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Abstract—Quality assessment plays a crucial role in data analysis. In this paper, we present a reduced-reference approach to volume

data quality assessment. Our algorithm extracts important statistical information from the original data in the wavelet domain. Using the

extracted information as feature and predefined distance functions, we are able to identify and quantify the quality loss in the reduced

or distorted version of data, eliminating the need to access the original data. Our feature representation is naturally organized in the

form of multiple scales, which facilitates quality evaluation of data with different resolutions. The feature can be effectively compressed

in size. We have experimented with our algorithm on scientific and medical data sets of various sizes and characteristics. Our results

show that the size of the feature does not increase in proportion to the size of original data. This ensures the scalability of our algorithm

and makes it very applicable for quality assessment of large-scale data sets. Additionally, the feature could be used to repair the

reduced or distorted data for quality improvement. Finally, our approach can be treated as a new way to evaluate the uncertainty

introduced by different versions of data.

Index Terms—Quality assessment, reduced reference, wavelet transform, statistical modeling, generalized Gaussian density, volume

visualization.
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1 INTRODUCTION

LEVERAGING the power of supercomputers, scientists can
now simulate many things from galaxy interaction to

molecular dynamics in unprecedented details, leading to
new scientific discoveries. The vast amounts of data
generated by these simulations, easily reaching tens of
terabytes, however, present a new range of challenges to
traditional data analysis and visualization. A time-varying
volume data set produced by a typical turbulent flow
simulation, for example, may contain thousands of time
steps with each time step having billions of voxels and each
voxel recording dozens of variables. As supercomputers
continue to increase in size and power, petascale data is just
around the corner.

A variety of data reduction methods have been introduced
to make the data movable and enable interactive visualiza-
tion, offering scientists options for studying their data. For
instance, subsets of the data may be stored at a reduced
precision or resolution. Data reduction can also be achieved
with transform-based compression methods. A popular
approach is to generate a multiresolution representation of
the data such that a particular level of details is selected
according to the visualization requirements and available
computing resources. In addition, datamay be altered in other
fashions. Furthermore, it could be desirable to smooth the
data or enhance a particular aspect of the data before
rendering. Finally, the data may be distorted or corrupted
during the transmission over a network.

Research has been conducted to evaluate the quality of
rendered images after the visualization process [6], [29].
However, few studies focus on analyzing the data quality
before the visualization actually takes place. It is clear that
the original volume data may undergo various changes due
to quantization, compression, sampling, filtering, and
transmission. If we assume that the original data has full
quality, all these changes made to the data may incur
quality loss, which may also affect the final visualization
result. In order to compare and possibly improve the
quality of the reduced or distorted data, it is important for
us to identify and quantify the loss of data quality.
Unequivocally, the most widely used data quality metrics
are mean square error (MSE) and peak signal-to-noise ratio
(PSNR). Although easy to compute, they do not correlate
well with perceived quality measurement [18]. Moreover,
these metrics require access to the original data and are
full-reference methods. They are not applicable to our
scenario, since the original data may be too large to acquire
or compare in an efficient way. Therefore, it is highly
desirable to develop a data quality assessment method that
does not require a full access of the original data.

In this paper, we introduce a reduced-reference approach
to volume data quality assessment. We consider the
scenario where a set of important statistical information
is first extracted from the original data. For example,
the extraction process could be performed at the super-
computer centers where the large-scale data are produced
and stored or, ideally, in situ when the simulation is still
running. We then compress the feature information to
minimize its size. This makes it easy to transfer the feature
to the user as “carry-on” information for volume data
quality assessment, eliminating the need to access the
original data again. Our feature representation not only
serves as the criterion for data quality assessment but also
could be used as quality improvement to repair the reduced
or distorted data. This is achieved by matching some of its

590 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 3, MAY/JUNE 2008

. The authors are with the Visualization and Interface Design Innovation
(VIDI) Research Group, Department of Computer Science, University of
California, Davis, 2063 Kemper Hall, One Shields Avenue, Davis, CA
95616. E-mail: {wangcha, ma}@cs.ucdavis.edu.

Manuscript received 18 Aug. 2007; revised 23 Oct. 2007; accepted 19 Nov.
2007; published online 3 Dec. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number
TVCGSI-2007-08-0111.
Digital Object Identifier no. 10.1109/TVCG.2007.70628.

1077-2626/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society



feature components with those extracted from the original
data. We have tested our algorithm on scientific and
medical data sets with various sizes and characteristics to
demonstrate its effectiveness.

2 BACKGROUND AND RELATED WORK

Unlike the Fourier transform with sinusoidal basis func-
tions, the wavelet transform is based on small waves, called
wavelets, of varying frequency and limited duration [7].
Wavelet transforms provide a convenient way to represent
localized signals simultaneously in space and frequency.
The particular kind of dual localization makes many
functions and operators using wavelets “sparse” when
transformed into the wavelet domain. This sparseness, in
turn, brings us a number of useful applications such as data
compression, feature detection, and noise removal.

Besides sparseness, wavelets have many other favorable
properties, such as multiscale decomposition structure,
linear time, and space complexity of the transformations,
decorrelated coefficients, and a wide variety of basis
functions. Studies of the human visual system (HVS) support
a multiscale analysis approach, since researchers have
found that the visual cortex can be modeled as a set of
independent channels, each with a particular orientation
and spatial frequency tuning [4], [21]. Therefore, wavelet
transforms have been extensively used to model the
processing in the early stage of biological visual systems.
They have also gained much popularity and have become
the preferred form of representation for image processing
and computer vision algorithms.

