuates between cooperation and separation.

Figure 3: Python’s Storylines (right half). Project hosting is moved to SourceForge (CVS) in 2000 and
development speed picks up. They migrate to Subverion in 2005. There are plans to migrate to a distributed
VCS (likely Mercurial) in 2010.

number of developers, they are more likely to “overlap” each
other’s file modifications. Since our method relies on file
modifications to determine developer clustering, the devel-
opers are grouped into one large cluster. While it may be
the ground truth that everyone is connected to everyone else
in a particular project, it does not make for an interesting
visualization rich with insights.

As an example, the Eclipse storylines result (Fig. 4) con-
tains large “ribbons” of developers. The result is not par-
ticularly engaging, as everyone seems to be doing the same
thing as everyone else.

Figure 4: A small section of the Eclipse Story-
lines result, showing around 50 active developers per
timestep. Large, single clusters are a problem when
visualizing large software projects. We believe this
is because having more developers in a project in-
creases the likelihood of overlapping file changes.

2.4.2 Timing

The time to generate these visualizations is not problem-
atic. The Python result takes twenty seconds to produce. A
larger project like Eclipse takes roughly two and a half min-
utes. This time includes loading and processing the data,
computing the layout and displaying the result. Interac-
tion with the visualization is real-time, because all layout
information is saved in memory. Processing was done on a
Windows 2.4 Ghz dual core laptop with Sun’s 32-bit Java
VM.

3. RELATED WORK
As mentioned previously, we were motivated by our work

on code swarm [15] and inspired by the XKCD chart [14].
This section examines other related work.

Other visualizations have plotted developer activity on a
timeline. A handfull of papers explaining the Visual Code
Navigator suite [11, 20, 19, 21] use a History Flow-like [18]
approach to show changes in sets of files and lines of code.
The Ownership Map [6] represents files as straight lines that
are colored according to the calculated owner of the file.

The activity of only about twelve distinct developers can be
shown due to color perception limitations. Code Flows [17],
more recently, uses a tube aesthetic to show changes between
versions of files. These above visualizations differ from Sto-
rylines in that their primary, spatial focus is on the files or
code while ours is on the developers and their relationships.

ThemeRivers [7] and Streamgraphs [4] have thus far not
been applied to software evolution, but are worth mention-
ing. They show some measure of frequency of popularity
of things over time, such as political text, movie box office
returns, and music listening habits. Using stream width to
represent some magnitude may be applicable to our Story-
lines, though the tube aesthetic may be lost.

The project hosting site Github [1] has an“Impact”visual-
ization as part of their project graphs collection. It shows a
timeline of developer contributions, sorted by amount. De-
velopers are differentiated by color, sized by contribution
amount, and connected across timesteps. However, it does
not show any relationships between developers.

Like the Github visualization, Lee et al.’s system [9] uses
sized connected bars to show trending topics on the del.ici.ous
website. Unlike Github, relationships between topics are
shown as adjacent clusters. The “general view” also allows
topic clusters to overlap.
“Temps,” by Bestiario and Arts Santa Monica [2], is a

Flash-based visualization of scientific publications. Its lower
view shows trending topics in science from year to year. It
does not, however, cluster topics or order them in an aes-
thetic way.

Metro Maps as Visualization Metaphors.
Metro Maps, first designed for the London Underground

in 1931 by Harry Beck, have been used as a visualization
metaphor in the past.

Burkhard et al. and Stott et al. [3, 16] use the metro map
metaphor to display a timeline for project tasks. In the first
paper, layout and drawing is done in Adobe Illustrator, but
the second paper computes the layout automatically. Mar-
tinez et al. [13] use the same metaphor to show more detailed
aspects of the software development process. Unlike [3] and
[16], there are no parallel routes. These visualizations are
different from ours because they are meant to guide future
project organization and development rather than show the
project history.

There are also more artistic metro maps, such as one of
the human body [10], web trends [8], and music [12]. These
maps are manually laid out.

4. DISCUSSION AND CONCLUSION
We have presented a technique for visualizing software

developer interactions as a single image. The technique,
called software evolution storylines, shows many features of
software project histories. It uses data from the VCS, which
is readily available and inherent in software projects.

While it has advantages over animated techniques, such
as being able to drill down and discover more details about
developers (demonstrated in Section 2.4), it does not show
complete details like the exact names of files committed,
number of lines changed, or the intents of developers. We
would like to incorporate more information in the design,
such as commit messages, bug reports and mailing list top-
ics. The problem is difficult, as space is limited and there
can be thousands of messages to distill.

Aesthetically, we would like to see various groups of devel-
opers forming along the lines of their separated file assign-
ments, occasionally coalescing and reforming. The XKCD
chart has this aesthetic because epic movies do not often fea-
ture all characters on screen at once. We discovered software
development is a more practical process, where the separa-
tion of assignments is not followed closely at all. This leads
to the large cluster of developers seen in the latter half of the
Python storylines (Figure 3) and throughout the Eclipse and
Mozilla projects. To alleviate this monocluster problem, a
more liberal clustering algorithm can be used, or one where
a minimum number of partitions is set. Fortunately, the
majority of open source projects are smaller in scale than
Eclipse or Mozilla.

