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Scatterplots are commonly used to visualize multidimensional data; however, 2D projections of data offer
limited understanding of the high-dimensional interactions between data points. We introduce an interactive
3D extension of scatterplots called the Regression Cube (RC), which augments a 3D scatterplot with three
facets on which the correlations between the two variables are revealed by sensitivity lines and sensitivity
streamlines. The sensitivity visualization of local regression on the 2D projections provides insights about the
shape of the data through its orientation and continuity cues. We also introduce a series of visual operations
such as clustering, brushing, and selection supported in RC. By iteratively refining the selection of data
points of interest, RC is able to reveal salient local correlation patterns that may otherwise remain hidden
with a global analysis. We have demonstrated our system with two examples and a user-oriented evaluation,
and we show how RCs enable interactive visual exploration of multidimensional datasets via a variety of
classification and information retrieval tasks. A video demo of RC is available.
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1. INTRODUCTION

User interaction plays an important role in visual analytics. To gain insight from
raw data, analysts go through an iterative process of discovery until their questions
about the data are answered with sufficient confidence. From input to insight, data are
subjected to a series of transformations at different levels: (1) the data level, often the
subject of data mining, (2) the visual level, which is the focus of visualization, and (3) the
view level, often the focus of human-computer interaction [Card et al. 1999]. During any
step of these transformations, user interaction provides feedback by proposing different
hypotheses, setting up algorithm parameters, changing visualization properties, or
commenting on the visual evidences of the produced images. Spence [2007] pointed out
that the importance of user interaction in visual analytics lies in the possibility for
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users to explore interactively the subsets of a corpus of data to find their way toward
the view that triggers an “a-ha!” experience.

In this study, we examine the interplay between filtering and insight, as facilitated
by interaction techniques such as zooming, panning, and view changes. We focus on
selection as the main approach to filtering and regression analysis as the basic mech-
anism to obtain insight about the interactions between the different aspects of the
data. Our objective with the proposed technique is to understand how interactive fil-
tering benefits the study of correlation between variables in a dataset. Additionally,
we seek to demonstrate that visual feedback is useful in revealing trends at multiple
scales. By “selection,” we refer to all interactive means that allows a user to select one
or more elements from the data space. It includes pointing and clicking, rectangular
region picking by clicking and dragging, and more sophisticated mechanisms such as
brushing or sketching.

To further clarify our contribution, we now review the process of data discovery via
regression. Linear regression, the focus of this work, is one of the most commonly
used mechanisms for analysts to discover and quantify linear correlation between two
variables. A positive correlation indicates a sense of dependence between two vari-
ables, whereas a negative correlation indicates an inverse dependence. No correlation
is an indication of independence between two variables. In simple, low-dimensional
datasets, it is often easy to see correlation directly from a scatterplot, and regres-
sion serves to quantify the extents of such correlation. However, in multidimensional
datasets, the correlation may be the complex product of interactions between multiple
variables at the same time. Therefore, it may not be easy to discover the correla-
tions via simple visual inspection. Additionally, exhaustive exploration of all projec-
tive spaces becomes prohibitive since the number of possibilities expands with the
factorial of the number of dimensions. In these situations, a more effective mecha-
nism is the interactive visual exploration, where the users explore the data space
via selection of data points and then reapply regression locally on specific selections.
Although this process may be used currently in an ad hoc manner, this is never
explicit to the user. In this article, we aim to make this iterative two-step process—
(1) select the data and (2) update the regression analysis—explicit and explorative to
the users.

To this end, we introduce the two mechanisms. First, we define the regression hier-
archy, a tree-based representation of the process of regression. It consists of a root node
representing all data elements and a set of descendant nodes linked from the root to
represent the data partition by the selection. If a linear pattern is found in one of the
leaf nodes, its node in the regression hierarchy shows a high correlation value. Second,
we introduce the Regression Cube (RC), an interactive interface that “hosts” the subset
of the dataset that has been explored by the user. In our case, we use a 3D rotatable
interface for RC to handle at most three dimensions at the same time, shown as the
three “facets” of 2D projections. On the facets, we show the sensitivity-augmented scat-
terplots. The regression hierarchy is then a tree-based summary of these RCs and the
linkages between them. The analytic process can be then defined in terms of these
special operations: (1) dimension selection or creation of the cube, which puts the input
data into a 3D interface from the three variables the user chooses; (2) selection of data
points, via brushing or other appropriate methods, that divides the dataset into two
subsets: the in-selection set and its complement; (3) export, which creates two RCs: one
for the selection and another for its complement. These cubes are connected to the par-
ent cube where the selection takes place, and thereby the hierarchy of cubes is formed
when the process is iterated. This top-down comprehension is explicitly visualized, and
it helps analysts iteratively refine the regression analysis to narrow down to the proper
subsets of data that exploit certain trends.
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As mentioned earlier, the objective of selection is to discover interesting patterns that
may be hidden from a particular projection. In addition to traditional filtering using
the axis-aligned rectangular selections or drawing an arbitrary shape by a lasso tool to
select, we provide users with visual cues of sensitivity about the local variation between
variables on each data point. We employ sensitivity flows [Chan et al. 2010], which
enhance traditional scatterplots with local regression analysis, so that the analysts
can understand locally linear relationships at a glance. Although the idea of RCs is not
exclusive to regression analysis, we have found that the regression-aligned selections
are better for building regression hierarchies than axis-aligned selections, as they tend
to group data elements that share similar trends together and thus are more resilient
to small changes in the selection.

Note that RC uses an underlying augmentation of scatterplots based on our previous
work on flow-based scatterplots [Chan et al. 2010] and the generalized sensitivity scat-
terplot [Chan et al. 2013a], which deals more with the theoretical aspects of sensitivity
analysis in visual analytics. The former introduces the analogy between regression and
flow to help the analysts understand correlations between a pair of variables, and the
latter reveals the high-dimensional trends and generalizes the notion of sensitivities
by inverting the order of data transformations to make the differentiation occur before
the projection when computing regression lines. In this article, we focus on the prag-
matic implications of regression in the interactive visual analytics that has led to the
creation of the regression hierarchy, obtained by progressively fitting regression lines
and then filtering by the conventional or the regression-aligned selections. It refers the
sensitivity information in building such hierarchies and thus incorporates the regres-
sion analytics that are not available with traditional plots, and it visualizes the process
of the iterative regression analysis as the regression hierarchy graph explicitly. More-
over, the regression hierarchies are not unique to sensitivity-augmented scatterplots
but can be a general framework that applies to traditional or any other kind of aug-
mented scatterplots as well. We believe that these are separate contributions within
the larger field of regression and visual analytics.

RCs help users to perform interactive regression analysis and to develop hypotheses
on different subsets of data at the same time. In this article, we describe our approach
to generating these hierarchies, how this representation facilitates users’ insight, a
qualitative evaluation of two examples in Section 5, and a user-oriented quantitative
evaluation in Section 6.

2. RELATED WORK
2.1. Multivariate Analysis

Multivariate analysis is at the core of visual analytics. Approaches can be categorized
as automatic analysis, such as regression [Draper and Smith 1998], generalized ad-
ditive models [Hastie and Tibshirani 1986] and response surface analysis [Box and
Draper 1987], or visualization approaches. Since data is becoming increasingly large
and complex, data-driven approaches often employ simplification techniques, which
either reduce the number of observations, such as binning, sampling [Thompson et al.
1996] or clustering [Berkhin 2006], or reduce the number of dimensions in the data,
such as projections [Shlens 2005] and multidimensional scaling. Visually centered ap-
proaches follow a different strategy, where correlations and trends emerge as salient
structures in the human visual system. These approaches are often coupled with inter-
active manipulation. For example, Jeong et al. [2009] proposed to augment traditional
data analysis tools such as Principal Component Analysis with interactive manip-
ulation for a better understanding of the transformation and the data itself. Yang
et al. [2007] integrated analysis tools with visual exploration of multivariate data and
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incorporated user interest to guide the analysis. In this article, we present a combi-
nation of analysis and visualization tools that exploit sensitivity analysis for effective
exploration and navigation of multidimensional data.