In volume visualization, Muraki [15] introduced the idea
of using the wavelet transform to obtain a unique shape
description of an object, where a 2D wavelet transform
is extended to three-dimensional (3D) and applied to
eliminate wavelet coefficients of lower importance. Over
the years, many wavelet-based techniques have been
developed to compress, manage, and render 3D [8], [11]
and time-varying volumetric data [12], [23]. They are also
used to support fast access and interactive rendering of data
at runtime. In this paper, we employ the wavelet transform
to generate multiscale decomposition structures from the
input data for feature analysis.

The wavelet transform on a one-dimensional signal can be
regarded as filtering the signal with both the scaling function
(a low-pass filter) and the wavelet function (a high-pass
filter), and downsampling the resulting signals by a factor of
two. The extension of the wavelet transform to a higher
dimension is usually achieved using separable wavelets,
operating on one dimension at a time. The 3D wavelet
transform on volume data is illustrated in Fig. 1. After the
first iteration of wavelet transform, we generate one low-
pass filtered wavelet subband ðLLL1Þwith 1/8 of the original
size and seven high-pass filtered subbands (HLL1, LHL1,
HHL1, LLH1, HLH1, LHH1, and HHH1). We can then
successively apply the wavelet transform to the low-pass
filtered subband, thus creating a multiscale decomposition
structure (a good introduction of wavelets for computer
graphics can be found in [24]). In our experiment, the
number of decomposition levels is usually between three
and five, depending on the size of original data.

There is a wealth of literature on quality assessment and
comparison in the field of image and video processing.
Details on this are beyond the scope of this paper, and we
refer interested readers to [2] for a good survey. Here, we
specifically review some related work in the field of graphics
and visualization. Jacobs et al. [9] proposed an image
querying metric for searching in an image database using a
query image. Their metric makes use of multiresolution
wavelet decompositions of the query and database images
and compares how many significant wavelet coefficients the
query has in common with potential targets. In [6],
Gaddipati et al. introduced a wavelet-based perceptual
metric that builds on the subband coherent structure
detection algorithm. The metric incorporates aspects of the
HVS and modulates the wavelet coefficients based on the
contrast sensitivity function. Sahasrabudhe et al. [18]
proposed a quantitative technique that accentuates differ-
ences in images and data sets through a collection of partial
metrics. Their spatial domain metric measures the lack of
correlation between the data sets or images being compared.
Recently, Wang et al. [26] introduced an image-based
quality metric for interactive level-of-detail selection and
rendering of large volume data. The quality metric design is
based on an efficient way to evaluate the contribution of
multiresolution data blocks to the final image.

In [29], Zhou et al. performed a study of different image
comparison metrics that are categorized into spatial
domain, spatial-frequency domain, and perceptually based
metrics. They also introduced a comparison metric based on
the second-order Fourier decomposition and demonstrated
favorable results against other metrics considered. In our
work, we use the wavelet transform to partition the data
into multiscale and oriented subbands. The study on
volume data quality assessment is thus conducted in the
spatial-frequency domain rather than the spatial domain.

3 ALGORITHM OVERVIEW

From a mathematical standpoint, we can treat volume data
as 3D arrays of intensity values with locally varying
statistics that result from different combinations of abrupt
features like boundaries and contrasting homogeneous
regions. In line with this consideration, we advocate a
statistical approach for volume data quality assessment.
Given a volumetric data set, a first attempt may lead us to
examine its statistics in the original spatial domain.
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Fig. 1. Multiscale wavelet decomposition of a 3D volumetric data.

L ¼ low-pass filtered; H ¼ high-pass filtered. The subscript indicates the

level and a larger number corresponds to a coarser scale (lower

resolution). An example of three levels of decomposition is shown here.



However, even first-order statistics such as histograms

would vary significantly from one portion of data to another

and from one data set to another. This defies simple

statistical modeling over the entire data set, as well as the

subsequent quality assessment.
Instead of spatial domain analysis, we can transform the

volume data from the spatial domain to the spatial-

frequency domain using the wavelet transform and analyze

its frequency statistics. Since frequency is directly related to

rate of change, it is intuitive to associate frequencies in the

wavelet transform with patterns of intensity variations in

the spatial data. Furthermore, the wavelet transform allows

us to analyze the frequency statistics at different scales. This

will come in handy when we evaluate the quality of

reduced or distorted data with different resolutions.

Compared with the statistics of data in the spatial domain,

the local statistics of different frequency subbands are

relatively constant and easily modeled. This is realized

using generalized Gaussian density (GGD) to model the

marginal distribution of wavelet coefficients at different

subbands and scales (Section 4.1). We also record informa-

tion about selective wavelet coefficients (Section 4.3) and

treat the low-pass filtered subband (Section 4.4) as part of

our feature representation.
Our feature thus consists of multiple parts, and each part

corresponds to certain essential information in the spatial-

frequency domain. Note that this data analysis and feature

extraction process can be performed when we have the

access to the original data or, ideally, in situ where a

simulation is running. Once we extract the feature from

the data, we are able to use it for quality assessment

without the need to access the original data. Given a

reduced or distorted version of data, we compare its feature

components with those derived from the original data using

predefined distance functions. This gives us an indication of

quality loss in relation to the original data. We can also use

the feature to perform a cross-comparison of data with

different reduction or distortion types to evaluate the

uncertainty introduced in different versions of data.

Moreover, by forcing some of its statistical properties to

match those of the original data, we may repair the reduced

or distorted data for possible quality improvement.

4 WAVELET SUBBAND ANALYSIS

In the multiscale wavelet decomposition structure, the low-
pass filter subband corresponds to average information that
represents large structures or overall context in the volume
data. After several iterations of wavelet transforms, the size
of the low-pass filter subband is small compared with the size
of original data (already less than 0.2 percent for a three-level
decomposition). Thus, we can directly treat it as part of the
feature. On the other hand, the high-pass filtered subbands
correspond to detail information that represents abrupt
features or fine characteristics in the data. They spread across
all different scales with an aggregate size nearly equal to the
size of original data. The key issues are how to extract
important feature information from these high-pass filtered
subbands and how to compress the feature.

