
A Framework for Uncertainty-Aware Visual Analytics

Carlos D. Correa ∗ Yu-Hsuan Chan † Kwan-Liu Ma ‡

University of California at Davis

ABSTRACT

Visual analytics has become an important tool for gaining insight
on large and complex collections of data. Numerous statistical tools
and data transformations, such as projections, binning and cluster-
ing, have been coupled with visualization to help analysts under-
stand data better and faster. However, data is inherently uncertain,
due to error, noise or unreliable sources. When making decisions
based on uncertain data, it is important to quantify and present to the
analyst both the aggregated uncertainty of the results and the impact
of the sources of that uncertainty. In this paper, we present a new
framework to support uncertainty in the visual analytics process,
through statistic methods such as uncertainty modeling, propaga-
tion and aggregation. We show that data transformations, such as
regression, principal component analysis and k-means clustering,
can be adapted to account for uncertainty. This framework leads to
better visualizations that improve the decision-making process and
help analysts gain insight on the analytic process itself.

Keywords: Uncertainty, Data Transformations, Principal Compo-
nent Analysis, Model Fitting

1 INTRODUCTION

The goal of analytical reasoning is to gain insight from large
amounts of disparate and conflicting data with varying levels of
structure. Visual analytics seeks to facilitate this process by means
of interactive visual metaphors. However, limitations on technol-
ogy and human power make it difficult to cope with the growing
scale and complexity of data. Therefore, it is seldom possible to
analyze data in its raw form. It must be transformed to a suitable
representation, which facilitates the discovery of interesting pat-
terns. Dolfing [9] describes the visual analytics process as a series
of transformations that facilitate insight from a collection of het-
erogeneous data sources. Thus, transformations can be categorized
as data/visual transformations, which derive representations with
increasing structure and meaning, and visual mappings, which con-
vert these structures into visual elements, used by a visualization
interface. Figure 1 shows an overview of such a visual reasoning
process.

Data is inherently uncertain and often incomplete and contra-
dictory. For instance, data collected from online news sources and
blogs is often populated with misinformation and deception. Mea-
sured data contains errors, introduced by the acquisition process or
systematically added due to computer imprecision. For the analyst,
it is important to be aware of the sources and degree of uncertainty
in the data. As data is pre-processed, transformed, and mapped to
a visual representation, this uncertainty is compounded and propa-
gated, making it difficult to preserve the quality of data along the
reasoning process. In this paper, we present a framework to repre-
sent and quantify the uncertainty through a series of data transfor-
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mations. With an explicit representation of uncertainty at all stages
of the process, the analyst can make informed decisions based on
the levels of confidence of the data and evaluate the insight gained
on previous stages of the reasoning process. This uncertainty is not
only propagated from the original data to the visual representations,
but also data transformations themselves generate additional uncer-
tainties. For example, complex multi-variate data is often projected
to a low dimensional space for easy visualization, such as Princi-
pal Component Analysis, which implies a loss of information. For
the user, it becomes important to have a visual representation that
not only summarizes the uncertainty of the information being pre-
sented, but also helps identify the sources of that uncertainty.

To illustrate the uses of our framework, we use a case study
from the Boston neighborhood housing price data set, consisting of
a multi-variate dataset about different factors that affect the mean
value of housing in the Boston area, collected in the 1950s [13].
This dataset is inherently uncertain, due to statistical sampling or er-
rors. It was soon noted that a certain variable contained an incorrect
bias. To analyze this data, we follow common data analysis tools,
such as model fitting, principal component analysis and clustering,
and show how uncertainty is not only propagated, but also aggre-
gated in each of these stages. An uncertainty-aware framework not
only reports the sources of uncertainty, but also requires transfor-
mations that can deal with uncertain inputs. We enhance traditional
visual analytics tools with uncertainty information, which shows an
overview of the distribution of error and probabilistic variance of
the data. In addition, an explicit visual representation of the sen-
sitivity coefficients reveals correlations between the output uncer-
tainty and specific input variables that may be difficult to discover
or easily missed by means of statistic analysis alone.