2.2. Sensitivity Analysis

Sensitivity analysis refers, in general, to the analysis of the variation of the outputs in a
model to small perturbation of their inputs. Numerous approaches have been proposed
to this end. A number of methods fall into the class of local analysis, such as adjoint
analysis [Cacuci et al. 2005] and automated differentiation [Griewank et al. 2000],
where the sensitivity parameters are found by simply taking the derivatives of the
output with respect to the input, s;; = 9Y;/3.X;. Because this is usually done in a small
neighborhood of the data, they are usually called local methods. Others have proposed
global estimates of sensitivity, which use sampling or statistical techniques. The most
common statistical method is based on variance that provides an estimate of the sen-
sitivity in terms of the probability distribution of the inputs [Chan et al. 1997; Jansen
1999; Sobol 2001; Helton et al. 2006; Arriola and Hyman 2007]. Other approaches di-
rectly introduce perturbation on the input data by manipulating certain parameters
and compute the ensuing variation on the output. Since it is computationally expensive
to try the entire parameter space, numerous approaches use sampling-based methods
as extensively surveyed by Helton et al. [2006]. Different simulation strategies have
been applied, including random, importance, and Latin hypercube sampling [Iman and
Helton 1988].

Christopher Frey and Patil [2002] also reviewed a number of sensitivity analysis
methods. Tanaka [1994] surveyed the sensitivity analysis in the scope of multivari-
ate data analysis. Specific analyses for certain common data analysis tools have been
proposed. Chan et al. [1997] presented a sensitivity analysis for variance-based meth-
ods in general. Cormode and McGregor [2008], Chau et al. [2006], and Ngai et al.
[2006] proposed extensions to perform k-means clustering on uncertain data. Similar
studies have been carried out to quantify the sensitivity and uncertainty of the princi-
pal components of multivariate data [Smidl and Quinn 2007; Yamanishi and Tanaka
2005]. Kurowicka and Cooke [2006] extended the issue of uncertainty analysis with
high-dimensional dependence modeling, combining both analytical tools with graphic
representations.

Barlowe et al. [2008] proposed the use of histograms and scatterplot matrices to
visualize the partial derivatives of the dependent variable over the independent vari-
ables and to reveal the positive or the negative correlations between the output and
the factors in a multivariate visual analysis. Correa et al. [2009] used sensitivity anal-
ysis to propagate the uncertainty in a series of data transformations and proposed
a number of extensions to show this uncertainty in 2D scatterplots. In our work, we
generalized the idea of sensitivity visualization as flow-based scatterplots [Chan et al.
2010]. Bachthaler and Weiskopf [2008] presented the continuous scatterplots, which
generate a continuous density function for a scatterplot and alleviate the issues with
missing data. Our idea of flow-based scatterplots has a similar concept, which attempts
to find a continuous representation of the density that explains the 2D plot. However,
we use a local analysis based on derivatives to find local trends in a scattered manner.
Local analysis is popular in multivariate analysis because its computational efficiency
and practicality, owing to the fact that the closed form of the data model is usually
unknown. Berger et al. [2011] proposed an interactive exploration through the con-
tinuous parameter space as a local analysis using multivariate prediction. Similarly,
Guo et al. [2011] proposed a pointwise local pattern exploration of the relationships
between a focal point and its vicinity by a specific point-comparing layout, providing
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the interactive exploration and highlighting anomaly with adjustable sensitivity coef-
ficient to consider domain knowledge. And Brecheisen et al. [2009] has done previous
work in parameter sensitivity visualization.

2.3. Multidimensional Visualization

Projection is a commonly used dimension reduction technique for multivariate datasets,
useful when visualizing high-dimensional data in 2D or 3D spaces. Scatterplots are
intuitive to understand when studying the relationship between two variables. How-
ever, projected points may result in clutter and overlap for large and high-dimensional
datasets. To solve this problem, Keim et al. [2010] proposed generalized scatterplots
to augment the degree of overlap and the distortion. Other augmentations have been
proposed by Collins et al. [2009], which enhance the spatial layout of plots with clus-
tering information, and Shneiderman and Aris [2006], which link multiple substrate
to superimpose cross-substrate relationships. Another issue of scatterplots is that only
a limited number of variables can be shown after projection. The scatterplot matrix
is commonly used to enumerate all possible combinations of pairs of variables, but
an effective navigation between these different projections is necessary. For example,
ScatterDice [Elmqvist et al. 2008] is developed to maintain perception of data during
transforming from one projection to another as a mean to reduce mental stress during
exploration of the scatterplot matrix. Yet it is still a challenging task to mentally re-
tain the knowledge of variable correlation that one may gain during high-dimensional
exploration, especially when the dimensions are high and the correlations are not so
strong to be explicitly shown.

A few visual designs have been proposed to compare multiple variables. Eschenbach
[1992] used spiderplots to show the relative change in the outcome for a unit change in
multiple independent variables. Similarly, [Guo et al. 2011] used star glyphs to show
multiple variables and colored glyphs by the significant test to highlight anomalies in
the global space.

3. REGRESSION HIERARCHIES

Regression and sensitivity analysis is inherently multiscale. Depending on the degree
of interest of the user in a particular region of a high-dimensional space, different
regression lines or curves can be fitted.

In the most typical approach, analysts fit a line or curve to data in a 2D projection, a
surface in 3D projections, or a hypersurface in higher dimensions. When dealing with
data that exhibits multidimensional dependencies, it is often the case that a single
line or surface might not explain the data and regression errors are large. Analysts
then resort to filtering the data, based on either a priori knowledge about the data or
in an exploratory manner throughout the domain, to obtain local regression fits. This
process of filtering and refitting induces an implicit regression hierarchy. The goal of
this article is to present a visual and interactive technique to expose these hierarchies
and alleviate the cognitive load required to keep track of the filtering/regression steps.
This becomes especially necessary when dealing with multiple dimensions and complex
interactions between variables.

3.1. A Motivating Example

To understand the notion of regression hierarchies, consider the example in Figure 1.
Clearly, the two variables do not exhibit correlation in a global sense. To analyze the
data, we might want to filter that data by the vertical dimension into two intervals
(Figure 1). One of the groups, when the variable in the vertical axis is low, shows a
linear trend. The other group, in the higher values of the vertical axis, on the other
hand, shows no monotonic relationship between the variables. In this case, the user
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Fig. 1. Regression hierarchies of a synthetic dataset contain regions of the different patterns on the top
left scatterplot. (a) A regression hierarchy built by rectangular picking of points. The first split results in a
linear trend in green. The second selection is split into two smaller linear trends in blue and dark blue. A
node-link graph called the hierarchy graph shows the structure of the hierarchy, in which nodes are colored
in the green-yellow-green color map according their values of Pearson covariance coefficient. The darker the
node, the more coherent the pattern found. Note that the intermediate cube on the second level has a quite
low covariance because it exhibits a nonlinear relationship. (b) Another regression hierarchy by sensitivity-
aligned selections. In this case, it is possible to select the nonrectangular groups that have similar (nonlinear)
trend with ease. Now we see two splits along the different selections, revealing three types of trends at the
end. The slope of the long straight line in red on a cube represents the simple linear regression of all points
in the cube.

splits the domain along the horizontal axis, which shows two linear fits. This process
of progressively refining the selection of data elements to achieve high accuracy is
what we call the regression hierarchy. In the simplest cases, where data are linear,
the regression hierarchy is shallow. In other cases, the regression hierarchy might be
several levels deep.

As we have seen, the way to filter data affects the results of regression. To address
this issue, we augment the process with sensitivity information, as suggested in Chan
et al. [2010]. Consider the same example in Figure 1, where now points are augmented
with sensitivity lines, indicating the local trend around a point, as shown in Figure 1(b).
These lines reveal nonlinear trends that are difficult to extract using linear fits. In this
particular case, the user detects two groups by the orientation of the sensitivity lines in
blue and green. Whereas the group in blue shows a monotonic relationship, the group
in green can be further split after a quick inspection. This split can be done easily by
grouping trend lines in terms of their orientation. The group that has less steep trend
lines can be explained by a linear relationship (dark green), whereas the group in
light green is clearly represented by a monotonic nonlinear relationship. This process
also results in a regression hierarchy, although different from the one obtained using
linear regression. The exploration of these different levels of regression helps the user
partition the data in a number of ways and efficiently explore complex relationships
and groups that are not axis aligned.

Our objective is to enable general regression exploration with a unified structure.
We call such a structure the Regression Cube, a visual representation of trivariate
sensitivity between variables augmented with regression and sensitivity lines. We also
present a series of interactive operations on the cube to support the visual analytics
process.
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4. REGRESSION CUBE

We define the concept of RCs to be the visual representations of trivariate sensitivity
information via the simultaneous projection of pairwise sensitivity lines. Formally, the
RC is a subspace formed by three orthogonal axes X, Y, and Z, such that each pair
of combinations show the sensitivity along the respective plane while simultaneously
showing a conventional 3D scatterplot. Such a 3D representation enables analysts
to compare three sets of pairwise correlations at once with continuous visual cues of
each dimension shared by two facets. Another reason for adopting 3D scatterplot in this
work is that 3D projections decrease information loss by allowing better discrimination
between data elements [Poco et al. 2011]. Although 3D visualization is susceptible to
projective ambiguities, occlusion, and clutter, we mitigate these issues in the RCs
with sensitivity lines and visual exploration techniques (Section 4.5). Note that the
representation of 3D RC with projections to the three facets has been explored in Tory
[2003], and the application of 3D scatterplots was covered by Sanftmann and Weiskopf
[2012].