4.1 Wavelet Subband Statistics

Studies on natural image statistics reveal that the histogram
of wavelet coefficients exhibits a marginal distribution at a
particular high-pass filtered subband. An example of the
Lena image and the coefficient histogram of one of its
wavelet subbands is shown in Fig. 2a. The y-axis is on a log
scale in the histogram. As we can see, the marginal
distribution of wavelet coefficients creates a sharp peak at
zero and more extensive tails than the Gaussian density. The
intuitive explanation of this is that natural images usually
have large overall structures consisting of smooth areas
interspersed with occasional abrupt transitions, such as
edges and contours. The smooth areas lead to near-zero
coefficients, and the abrupt transitions give large-magnitude
coefficients. In [14], Mallat shows that such a marginal
distribution of the coefficients in individual wavelet sub-
bands can be well-fitted with a two-parameter GGD model:

pðxÞ ¼ �

2��ð1�Þ
exp � jxj

�

� �� !
; ð1Þ

where � is the Gamma function, that is, �ðzÞ ¼R1
0 e�ttz�1dt, z > 0.

In the GGD model, � is the scale parameter that describes
the standard deviation of the density, and � is the shape
parameter that is inversely proportional to the decreasing rate
of the peak. As an example, the plots of the GGD distribution
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Fig. 2. (a)-(c) Three wavelet subband coefficient histograms (blue curves) fitted with a two-parameter GGD model (red curves) for the Lena image,

the vortex data set, and the brain data set, respectively. The estimated parameters ð�; �Þ are ð1:2661; 0:6400Þ, ð5:8881e� 003; 0:4181Þ,
and ð7:1276e� 003; 0:2709Þ for (a), (b), and (c), respectively. The overall fitting is good for all three examples. (a) Lena image, HL1 subband.

(b) Vortex data set, HHL2 subband. (c) Brain data set, HLL1 subband.



under varied ð�; �Þ values are illustrated in Fig. 3. The model
parameter ð�; �Þ can be estimated using the moment matching
method [25] or the maximum likelihood rule [16]. Numerical
experiments in [25] show that 98 percent of natural images
satisfy this property. Even for the remaining two percent, the
approximation of the real density by a GGD is still acceptable.
Note that the GGD model includes the Gaussian and the
Laplacian distributions as special cases with � ¼ 2 and � ¼ 1,
respectively. The GGD model provides a very efficient way
for us to summarize the coefficient histograms of an image, as
only two parameters are needed for each subband. This
model has been used in previous work for noise reduction
[22], image compression [3], texture image retrieval [5], and
quality encoding [28]. In this paper, we use the moment
matching method, which takes the mean and the variance of
wavelet coefficients in a subband to compute its GGD model
parameters ð�; �Þ (see the Appendix for the implementation
detail). In Fig. 2a, the red curve is the GGD function with
parameters estimated using the moment matching method.
The result fits the original wavelet coefficient distribution
quite well.

We extend this statistical model to 3D volume data since
many scientific and medical data share the same intrinsic
characteristics as natural images, that is, homogeneous
regions mixed with abrupt transitions. Moreover, the rate or
proportion of homogeneous regions and abrupt transitions
is also similar for image and volume: In 2D, we have an area
of homogeneous regions versus the edge length of abrupt

transitions, and in 3D, we have a volume of homogeneous

regions versus the surface area of abrupt transitions. Initial

experiments on two small data sets give very promising

results. Figs. 2b and 2c show one example of wavelet

subband coefficient histograms for each data set and their

respective well-fitted GGD curves. Thus, with only

two GGD parameters, we are able to capture the marginal

distribution of wavelet coefficients in a subband that

otherwise would require at least hundreds of parameters

using a histogram. We shall see in Section 5 that this GGD

model works well for larger data sets too. Next, we discuss

the distance measure for wavelet subband statistics.
Let pðxÞ and qðxÞ denote the probability density func-

tions of the wavelet coefficients in the same subband of

the original and distorted data, respectively. Here, we

assume the coefficients to be independently and identically

distributed. Let x ¼ fx1; x2; . . . ; xNg be a set of randomly

selected coefficients. The log-likelihoods of x being drawn

from pðxÞ and qðxÞ are

lðpÞ ¼ 1

N

XN
i¼1

log pðxiÞ and lðqÞ ¼ 1

N

XN
i¼1

log qðxiÞ; ð2Þ

respectively. Based on the law of large numbers, when N is

large, the log-likelihoods ratio between pðxÞ and qðxÞ
asymptotically approaches the Kullback-Leibler distance

(KLD) (also known as the relative entropy of p with respect

to q):

dðpkqÞ ¼
Z
pðxÞ log

pðxÞ
qðxÞ dx: ð3Þ

Although the KLD is not a true metric, that is,

dðpkqÞ 6¼ dðqkpÞ, it satisfies many important mathematical

properties. For example, it is a convex function of p. It is

always nonnegative and equals zero only if pðxÞ ¼ qðxÞ. In

this paper, we use the KLD to quantify the difference

between wavelet coefficient distributions of the original and

distorted data. This quantity is evaluated numerically as

follows:

dðpkqÞ ¼
XM
i¼1

P ðiÞ log
P ðiÞ
QðiÞ ; ð4Þ

where P ðiÞ and QðiÞ are the normalized heights of the

ith histogram bin, and M is the number of bins in the

histogram. Note that the coefficient histogramQ is computed

directly from the distorted data, whereas the coefficient

histogram P is approximated using its GGD parameters

ð�; �Þ extracted from the original data.
Finally, the KLD between the distorted and original data

over all subbands is defined as

D1 ¼ log 1þ
XB
i¼1

dðpikqiÞ
 !