Keim et al. suggested the mantra: “Analyze First - Show the Im-
portant - Zoom, Filter and Analyze Further - Details on Demand”
to guide the visual analytics process [17]. In our work, we show
that a similar guide applies to uncertainty. We first analyze the data
in terms of sensitivity and uncertainty, we show the important, i.e.,
the most influencing or uncertain variables and then we show details
on demand, such as sensitivity coefficients for specific transforma-
tions and data points. In this paper, we present a series of visual
representations that combines summarized and detailed views of
the uncertainty of a multi-dimensional complex data set. Although
a proof-of-concept case is depicted, we believe our framework can
be extended to incorporate a variety of visual analysis tools.

2 RELATED WORK

Multivariate analysis is at the core of visual analytics. Methods for
this type of analysis include regression [10], generalized additive
models [14] and response surface analysis [3]. These methods in
general try to find relationships among variables and fit models to
multi-variate data. Other tools are used to reduce the amount of
information encoded in the multi-variate data, such as binning and
sampling [28], projections [25], multi-dimensional scaling [4] and
clustering [2].

Yang et al. integrate analysis tools with visual exploration
of multivariate data [33] using the Nugget Management System,
which incorporates user interest to guide the analysis. Barlowe et
al. introduce the derivatives of dependent variables to help find
correlations between variables [1]. In our paper, we study another



Figure 1: Uncertainty-aware Visual Analytics Process. In general, visual analytics is the process of transforming input data into insight. A
similar process occurs for the uncertainty. First, uncertainty modeling generates a model for source uncertainty. As data is transformed, these
uncertainties are propagated and aggregated. We obtain such estimates via sensitivity and error modeling. Finally, the uncertainty on the
derived data and its sources are mapped to visual representations, which finally populate the view used by the analyst.

important aspect when dealing with multivariate data, the issue of
data and transformation uncertainty.

Although there is no consensus on the scope of uncertainty, a
number of definitions have been proposed. Hunter and Goodchild
[16] define uncertainty as ”the degree to which the lack of knowl-
edge about the amount of error is responsible for hesitancy in ac-
cepting results and observations without caution”. This definition
has spun a number of interpretations on what can be measured as
uncertainty. Taylor and Kuyatt [27] proposed a series of guidelines
for evaluating uncertainty of measurement results, which is classi-
fied as either random or systematic error. This led to a classification
by Pang et al.[21], who suggested three types of uncertainty that
are relevant for visualization of complex data: statistical, for mea-
surements with a known distribution, error, a difference between a
measure and known ground truth, and range, which represents an
interval where data exists. To accommodate the varying data types
and transformations on an analytical process, Thomson et al. define
an uncertainty typology [29], identifying key components of uncer-
tainty such as accuracy/error, precision, completeness, consistency,
lineage, credibility, subjectivity, and interrelatedness. These frame-
works have stemmed from geospatial information systems. Re-
cently, Zuk and Carpendale extended this typology of uncertainty
to reasoning as a way to support visualization of analytic processes
[35].

The study of uncertainty can be further categorized as those con-
cerned with uncertainty modeling and those with uncertainty propa-
gation. To model uncertainty, numerous techniques have been pro-
posed, including probabilistic measures, Bayesian networks [18],
belief functions [12], interval sets [34] and fuzzy sets [22]. A differ-
ent issue is the process of uncertainty propagation, which deals with
the fact that uncertainty gets transformed as data moves through
the analytics process. As suggested by Taylor and Kuyatt for the
analysis of variance of measurements, it is possible to derive the
variance propagated by a transformation as a linear combination of
the variance of its inputs [27]. This simplification is also valid for
non-linear transformations, as it results from the first order Taylor
expansion of the transformation. This model was further simplified
by Thomson et al. [29], who proposed to model the different uncer-
tainty types of their typology as the output of simple operations on
its variances. In their case, the uncertainty of transformations or the
analysis process (often a subjective measure) is known. In general,
the uncertainty of a transformation must be derived from a sensi-
tivity or perturbation analysis, which involves the differentiation of