Before we discuss building such a cube, we introduce the notion of regression-oriented
sensitivity analytics that can be used on the facets of the cube in exploration, as
described in Chan et al. [2010, 2013a].

4.1. Regression-Related Analytics

4.1.1. Estimating Local Sensitivity on a Facet. Sensitivities represent the rate of change of
one variable as a function of variations of another. For a pair of 2D points, (x, ), we can
estimate sensitivity as the slope of the locally fitted linear regression around a given
point, using the linear Taylor expansion of a given variable y with respect to another
variable x.

For a point (xg, yo),

ay
Yi— Yo~ akxo,yo)(xi — Xp). @))

Because we generally only have scattered points (as opposed to say a regular grid
or mesh), we must approximate these derivatives using sparse fitting. Let us define a
neighborhood around each point consisting of points (x;, y;). Then we can estimate the
local rate using orthogonal distances solving the quadratic problem:

BE+Cp—-1=0
B Syy — Syx + (SZ — Sﬁ)/Sw
Sx Sy/ Sw - Sxy

Sw = Zwi

Sy = Y wile; —x0), Sy = Y wilyi — o),

&
Il

1
Zwl'(xi _x0)27 Syy = Zwi(yi _y0)2>
i i

Sy = Z w; (o — x0)(y; — ¥o),

where w; is a weight associated with each point in the neighborhood of (xg, yo), usually
a smoothly varying function that decreases with distance. In our case, we choose a
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Gaussian weighting scheme:
w; = e~ X, 2)

where d(xo, x;) is the Euclidean distance between two points in R2.

We prefer orthogonal regression, where the offset from the point in the neighborhood
(x;, ;) to the given point (xg, yo) is perpendicular to the fitting trend [Weisstein 2009b],
as opposed to vertical regression, where the offset is approximated by the distance
along the axes directions, such as the ones used in Chan et al. [2010] and Weisstein
[2009a], in order to produce regression lines that are less sensitive to the inherent
orientation of points along the different axes, and thus are capable of extracting more
salient and arbitrarily aligned sensitivity structures. The similar local neighborhood
of points in scatterplots was analyzed previously in Sanftmann and Weiskopf [2009],
where the quality of the linear fitting was discussed as well.

4.1.2. Computing Global Regression on a Facet. We also approximate a global linear re-
gression line for the facet considering all data points present on the facet and apply
the sensitivity estimation shown previously, but with a uniform weight scheme in
Equation (2). Some examples of the global regression augmented facet are shown in
Figure 1 (red lines) and later in Figure 6 (cyan lines).

4.1.3. Approximating Sensitivity Streamlines on a Facet. We use sensitivities to build three
2D flow plots, one for each facet of the cube, which summarize the most likely flow of the
gradient along that dimension, given the derivatives at each point. The representation
follows an analogy with fluid dynamics so that if the location of a data record in a plot
represents position, then the partial derivatives can be understood as the velocity of a
particle that has been dropped on that location.

To create a 2D flow plot, we use streamlines that integrate the velocities to simu-
late the path that a particle would take if placed in this flow field. Since we have a
scattered collection of points, we use a scattered integration scheme, which computes
new directions based on the local velocity (or derivative) sampled from the neighboring
data elements on the projection. To integrate the derivatives along the streamline, we
used second-order Runge-Kutta. A streamline spanned from a data point py in the 2D
domain is a series of connected points found using the following recursive method. For
a point py, the next point in the streamline py,; is found as

D, = prE£0.5x hxv(p) (3)
Dre1 = PrEh x v(p)) (4)
v(pr) = [1,dy/ox], (5)

where & is the discretization distance between consecutive points in the streamline
and v(p) is the derivative evaluated at point p. We apply this mechanism forward and
backward in time (by the positive and negative sign before &) and stop the streamline
at the boundaries of the scatterplot. Note that we compute streamlines only for the
scattered data elements on the projection—that is, we do not synthesize streamlines
for nonexisting grid points.

4.2. Building a Cube

A cube is built as a combination of 2D sensitivity plots and a 3D scatterplot, an example
of which is shown in Figure 2. Let us define three variables, X, Y, and Z, between
which we want to understand the nature of their interaction. First, for each data point
(x,y,2), we uniquely find its position by placing it in its respective coordinates after
normalization in the unit cube. Other normalizations, such as the ones based on the
standard deviation, are applicable as well. For the simplicity, we assume that each
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Fig. 2. An RC example with different examining modes: 3D, the left facet, the right facet, and the bottom
facet, respectively.

point is defined in the interval [0, 1]2. Note that to avoid blocking the information
shown on the facets, most of the 3D scatterplots in cubes are hidden in the following
figures.

We then add three facets that represent the projection of the 3D space onto the 2D
planes. As a convention, in this article, we called these facets as such:

—The Right Facet (X-Y),
—The Left Facet (Y-Z), and
—The Bottom Facet (X-Z).

Some edges of the front faces of the cube are hidden to avoid distracting occlusions
and ambiguities. This leaves us the three inner facets inside the cube as the walls on
which to project information. We simply place the sensitivity scatterplots of X-Y, Y-Z,
and X-Z variables to their respective facets. An example is shown in Figure 2. Such a
representation has a number of advantages. (1) It uses the limited amount of screen
space to show the interplay of the three variables, by distorting the three scatterplots
according to the human’s visual depth perception, and gluing the shared axes between
two of the three scatterplots together. (2) Compared to well-known techniques for mul-
tivariate data space, such as the scatterplot matrix, RC is able to highlight tri-variate
relationships while retaining the ease of use and understanding of 2D sensitivity plots.
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(8) Compared to previous sensitivity plots, including our own flow-based scatterplot,
the perception of 3D sensitivities is possible via the implicit integration of shadow-like
structures in the 2D facets. Visually tracing along a shared axis (say Y) with the two
facets of sensitivity lines on its both sides (X-Y and Z-Y), the user would perceive bet-
ter understanding about the sensitivities of both adjacent variables (X or Z) when the
variable at the axis (Y) changes. This eases the possible mental stress of the analysts
when trying to retain mentally the insight attained from multiple pairwise correla-
tions that they observed and to relate them in mind when information is presented as
separated without linkage in between. (4) RC offers the reliable primitive in regression
analysis, the sensitivity lines and streamlines, with which to interact. Coherent high-
dimensional patterns can be visually integrated and mentally perceived from multiple
sets of sensitivity scatterplots, which may be less ambiguous than the visual metaphor
in the 3D space. The 2D facets also provide a solid and familiar interface for the general
users to directly interact with the data elements.

4.3. Operations on Facets and Cubes

We provide a number of operations on the facets in an RC to exploit toward exploratory
analysis.

4.3.1. Selection. Interacting with the data points in a 3D space in a 2D screen directly
can be difficult and ambiguous; thus, we allow the user to brush and select points only
on the 2D facets. RC provides the following four ways to select data points, as shown
in Figure 3:

(1) Draw a rectangle to enclose the data points.

(2) Move the cursor to a target data point on a facet. It will automatically select all
other points with similar slope of the short regression line to the target point.

(8) Move the cursor to a target data point so that it selects all other points that fall
into the curvy band area around the sensitivity streamline of the target point

(4) Brush across the sensitivity streamlines to select the data points from which they
originate.

Note that the brushing described in (4) is different from traditional brushing on
scattered points but similar to the technique presented in Hurter et al. [2009]. Instead
of painting on top of points scattered in 3D space, we check the stroke drawn by the
cursor and see what streamlines it crosses. Then we select data points from which
the crossed streamlines are computed. Such data brushing allows selecting data of
complex shapes and various sizes. An example is shown in Figure 3(d), where we
brush the streamlines by a stroke to select the data points of the positively increasing
trend.

4.3.2. Classification. Classification provides a higher level of abstraction of the dataset,
and it helps identify important patterns of the sensitivity streamlines on the facet.
Moreover, classification partitions the dataset into groups that possibly reveal differ-
ent patterns. This operation stems from the observation that points in the same high-
dimensional feature are likely to have similar sensitivities. Thus, we expect sensitivity
lines to be smooth but sufficiently different in terms of shape as they start to diverge
in the high-dimensional space. Although the selecting technique like brushing stream-
lines allows the user to manually classify a set of streamlines, we can take advantage
of the automatic classification on each facet that suggests grouping of data points to
enhance efficient selections. Moreover, we use the interactive legends, which lead to
faster perception of the mapping between data values and visual encoding [Riche et al.
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rectangular selection points of similar sensitivity

Fig. 3. Four types of selection provided in RC.