; ð5Þ

where B is the total number of subbands analyzed, pi and qi

are the probability density functions of the ith subbands in

the original and distorted data, respectively, and dðpikqiÞ is

the estimated KLD between pi and qi.
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Fig. 3. The GGD distribution and its model parameters ð�; �Þ.
(a) � varies when � ¼ 0:5. (b) � varies when � ¼ 1:5. The figure shows

the sensitivity of the shape of GGD plots with respect to the model

parameters.



4.2 Voxel Visual Importance

At runtime, a transfer function is applied to the input
volume where the scalar data values are mapped to optical
quantities such as color and opacity, and the volume is
projected into 2D images. To capture the visualization-
specific contribution for each voxel, we define a voxel’s
visual importance ! as follows:

!ðiÞ ¼ �ðiÞ � ��ðiÞ; ð6Þ

where �ðiÞ is the opacity of voxel i, ��ðiÞ is its average
visibility. As sketched in Fig. 4, given an original large
volume data, we use its low-resolution form (for practical and
performance concern) to calculate visual importance values
of all voxels within the volume. In (6), �ðiÞ and ��ðiÞ account
for the emission and attenuation of voxel i, respectively.

To calculate the average visibility, we consider a list of
evenly sampled views along the bounding sphere that
encloses the volume and take the average of the visibility
from those sample views. Given a view along the bounding
sphere, the visibility for each voxel in the low-resolution
data is acquired in this way: we render the low resolution
data by drawing front-to-back view-aligned slices and
evaluate the visibility of all the voxels during the slice
drawing. The visibility of a voxel is computed as ð1� �Þ
right before the slice containing the voxel is to be drawn,
where � is the accumulated opacity at the voxel’s screen
projection. This process repeats for each sample view.
Finally, for each voxel in the volume, we use the average of
its visibility from all sample views to calculate its visual
importance. Essentially, the visual importance indicates the
average contribution of a voxel in association with a given
input transfer function. This visualization-specific term is
then normalized and incorporated into the following
wavelet coefficient selection.

4.3 Wavelet Coefficient Selection

The GGD model captures the marginal distribution of
wavelet coefficients at each individual subband. Using the
distance defined in (5), we are able to know how close the
coefficient distributions of distorted data are in relation to

the original data. Nevertheless, the histogram itself does not
tell the spatial-frequency positions of wavelet coefficients.
This limits our ability to compare the data in finer detail and
to possibly repair the distorted data. Therefore, along with
the global GGD parameters per wavelet subband, we also
need to record local information about wavelet coefficients
for data quality assessment and improvement.

An important observation is that, although the coeffi-
cients of wavelet subbands are approximately decorrelated,
they are not statistically independent. For example, Fig. 5
shows a three-level decomposition of the Lena image. It can
be seen that coefficients of large magnitude (bright pixels)
tend to occur at neighboring spatial-frequency locations
and also at the same relative spatial locations of subbands
at adjacent scales and orientations. Actually, in 2D, a
coefficient c in a coarse scale has four child coefficients in
the next finer scale. Each of the four child coefficients also
has four child coefficients in the next finer scale. Further-
more, if c is insignificant with respect to some threshold ",
then it is likely that all of its descendant coefficients are
insignificant too. This coefficient dependency has been
exploited in several image compression algorithms, such
as the embedded zerotree wavelet (EZW) encoding [20] and
a following image codec based on set partitioning in
hierarchical trees (SPIHT) [19]. These algorithms have also
been extended to 3D volumetric image compression in
medical application [13]. In this paper, we utilize the
coefficient dependency to store selective wavelet coefficients
in an efficient manner.

There are two categories of wavelet coefficients that are
of importance for the purpose of quality assessment and
improvement. One category is the coefficients of large
magnitudes that correspond to abrupt features like edges or
boundaries. As we can see in Fig. 2, they are along the tails
of the marginal coefficient distribution where the percep-
tually significant coefficients generally reside. The other
category is neighboring near-zero coefficients, which
correspond to homogeneous regions. They are close to the
zero peak of the distribution and are important indications
of data regularity. Taking into account the visualization-
related factor, we modulate the wavelet coefficients with
the voxel visual importance values (Section 4.2) at their
nearest spatial-frequency locations. In this case, a wavelet
coefficient is large only if it has both large magnitude and
high voxel visual importance; a wavelet coefficient is near
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Fig. 4. A voxel’s visual importance in the low-resolution volume is the

multiplication of its opacity and average visibility. The average visibility is

calculated using a list of evenly sampled views along the volume’s

bounding sphere.

Fig. 5. The parent-child dependencies of wavelet coefficients in different

subbands. In this 2D example, a coefficient in a coarse scale has four

child coefficients in the next finer scale of similar orientation. The arrow

points from the subband of the parents to the subband of the children.



zero if it has either near-zero magnitude or near-zero voxel
visual importance.

Starting from the coarsest scale, we scan each wavelet
subband and encode coefficients of interest. As illustrated
with a 2D example in Fig. 6, we follow the Morton order
(Z-curve order) as opposed to the ordinary raster order to
better utilize the spatial-frequency locality. For neighboring
near-zero coefficients (at least eight consecutive coefficients
in 3D), we run-length encode their positions (that is, the scan
orders). For large-magnitude coefficients, we encode their
positions and values as well. In general, most scientific and
medical data have a low-pass spectrum. When the data are
transformed into a multiscale wavelet decomposition struc-
ture, the energy in the subbands decreases from a fine scale
(high resolution) to a coarse scale (low resolution). Therefore,
the wavelet coefficients are, on the average, smaller in the
finer scales than in the coarser scales. Accordingly, we vary
the thresholds of near-zero coefficients ð"Þ and large-
magnitude coefficients ð�Þ for different scales. Finally,
information of the selective coefficients is further com-
pressed using the open source zlib compressor.