a transformation with respect to its inputs. Because some transfor-
mations are only provided as black boxes, these parameters must
be approximated, using methods such as linear least squares and
expectation-maximization (EM) algorithms. Frey and Patil review
a number of sensitivity analysis methods [11]. Tanaka surveys the
sensitivity analysis in the scope of multivariate data analysis [26].
Specific analyses of uncertainty for certain common data analysis
tools have been proposed. Chan et al. present a sensitivity analy-
sis for variance-based methods in general [5]. Cormode et al. [7],
Chau et al. [6] and Ngai et al. [20] propose extensions to perform k-
means clustering on uncertain data. Similar studies have been car-
ried out to quantify the sensitivity and uncertainty of the principal
components of multi-variate data [30, 32]. Kurowicka and Cooke
extend the issue of uncertainty analysis with high dimensional de-
pendence modeling, combining both analytical tools with graphic
representations [18]. In most of these cases, sensitivity analysis im-
plies knowing the derivatives of the data transformations. Barlowe
et al. incorporate derivatives to help the analyst assess the sensi-
tivity of dependent variables with respect to the source data [1]. In
our paper, we use the derivatives of data transformations in a more
general way, as a means to measure and quantify uncertainty prop-
agation and aggregation throughout the visual analytics process.

3 UNCERTAINTY FRAMEWORK

The visual analytics process is often described as a sequence of
transformations from raw data to insight, via abstractions and vi-
sual representations, as depicted in Figure 1. The process of trans-
forming raw data to abstractions and derived data is in fact a com-
plex network of transformations, which propagates and aggregates
uncertainty. To measure this uncertainty, we augment the visual
analytics in the following ways:

First, the input data uncertainty is modeled. Uncertainty model-
ing is a rather general approach, and numerous methods have been
proposed to achieve it, including parametric and non-parametric
models. In the former, a statistical model is applied to the input
data. In the case of Gaussian distributions, for example, the stan-
dard deviation serves as a measure of the data uncertainty. In the
latter, the uncertainty is represented from the data distribution di-
rectly, e.g., as a histogram.

As the data is transformed, this uncertainty is propagated through
the analytic process. The amount of uncertainty propagated by a
transformation depends on how sensitive is the output given a set
of inputs. To model the uncertainty propagation, we extend data



transformations so that we can query their sensitivity parameters.
In addition, transformations themselves aggregate uncertainty, typ-
ically due to error or loss of information. We obtain the aggregated
uncertainty via error modeling of the transformation. Transforma-
tions that can be queried for their sensitivity parameters and the
aggregated error are known as uncertainty-aware transformatins.

Once the uncertainty is modeled and propagated, the results is
propagated through the visual mapping stage, via an uncertainty
visual mapping and uncertainty views. The following sections de-
scribe each of these stages in detail.

3.1 Uncertainty Modeling

Uncertainty modeling consists of deriving a mathematical model to
describe the uncertainty of the source data. There are numerous
methods for modeling uncertainty, including probability measures,
belief functions, interval arithmetic and fuzzy sets [12]. In this pa-
per, we focus on parametric models and consider the input variables
as random variables. In this paper, we consider the input data X to
be modeled as a Gaussian Mixture Model (GMM):

X ∼
N

∑
i=0

N(µi,σi) (1)

where N(µ ,σ) is a Gaussian distribution of mean µ and standard
deviation σ . The uncertainty is then represented as a collection of
standard deviations.

Gaussian mixture models are interesting since they can be
adapted to fit a wide range of probability distributions. Although
non-parametric models are becoming very popular for representing
uncertainty, we believe that the use of parametric models is useful
in applications when the analyst aims at deriving quantitative mod-
els that explain the distribution of data.

It is important to categorize the uncertainty in the visual analyt-
ics process as either data or transformation uncertainty. The former
deals with the uncertainty inherent in the source and derived data,
either due to error, incomplete data or source reliability. The lat-
ter represents the uncertainty added by the data transformation. In
the visual analytics process, we must be able to represent the in-
teraction between these two types of uncertainty. This is achieved
through methods such as uncertainty propagation and aggregation.
Figure 2 shows an example of Gaussian models used to estimate
the uncertainty in the distributions of a number of variables from a
housing data set [13].

3.2 Uncertainty Propagation

Uncertainty propagation occurs as data is transformed along the vi-
sual analytics process. The more sensitive a given transformation is
to variation, the larger is the uncertainty propagated through it.

