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ABSTRACT

We present a technique which automatically converts a small num-
ber of single-view volume rendered images of the same 3D data set
into a compact representation of that data set. This representation is
a multi-layered image, or an explorable image, which enables inter-
active exploration of volume data in transfer function space with-
out accessing the original data. We achieve this by automatically
extracting layers depicted in composited images. The layers can
then be recombined in different ways to simulate opacity changes
and recoloring of individual features. Our results demonstrate that
explorable images are especially useful when the volume data is
too large for interactive exploration, takes too long to render due
to the underlying mesh structure or desired shading effect, or if the
original volume data is not available. Explorable images can offer
real-time image-based interaction as a preview mechanism for re-
mote visualization or visualization of large volume data on low-end
hardware, within a mobile device, or a Web browser.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—display algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—color, shading, shad-
owing, and texture

1 INTRODUCTION

Despite the proliferation of 3D applications and the increasing
rendering capabilities of contemporary graphics hardware, image-
based applications are more popular and familiar to users than 3D
rendering software. In volume visualization, image-based render-
ing methods are necessary to enable interactive exploration of data
sets that are too large to store, to render, to explore interactively
using 3D software, or when a user does not have access to the orig-
inal volume data. For example, large volumes usually do not fit
into GPU memory and the CPU to GPU bandwidth often inhibits
interactive exploration of large data sets. One solution is to use
dedicated clusters for image generation and let users interact with
images from remote, often low-end clients. In other cases, users
may only have a collection of 2D renderings of the data, but not
the original volume. In these scenarios, one has to resort to image-
based operations in order to manipulate different properties of the
data. However, the lack of explicit 3D information prevents the
user from changing the color and opacity of the data depicted in the
images.

In this paper, we present a technique for manipulating some prop-
erties of volume rendered data using 2D images as input. We intro-
duce the notion of an explorable image, which is a new type of im-
age that lets users manipulate rendering properties such as color and
opacity in image space without re-rendering and without the need
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for high-end graphics hardware. Although view-dependent, ex-
plorable images allow users to navigate the transfer function space
of volume data without accessing the original 3D data. Our ap-
proach is based on the observation that volume rendered images,
despite being 2D projections of 3D data, contain enough informa-
tion about the different structures in the data and provide cues such
as depth, occlusion, and shape. Depending on the number of com-
posited images available, we can decompose the data into different
layers corresponding to different structures in the data and synthe-
size new images with different opacity and color mappings.

To achieve this, we decompose the features comprising a volume
given a small collection of composited images as input. These in-
put images depict arbitrary combinations of the different structures
in the data, and can be provided (when only the images are avail-
able), or generated automatically from a large data set. Our algo-
rithm extracts the contribution of each structure to the input images
using Bayesian estimation. The result of this process is a set of
extracted layers, corresponding, ideally, to each feature depicted in
the input images. Once the contribution of each layer is known,
we can recomposite the layers into new renderings, allowing the
user to manipulate the color and opacity of each layer. This process
is illustrated in Figure 1(a). The automatic multi-layer extraction
technique and the concept of an explorable image are the main con-
tributions of this paper. Unlike previous image-based compositing
techniques, we extract layers from composited images that include
multiplicative attenuation, typical of semi-transparent or translu-
cent materials. This type of attenuation gives us clues about the
relative depth and volume of each structure. We exploit this prop-
erty to synthesize images with different materials and create volu-
metric cutaways that reveal the internal structure of complex data
sets while preserving their context.

There are a number of technical challenges in obtaining explorable
images. As a general rule of thumb, we allow the number of in-
put images to be much smaller than the number of layers to extract.
This is important for making explorable images as compact as pos-
sible. However, this makes the problem ill-defined. We present
an optimization-based approach that extracts layers from a small
number of input images with additional constraints, such as spa-
tial consistency and opacity distribution, to help arrive at plausible
solutions. In other cases, 3D data is available but it is too large
to distribute or to store on low-end devices. A more efficient so-
lution is to instead distribute a series of composited images. This
requires the generation of a transfer function that is appropriate for
our multi-layer extraction process. We describe an opacity mapping
generation algorithm that highlights combinations of features such
that the number of composited images is much lower than the space
requirement for storing individual layers.