We define the distance for the selective wavelet coeffi-
cients as follows:

D2 ¼ log 1þ
XB
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPLi
j¼1

cj�c0j
cmaxi

� �2

þ
PZi

k¼1
c0
k

cmaxi

� �2

Li þ Zi

vuut
0
BB@

1
CCA; ð7Þ

where B is the number of subbands over all the scales, Li
and Zi are the numbers of large-magnitude coefficients
selected and near-zero coefficients selected in the
ith subband, respectively. cj and c0j are the jth large
coefficients selected from the original and distorted data,
respectively, and cmaxi is the largest magnitude (modu-
lated by visual importance) of all coefficients at the
ith subband. For near-zero coefficients, we assume the
original coefficients ck ¼ 0 and only consider coefficients in
the distorted data with jc0kj > " for the calculation.

4.4 Low-Pass Filtered Subband

The low-pass filter subband in the multiscale wavelet
decomposition structure corresponds to the average informa-
tion that represents large structures or overall context in the
volume data. Compared with the size of original data, the size
of this subband is usually small after several iterations of
wavelet decomposition. Therefore, we directly incorporate it
as part of the feature. Let bi and bj be the low-pass filter

subbands of the original and distorted data, respectively. The
similarity between bi and bj is defined as

S ¼ �ij
�i�j
� 2�i�j
�2
i þ �2

j

� 2�i�j
�2
i þ �2

j

¼ 4�ij�i�j
ð�2

i þ �2
j Þð�2

i þ �2
j Þ
; ð8Þ

where �ij is the covariance between bi and bj, �i and�j are the
mean values of bi and bj, respectively, and �i and �j are their
standard deviations. Equation (8) consists of three parts,
namely, loss of correlation, luminance distortion, and contrast
distortion. Collectively, these three parts capture the structure
distortion of the low-pass filtered subband in the distorted
data. This similarity measure comes from the image quality
assessment literature [27] and has been shown to be
consistent with the luminance masking and contrast masking
features in the HVS, respectively. The dynamic range of S is
[�1, 1]. The best value of 1 is achieved when bi ¼ bj. Hence,
we define the distance between bi and bj as follows:

D3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0� ðS þ 1:0Þ=2:0

p
: ð9Þ

4.5 Summary

In summary, as shown in Fig. 7, our feature representation of
the original data in the wavelet domain includes three parts:
the GGD model parameters from wavelet subband statistics,
selective wavelet coefficients, and the low-pass filtered
subband. Given a reduced or distorted version of data, we
analyze the quality loss by calculating its distances to the
original data for each of the feature components [(5), (7), and
(9)]. Each partial distance indicates some quality degrada-
tion with reference to the original data, and the summation
of all these partial distances gives the overall degradation.
Thus, an overall distance could be computed heuristically as
the weighted sum of the three individual distances:

D ¼ k1D1 þ k2D2 þ k3D3; ð10Þ

where ki > 0, i ¼ 1, 2, and 3. Note that there is no need for
normalizing this overall distance. For the purpose of data
quality improvement, it is advantageous to keep each
distance separate (or further at the subband level) so that
we know which parts cause significant quality degradation.
We can then repair accordingly using the feature extracted
from the original data.

5 RESULTS

We experimented with our algorithm on six floating-point
data sets, as listed in Table 1. Among the six data sets,
three of them are from scientific simulation, and the
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Fig. 6. Scan of wavelet coefficients in the raster order and the Morton

order. The blue dashed line segments indicate discontinuities in the

scan. Compared with the raster order, the Morton order preserves the

spatial-frequency locality better.

Fig. 7. Our feature representation of the original data in the wavelet

domain.



remaining three are from medical application. These

six data sets vary greatly in size and exhibit quite different

characteristics. For multiscale wavelet decomposition, we

specifically restricted our attention to the Daubechies

family of orthogonal wavelets, as the evaluation of all

possible wavelet transforms is out of the scope of our

experiments. The decision for levels of wavelet decomposi-

tion is based on the size of input data, as well as the trade-

off between the size of feature and the robustness of GGD

model parameters.
In our test, the threshold for near-zero wavelet coeffi-

cients "i at the ith subband was chosen as cmaxi=ð2Lþ3Þ,
where cmaxi is the largest magnitude (modulated by visual

importance) of all coefficients at the ith subband, and L is

the total number of decomposition levels we have. The

threshold for large-magnitude wavelet coefficients �i at

the ith subband was chosen as cmaxi=ð2sþ2Þ, where s is the

scale in which the ith subband locates. We varied �i
according to the scale because the wavelet coefficients in a

subband became more important as the scale increases. In

Table 1, the size of low-pass filtered subband is the

uncompressed size of LLLn, after n levels of decomposition.

The feature size of all high-pass filtered subbands includes

their respective GGD parameters and selective wavelet

coefficients in the compressed form.

From the last column in Table 1, we can see that for all
six data sets, the size of feature is small compared with the
original data. Note that the size of feature does not increase
in proportion to the size of original data. This is mainly due
to the increase of decomposition levels for larger data sets,
as we can afford to have more levels of wavelet decom-
position while still keeping the GGD parameters robust.
Our experiment confirms that the GGD model generally
performs well when the size of the input data becomes
larger. For instance, Fig. 8 shows one of the wavelet
subband coefficient histograms for the visible woman and
the solar plume data sets, and their respective GGD curves.
On the other hand, the feature size is also data and transfer
function dependent. For example, the ratio for the brain
data set is 1.361 percent, which is relatively high compared
with the vortex data set having the same number of
decomposition levels. Thus, it follows that we record a
higher percentage of high-pass filtered subband feature
information for the brain data set.