For the case of Gaussian distributions, it is well known that un-
certainty propagates linearly for linear transformations. This gen-
eralizes to mixtures of Gaussians as well. Non-linear models, how-
ever, do not result in uncertainty propagated using the same trans-
formation, but can be approximated as follows.

Let us consider a nonlinear transformation :

y = f (x) (2)

of a multi-variate vector x. Let x be modeled as a Gaussian mixture
model:

p(x) =
N

∑
i=1

wiN(x|µi,Σi) (3)

where N(x|µ ,Σ) is a Gaussian probability distribution with mean µ
and covariance Σ.

The result of applying f is another Gaussian mixture model with
mean µ ′ and covariance Σ′, such that:

(a) DIS (b) RAD

(c) TAX (d) Estimated CMV

Figure 2: Modeling the uncertainty of variables using Gaussian Mix-
ture Models (GMM) for 4 different variables. The first two (a-b) are
accessibility variables, (c) is a neighborhood variable and (d) is a de-
rived variable as the model fitting of the 14 variables. A Gaussian
model (red) fails to capture the different peaks and misrepresents
the uncertainty of the distribution. A GMM models more closely the
actual distribution of the data.

µ ′ = f (µ) (4)

Σ′ = J(µ)ΣJT (µ) (5)

Where J is the Jacobian of the transformation, i.e.,

Ji j =
∂yi

∂xi
(6)

This linearization of the uncertainty propagation (modeled as the
covariance) derives from the first order Taylor approximation of f .
Alternatives to this method include Montecarlo sampling [15], Mo-
ment methods [23] and Polynomial Chaos [31], primarily used in
risk assessment and engineering uncertainty.

In the Taylor series method, used in our paper, the main issue is
estimating and representing the sensitivity parameters of the trans-
formation, described next.

3.2.1 Sensitivity Parameters

To apply the previous propagation equation, the framework requires
to know the Jacobian of the transformations, formed by the partial
derivatives of the transformation with respect to its inputs. These
are also known as the sensitivity coefficients of the transformation.

There are numerous methods for finding sensitivity coefficients
[11]. In this paper, we consider two of them: analytical and lin-
ear regression. To compute the sensitivity coefficients analytically,
we must know the transformation in its analytic closed form, as a
function in terms of the input variables. The derivatives can then be
obtained symbolically and applied to the inputs.

Another alternative is to approximate the partial derivatives via
linear regression. This is obtained by considering the Taylor ap-
proximation of an output variable for a number of N samples:

yi = y0 +
∂y

∂x
(xi − x0) (7)

Using linear least squares, we obtain the approximation to the
partial derivatives as:

∂y

∂x
≈

∑N
i=0(yi − y0)(xi − x0)

∑N
i=0(xi − x0)2

(8)



3.3 Uncertainty Aggregation

Data transformations, in general, involve certain error and often re-
sult in loss of information. For this reason, transformations them-
selves aggregate uncertainty to the output variables. Here, we con-
sider the uncertainty of a transformation as Gaussian noise. There-
fore, Eq.( 2) can be extended as follows:

y = f (x)+ e (9)

e ∼ N(0,E) (10)

where e is an error term, modeled as a Gaussian distribution of zero
mean and covariance E.

When we account for both propagation and aggregation of un-
certainty, the result of applying a transformation results in the un-
certainty:

Σ′ = J(µ)ΣJT (µ)+E (11)

3.4 Transformation Uncertainty

To understand the implications of our framework, we show the anal-
ysis of uncertainty for two typical data analysis transformations:
projection via Principal Component Analysis, and clustering.

3.4.1 Principal Component Analysis (PCA)

PCA is a projection method that re-expresses a collection of cor-
related variables into a smaller number of variables called princi-
pal components, which maximize the variance of the data. PCA
has become an important analysis tool for visual analytics, as N-
dimensional data can be projected into a lower dimensional space
(typically 2D), which can be represented easily in current display
technology.

To understand the effects of PCA in input uncertainty, we must
perform a sensitivity analysis. Several methods have been proposed
before to this purpose [26, 32]. Here, we follow a generic approach
of multi-dimensional differentiation as described in the previous
section.