We demonstrate that one of the main advantages of explorable im-
ages is enabling users to dynamically filter the information pre-
sented in resulting rendered images. For example, a user may de-
crease the opacity of an outer layer to see the inner layers more
clearly. We believe that the interactions we provide are useful in
helping users understand the spatial relationships between layers
and the overall shape of the features of interest. Because of the abil-
ity to manipulate the opacity and color properties in image space,
explorable images can be far more clear and informative than their



Figure 1: (a) Overview of the two possible usage scenarios. In the
first scenario, a user has a set of static input images and in the
second, the input images are generated from volume data. Then,
multi-layer alpha extraction is performed, followed by interactive ex-
ploration. This process can be repeated. (b) Overall process of the
storage and distribution of explorable images. The compact image-
based representation of a volume is stored and distributed for future
exploration. Multi-layer alpha extraction allows to generate layers for
synthesizing new images. Users can influence the layer extraction
process and to interactively modify the properties of each layer.

static counterparts.

2 RELATED WORK

Layer and Image Based Rendering. Due to the ubiquity and pop-
ularity of 2D image processing, image-based rendering has been a
popular alternative for view synthesis, 3D geometry reconstruction,
re-lighting and multi-layer rendering [12]. Shade et al. propose the
use of layered depth images (LDI), whose pixels contain a list of
color and depth values [26]. Depth values allow to display the ap-
propriate parallax induced by camera motion. Multi-layered repre-
sentations have been popularized in commercial rendering software
to simulate complex materials on synthetic objects, such as skin and
translucency [6, 7]. In volume rendering, images have been used to
synthesize new views of volume data [4], to cache results in a re-
mote setting [15], to provide an efficient exploration space of color
and lighting parameters [9, 18] or to generate transfer functions
[23, 34]. The work in this paper is related to the design of trans-
fer functions in image space. He and al. [9] and Marks et al. [18]
allow users to find good transfer functions based on the image re-
sults of previous interactions. Ropinski et al. present a sketch-based
design where users can combine different layers, obtained from in-
dividual component functions, to define a single transfer function
[23]. Wu and Qu present a system that generates a transfer function

that approximates the visual result of combining different image
layers from a volume data set [34]. Rautek et al. use the multi-
layer metaphor to combine different rendering styles according to a
semantic user specification [21]. In this paper, we address a rather
complementary challenge, that of extracting visible layers from ex-
isting volume-rendered images, and the subsequent recomposition
for new transfer functions. Although the synthesis of new images
from layers follows the same ideas proposed before, our unique
contribution lies in layer extraction and the fact that we can provide
new transfer functions from just a small set of input images.

One of the applications of our approach is recolorization of volume
rendered images. Color design is an important part of visualization.
Effective color maps help guide users’ attention [31], convey mo-
tion [32], or improve perception of shapes [22, 14]. It is not in the
scope of our paper to apply any particular coloring scheme to the
synthesized images, but rather to provide the means to explore the
color space of volume rendered images. In that sense, we believe
our approach is a powerful complementary technique.

Layer Extraction. The issue of layer extraction has surfaced in
the film and video production field as a way to create digital effects.
The simplest approach, called alpha matting, is used for extract-
ing a single foreground layer from the background of a photograph
or a synthetic image. Earlier techniques required either a constant
background color, as pioneered by Vlahos (blue-screen matting),
a combination of two constant-color backdrops [27], or a known
non-constant background [20].