Next, we report results of volume data quality assess-
ment and improvement using the extracted feature. To
compare the quality of rendered images, we used a GPU
raycaster for volume rendering. All tests were performed on
a 2.33-GHz Intel Xeon processor with 4-Gbytes main
memory and an Nvidia GeForce 7900 GTX graphics card
with 512-Mbytes video memory.
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TABLE 1
The Six Floating-Point Data Sets and Their Feature Sizes

Fig. 8. (a) and (b) Two wavelet subband coefficient histograms (blue curves) fitted with the GGD model (red curves) for the visible woman and the

solar plume data sets, respectively. The estimated parameters ð�; �Þ are ð1:6786e� 002; 0:2425Þ and ð1:4922e� 009; 0:1405Þ, respectively. In general,

the fitting works well for both data sets. (a) Visible woman data set, HLH2 subband. (b) Solar plume data set, LLH2 subband.



5.1 Quality Assessment

First of all, we experimented with our quality measure on
different data sets and observed how the quality of data
changes for the same reduction or distortion type. We used
the three smaller data sets (brain, vortex, and aneurysm) of
their original resolutions and the other three data sets
(visible woman, solar plume, and supernova) of their second
highest resolutions in the test. To calculate the overall
distance, we used (10) with ðk1; k2; k3Þ ¼ ð0:1; 1:0; 1:0Þ. Please
note that in this paper, we assume that the original data set
has full quality. Thus, any changes made to the data would
involve possible quality loss, even though the desire is to
enhance the data from a certain perspective.

Quantization is a commonly used approach for data
reduction. Our first example studies the quality loss under
the uniform quantization scheme. Fig. 9 shows the quality
assessment result of all six data sets with six different
quantization levels. A larger distance indicates a greater
degree of quality degradation. More specifically, Table 2
lists all partial and overall distances for the aneurysm data
set. Although different data sets have different responses of
quality loss due to quantization, the overall trend is fairly
obvious: the data quality gets increasingly worse as the
number of quantization levels decreases.

Our second example studies the quality loss under the
Gaussian smooth filtering. Fig. 10 shows how the data
quality changes with six different Gaussian smooth filters
for all six data sets. We applied a discrete Gaussian
kernel of size 53 with different standard deviations. A
larger standard deviation indicates a greater degree of
smoothing since neighboring voxels carry more weight.
Table 3 lists all partial and overall distances for the solar
plume data set. It is clear that the data quality gets worse

as the standard deviation increases. Unlike quantization,
however, the rate of quality loss decreases gradually in
the sequence.

Besides quality assessment of data with the same type of
reduction or distortion, the feature also avails us to perform
cross-type data quality comparison. For example, Fig. 11
gives quality assessment results on the solar plume and the
visible woman data sets under four different distortion
types: mean shift (of the data range over 256), voxel
misplacement (with two slices of voxels misplaced),
averaging filter (using a kernel of size 33), and salt-and-
pepper noise (with an equal probability of 1/1024 for the
bipolar impulse). Table 4 lists all partial and overall
distances, MSE, and PSNR for these four distortion types.
For both data sets, we can see that the mean shift introduces
the minimum quality loss here, followed by the voxel
misplacement. The salt-and-pepper noise incurs the most
quality degradation. This result is consistent with perceived
quality in rendered images. However, the MSE and the
PSNR incorrectly recognize the mean shift as having a
larger distortion than the voxel misplacement for both data
sets. Note that they also give the opposite results on the
averaging filter for the two data sets. This is due to the
reason that the MSE and the PSNR metrics are only voxel-
based and do not consider the overall structure distortion of
the data.

5.2 Quality Improvement

Since the feature captures essential information from the
original data, it can be utilized to improve the quality of
distorted or corrupted data. In this paper, we do not show
examples where the feature is used to construct a higher
resolution data from a low-resolution data, as it is the most
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Fig. 9. Quality assessment on six test data sets with six different

quantization levels. The data quality gets increasingly worse as the

number of quantization levels decreases.

TABLE 2
Partial and Overall Distances for the Aneurysm Data Set with

Six Different Quantization Levels

TABLE 3
Partial and Overall Distances for the Solar Plume Data Set with
Six Gaussian Smooth Filters of Different Standard Deviations

Fig. 10. Quality assessment on six test data sets with 53 Gaussian

smooth filters of six different standard deviations. The data quality gets

worse as the standard deviation increases.



common way of using the wavelet transform and
compression.

Our first example deals with missing data. Fig. 12a
shows the rendering of a low-resolution supernova data set
with 1/8 (that is, an octant) of data missing. The missing of
data could result from incomplete data transmission, or
even a bug in the data reduction source code. Recall that we
keep each partial distance separate (and actually at the
subband level). This helps us identify which parts introduce
the dramatic change (in this case, the subband at the same
orientation as the missing portion) and then repair accord-
ingly using the feature information.

The repairing scheme works as follows: First, a multi-
scale wavelet decomposition structure is built from the
corrupted data, where the size of low-pass filtered subband
at the coarsest scale equals the size of low-pass filtered
subband recorded in the feature (Section 4.4). Note that for
the repairing purpose, we keep the low-pass filtered
subbands in all scales. Then, we improve the high-pass
filtered subbands across all scales by replacing the wavelet
coefficients with their corresponding coefficients in the

feature; that is, those large-magnitude and near-zero
wavelet coefficients selected (Section 4.3). Next, starting
from the coarsest scale (the lowest resolution), we recon-
struct the low-pass filtered subband at the next finer scale
using the low-pass filtered subband recorded in the feature
and improved high-pass filtered subbands. The recon-
structed low-pass filtered subband is used to correct the
missing part in the same-scale low-pass filtered subband
decomposed from the corrupted data. The corrected low-
pass filtered subband is then used to reconstruct the next
finer scale in an iterative manner. In this way, we are able to
automatically repair the missing portion in the corrupted
data scale by scale. Finally, an optional median filter is
applied to the corrected portion of data at the finest scale in
order to suppress potential noise and produce a better
match with the original GGD model parameters. Fig. 12b
shows the result after this automatic repairing process. It is
clear that the data quality improves as the overall distance
decreases.