In addition to this propagation, PCA itself adds uncertainty, seen
as loss of information as several dimensions (the ones with least
variance) are ignored. Let us consider the case of PCA into two
dimensions for an m× n matrix X representing m observations of
an n-dimensional vector. The PCA projection is a linear transfor-
mation:

Y = P(k)X (12)

where Pk is a linear transformation containing the first k principal
components of X . A typical projection in 2D uses k = 2. Therefore,
the error introduced by this projection can be computed as:

EPCA = ||P(2)X −P(n)X || (13)

It can be seen that this is equivalent to

EPCA =
1

2

n

∑
i=3

λi (14)

where λi are the eigenvalues of the covariance matrix resulting of
the empirical zero mean data matrix, which summarize the magni-
tude of the secondary components.

3.4.2 Clustering

Another commonly used transformation is clustering, which ar-
ranges data values in a large collection into separate classes that
minimize the distance between points in the same class, while maxi-
mizing the distance between points in different classes. Methods for
clustering include k-means, hierarchical algorithms, locality- and

Figure 3: BNHP Dataset, represented here as a scatterplot matrix.
Clearly, the high dimensionality makes it difficult to understand and
find meaningful correlations.

grid-based algorithms [9]. The k-means algorithm is a greedy algo-
rithm that iteratively assigns data points to the cluster whose cen-
troid is closest [19]. When the data is uncertain, however, the dis-
tance between data points cannot be determined deterministically.
Instead, k-means must take into account the variation of the data
points. An example is UK-means [6], which considers the expected
distance to a cluster centroid instead of the actual Euclidean dis-
tance.

Similar to PCA, clustering introduces error. In general, we can
measure the “quality” of the clustering using the total variance that
k-means is trying to minimize:

E = ∑
k

∑
i∈Ck

||xi −µk||
2 (15)

for k clusters with centroid µk. xi are the data points, classified into
the sets Ck.

3.5 Visual Mapping

Finally, the uncertainty propagated and aggregated throughout the
process is mapped to visual representations. Analogous to the
original data, this implies a problem of visualization of multi-
dimensional data, since the uncertainty of the data depends on each
of the variables, the intermediate results after data transformations
and the data transformations themselves. Following the visual ana-
lytics mantra, the visual mapping needs to be multi-functional. On
one hand, it should provide an overview of the uncertainty, and on
the other hand, it must let analysts gain access to detail information.
To achieve the first, we enhance scatter plots of multidimensional
data with uncertainty nodes, whose size indicate the magnitude of
the uncertainty. Using transparency, we “hide” the effects of un-
certainty so that only the most reliable data is highlighted to the
user. A different view does the opposite: it enhances the data with
higher uncertainty. This is useful for discovering the sources of
uncertainty and formulate questions about their distributions. An
example is detailed in the following section. For detail informa-
tion about uncertainty, we explore the use of bar charts (or tornado
graphs in Cooke and Noordwijk [24]), which depict the contribu-
tion of each variable and data transformation in the uncertainty of a
given data point.

4 CASE STUDY

To test our framework, we used a case study based on the Boston
neighborhood housing price data set (BNHP). This data set consists
of 14 variables and 506 data records of housing market data in the



Figure 4: Derivative Visualization. To show the derivatives, we use a
linear trend line for each sample value. The overall shape indicates
the general direction and expected variation of a data point. Color
coding denotes a clustering with respect to the variable RAD. Com-
pare a traditional scatterplot (top) with one augmented with derivative
information (bottom).

Boston metropolitan area [13]. These variables include some struc-
tural information such as the number of rooms in a unit (RM) or age
of the building (AGE), neighborhood related, such as the proportion
of population with lower status (LSTAT), crime rate (CRIM), pro-
portion of nonretail business (INDUS), accessibility variables, such
as the distance to five employment centers in Boston (DIS) and ac-
cessibility to radial highways (RAD), and an air pollution variable,
the concentration of nitrogen oxide (NOX). The data set was col-
lected in an effort to propose a procedural model of the willingness
to pay for clean air.