2010], to show the classification for the user to choose from. We provide four k-mean
clustering techniques based on different metrics of data, as shown in Figure 4:

(1) The position of the data on the facet (x and y).

(2) The slope of the sensitivity line along two axes (dx and dy).

(8) The position of the samples along the sensitivity streamline that originates from
the data point (x;, ¥;).

(4) The curvature on the samples along the sensitivity streamline computed from the
data point (an angle ;). In this case, we apply the curve clustering algorithm
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Fig. 4. The k-mean clustering from the four types of distance function in RC. It suggests the group of the
data elements from which to select.

described in Wei et al. [2010] to differentiate sensitivity streamlines at a global
scale. Since we use a rather synthetic notion of sensitivity streamlines and do not
necessarily comply with physical requirements, we do not consider aspects such
as repetition, scaling, and tolerances in their algorithms, which rarely occur in the
streamlines that we construct with a large enough sampling radius. To compare
the similarity between two sensitivity streamlines, we sample the curvature values
along the streamline and compare the two streamlines by their summation of the
total variance in curvature from all sampled points. Finally, we use single linkage
clustering to obtain the last % clusters after merging clusters of high similarity. The
algorithm works qualitatively well to provide classes with sufficiently different
behaviors, as shown in Figure 4(d).
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4.3.3. Rotation and Reprojection. We can rotate the 3D interface in RC to examine the
point of interest and disambiguate projection artifacts, and we can switch to different
2D facets iteratively to inspect the trivariate relationship in the multidimensional
dataset.

4.4. The Process of Visual Exploration and Pattern Finding

The value of the RCs rests in the interactive process that users can perform on them
in order to navigate through a dataset and iteratively filter out data to discover trend
patterns. With the various selecting and clustering mechanisms that we have provided,
of which some are regression-aligned interactive filtering techniques, users are guided
by the visual cues to take advantage of their visual perception. Going through this
process, the user gradually drills down to the meaningful patterns that would otherwise
be hidden at once. Yet it is still the user who decides on the data content of the filtering,
so different users may find different regression hierarchies on the same dataset. The
guiding visual cues of RC in the process include:

—The local linear regression indicated by the short lines on data points

—The integrated local linear regression shown by the long sensitivity streamlines
extended from data points

—The global regression visualized by a long straight line on a set of selected points

—Pearson covariance coefficient, which is shown by the label and color of the nodes
on the regression hierarchy that represents the predictive relationship of the two
variables on a facet of the cube

The pattern discovery process with RC is an iterative three-step procedure as
follows:

(1) Locate the projection. Choose from the left, right, or bottom facet of the RC that
you are working on. A good strategy is to pick a facet for which the working cube’s
Pearson covariance is smaller than that of its parent, if it has a parent, so that the
hierarchy will have increasing covariance from high-level nodes to low-level leaf
nodes, and thus the patterns found in the lower-level nodes will exhibit a coherent
trend on the facet.

(2) Perform selecting and exporting. The users can apply one of the four data selection
techniques described in Section 4.3.1, or they can select data by a higher abstraction
from the groups computed from classification as described in Section 4.3.2.

The selected data points are highlighted in all linked cubes, so the user has visual
feedback about the selection. The quality of the selection can be verified by visual
cues such as (1) the aggregated directions of short regression lines (i.e., sensitivity
lines), (2) the coherent sensitivity streamlines, or (3) whether the direction of the
most of sensitivity lines on the points is consistent with the direction of the global
regression line of this selection.

(8) Compare cubes by visual cues. Note that the sensitivity analytics is approximated
locally around the neighborhood of the data point, so its visual cues highly depend
on the constitution of the data points in the cube and need to be updated accord-
ingly when the neighborhood changes. Thus, all of the regression-related visual
cues are recomputed in the new cubes, including the short sensitivity lines, sensi-
tivity streamlines, and the global linear regression line of the plot. Then we can
evaluate whether the selection performed in the previous step exhibits a meaning-
ful correlation pattern or not by comparing the regression visual cues between the
new cube and the other cubes in the hierarchy. Another intuitive way to evaluate
the selection is Pearson covariance mapped as the colors of nodes in the hierarchy,
as it summarizes how strongly the two variables on the facet are linearly dependent
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Fig. 5. Visual exploration by RCs. Two regression-aligned partitions are shown in this example. (1) The
negatively correlated trend (pink) found on the left facet on the root node. (2) The positively correlated trend
(blue) selected on the right facet. The regression hierarchy is shown by the node-link diagram in green
and yellow. The greener the node, the higher the covariance between the two variables on the facet. The
pink trend has quite strong correlation (p = 0.8894) between Alcohol and Color, whereas the blue trend has
medium strong correlation (p = 0.7757).

for the subset data in the cube. Then users can go back to the first step, where they
may switch to other facets and keep building the hierarchy until interesting trend
patterns are found in cubes on the leaf cubes in the hierarchy.

4.5. An Example of Visual Exploration and Pattern Finding

In this section, we show how to utilize RC to explore the multidimensional data and
extract sensitivity patterns that may be hidden in subsets of the dataset, with an
example in Figure 5.

As described in Section 4.4, we propose a hierarchical process of pruning a dataset,
refitting flow lines, and refining the queries based on newly acquired insight. Typical
setup for the hierarchical exploration on RC consists of the following: (1) set up a root
RC of three variables and plot sensitivity lines and then (2) select and export data by
regression-aligned operations to reveal trends on the subset of data.

We can think of this process as the linking of several cubes, where each link repre-
sents a “select and export” that progressively refines the data to smaller regions, and
during the process it creates a hierarchy of subsets of the data. Note that since the sen-
sitivity lines are computed from the remained data points in the cube, they are locally
performed analytics independent from other cubes, and thus the different correlation
patterns can be revealed from a different subset of data.

In the figure, we show all three facets and the 3D view of a RC on an illustrative
hierarchy with the dotted binary branches. We visualize this illustrative hierarchy
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by the node-link diagram in the green-yellow color mapping from Pearson coefficient
values of the cube. This diagram is laid out automatically when any new RC is added
to the hierarchy. For each cube, we show its different views (from top in the clockwise
order): 3D, Right facet, Bottom facet, and Left facet.

4.5.1. Generation of the Root RC. We start the process by showing the root RC with
all data points in the dataset. To this end, we rely on the user to decide which three
variables in the dataset are used to initialize the root RC. (In practice, we can suggest to
users some possible choices of the three projection variables by analyzing the distances
between points.) Because we start with nonsegmented data, the sensitivity lines shown
on the facets of the root RC are approximated from the whole dataset, as shown on the
top root node in Figure 5.

4.5.2. Selection and Exporting/Linking. In the example, two regression-aligned selections
are performed (see the two binary splits drawn in the dashed lines). The first one is
selecting a negative correlated trend (pink) around a streamline on the Left facet, and
the other one is done among the remaining data points in Cube 3 from selecting a
strongly positive correlated trend (blue) on the Right facet.

In each split, when the selection is finalized, it creates a new child cube to contain the
selection and another child cube for the unselected data; this process is called export.
We implicitly link the parent and child cubes to build the hierarchy to keep track of the
user workflow in the pattern discovery process. In child RC, the sensitivity estimates
are recomputed for this subset, since now the constitution of the data in the cube is
different from its parent cube. Two types of data export can occur from a selection:

(1) Exclusive export. An RC is created to contain the selected points. When the selection
coincides with features, this process effectively reveals local correlations. In the
example, the exclusive export produces the left child RC.

(2) Negative export. An RC is created to hold data points that are not in the selection.
This type of data manipulation is handy when we want to remove the anomaly or
outliers. In the example, the negative export created the right child RC.

Note that the binary split constraint in the pattern discovery process can be relaxed
so that we have more flexible way in partition the dataset, resulting in the regression
hierarchy as a multiple branches graph instead of a binary tree, as shown in Section 5.

4.5.3. Comparison between RCs and Refinement. When the new RCs exhibit high covari-
ance, we may infer that the data points in the cubes can be better described as a
single feature, such as Cube 2 (the pink pattern) and Cube 4 (the blue pattern) in
Figure 5. The covariance is reported by the regression hierarchy graph in the green-
yellow color mapping. The darker the node, the higher covariance of two projection
variables for the data points in the cube. Note that the covariance is calculated based
on the projected scatterplot on the facet. Thus, after the first partition occurs, two new
nodes representing the two new RCs from exclusive and negative export are added to
the hierarchy and their covariance values are updated. Then, when the second “select
and export” takes place, another two children nodes are added.