We can also apply a similar repairing process for noise
reduction. For example, Fig. 13a shows the rendering of the
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Fig. 11. Cross-type quality assessment on low-resolution solar plume ð2562 � 1024Þ and visible woman ð2562 � 864Þ data sets. The data quality

degrades as the overall distance (listed in Table 4) increases from (a) to (d). The rendered images are cropped for a closer comparison.

(a) Mean shift. (b) Voxel misplacement. (c) Averaging filter. (d) Salt-and-pepper noise.

TABLE 4
Partial and Overall Distances, MSE, and PSNR for the Solar Plume and

the Visible Woman Data Sets with Four Different Distortion Types



aneurysm data set distorted by random noise. This kind of
distortion can be detected through the observation of a
sequence of sudden spikes appearing in the wavelet
coefficient subband histograms. The denoising process also
follows a coarse-to-fine manner as usual, but there is no
need to keep the low-pass filtered subband at every scale in
the wavelet decomposition structure. Another difference is
that for each high-pass filtered subband i, we first set large-
magnitude wavelet coefficients to zero (if they are larger
than the threshold �i) before improving them with their
corresponding coefficients in the feature. Fig. 13b shows the
result after this repairing process. As we can see, the noise is
eliminated, whereas the fine structure of the blood vessels is
preserved.

6 DISCUSSION

6.1 Choice of Wavelets

To extract essential information from the original data, we
decomposed the data into multiple scales using wavelet
basis functions localized in spatial position, orientation, and
spatial frequency. We used the Daubechies family of
orthogonal wavelets in our experiment because they

provide a good trade-off between performance and com-
plexity [5], [6]. Moreover, we found that the choice for the
number of scaling and wavelet function coefficients has a
little effect on assessment accuracy. Therefore, we specifi-
cally used the Daubechies D4 transform for efficiency.
Other separable wavelets (such as the Gabor wavelets) or
redundant transforms (such as the steerable pyramid
transform) could also be used in our algorithm. For
example, the steerable pyramid transform decomposes the
data into several spatial-frequency bands and further
divides each frequency band into a set of orientation bands.
It can thus help to minimize the amount of aliasing within
each subband. However, they are more expensive to
compute and require more storage space.

6.2 Timing Performance

The timing of wavelet analysis on the original data includes
the time for multiscale wavelet decomposition, GGD para-
meters estimation, and subband wavelet coefficients selec-
tion. This one-time preprocess may take anywhere from
seconds to a total of several minutes on a single PC, depending
on the size of input data. For data sets that could not be loaded
into memory simultaneously, we employed a blockwise
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Fig. 12. Quality improvement on a low-resolution supernova data set ð4323Þ with 1/8 of data missing, as shown in (a). (b) The result after an

automatic repairing process using the feature information. In (c), a portion of (b) is zoomed in for comparison with the reference image displayed on

the top. (a) Before, D ¼ 1:3346. (b) After, D ¼ 0:5536. (c) Comparison. (d) Transfer function.

Fig. 13. Quality improvement on the aneurysm data set ð5123Þ distorted by random noise, as shown in (a). (b) The result after an automatic repairing

process using the feature information. In (c), a portion of (b) is zoomed in for comparison with the reference image displayed on the bottom.

(a) Before, D ¼ 2:3094. (b) After, D ¼ 0:7188. (c) Comparison. (d) Transfer function.



wavelet transform process and handled boundaries of
neighboring blocks to guarantee seamless results. The timing
of quality assessment on different versions of data includes
the time for wavelet decomposition and distance calculation.
At runtime, itusually takes less than oneminute ona single PC
to evaluate data with the size up to 512 Mbytes. For larger
gigabytes data, the time to perform wavelet transforms
becomes dominant in the quality assessment process. In the
worst case, the assessment time would be similar to the
preprocess time if the data we evaluate has the same size as the
original data.

6.3 GGD Model

We note that as an approximation, the GGD model
introduces a prediction error at each wavelet subband with
respect to the corresponding wavelet coefficient distribu-
tion. For example, the fit near the center of the histogram in
Fig. 8b is not good. This error can be calculated as the KLD
between the model histogram and the histogram of wavelet
subband coefficients from the original data. Let dðpimkpiÞ
denote the prediction error at the ith subband. Accordingly,
we use dðpikqiÞ ¼ jdðpimkqiÞ � dðpimkpiÞj to calculate the
overall KLD (5). That is, we actually subtract the prediction
error from the KLD between the model histogram and the
histogram of wavelet subband coefficients from the reduced
or distorted data (denoted as dðpimkqiÞ) and use the absolute
value in the calculation.

On the other hand, our experiment shows that the GGD
model generally works well on scientific and medical data
sets with different sizes. However, there are cases where
this model fails to give good results. Such an example is
shown in Fig. 14. For these failed cases, we can store the
actual wavelet subband coefficient histograms (per scale) at
the expense of increasing the storage or fit each coefficient
histogram with splines to smooth out the irregularities.
Although there is a need of further research on why these
cases fail, the apparent reason is that those data sets do not
fall into the category of natural statistics. For this same
reason, we cannot partition the original data into blocks in
an octree fashion and analyze the individual blocks using
the GGD model (each block does not necessarily exhibit the
marginal coefficient distribution even though the whole
data set does). Therefore, our solution is a multiscale, not a
true multiresolution approach.