4.1 Uncertainty Modeling

The BNHP dataset consists of 14 variables, which we modeled us-
ing mixtures of Gaussians. These variables are depicted in Figure 3.
We can see that a scatterplot matrix like this makes it difficult to un-
derstand the complexity and correlations of multi-variate data, even
with interactive capabilities such as zooming and filtering. To better
depict this data set, we use principal component analysis to project
the 14 dimensions in a 2D plot.

To extract the model for each variable, we estimate the prob-
ability parameters using Maximum Likelihood criterion using the
Expectation-Maximization algorithm [8]. Examples of the result of
GMM modeling for a number of variables in the BNHP dataset is
shown in Figure 2, including a derived variable. Clearly, a simple
Gaussian distribution does not capture the complex shape of their
probabilistic distribution. A Gaussian Mixture Model (GMM), con-
sisting of two Gaussian clusters, represents more accurately the un-
certainty of these two variables.

Uncertainty plot of derived data

Uncertainty plot showing input sensitivity

Figure 5: Uncertainty view of the housing mean value resulting from
model fitting. Top: Color indicates the price, lower prices are in blue,
while higher prices are in red. Size of a point denotes uncertainty.
Note that the results for higher prices are consistently more uncer-
tain than low priced housing. Also note the concentration of these
nodes towards one of the ends in the PCA projection. Bottom: To
understand the sources of this uncertainty, we map the most impor-
tant factor that influences it (i.e., the most sensitive parameter). The
color coding is defined in Figure 6. The largest uncertainty seem to
be correlated with the neighborhood variables (LSTAT) while medium
and low uncertainties relate to accessibility variables (RAD and DIS).

4.2 Model Fitting Uncertainty

According to Harrison and Rubinfeld [13], it is possible to define
the housing value as a nonlinear combination of the 14 input vari-
ables, whose parameters can be found using nonlinear regression.
Therefore, we can readily find the sensitivity parameters of this de-
rived data with respect to each of the outputs. Examples of these are
depicted in Figure 4. At the top, we show a traditional scatterplot.
This plot does not tell much about the trends in the data. In the bot-
tom, we see a scatterplot augmented with uncertainty information,
in the form of line segments. Now the user can clearly see trends in
the data. The largest the slope of these segments, the higher the sen-
sitivity. We can clearly see a negative correlation of the estimated
mean value MV with respect to the variable DIS (x-axis) and the
variable RAD (clustering). Values in the cluster denoted by cyan
(high RAD levels) seem to be more uncertain.

To visualize the uncertainty, we map the magnitude of the prop-
agated uncertainty to the size of nodes in a 2D scatterplot defined
as the PCA projection of the 14 variables. This is shown in Fig-
ure 5. On top, we use color to encode the value of the output
variable, resulting from the model fitting of the 14 input variables.
Red nodes denote high housing prices while blue nodes denote low
prices. Transparency also encodes the degree of uncertainty. The



Figure 6: Detail uncertainty information. The different sensitivity pa-
rameters are shown for each data point as a bar or tornado chart [24]
to represent both the magnitude and sign of the sensitivity. Bars to
the left indicate a negative sensitivity, while bars to the right indicate
a positive sensitivity.

more uncertain a data value is, the more transparent is its visual
representation. This “hides” the effect of uncertainty and steers the
user’s attention towards the most reliable data points. With this vi-
sualization, we immediately see a correlation of uncertainty with
the estimated median value. Highly priced housing seems to carry
a lot more uncertainty than low priced housing. We also noted that
they appear clustered in a particular region of the projection, sug-
gesting a specific cause for this uncertainty.

To understand more the sources of uncertainty, we turn to the
sensitivity parameters, discovered in the initial stages of our frame-
work. The most sensitive variable turns out to be NOX (concen-
tration of nitrogen oxides in the air), the only air pollution variable
considered in the original study [13], which in turn was found to
be an important variable and used to measure the willingness to
pay for clean air. We then turn to the second most sensitive vari-
able, as depicted in Figure 5-bottom. Here, instead of hiding the
effects of uncertainty, we highlight them. Note how the more un-
certain nodes are visible and color coded depending on the second
most sensitive variable (since the most sensitive is NOX for all of
them). We see a correlation of larger uncertainties with the variable
LSTAT (the proportion of adults of lower status, in blue), medium
uncertainties to RAD (the index of accessibility to radial highways,
in cyan), while relatively low uncertainties to DIS (distance to five
employment centers in the Boston region, yellow) and RM (number
of rooms in owner units, in green). These suggest that more con-
fidence can be attributed to the effect of accessibility variables to
the mean housing price, than other neighborhood o structural vari-
ables. These results are consistent with the findings in Harrison’s
original study [13].