The more general problem of extracting mattes from arbitrary pho-
tographs or video streams is known as natural image matting. Some
of the most successful techniques in this category include Knock-
out, described in patents by Berman et al. [1, 2], and the tech-
nique of Ruzon and Tomasi [24]. Maximum likelihood estimation
has been extensively used to solve the matting problem [5, 3, 30].
Other techniques to improve alpha matting using Principal Com-
ponent Analysis (PCA) [10], gradient fields [28], or spectral de-
compositions [16]. These techniques, however, are more effective
for natural images. In this paper, we generalize the notion of al-
pha extraction for multiple overlapping layers, useful for decom-
posing volume rendered images. Alpha matting has been extended
for multi-layered images, either to recover layers from photographs
of moving objects [29] or for multi-view object reconstruction [33].
In other cases, multiple layers are used to recover lighting effects.
Environment matting [36], for example, extracts additional layers
corresponding to the refraction and reflection introduced by fore-
ground objects. Chen et al [3] use segmentation to divide the image
into several foreground objects. Unlike previous attempts where
foreground objects and layers are opaque, we consider the case
of volume rendered images, which often contain multiple semi-
transparent layers composited together. To the best of our knowl-
edge, this is the first attempt to extract and recomposite different
alpha layers directly from volume rendered images.

A more general approach for editing semi-transparent layers is to
reconstruct a volume from images, then recomposite them with
new material properties. Yamazaki et al. [35] formulate the pro-
cess as inverse volume rendering, where photos of the same object
taken against two different constant-color backdrops are taken as
input. Seitz and Dyer use voxel coloring to reconstruct opaque ob-
jects [25]. The reconstruction of semi-transparent objects, such as
fire and smoke, demands a different approach, such as tomographic
reconstruction [8, 11]. A similar approach was proposed for recon-
structing astronomical objects [17]. Similar to these approaches,
we use inverse compositing to combine alpha mattes of individ-
ual layers. However, since we are interested in changing the mate-
rial properties and light interactions of layers, not synthesize new
views, we can extract the layers directly from input images with-



out reconstructing a volume. This makes our approach particularly
effective for low-powered machines and interactive exploration.

3 EXPLORABLE IMAGES

An explorable image is a collection of single-view layered images
of a data set. This collection has the following characteristics:

• Each layer is represented in at least one image.
• Each image may contain multiple layers.
• If m is the number of images and n is the number of layers, we

allow m < n. Generally, we want m to be as small as possible.

Given an explorable image of a data set, it is possible to extract
individual layers and to generate many new images with any com-
bination of layers. It is also possible to modify the transparency and
color of each layer. The methods for creating and interacting with
explorable images are entirely image-based. Neither the original
3D data nor re-rendering are required.

The process of creating and interacting with an explorable image
includes the following:

Generation of input images: In the scenario where input images
are not provided, this pre-processing rendering step generates a set
of multi-layered images from volume data. At the rendering time,
the rendering parameters for each layer are stored as additional in-
formation. The first step in the input image creation process is the
automatic generation of a transfer function. Users can control this
process by supplying domain knowledge, such as the range of val-
ues of interest. Users can also influence the number of generated
images by selecting the number of layers they wish to explore. The
number of images can range from a single image for the entire data
set to an individual image per layer. There is a trade-off between
the storage space or bandwidth requirements and the ability to re-
produce all possible interactions between layers. Our method can
generate explorable images from any set of input images. Even in
the case when only a single image of a data set is available, we
can still create an explorable image. Once the input images have
been generated, this compact representation of a volume is ready
for storage and distribution for future exploration.

Automatic layer extraction: In this step, we extract the layers us-
ing multi-layered alpha extraction - a method similar to alpha mat-
ting techniques.

Interaction/Exploration: The decomposition of 2D images into
individual layers allows users to explore the data in image space.
The available operations include recoloring, recompositing, and
rendering of ghosted views and cutaways. Since these operations
are image-based, they are inexpensive and can be performed on
low-end hardware, mobile devices, and within browsers.