This evolving regression hierarchy graph reveals good patterns with strong covari-
ance after two times of regression-aligned filtering, since both of the left leaf nodes
have high covariance comparing to its predecessor. This indicates the progressively
improvement of the coherent pattern finding.

After “select and export,” the user can refine the exported selections by removing
part of the original selection, or incrementally add more node to the new RC. This is
useful for the large-scale datasets or for the regions with a high density of points where
it is difficult to perform the accurate selection in a single selection. For example, in the
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right children RC of the second split, Cube 5, the data points close to the origin could
be removed from Cube 5 and be re-exported to the pink pattern found in Cube 2, to be
part of the positive correlation on the right facet of Cube 2.

From the example presented earlier, one can see that the interactive visual explo-
ration in RCs is an iterative and repeatable process in which analysts can move data
points from one to another and see how different selections result in different patterns.
For instance, if the noise or outliers are removed from an RC, then this RC is updated
to show the trend of the remained data points. If we repeatedly export selected data to
new cubes and refine the selection, we can analyze the behavior of a particular group
of points with carefully selected data. Another possibility that can be achieved by such
an interactive regression analysis is that we can use trial and error to add or remove
data from the RC of a discovered pattern and see how “sensitive” it is to the data points
from other patterns or to the noise.

5. EXAMPLES

We have applied RC to the analysis of several multidimensional datasets. Our aim is
to show that sensitivity-augmented 3D RC helps us uncover trends and groups in 2D
plots with little need of interaction.

5.1. Automobile MPG

The Automobile MPG dataset concerns the city-cycle fuel consumption in Miles Per
Gallon (MPG) [Quinlan 2011]. It contains 398 records of the cars made between 1970
and 1982. Five of the eight attributes are continuous: MPG, Weight, Acceleration,
Horsepower, and Displacement. We use the predicted variable MPG as the output
variable and investigate its relationship with other dependent variables, as well as the
correlation between pairs of variables.

First, we construct an initial RC with MPG in the vertical axis, the output variable of
the dataset, and pick Weight and Horsepower as the other two variables to understand
their correlation to MPG as well as their own interdependency. The 3D view of the
root RC on the top right in Figure 6 reveals the strong negative correlation between
Weight and MPG and between Horsepower and MPG. The sensitivity of these two
variables under investigation is on the bottom facet X-Z, which shows the strongly
positive correlation. The RC cube depicts the correlations of the three pairs of variables
simultaneously.

Now we show that the RC enables more detailed local analysis and visual validation
of the perceived information. We have already seen the strongly positive correlation
on the bottom facet. To further understand the correlation between Weight and Horse-
power, we switch the projection to the bottom facet. In Figure 6, data points are colored
by the number of cylinders of the automobile, varying from three to eight. Groups
consisting of four (yellow), six (green), and eight (purple) cylinders are dominant in
the dataset. Since all data show a global pattern of positive correlation between Horse-
power and Weight, we create a hierarchy for these groups by the exclusive export to see
their within-group correlation. Besides the sensitivity flows, we also show the simple
linear regression as a straight blue line on the fact in each cube to show the summarized
correlation that is laid on the centroid of data points. Purple and yellow groups exhibit
a similar regression pattern as in the parent cube, shown by both the blue regression
line on the facet and the sensitivity short lines on the data points. The green group,
however, reveals a slightly different trend than the simple positive correlation, which
indicates that Horsepower is irrelevant to Weight sampled from the data points in this
group. This would not have been revealed without filtering out data points in other
cylinder groups.
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Fig. 6. Automobile MPG. A regression hierarchy built from selecting by the categorical variable (the number
of the cylinders) on the bottom facet. The five categorical values are also shown in the legend at bottom left
(see text).

Then we revisit the same root RC with other selecting mechanisms to continue our
exploration in the 3D space spanned by the three variables. As shown in Figure 7(a),
we cluster the dataset by their sensitivity streamlines and export all dominant groups
to individual RCs. All of the clusters exhibit a positive correlation between Weight and
Horsepower. Note that all four groups end in a trend that is almost a perfectly linear
correlation, which in facet we can visually cross validate by the very large magnitude
of the covariance on the regression hierarchy graph. The reason these children RCs
are more coherent is that, although the root RC explicitly shows a positively correlated
trend, there is still a certain degree of divergence of the sensitivity lines between
clusters. After validating the positive correlation between Weight and Horsepower on
the bottom facet of the root RC, we switch to the right facet to see if these groups
of data points exhibit any trend between Weight and MPG, as shown in Figure 7(b).
The root cube shows a clear negatively correlation between them, and the four cubes
from clustering demonstrate the same trend as well. Even the two sparsest cubes (the
second and the fourth cubes from the left on the second level) show the same trend,
which means the dependency of the two variables is a solid relationship regardless of
the data partition. Then we try to split the two sparse trends to see if we can find more
evidence about the negative trend. For the second cube, we find a weaker negative
linear correlation on its left child. For the fourth cube, however, the further split does
not show any different pattern.

As shown in both Figure 6 and Figure 7(a), we see that with the ability to export
a cluster of data records exclusively or negatively in the linked RCs, one can easily
conduct a comparative regression analysis between clusters and expand the hierarchy
with different data partition depending on which groups are included. To summarize,
this case study shows that RCs are effective in showing multiple pairs of trend simulta-
neously in a global sense, and they enable hierarchical exploration when relationships
are not evidently linear or functional. By filtering and refitting data, RCs enable visual
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(b) Switch to the left facet and improve the covariance to C6; C7 and C8 are the residuals noises.

Fig. 7. Regression hierarchy built from (Weight, MPG, Horsepower). (a) The hierarchy is built from the
clustering results of the sensitivity streamlines. All four main clusters exhibit a positive correlation on the
facet, and they also have higher covariance comparing to the root RC. (b) We switch to the right facet to
see if these clustering groups exhibit any trend between the other pair of variables: Weight and MPG. The
root cube shows a negative correlation between them, and the four cubes below the root RC from clustering
demonstrate the same trend as well. We try to build another level in the regression hierarchy from two of
the cubes, but only the left-most one among the three cubes shows an obvious trend that can be numerically
verified by the darker nodes in the regression hierarchy graph.
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Fig. 8. Boston housing price. RC shows three sets of pairwise correlation, among which some data records
in navy blue on the bottom facet do not follow the monotonically increasing trend.

validation of regression models and classification results as an ideal way to increase
the robustness of the visual analytic process.

5.2. Boston Housing Price

The Boston housing price dataset is a collection of environmental, geographic, eco-
nomic, and social variables to predict the median value of housing price in the Boston
metropolitan area [Harrison and Rubinfeld 2011], which contains 506 records and 15
continuous variables. Some variables include geographic information, such as DIS,
the weighted distances to five Boston employment centers; LSTAT, the percentage of
the lower status of the population; and CMEDYV, the price of the house as the output
variable.

We set up an RC to compare the three variables as shown in Figure 8, where the
7 axis is assigned as the output variable CMEDV. The data points are also colored
by their prices, from expensive (navy blue) to inexpensive (maroon). At first glance,
one can quickly point out the two negatively correlated relationships among the three
pairwise relationships: LSTAT versus CMEDYV, and LSTAT versus DIS. Both of them
are reasonable compared to what we usually would expect. On this cube, we also notice
that the bottom facet of DIS and CMEDYV exhibits an interesting correlation, indicating
that for the houses that are inexpensive, the housing price and DIS are positively
correlated. For the more expensive units (points in light blue and navy blue), however,
the correlation of DIS and the housing price is more complex. The units in navy blue,
for example, have small DIS but are extremely expensive. From these observations, we
would like to start the exploration on the bottom facet.

After we switch the bottom facet, we apply clustering by the locations of the samples
on the sensitivity streamlines and then export the four clusters exclusively to the new
cubes. In Figure 9, the first level under the root cube consists of these the clusters.
The color of the nodes representing these clusters in the node-link graph on the right
suggests that this partition enhances the coherency of the trend in each individual cube,
as all children nodes have a larger covariance value than the root node. The color of the
nodes suggests that most of the cubes show quite strong positive correlations between
the two variables, except Cube 2 on the left which has a slightly smaller covariance
value, and therefore we may not need to go beyond this level in the hierarchy.

The second and the third rows in Figure 9 are the screenshot of the other two facets,
the left and right facets, and their corresponding covariance coefficients shown on the
hierarchy graph on their right. Note that the relationship between the two variables
is negatively correlated for these two facets, which is also shown in the left and right
facets in Figure 8 before the clustering partition. The color mapping in the legend is
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Fig. 9. Boston housing price. Regression hierarchy is built from the four clusters computed on the bottom
facet in Figure 8. The three rows under the root node show the bottom, left, and right facets of the children
cubes accompanied by their hierarchy graphs that show the covariance coefficients. The four patterns in the
children RCs have rather high covariance values in all three facets.

upside down for the negative covariance coefficient, so the dark green indicates the
large magnitude of the negative covariance, which still means the strong correlation.
The viewing modes of the views of the linked RCs are synced, so when the users switch
the facets, they can easily compare between multiple RCs.