Figure 6 shows a zoomed-in view of a portion of the scatter plot
depicting detail information about the sensitivity parameters. In
this case, we use a tornado representation (a bar chart) [24] to show
both the sign and magnitude of the partial derivatives. Again, we
see a predominance of the RAD, DIS, LSTAT and NOX variables in
the uncertainty of the mean housing value, but we also discover the
effects of other variables. We believe that this multi-level approach
for exploring uncertainty, from high level overviews (Fig. 5) to de-
tail information (Fig 6), is essential for making reliable decisions
upon the visual analysis of complex data.

Figure 7: A summarized representation of the same data as a scat-
terplot of the 2 principal components. Color tagging of different clus-
ters helps the analyst understand the dependencies between differ-
ent variables. Top: Clustering based on NOX variable (air pollution).
A simpler visualization that carries more information in a single view
can be obtained with uncertainty, as shown in Figure 5.

4.3 PCA transformation

PCA is used to reduce the dimensionality of the data set to a 2D
plot. An example is shown in Figure 7, where we plot the multi-
dimensional data sets along the principal components and use color
coding to denote three clusters based on the NOX variable (air pol-
lution). The visualization also depicts the individual pair-wise scat-
terplots with each variable in the x and y axes.

To model the uncertainty propagated by the PCA transformation,
we estimated the sensitivity parameters via linear regression. Be-
cause we want to observe local changes in PCA transformation ac-
cording to the different input variable, we used moving least squares
instead of the total least squares method in Section 3.2.1. In the
moving least squares sense, the derivative of PCA with respect to
a variable is computed only in a neighborhood around each data
point. An example is shown in Figure 8, which depicts the sensitiv-
ity of the second principal component with respect to the input vari-
able LSTAT. The color denotes a clustering with respect to another
variable (NOX), which suggests a correlation between this sensi-
tivity and the other variable. Notice the presence of critical points,
where the sensitivities can become positive or negative. As a data
point moves around this critical region, the variable changes from
influencing positively the PCA projection to negative influence.

Once we have estimated the sensitivity parameters, we can esti-
mate the uncertainty propagated by the PCA transformation. The
2D projection leads to a 2D uncertainty estimate for each data point,
which can be represented as ellipses. A ellipse elongated along a
given dimension, i.e., horizontal or vertical, shows a larger uncer-
tainty due to the principal or secondary component of the projec-
tion, respectively. The uncertainty visualization is depicted in Fig-
ure 9. Notice that there is a predominance of uncertainty due to the
secondary component, and that there is a spatial consistency in the
uncertainty estimates. Unlike Figure 5, there is no apparent corre-
lation between high housing prices and propagated uncertainty.

When combined with the uncertainty propagated by the model
fitting, this framework helps analysts to quantify and assess their
confidence of, not only the input data and models, but also the data
transformations.



Figure 8: PCA Sensitivity to a given variable (LSTAT). Color cod-
ing denotes a clustering with respect to the variable NOX. Note that
the sensitivity analysis shows us a critical region, where derivatives
change sign.

Figure 9: Uncertainty Propagation of PCA. Each component of the
PCA projection propagates uncertainty, therefore, we obtain a 2D un-
certainty for each data point, here represented as ellipses. The x-axis
of each ellipse represents uncertainty propagated by the principal
component, while the y-axis represents the uncertainty propagated
by the secondary component.