These stages are illustrated in Figure 1(a) for two scenarios. In the
first scenario, the input is a small set of images. After automatic
multi-layer extraction, users can explore the dataset by changing
opacity, color, or adding volumetric cutaways. In the second sce-
nario, we generate input images from a large data set using the
method described below. The extracted layers act as an image cache
that can be used to explore the data in transfer function space with-
out re-rendering. Since our method is view-dependent, the process
must be repeated when the view changes. Figure 1(b) describes the
overall process of storage and distribution of explorable images.
The set of multi-layered images (showing arbitrary combinations
of layers) is stored and can be distributed for future exploration.
Once the user chooses to explore the data set, automatic multi-layer
alpha extraction is performed. The layers can be subsequently used
for recompositing and synthesizing new images.

4 GENERATION OF INPUT IMAGES

Our approach does not assume anything particular about the input
images except a rough estimate of each layer’s color to make them
separable. In our experiments, however, we generate images from
3D data pseudo-automatically. Since we allow users to change the
color and opacity of individual layers, the initial transfer function is
not optimized for visualization, but for layer extraction. Our tech-
nique can be used even if a user wants to manually generate input
images. The only requirement is that the following additional in-
formation is stored in addition to the images: order of layers, ap-
proximate color and opacity of each layer.

In our work, we employ the transfer function generation method de-
veloped by Kindlmann and Durkin [13]. Automatic transfer func-
tion generation is not the focus of this paper and other transfer func-
tion generation methods may be considered. Refer to [19] for an
overview of different methods. The technique of Kindlmann and
Durkin is designed for a class of scalar volume data where the re-
gions of interest are boundaries between different materials. The
transfer function that amplifies such boundaries is generated by an-
alyzing the relationship between the following three quantities: the
data value and its first and second derivatives along the gradient di-
rection. In our system, user has an option of controlling the amount
of boundary blurring; otherwise, it is set to a default value. The red
lines in the subsequent images are examples of the transfer func-
tions generated using this technique.

We do not use the result of this method directly, but compute the
peaks in the generated transfer function to obtain iso-values de-
scribing material boundaries. Our system then selects a sampling of
these peaks, such that the peaks are as equally spaced as possible.
Our transfer function then consists of a series of Gaussian curves
with centers at the selected peaks. The user can control the width,
height, and the number of peaks, which in turn controls the number
of generated input images. The user can also supply domain knowl-
edge information to the system by specifying the range of values of
interest. This additional “hint” is used to control the opacity of the
series of Gaussians. The green lines in the subsequent images are
examples of such “hints”.

Once the transfer function is generated, we can render the input im-
ages. We devised a simple scheme for generating combinations of
layers. The first image contains only two layers: the innermost and
the outermost layer. The second image contains these two layers
along with a layer in between. The concept is that if we have infor-
mation about the two bounding layers, we can reconstruct the data
in between. Additional images are generated in the same manner.
The heuristic tries to maximize the amount of information we can
fit in a small set of images. In general, we are able to represent n
layers with approximately logn images.

5 AUTOMATIC LAYER EXTRACTION

The light transport equation for a semi-transparent volume defines
the color intensity at any pixel as an exponential attenuation of the
extinction parameters of each point along a viewing ray:

C =
∫ D

0
c(s)e−

∫ D
s τ(t)dtds (1)

where c(s) is the radiance coming from light sources and reflected
on the surface at a sample s along a viewing ray, and the exponential
is the accumulated opacity between the sample and the eye position
(s = D). Sampling this integral at discrete points results in the well



known over compositing operator:

C =
n

∑
i=1

αici

i−1

∏
k=1

(1−αk) , (2)

where ai is the opacity (or extinction) of sample i. However, es-
timating the extinction or alpha coefficients for each sample point
in the object is not possible in the general case for arbitrary opac-
ities. For this reason, we consider the case when the image is the
result of compositing several layers, each of which can be described
with an homogeneous material. With this new assumption, the light
transport equation becomes:

C =
L

∑
i=1

Aici

i−1

∏
k=1

(1−Ak) , (3)

where ci is material color of a layer and Ai = (1−ai)
d represents

the approximate accumulated alpha value of a pixel in layer i along
a viewing ray segment of length d. Unlike Equation 2, this com-
positing occurs over a small number of layers, denoted as L, in-
stead of a large number of samples. The problem of generating an
explorable image then becomes a problem of extracting the alpha
values Ak from a set of composited images.