In this example, we see that the interactive RCs make it easy for us to compare
different projections of the different partition of the dataset at once. Users can switch
the viewing modes back and forth to visually validate the differences between small
multiples. Meanwhile, the up-to-date visual cues, such as the color showing the covari-
ance, or the slope of the sensitivity lines indicating the magnitude of the correlation,
provide instant feedback during the interactive visual exploration. We demonstrate in
this example how the interactive exploration augmented with the regression analytics
of low computational cost can help the users to efficiently compare visual analytics of
different partitions of the dataset.

6. EVALUATION

In this evaluation, we assessed how RCs may influence the process whereby users drill
down to discover possible patterns in the dataset. Particularly, we wanted to examine
two main designs of RCs—3D interface and sensitivity functionality—to see whether
a general user would benefit from them in the pattern discovery process.

The 3D view control is useful and helps to mitigate occlusion via depth cues. However,
visualizing multivariate datasets with a 3D interface has been shown to be undesirable
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Table I. The 10 Seed Functions Being Interpolated in Preparing 300 3D trends in Section 6.2.2

LIN  y=x|LINL y=15 | MLIN y=1-x |[LOG y='"@D/gIN —sin2rx

QUAD y =22 |QUAD2 y=0.3x2 | MQUAD y=1-2x2|CUB y=x3 |EXP y=e* —1

due to the limitation of the 2D displays and the perception bias between individuals.
Therefore, to validate the 3D design of RCs, we compared the performance of pattern
discovery with and without 3D interface in a controlled study.

The sensitivity-aligned interactions, such as selection and clustering by sensitivity
lines or streamlines, are provided in RC. When the user moves the cursor to change
the point of interest on a 2D facet using these interaction techniques, the sensitivity
analysis is computed on-the-fly and shown to the users during the pattern discovery
process. With the sensitivity functionality, RCs suggest the portion of the data that
exploits a local pattern according to the user’s query by the cursor. However, even with
the suggestion by the sensitivity analysis, sometimes it takes some effort to combine
several selections on different 2D facets to finally achieve a desirable data selection,
especially when the embedded high-dimensional features are complicated. We thus
also like to assess the usability of RC’s sensitivity functionality in the user study.

6.1. Hypotheses
Our initial hypotheses with regard to the two main designs of RCs were as follows:

—We expected users to perform fairly well in RCs with the sensitivity functionality
such as sensitivity-aligned selection and clustering.

—We speculated that users would benefit from the 3D interface in RCs because one can
examine the shape of the 3D trend better by rotating the cube rather than merely
looking at the three projected facets.

6.2. Experiment Setup

6.2.1. Subjects. We recruited seven participants, one female and six males, among
which five were graduate students and two were postdoctoral researchers. All of the
participants were computer science majors. The ages of the subjects ranged from 27
to 31 years of age with an average of 28.7 years. None of the participants had prior
experience using RC.

We showed the interactive RC to the participants using the same laptop with a
15.6- inch display and an optical mouse as the input device, and we recorded the
performance of each participant in each condition on the same computer.

6.2.2. Dataset. We used a subset from the synthetic dataset that we created previously
for another user study on how people interpret 3D trends with 2D plots [Chan et al.
2013b]. This synthetic data collection consists of 300 3D trends from interpolating any
pair of the two seed functions Y1 and Y3, with an interpolating function w and a noise
level N,. Each synthetic 3D trend was created as follows:

Y(x,2,) = 2, Y1(%) + (1 — 2,)Y2(x) + Ny (x), (6)

where Y7 and Y5 are the two seed functions, w denotes the interpolating function (linear
or sigmoid), z,, and (1 — z,,) are the interpolating weights of the seed functions, and N,
is the noise level (low, medium, or high). Table I summarizes the seed functions (LIN,
LIN1, MLIN, QUAD, QUAD2, MQUAD, LOG, SIN, CUB, EXP), which are also shown
in Figure 3 in our previous paper [Chan et al. 2013a]; four examples of the 3D trends
can also be found in Figure 4 of that paper.

When a 3D trend is randomly chosen to be used in the test, the data points in the
3D trend are imported to the root RC and visualized in the 3D space according to the
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Table II. Four Conditions of the Two Factors

Sensitivity Functions
Disabled Enabled
3D Disabled A C
Interface Enabled B D

(x, v, z,) values. The values of the interpolating weights of the two seed functions, z,,
and (1 — z,), range from 0.0 to 1.0. We can determine which seed function the data
point is closer to from its interpolating weight z,, value on the Z axis: when z,, > 0.5,
it is closer to the seed function Y7; when z,, < 0.5, it is closer to the seed function Ys.
Note that we assign each data point to the seed function that it is closer to as the
“ground-truth” of which trend it belongs to. This information is used to evaluate the
quality of the patterns in Section 6.3.1.

According to the results of our previous user study [Chan et al. 2013a], we ranked
the synthetic 3D trends by the average error of interpreting them on 2D plots. This
ranking corresponds to the level of the difficulty to recognize the two seed functions
perceptually, from the easiest to the most difficult ones. We picked the datasets ranked
the top one-third as the easiest to interpret for this evaluation.

6.2.3. Design. We designed the user study to evaluate the ability of RC to help users
discover high-dimensional patterns. The two independent variables the we set to test
in the experiment are 3D interface and sensitivity-related functions. Each variable has
two levels: enabled and disabled. The 2 x 2 design creates four experimental conditions,
as shown in Table II. In each condition, the participant used RCs to find patterns by
building the regression hierarchy from a 3D dataset. Certain interactions were enabled
or disabled according to the experimental conditions:

—Rows: 3D interface. This variable indicates whether the rotation navigation in RCs is
enabled or not. We put this factor under consideration to determine whether and by
how much 3D navigation had impact on the users’ ability to understand the hidden
patterns in the data.

—Disabled. Users can only look at the dataset from the orthogonal projections—that
is, the three 2D facets (Left, Right, and Bottom) of RCs.

—Enabled. Besides the three facets of RCs, users can also freely rotate the cube to
any viewing angle to see how the data points scattered in the 3D space.

—Columns: Sensitivity-related functions. RC provides two visual clues for the sensi-
tivity analysis of the two projection variables: the sensitivity short lines on the data
points, and the sensitivity streamlines that follow the direction of the local sensitiv-
ity to travel through the projection space on the 2D facet. Based on these two visual
clues, the sensitivity-aligned selection and clustering are provided in RC for users to
interact with the data more directly and intuitively. We consider this factor in this
evaluation to examine whether sensitivity-related interactions enhance the pattern
discovery in RC:

—Disabled. Users can select data points by the union of multiple rectangular se-
lections (as shown in Figure 3(a)); they can cluster data points by the distance
function estimated by their (x, y) locations (as shown in Figure 4(a)).

—FEnabled. The sensitivity lines and flows are shown in RCs. The three ways of
selecting data (as shown in Figure 3(b—d)) and the three ways of clustering data
(as shown in Figure 4(b—d)) are both enabled in RCs.

6.2.4. Procedure. Before starting the tests of the four conditions, the participants prac-
ticed the prototype software in a tutorial session where we walked through all of the
navigation and interaction functions provided by RC. Following the tutorial session,
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the participants went through all four conditions in a randomly decided order. In this
way, we wished to counterbalance our study design to avoid the learning effect. In
each condition, the dataset of 3D trend used was randomly chosen, and the root node
cube contained all of the data points in the dataset. From the root node, we asked the
participants to build a regression hierarchy in the interactive RCs. In the process of
building the hierarchy to discover patterns, the participants decided when to finish the
condition at which they were working, and they proceeded to the next condition.

All participants were informed that each dataset in the conditions contained “two
patterns” with noise. Their objective was to recognize these patterns and separate them
out in RC. We revealed this information to the participants because we desired that
our subjects have a certain understanding about the element of our 3D dataset and
what to find. During the tests, participants were allowed to ask us any question if they
needed any help in finding a particular function that they wanted to use.

6.3. Performance Metrics

In order to collect the dependent variables of the two factors that we tested, we recorded
the following information on each participant for each of the four tests:

—The information about the dataset that we randomly chose for this test, as mentioned
in Section 6.2.2, including two seed functions from which the dataset was interpo-
lated, the interpolant, the noise level in interpolation, and the difficulty level of the
3D trend (estimated by the average error of the trend in our previous user study).