4.4 Clustering

To understand the effects of clustering in uncertainty, we measure
the variance within each cluster for a number of possibilities. Be-
cause clustering is an operation that maps from a large set of data
points to a small number of classes, uncertainty is only represented
as a summary view. Fig. 10 shows the stacked histogram of the
uncertainty for clustering along different dimensions. The larger
the bar, the highest the uncertainty. The stacked histogram also
shows the relative uncertainty of each of the clusters. When clus-
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Figure 10: Uncertainty of Clustering. Each bar represents the total
variance of the clustering operation for each variable, including the
two principal components of the data. Within each bar, the size of
each color represents the uncertainty of each cluster. The first and
second rows show the uncertainty for 3 and 4 clusters, respectively.
The last row shows the difference in uncertainty. A negative differ-
ence (green) indicates an improvement of uncertainty. This summa-
rized view helps the analyst evaluate the efficacy of the data trans-
formations.

ters are highly uncertain in relation to others, such as for the CMV
and CRIM variables, this suggests that the number of clusters is not
necessarily optimal, and the analyst can improve the classification.
In other cases, such as for RAD and TAX, the clustering seems to
classify the data well. Fig. 10 also shows the stacked histogram
for 4 clusters. We see that this change improves the uncertainty of
clustering for some of the variables, such as CMV, CRIM and PRA-
TIO. In general, the optimal number of clusters for each variable
can be found using expectation-maximization techniques (EM). In
other cases, however, prior information about the data may sug-
gest some expected number of clusters that may not be optimal.
Our framework enables the analyst to evaluate the quality of the
data transformations. For example, we also show the effect of ap-
plying a more appropriate clustering to the data. In Figure 10, we
show the uncertainty for variables EMV (result of model fitting) and
UEMV, which represents the clustering of EMV using UK-Means
[20]. We can see that, for both 3 and 4 clusters, UK-Means gen-
erates a clustering with less variance than the counterpart that does
not include uncertainty. With our framework, analysts are able to
compare quantitatively the efficacy of their data transformations.

5 LIMITATIONS AND CONCLUSION

We have presented a general framework for introducing uncertainty
in the visual analytics process. We found that mirroring the pro-
cess of transforming data into insight allows us to define a series of
operations on uncertainty, such as modeling, propagation and ag-
gregation, that map input uncertainty to visual representations.

We have followed a quantitative approach that models uncer-
tainty as the propagation and aggregation of error in a parametric
model of the distribution of data. We believe that this mechanism is
useful when the analyst wants to extract a model that explains the
behavior of data and helps make projections or extrapolate to dif-
ferent situations. Discrete operations, such as clustering, can also
be included in the framework, provided a quantitative measure of



uncertainty. More qualitative assessment of the uncertainty is diffi-
cult to model in our framework. We believe that our framework can
be extended with Bayesian networks to support more general data
types. Another aspect of our approach is its scalability. Sensitivity
analysis is at the core of the framework, which requires analyzing
the effects of every output variable with respect to its inputs. For
extreme large data sets, this may be prohibitive. Two solutions to
this problem are: (1) either provide a simplification of the data dis-
tribution and estimate the sensitivity coefficients with respect to the
simplified distribution, or (2) perform uncertainty analysis locally.
The former approach is useful for overviews and the latter for de-
tailed views of the uncertainty.

The study of uncertainty proves important for understanding the
sensitivity of the output with respect to the inputs. On one hand,
uncertainty provides a summarized quantity for each data point,
which helps the analyst assess the confidence level on the visual
representation. For example, overviews of the uncertainty helped
us determine a correlation with certain clusters with the confidence
level. On the other hand, output uncertainty is a complex multi-
dimensional dataset, which can be further inquired to gain access
to detail sensitivity information. We applied common sensitivity
visualization tools such as tornado maps and color encodings to
show the correlation between uncertainty and specific variables in
a multi-dimensional data set. We believe that a similar mapping
can be obtained to other common visualizations, such as parallel
coordinates and radar views. With the use of general methods such
as Gaussian Mixture Models, statistical linearization of sensitivity
parameters and uncertainty propagation, we have a framework that
can be adapted to a wide variety of probability distributions and
data transformations. Although the case study shown in this paper
focuses on model fitting and principal component analysis, our ap-
proach can be followed to extend other data transformations, such
as binning, multidimensional scaling and self-organizing maps, to
account for their uncertainty.
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