5.1 Alpha Estimation

As we mentioned previously, maximum likelihood methods have
been extensively used for alpha matting. Chuang et al. [5] introduce
the Bayesian approach to digital matting, where the maximum-
likelihood criterion is used to estimate the optimal alpha values for
each pair of foreground and background clusters. Chen et al. [3]
use Bayesian estimation to solve the matting problem for grayscale
images. Wang et al. [30] extend the segmentation based approach
to situations in which a trimap is difficult to create. They use be-
lief propagation to solve the MAP estimation problem, where each
pixel’s alpha value is estimated using a small user-selected sam-
ple of foreground and background colors. Szeliski et al. [29] em-
ploy constrained least squares to recover layer images from multi-
ple composited images. Wexler et al. [33] use Bayesian estimation
for multiview object reconstruction.

In our work, we are given a set of input images, each of which
contains an arbitrary combination of layers. Each pixel in an input
image can be represented using Equation 3 above. We formulate
the problem of computing alpha mattes for each layer using the
Bayesian framework and solve it using the maximum a posteriori
(MAP) method.

Given a set of m images with observations Ĉ = {C1, . . . ,Cm} and a
set of n layer material colors ĉ = {c1, . . . ,cn}, we use Bayesian es-
timation to recover a set of n layer mattes Â = {A1, . . . ,An}. Using
the Bayesian framework, we express the problem as the maximiza-
tion over a sum of log-likelihoods:

argmax
Â

P
(
Â|Ĉ, ĉ

)
(4)

= argmax
Â

P
(
Ĉ, ĉ|Â

) n

∏
i=1

P(Ai)/
m

∏
j=1

P
(
C j
)

= argmax
Â

(
L
(
Ĉ, ĉ|Â

)
+

n

∑
i=1

L(Ai)

)

where L(·) is the log-likelihood function, i.e. the log of probabil-
ity L(·) = log(P(·)). The term ∏

m
j=1 P

(
C j
)

is dropped, because
it is constant with respect to the optimization parameters Ai. The
problem is now reduced to defining log likelihoods L

(
Ĉ, ĉ|Â

)
and

L(A1) , . . . ,L(An). The first term is modeled by measuring the dif-
ference between the observed intensity C j and the intensity that
would be predicted by the estimated Â:

L
(
Ĉ, ĉ|Â

)
=

m

∑
j=1
‖

(
n

∑
i=1

Aici

i−1

∏
k=1

(1−Ak)

)
−C j‖2/2σ

2
C j

. (5)

This log-likelihood models the sum of errors in the measurement of
all C j. Each term in the sum corresponds to a Gaussian probability
distribution with mean ∑

n
i=1 Aici ∏

i−1
k=1 (1−Ak) and standard devia-

tion σC j . Unlike [5, 3], we do not assume σC j to be constant. We
compute the values σC j by fitting the intensity distribution of each
input image to a Gaussian curve.

In general, estimating the layers from a set of images is an ill-
defined problem, since it may be the case, and is often desired, to
have fewer images than layers. For this reason, we introduce ad-
ditional information in the form of priors to the likelihood models.
The first prior attempts to fit a probability distribution to the alphas,
while the second prior assumes spatial consistency of the alphas.

5.2 Alpha Distribution Priors

In our system, we constrain each Ai to be in the range [0,1] and we
assume them to be modeled as a Gaussian distribution, similar to
the approach by Chen et al. [3].

Wexler et al. [33] found that for natural images containing a single
foreground, the alpha matte can be modeled as a beta distribution.
This distribution is used as an alpha prior to improve the results
of the optimization solver. Our technique is designed to deal pri-
marily with images containing semi-transparent features. Through
experimentation, we observed that alpha distribution priors for a
semi-transparent feature are best modeled by a Gaussian distribu-
tion, with mean Ā and standard deviation σAi .