—Number of interactions. We recorded the number of times the following interactions
occurred in a test and reported them in Section 6.4.2:

—Selecting data with one of the four selection methods
—Selecting data with one of the four clustering methods
—Switching to either Left, Right, or Bottom facets
—Rotating a cube

—Exporting the selection to the new cubes

—The time the participants spent to create a split on the hierarchy when they de-
cided to export the selection to the new cube. We discuss this performance metric in
Section 6.4.3.

—The graph of the regression hierarchy and Pearson coefficient values of each node in
the graph for all three facets at the end of the test. The latter is one of the ways to
measure the quality of the patterns in Section 6.4.4.

—The data points that each leaf RC contains. We took this information to evaluate the
quality of the patterns found in these cubes in Section 6.4.4.

6.3.1. Quality of the Patterns in Cubes. Besides the dependent variables, we applied three
performance metrics to measure the quality of the patterns found by our participants
in the leaf cubes: Pearson Coefficient, Pattern Fit, and Number of Correct Points. The
first metric measures the linearity of the data in the leaf cubes, while the latter two
metrics measure the similarity between the patterns in the leaf cubes and the two seed
functions that generated the 3D trend in the dataset:

—Pearson Coefficient measures the linearity of the data points that were exported to
the cube. We calculated this metric on the right facet of each leaf cube.

—Pattern Fit (cubewise score) measures whether all of the leaf cubes in a regression
hierarchy do a good job of differentiating the two seed functions from each other. For
each leaf RC, we calculated two fitness values fi and f; to the two seed functions
Y: and Y,. Each fitness value indicates how much the data in the cube fits to that
seed functions. It is calculated by a weighted summation of all data points, where the
closer a given data point is to the seed function 7, the more weight it would contribute
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to the f; value of that seed function. The larger fitness value of f; and fs is the fitness
score F of this cube. We assigned the cube to the seed function Y; with the larger
f; value, believing that the participants perceived these data points exported to this
cube as the pattern of the seed function Y;. If an RC contains only the data points
closer to the same seed patterns (z,, > 0.5 or z,, < 0.5 for all the points in the cube),
this RC would have a high fitness score . Then we calculated the average of the
fitness scores of all leaf cubes in a regression hierarchy as the Pattern Fit.

When a participant assigned the data points of the same seed function into more
than one cube, as long as these cubes were “clean” without any other data points
from the other seed pattern, the participant would score from the clean separation of
trends, instead of being punished for partitioning the data points in the same pattern
into more than one cube.

—Number of Correct Points (pointwise score) measures the quality of the data decom-
position. We calculated the number of the correctly classified data points (n.) for each
leaf cube by comparing the following two groupings of data points:

(1) Asmentioned in Section 6.2.2, the ground truth of which of the two seed trends the
data point belongs to is determined by the z,, value of the data point (Y7 : z,, > 0.5;
Ys:z, < 0.5).

(2) In calculating Pattern Fit, each leaf cube was assigned to one of the two seed
functions according to the fitness values (f; and f3) of the cube.

We calculated the pointwise score by the average of n. of all leaf cubes in a regression

hierarchy as the Number of Correct Points.

6.4. Results

We structure the results of the user study in this section as follows. First, we re-
port ANOVA analysis of all of the variables we collected in Section 6.4.1 to have an
overview of the impact of the two factors—3D interface and sensitivity functions—on
the variables that we collected. Then we report the occurrence of the different types
of interaction of each participant using a heatmap for each condition in Section 6.4.2
so that we can visually compare between the participants, the interaction types, and
the conditions at once. For this particular variable, we are more interested in gain-
ing insights about user behavior in the pattern discovery process in different condi-
tioned RCs than in comparing how the participants performed in tests. The reason for
choosing such a nonstandard way to report the interaction variable is that since the
numbers of the interaction highly depends on the personal preference of each of the
participants, the standard descriptive statistics would require the advanced weighted
scheme or normalization on this variable to compare between the subjects. Finally, we
report the dependent variable Time in Section 6.4.3, and the three metrics that we
propose to measure the quality of the patterns found by the participants in the RCs in
Section 6.4.4: Pearson Coefficient, Pattern Fit, and Number of Correct Points. For each
of these four performance metrics, we use the standard descriptive statistics: mean
and standard deviation.

6.4.1. ANOVA. Using the information that we collected from the tests of four condi-
tions, we performed a within-subjects repeated-measures two-way ANOVA. We used the
two factors on pattern finding tasks—3D interface and sensitivity-related functions—to
understand how these two factors may affect the dependent variables that we collected.
We also assessed if any of the two factors caused a statistically significant difference
in the results. We summarized the results from the ANOVAs as follows:

(1) For some indexes, such as completion time and number of interactions, the
sensitivity-related function was the main effect, meaning that sensitivity-related
functions had a significant impact on how long it took to find patterns, and on how
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Fig. 10. The four heatmap tables of the interactions that the participants performed in each condition. In
each table, we compare the five types of interaction in the rows and the seven participants in the columns.

much interaction took place in the study. More specifically, when sensitivity-related

functions were enabled, these following indexes changed significantly:

—The total time spent to finish the task was significantly longer (from 110.15msec
to 236.41msec, where F(1,6) = 5.2, p = 0.0318).

—The average time spent to export a selection to a new cube was significantly
longer (from 76.97msec to 142.30msec, where F(1,6) = 5.63, p = 0.026).

—The number of times that the participant canceled a selection was significantly
larger (from 0.64 to 7.00, where F(1,6) = 4.51, p = 0.0442).

—The number of times that the participant switched to one of the 2D facets was
significantly larger (from 8.42 to 20.42, where F(1,6) = 5.75, p = 0.02).

(2) We did not find any variable on which the 3D interface had a main effect.

Additionally, we did not find any index showing significant interaction between the
two factors, suggesting that the interaction between the two RC design features, the
3D interface and sensitivity-related functions, was minimal or insignificant.

6.4.2. Interactions. In Figure 10, we show the four heatmap tables of the interactions
that each participant performed in each test: Condition A (3D disabled, Sensitivity
disabled), B (3D enabled, Sensitivity disabled), C (3D disabled, Sensitivity enabled),
and D (3D enabled, Sensitivity enabled). In each table of the figure, each cell corre-
sponds to the interaction of a participant (column) and the type of interaction (row).
Note that the number in a given cell indicates the percentage of the selected type of
interaction compared to the total number of the interactions that the selected partici-
pant performed in the given test, not the actual number of times that the interaction
occurred. This method of display gives us an overview on the frequencies of the differ-
ent types of interaction so that we can visually compare the participants, interaction
types, and conditions all at once. In Conditions A and C where rotating was disabled,
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Fig. 11. The average performance in time under four conditions.

users relied more heavily on the rectangular selections and facet switching in their
attempt to understand the data. In Condition B, the participants rotated the cubes
quite often, presumably in order to identify the high-dimensional features in the data.
If sensitivity functions were enabled, disabling rotation (Condition D vs. C) caused
some users to switch between facets more often in order to try out different sensitivity
selections (p1, p3, p4, p5, and p6). If rotation was enabled, as in Conditions B and D,
some participants were stimulated by the three methods of sensitivity selection and
performed more selection. This is identified via the noticeable increase in selections
(pl, p3, p4, p5, and p6) and cancellations (pl, p2, p3, p5, and p6), indicating more
attempts to select different sets of data points.

When only one of the factors, 3D or Sensitivity, was enabled (Conditions B and D),
the behavior of users changed, and they preferred more navigation (i.e., switching the
projection and rotating the view, shown in the third and fourth rows of the tables) than
data manipulation (i.e., selecting data points shown in the first row). These results
suggest that the sensitivity-related functions and 3D interface stimulated the users’
interest in exploring the data space. One might expect this trend to continue when both
factors were enabled, but this was not necessarily the case. In particular (Condition
B vs. D), if rotation was already enabled, enabling sensitivity resulted in stronger
user preference for data manipulation (the first row) over navigation (the third and
the fourth rows combined) (p1, p3, p4, p5, and p6). Similarly (Condition C vs. D), if
sensitivity functions were already enabled, enabling rotation also resulted in stronger
user preference for data manipulation over navigation (p1, p3, p5, and p6). By visually
comparing multiple interaction heatmaps, we gained insights about the users’ behavior
in different conditioned RCs.