6.4 Transfer Function

In this work, different versions of a data set were rendered
using the same transfer function for the purpose of

subjective data quality comparison. Since our focus was
on data quality assessment, we chose to fix rendering
parameters so that the possible difference or uncertainty
introduced by the visualization process could be mini-
mized. Our current algorithm explicitly takes the input
transfer function into consideration by modulating wavelet
coefficients with voxel visual importance values at their
nearest spatial-frequency positions. The voxel visual im-
portance values were precomputed offline with a given
transfer function. If the transfer function changes at
runtime, the calculation can be performed online (in this
case, we need to keep the low-resolution data).

Our solution is a coarse approximation of voxel con-
tribution to the visualization. The accuracy of voxel visual
importance values depends on the resolution of data used
and the number of sample views taken for the average
visibility calculation. There is a trade-off between the
update speed and the accuracy of visual importance values.
In practice, we can update the visual importance values
within seconds for a low-resolution volume of size around
643 with 16 sample views. In our solution, voxel visual
importance values are only used to modulate and select
wavelet coefficients (Section 4.3). An improvement of our
implementation is to store selective wavelet coefficients
offline by only considering their magnitudes. At runtime,
when the transfer function changes, the visual importance
values are calculated and used to further pick visually
important coefficients from stored coefficients.

Besides our current algorithm, another way to possibly
improve wavelet subband analysis is to apply the idea
presented in [1] that classifies the voxels into core, gradient,
and unimportant voxels and assigns weight functions for
wavelet coefficients accordingly. Alternatively, the users
can also provide their own voxel visual importance volume,
derived from volume classification or segmentation, for
example, to modulate wavelet coefficients. Nevertheless, we
understand that this voxel-based approach is not an optimal
solution for large data analysis in terms of both efficiency
and effectiveness. A better solution could be using some
shape functions to approximate the volume data and
capture the visual importance aspect. Another direction is
to perform a more rigorous study on data quality compar-
ison in association with direct volume rendering algorithm
specifications [10].

7 CONCLUSION AND FUTURE WORK

We introduce a reduced-reference approach to volume data
quality assessment. A multiscale wavelet representation is
first built from the original data, which is well-suited for the
subsequent statistical modeling and feature extraction. As
shown in Section 5, we extract minimum feature informa-
tion in the wavelet domain. Using the feature and
predefined distance measures, we are able to identify and
quantify the quality loss in the reduced or distorted version
of data. Quality improvement on distorted or corrupted
data is achieved by forcing some of their feature compo-
nents to match those from the original data. Finally, our
approach can be treated as a new way to evaluate the
uncertainty introduced by reduced or distorted data.
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Fig. 14. The “milk crown” physical simulation data set ð512� 256� 512Þ
and its LHL3 subband coefficient histogram, which does not exhibit the

marginal distribution.



Our algorithm is flexible with data sets of different sizes,
ranging from megabytes to gigabytes in the experiment. We
believe that the general approach presented in this paper
can be applied to quality assessment and improvement on
larger scale data. As we move into the era of petascale
computing, our work can help scientists perform in situ
processing so that low-resolution data together with a set of
features are saved to disk, which greatly reduces storage
requirement and facilitates subsequent data analysis, qual-
ity assessment, and visualization.

Our current scheme is based on the GGD model, which
generally works well on data sets that exhibit natural
statistics. We will investigate where and how well the GGD
model works for different volume data. Furthermore, we can
improve this model by augmenting it with a set of hidden
random variables that govern the GGD parameters [17]. Such
hidden Markov models may encompass a wider variety of
data sets and yield better quality assessment results. On the
other hand, we need to conduct a user study to suggest that
the visual quality perceived by the users conforms to the
quality assessment results obtained from our algorithm. In
the future, we also would like to extend this reduced-
reference approach to quality assessment of time-varying
multivariate data.

APPENDIX

THE CALCULATION OF GGD PARAMETERS

The key MATLAB functions for calculating the GGD
parameters ð�; �Þ and for returning the GGD function
values are provided as follows:

function f ¼ fbeta ðxÞ
% FBETA: an auxiliary function that computes

% beta

f ¼ exp ð2 � gammaln ð2 := xÞ � gammaln ð3 := xÞ
� gammaln ð1 := xÞÞ;

% GAMMALN: logarithm of Gamma function

function ½alpha; beta; K� ¼ sbpdfðmean; varianceÞ
% SBPDF: estimate generalized Gaussian

% probability density function of a

% wavelet subband using the moment

% matching method

F ¼ sprintfð‘fbeta ðxÞ �%g’; mean^2 = varianceÞ;

try

beta ¼ fzeroðF; ½0:01; 5�Þ;
% FZERO: find zero of a function of one

% variable

catch

warningð‘ðmean^2 = varianceÞ is out of the range’Þ;
if ðmean^2 = varianceÞ > fbeta ð5Þ
beta ¼ 5;

else

beta ¼ 0:01;

end

end

alpha¼mean � expðgammaln ð1=betaÞ�gammalnð2=betaÞÞ;

if ðnargout > 2Þ
K ¼ beta = ð2 � alpha � gammað1=betaÞÞ;
% GAMMA: Gamma function

end

function y ¼ ggpdf ðx; alpha; beta; KÞ
% GGPDF: return generalized Gaussian

% probability density function with

% parameters alpha and beta at the

% value in x

if ðalpha <¼ 0jbeta <¼ 0Þ
tmp ¼ NaN;

y ¼ tmp ðonesðsizeðxÞÞÞ;
% ONES: create an array of all ones

else

y ¼ K � exp ð�absðxÞ:^beta := ðalpha^betaÞÞ;
y ¼ y := sum ðyÞ;

end
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