L(Ai) = ‖Ā−Ai‖2/2σ
2
Ai

, (6)

This likelihood is weighted by the user to give a different relative
importance in relation to the color likelihood component in Equa-
tion 5.

Unlike the approach in [3], where the distribution parameters are
given or empirically assigned by the user, we estimate them from
the available images. We first compute “initial guesses” of each
layer’s alpha matte using Equation 2 with layer material color and
image background color. This is equivalent to obtaining a “pseudo-
matte” for that layer given its expected color. Then we compute
the Gaussian distribution parameters, Ā and σAi , by fitting the in-
tensity distribution of each “initial guess” to a Gaussian curve. This
component makes sure that the extracted alphas follow the expected
distribution found in the original images.

5.3 Spatial Consistency

Another assumption is that the alpha layers exhibit spatial consis-
tency. Since the layer extraction problem may be ill-defined, it is
sometimes the case that the contribution of two or more layers to the
final image is ambiguous. Therefore, since in the general case we
do not have all the individual layers, removing a single layer may
introduce darker regions (due to overlap) for which we lack suffi-
cient information. Spatial consistency assumes that there is a strong
correlation between nearby image pixels and that the neighboring
pixels with similar colors should have similar alpha values. There-
fore, high frequency artifacts introduced by the removal of a layer
or by the lack of information can be solved with this component.



(a) Reconstructed image. (b) Feature with artifacts due to
layer removal.

(c) Feature after optimization with
spatial consistency priors.

(d) Original feature, rendered sep-
arately.

Figure 2: Spatial consistency priors. (a) Input images on the left allow us to decompose a rendering of a turbulent flow (vorticity). (b) With the
extracted layer, we can synthesize a new image of a single feature (green layer). However, with the lack of complete information, some artifacts
appear where occluding layers used to be present. (c) Spatial consistency helps alleviate these problems. Compare to the ground-truth image,
obtained by re-rendering the individual layer (d).

We begin by using the optimization to obtain first estimates for
each layer. Once we have the initial results, we blur each estimated
layer and compute its gradient map. Then, we perform optimization
again with the spatial consistency priors. The spatial consistency
priors are incorporated into the maximum likelihood model as the
squared differences of the color of a pixel and its neighbors:

∑
y∈N(x)

W (x,y)(A(x− y)−A(x))2 (7)

where N(x) is the set of neighbors of x, and W (x,y) is a weighing
factor that prevents smoothing across edges. Similar to [33] and
non-linear diffusion operators, this weighing factor is defined as a
function of the gradient between neighboring points:

W (x,y) = exp

(
− ((g(x,y)>(x− y))2

(x− y)>(x− y)

)
(8)

for two neighboring pixels x and y. The effect of adding the op-
tional spatial consistency prior to the optimization system is shown
in Figure 2, for images obtained from a turbulent flow (vorticity)
simulation. As input, we have 3 images with different combinations
of 5 layers (shown as thumbnails on the left). We can estimate each
of these layers and recomposite the image as shown in Figure 2(a).
When we isolate a single layer, as shown in Figure 2(b), some arti-
facts appear due to the limited information about some layers (since
we have fewer images than the total number of layers). The spatial
consistency component helps resolve some of these artifacts with-
out blurring the stronger edges that define the feature in this layer
(Figure 2(c)). Compare to the ground-truth image in Figure 2(d),
obtained by rendering the isolated feature. As with other smooth-
ing operators, there is a trade-off between the smoothness of each
separate layer and the quality of the original layer details.

6 EXPLORATION SPACE

The goal of extracting layers from input images is to give users
the ability to modify the material properties of a data set and syn-
thesize new images that highlight different parts of the data, using
recolorization and operations on the opacities.

Our system allows users to colorize any layer in the explorable im-
age. This is achieved by simply changing the color component of
the extracted layer into the desired new color. Figure 3 shows an
explorable image of a turbulent flow (vorticity) simulation. The ex-
plorable image lets a user change the color of any of the 7 layers.