We would like to see the results of different classes of lay-
out algorithm, as featured at the end of Section 2.2. Can
force-directed and genetic algorithms produce aesthetically
pleasing results in a timely manner?

Finally, an evaluation is necessary to determine if this vi-
sualization technique engages casual viewers. Will it have
the same response as code swarm and Gource, or will view-
ers be underwhelmed by its static nature? Will people famil-
iar with the projects find more insights than before? To do
a public evaluation with interactive features intact, we will
need to program for the web (Flash or Javascript), a process
that will take some time. After releasing the visualization
to the public, we will collect data from users’ online feed-
back, both spontaneous and surveyed. If public feedback is
positive, we will prepare and release the code as open source.

5. ACKNOWLEDGMENTS
This research was supported in part by the U.S. National

Science Foundation through grants CCF-0938114, CCF-0808896,
CNS-0716691, and CCF-1025269, the U.S. Department of
Energy through the SciDAC program with Agreement No. DE-
FC02-06ER25777, and HP Labs and AT&T Labs Research.

We would like to thank the SoftVis reviewers who offered
their helpful suggestions – chief among these the use of SVG
to bring our visualizations to the web. We would also like
to thank Tom I. Li for his feedback.

6. REFERENCES
[1] Github. http://github.com.

[2] Bestiario and Arts Santa Monica. Temps.
http://culturesdelcanvi.com/temps.

[3] R. A. Burkhard and M. Meier. Tube Map
Visualization: Evaluation of a Novel Knowledge
Visualization Application for the Transfer of
Knowledge in Long-Term Projects. Journal of
Universal Computer Science, 11(4):473–494, 2005.

[4] L. Byron and M. Wattenberg. Stacked Graphs –
Geometry & Aesthetics. IEEE Transactions on

Visualization and Computer Graphics,
14(6):1245–1252, 2008.

[5] A. Cauldwell. Gource.
http://code.google.com/p/gource.

[6] T. Girba, A. Kuhn, M. Seeberger, and S. Ducasse.
How Developers Drive Software Evolution. In
Proceedings of the Eighth International Workshop on

Principles of Software Evolution, pages 113–122.
IEEE, 2005.

[7] S. Havre, E. Hetzler, P. Whitney, and L. Nowell.
ThemeRiver: Visualizing Thematic Changes in Large
Document Collections. IEEE Transactions on

Visualization and Computer Graphics, 8(1):9–20, 2002.

[8] Information Architects, Inc. Web trend map.
http://informationarchitects.jp/wtm.

[9] T.-Y. Lee, C. Jones, B.-Y. Chen, and K.-L. Ma.
Visualizing data trend and relation for exploring
knowledge. In Posters Proceedings of the IEEE Pacific

Visualization Symposium, 2010.

[10] S. Loman. Underskin. http://www.just-sam.com.

[11] G. Lommerse, F. Nossin, L. Voinea, and A. Telea. The
Visual Code Navigator: An interactive toolset for
source code investigation. In Symposium on

Information Visualization, pages 24–31. IEEE, 2005.

[12] D. Lynskey. Music on the tube map.
http://blogs.guardian.co.uk/culturevulture/archives
/2006/02/03/going underground.html.

[13] A. A. Mart́ınez, J. J. D. Cośın, and C. P. Garćıa. A
metro map metaphor for visualization of software
projects. In SoftVis ’08: Proceedings of the 4th ACM

symposium on Software visualization, pages 199–200.
ACM, 2008.

[14] R. Munroe. XKCD #657: Movie Narrative Charts.
http://xkcd.com/657.

[15] M. Ogawa and K.-L. Ma. code swarm: A Design
Study in Organic Software Visualization. IEEE
Transactions on Visualization and Computer

Graphics, 15(6):1097–1104, 2009.

[16] J. M. Stott, P. Rodgers, R. A. Burkhard, M. Meier,
and M. T. J. Smis. Automatic layout of project plans
using a metro map metaphor. In IV ’05: Proceedings

of the Ninth International Conference on Information

Visualisation, pages 203–206. IEEE Computer Society,
2005.

[17] A. Telea and D. Auber. Code Flows: Visualizing
Structural Evolution of Source Code. Computer

Graphics Forum, 27(3), 2008.

[18] F. B. Viégas, M. Wattenberg, and K. Dave. Studying
cooperation and conflict between authors with history
flow visualizations. In CHI, pages 575–582. ACM,
2004.

[19] L. Voinea, J. Lukkien, and A. Telea. Visual assessment
of software evolution. Sci. Comput. Program.,
65(3):222–248, 2007.

[20] L. Voinea and A. Telea. CVSgrab: Mining the history
of large software projects. In EuroVis, pages 187–194,
2006.

[21] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan:
Visualization of Code Evolution. In SOFTVIS, pages
47–56. ACM, 2005.

[22] S. White, J. O’Madadhain, D. Fisher, and Y. B. Boey.
JUNG: Java Universal Network/Graph Framework.
http://jung.sourceforge.net.