6.4.3. Time. For the performance in time, we had information about how long it took
the participants to create a split in the hierarchy and the total time to finish the test.
Figure 11 shows two charts of the average performance measurements in time: the
total time to finish the test on the left, and the time to create a split in the hierarchy
and export the selection to the new cubes on the right. The standard deviation of each
condition is marked in the chart as well. In both charts, we see that when sensitivity
functions were enabled (Conditions C and D), participants spent more time exploring
the data and testing different selection techniques provided than in the test where
these functions were disabled (Conditions A and B). Since we did not ask participants
to “finish the test as quickly as possible” but rather instructed participants to “take as
long as they needed until they were satisfied with their patterns,” our results indicated
that users spent more time when the sensitivity functions were enabled. This indicated
to us that RC engages more active exploration of the data by users.
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Fig. 12. Performance in the quality of the patterns found in cubes.

6.4.4. Quality of the Patterns in Cubes. For each regression hierarchy that a participant
created in a test, we measured the leaf cubes by the following three metrics concerning
to what degree the decomposition of the data points in the cube matched one of the
seed functions that generated the dataset. The three metrics were Pearson Coefficient,
Pattern Fit, and Number of Correct Points.

Figure 12 presents the three measurements of the data decomposition in RC. The
charts show the average measurements from all seven participants (blue bars), the
standard deviation (the error range on the top of the bar), and the number of partici-
pants who had their best performance among all four conditions (the orange lines).
From the bar charts, we see that all three measurements indicate a decreasing
trend from Condition A to Condition D, suggesting that using RC does not guaran-
tee the best pattern discovery results. One limitation of this analysis is that, owing to
the small number of participants, ANOVA in Section 6.4.1 found no significant differ-
ence between the four conditions for any of the three metrics of performance. Although
we are unable to draw a solid conclusion, we can say that the error bars show some
degree of similarity between the performances of the four conditions across all three
metrics. We observed that there is a large variation in scores between users (especially
for the Pearson Coefficient metric in Condition D), and we considered the possibility
that a clearer pattern might be visible after removing the influence of the lowest scores
among users. Thus, we examined individual log files and identified four extremely
low performance scores from four different participants on four different conditions.
Specifically, we plotted the raw number of individuals who had their best score on a
give condition (shown by the orange lines in Figure 12.

Taking both analyses into account, we drew the following conclusions:

—The four conditions were similar in terms of all three performance metrics.

—The participants did not necessarily perform their best with all of the functions
enabled (Condition D).

—The average performance was the best for Condition A (both 3D and sensitivity
interactions disabled) for all three metrics.

6.5. Discussion

Here are a few observations that we have made about our participants’ use of RC
during this evaluation study:

(1) Most of the participants tended to rotate the initial RC if the 3D interface was
enabled. On the tests where the 3D interface was enabled, participants rotated
more than 10 times on average. This shows that although the direct manipulation
of the data points, such as selection or clustering, was only limited to be performed
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on the 2D facets, the participants still resorted to the 3D interaction in order to get
a general impression of the distribution of the points in the dataset.

(2) Some participants used the clustering function for the purpose of labeling the data
points with color so that the data points would be easier for them to identify when
they rotated the cube or switched between facets. This reminds us that, besides
the direction shown by the sensitivity lines and flow, the users may prefer another
visual metaphor to help them locate the data points, such as the point color.

(3) Some participants pointed out that the synchronized RCs with the same viewing
angle and the view size helped them quickly compare the patterns spanned by the
data points in the cubes. Thus, we believe that the small multiples with interactive
data manipulation help users visually compare the groups that they just created
from the whole dataset.

(4) Some participants preferred the traditional rectangular selection over the
sensitivity-related selections not only because they were more familiar with such
selection but also because of the confidence they had when they knew what part
of the dataset would be selected when they drew the rectangle to enclose the data.
On the contrary, when using the automated selections by similar sensitivity or
around the flow line, they needed to move around data points by trial and error
to see whether the autoselected points were what they wanted to select. Brush-
ing data by flow lines sometimes had a similar problem where they brushed the
flow lines and some undesired data points were selected. Therefore, some of the
participants focused on the rectangular selection, even though it required much
more manipulation than the automated selections that we provided. Specifically,
the users often struggled to drag multiple rectangles to enclose all of the data points
desired.

We also received some valuable suggestions from our participants about the de-
sign of RC. Three participants acknowledged that RC provides an easy way to select
data points in the 3D space. Some participants wished there was an “undo” func-
tion when building the regression hierarchy. Most of them wanted more flexible ways
to create the selection, such as by a combination of different selections, or partial
deselection.

The decreasing quality of the patterns found (Pearson Coefficient, Pattern Fit, and
Number of Correct Points) when sensitivity functions were enabled (comparing Condi-
tions A-C or B-D) appears to have more to do with how much the users are familiar with
RC. As described in the previous sections, RC can aid in interactive visual analytics.
However, for users to fully benefit from the interactive data partitioning process, they
must gain background knowledge about the sensitivity analysis method and have suf-
ficient training to become familiar with the interactions provided by our system. That
is, it became clear to us that more extensive tutorials and examples would be required
for the users to fully understand the regression analysis and what interaction to use
under each circumstance. On the other hand, the significantly longer data exploration
time when users were provided with the interactive visual analytic tools indicates that
RC encourages them to explore the high-dimensional data in multiple ways for gaining
insights.

Although the added interactivity and complexity of the selection contributed to
the increase in completion time for 3D- and sensitivity-augmented RCs, we found an
interesting behavior regarding the quality metrics. The Pattern Fit and the Number
of Correct Points seem to be similar for all cases, but the Pearson Coefficient is only
highest for the straightforward 2D scatterplot (Condition A). This seems to indicate
that the linear relationships are best uncovered with a 2D scatterplot, whereas
nonlinear relationships are harder to discover. Although it is known from our previous
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work that sensitivity lines and 3D can help to identify these nonlinear or linear
relationships, this benefit comes at the cost of extra complexity to the users. Our
user study suggests the presence of a steep learning curve that could hamper some
applications of RC and, potentially, other visual analytic tools for pattern identifica-
tion; nevertheless, in situations where patterns become higher dimensional and more
complex, this cost may be amortized by the benefit of discovering nonlinear, functional
relationships in the data. Although the scatterplot remains a familiar, easy-to-use
visual tool, the augmentation with RCs, regression hierarchy, and sensitivity lines can
potentially be a useful complement in the case when linear relationships are hidden
from simple projections, or rectangular selection fails to separate data in higher
dimensions.

7. CONCLUSIONS AND FUTURE WORK

In this article, we have introduced an interactive regression-aligned visual analytics
technique for multidimensional data. Our work is based on constructing RCs from
three sensitivity augmented scatterplots. These RCs show correlation between pairs
of variables by three visual cues: (1) the short sensitivity lines for the local linear
regression, (2) the sensitivity streamlines for the integrated trend, and (3) the long
straight line for the simple global linear regression on the presented data points in the
cube.

Additionally, we present the notion of regression hierarchy. Regression hierarchy is
obtained by progressively fitting regression lines and then filtering data by either the
conventional selections or the regression-aligned selections. The users can refer to the
sensitivity information in building such hierarchies. This process produces regression
analytics that is not available with traditional plots, and the process of the iterative
regression is visualized explicitly.

RCs unify three pairwise correlations at once so that analysts can study how mul-
tiple variables react to the change of the other variable by visually tracing shared
axes in the cube. The three facets of RC display the correlation patterns between any
two variables. Subsequently, we can formulate hypotheses of the relationship between
three variables and their rates of the change. On each facet, users can not only perform
the various regression-aligned or simple rectangular selections, but they can also com-
pute the different regression-aligned clusters. These regression-aligned interactions
provide higher-level abstractions of the whole dataset. Then these selections and the
clusters of data points can be exported to other RCs for further investigations. The
hierarchy visualization is another insightful visual cue during the regression-aligned
filtering process. It provides the comparative covariance by the color of the nodes and
the values of the Pearson correlation coefficient on the labels of the nodes. During the
iterative process of exporting and linking RCs, users can quickly refer to the covari-
ance to evaluate the quality of the trends in the new cubes so that they can make the
proper decisions as to whether the regression-aligned filtering should proceed or not.
We evaluated RCs via two examples in Section 5 and an empirical user study on the
3D visual representation and sensitivity functionality of RCs in Section 6.

As datasets increase in size and the correlations between variables expand in com-
plexity, RCs with visual partitioning and coupling of data offer a promising solution
for interactive visual exploration and insight. In our future work, we intend to de-
velop an intelligent system that recommends to users which interactions to execute.
Additionally, we plan to develop automated mechanisms to select the proper regression
sampling size for the local linear regression. We also anticipate that GPU acceleration
will facilitate the interactive visual exploration of large data. To more extensively eval-
uate the usability of RCs in pattern discovery, we plan to conduct a larger-scale online
evaluation to collect the performance metrics from more participants. We also plan to
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recruit more subjects with sufficient knowledge on statistical analysis to see how RCs
could help the experts in regression analysis.
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