Figure 3: Colorization example. An explorable image with 7 layers
is recomposed from 4 input images. The colors of all features are
modified. The data set is a turbulent flow (vorticity) simulation.

We provide only 4 images of the volume data as input and the sys-
tem is still able to recover most of the layers, despite the fact that
some of them are not clearly isolated in the input images.

Figures 4, 5, and 6 show examples using a supernova (entropy) sim-
ulation data set. One of the challenges is to visualize the turbulent
structures near the core of the supernova to understand what trig-
gers an explosion. In Figure 5, we show the 7 layers extracted from
only 3 input images and compare them to the ground-truth, individ-
ually volume rendered features. We demonstrate that the extraction
is accurate, except for the artifacts due to occlusion by opaque fea-
tures. After the layers are extracted, users can apply different color
maps, change opacities of features, and apply volumetric cutaways
to reveal the partially occluded turbulent structures.

Since each layer contains opacity information, operations on the al-
pha component of layers enable us to synthesize new images where
we can selectively highlight parts of interest. For example, apply-
ing a 2D mask to the opacity component of a layer helps us create
cutaways and ghosted views. Figure 4 shows a radial feathered cut-
away mask applied to 3 outer layers (blue, cyan, green) of the su-
pernova (entropy) data set, revealing a partially occluded structure



Figure 5: Comparison between the features extracted using our technique (bottom) and the ground-truth, individually volume rendered features
(top). The extraction is accurate, except for the structures occluded by opaque features.

Figure 4: The radial feathered alpha mask is applied to 3 outer layers
(purple, cyan, green) to reveal the inner feature (purple). Insets pro-
vide a close up view of one of the areas where the partially occluded
structure is revealed. The extraction of all 7 layers is performed using
only 3 input images.

(purple). The insets highlight one area where recolorization and
application of an alpha mask reveal a previously occluded feature.

Unlike traditional layer-based rendering, we estimate the opacity
based on a volumetric light transport model, which assumes that
light attenuates more as it travels through more samples. Based on
this observation, we can obtain volumetric cutaways that give the
illusion of depth. By creating a mask that varies in opacity in the
area of a cut (i.e., the rim), the recomposition produces images that
simulate the relative depth that would occur due to a solid cut. Ex-
amples can be seen in Figure 6 and Figure 7. Note the appearance
of a thick rim as a result of the alpha mask. In Figure 6, we simulate
a triangular volumetric cut on the outer layers of the supernova (en-
tropy) data set to reveal the partially occluded features. Specifically,
parts of the 4 outer layers (blue, cyan, green, purple) are removed to
reveal the 3 inner features (yellow, orange, red). Figure 7 simulates
the application of cutaway planes for several layers of the lifted
flame (mixfrac) data set. The scientists are interested in studying
the distribution of the scalar field along the main flame surface to
aid their understanding of the efficiency of the combustion process.
Different cutaways help us visualize the partially occluded features

Figure 6: A triangular volumetric cutaway is applied to multiple outer
layers of the supernova (entropy) data set. The extraction of 7 layers
is performed using only 3 input images. The opacity of the outer
layers (blue, cyan, purple, green) is decreased to reveal the inner
features (yellow, orange, red). The insets show one of the areas
where the finer details of the partially occluded inner structures are
revealed with the use of a volumetric cutaway.

to further the understanding of the scalar field. The first cutaway
is applied to the first 2 outer layers (purple, pink) and the second
cutaway is applied to the next 2 layers (red, orange), revealing the
partially occluded inner (yellow) layer. In both examples, the insets
demonstrate how the application of cutaways can help reveal hid-
den structures - all without re-rendering - thus, enabling meaningful
exploration entirely in image space.

7 DISCUSSION

As the number of images decreases, the problem of recovering lay-
ers becomes ill-posed and cannot be solved accurately. However,
we show that even with a single image, our multi-layer extraction
technique lets us obtain an approximation of the contribution of
each layer to the input images. Figure 8 shows the results of layer
extraction from 4, 3, 2, and a single image. Row (a) shows the re-
composition of all the layers and row (c) - the recomposition with
3 out of 7 layers removed. Rows (b) and (d) show the difference
between the synthesized and the ground truth (volume rendered)



Figure 7: Volumetric cutaways are applied to several layers at a time,
simulating cutting planes. Cutaway alpha masks are applied to the
outer layers of a lifted flame (mixfrac) data set to reveal hidden struc-
tures. The first cutaway is applied to the 2 outermost layers (purple,
pink) and the second cutaway is applied to the next 2 layers (red,
orange), revealing the partially occluded inner layer (yellow).

images. Note that the difference magnitude is amplified for clarity,
specifically, it is increased by a factor of 2. The difference between
layer extraction from 3 and 4 images is not noticeable. For 7 layers,
only 3 images showing some combinations of layers suffice for ac-
curate decomposition. Row (c) shows that for 2 images and a single
image, the method is not able to properly isolate some of the layers.
After removing 3 out of 7 layers, we can still see the contribution
of some of the removed layers to the image. The actual average
pixel error values for each example are plotted in Figure 9. Since
the problem is ill-defined, there are naturally cases where accurate
decomposition is not possible. For example, the use of attenuation
may produce images where certain parts are hidden behind opaque
features. Removal of the opaque layers then results in artifacts due
to missing information. Although spatial consistency priors and al-
pha distributions can remove minor artifacts, entire hidden regions
cannot be properly reconstructed without hole-filling techniques.
Another approach is to include additional layers where the com-
positing is performed back-to-front instead of front-to-back and to
modify the color likelihood equation accordingly.

Our technique can be used if only the images of a data set are avail-
able and not the original volume. Figure 10 demonstrates the ap-
plication of our technique to the CT data set of a chameleon. We
extract 3 layers of the data set (skin, muscle, and bone) using only
2 images as input. We approximated the color and opacity of each
layer to perform decomposition. We created two synthesized im-
ages of the dataset. In the first one, the skin layer is completely
removed. In the second image, a volumetric cutaway was applied
to the bone layer to reveal a feature hidden inside.

8 CONCLUSION

Volume data visualization has become an important tool in many ar-
eas of study and practice from medicine, 3D applications in science
and engineering, to industrial non-destructive testing. The concept
of explorable images suggests a new approach to interactive vol-
ume visualization, leading to a more accessible and affordable so-
lution. Interactive high-quality volume visualization will become

Figure 8: Examples of explorable images created with a different
number of input images. There are 7 layers and 4 input images
(same setup as in Figure 3). The optimization is performed with 4,
3, 2, and 1 input images (from left to right). (a) Synthesized im-
ages, where layer extraction is performed with a different number of
images. The error between the synthesized images in (a) and the
original rendering is shown in (b). (c) Synthesized images with 3 out
of 7 layers fully removed. The error between the synthesized images
in (c) and ground truth is shown in (d). Note that the difference mag-
nitude is amplified (increased by a factor of 2), for clarity.

Figure 9: Average error per pixel for explorable images created with a
different number of input images. The average error per pixel values
are computed from difference images in Figure 8(c) and (d).

available to us on devices from mobile phones, netbooks, desktop
computers, to large-scale, high-resolution displays without the need
to transfer large data sets for visualization and a high-end rendering
engine. Explorable images can also be far more clear, informative,
and compelling than their static counterparts. However, to turn ex-
plorable images into a truly useful tool for real-world applications,
we need to extend explorable images to also support spatial and
temporal domains exploration. Consequently, the other essential
task is to design an interactive interface for exploration in the re-
sulting multi-dimensional space. We envision explorable images
will stimulate a new line of research in the field of visualization.



Figure 10: Example of layer extraction from existing input images,
with no volume data available. Decomposition is done using 2 in-
put images (left). In the first synthesized image, the skin layer is
completely removed. In the second synthesized image, a volumetric
cutaway is applied to the bone layer to reveal a feature hidden inside.
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