
Feature-Preserving Volume Data Reduction
and Focus+Context Visualization

Yu-Shuen Wang, Chaoli Wang, Member, IEEE, Tong-Yee Lee, Senior Member, IEEE, and

Kwan-Liu Ma, Senior Member, IEEE

Abstract—The growing sizes of volumetric data sets pose a great challenge for interactive visualization. In this paper, we present a
feature-preserving data reduction and focus+context visualization method based on transfer function driven, continuous voxel
repositioning and resampling techniques. Rendering reduced data can enhance interactivity. Focus+context visualization can show
details of selected features in context on display devices with limited resolution. Our method utilizes the input transfer function to assign
importance values to regularly partitioned regions of the volume data. According to user interaction, it can then magnify regions
corresponding to the features of interest while compressing the rest by deforming the 3D mesh. The level of data reduction achieved is
significant enough to improve overall efficiency. By using continuous deformation, our method avoids the need to smooth the transition
between low and high-resolution regions as often required by multiresolution methods. Furthermore, it is particularly attractive for
focus+context visualization of multiple features. We demonstrate the effectiveness and efficiency of our method with several volume
data sets from medical applications and scientific simulations.

Index Terms—Data reduction, focus+context visualization, interactive visualization, mesh deformation, transfer functions, volume

rendering.

Ç

1 INTRODUCTION

IN visualization, the sizes of volume data we have been
dealing with increased dramatically over the years from

1283-2563 to 1;0243 voxels or larger. The ever-increasing data
size poses a great challenge to visual analysis in terms of both
storage and rendering costs. To reduce storage cost, data
compression may be used. However, the complication of
runtime decompression could dramatically slow down
rendering. To enable interactive visualization, rendering a
reduced resolution of the data is commonly done before a
desirable view and transfer functions are derived. Conven-
tional multiresolution methods must cope with the costs of
added storage space and removing cross-resolution bound-
ary artifacts. In our work, we have developed a feature-
preserving approach to volume data reduction that supports
focus+context visualization. Our approach avoids runtime
decompression while offering high rendering quality.

In this paper, we present the design and evaluation of
our feature-preserving volume data reduction method. In
contrast to downsampling, which uniformly discards
information oblivious to the data content, our method more

intelligently reduces data. The volume data are partitioned
into cubic regions and each region is assigned an
importance value based on the importance of the voxels
in the region, which is hinted by the user-specified color
and opacity transfer functions. As illustrated in Fig. 1, the
regions with higher importance values, thus, containing
features of interest, are magnified and other regions are
compressed to retain the original volume boundary. As a
result, the regions corresponding to the features of interest
are populated with more samples whereas other regions are
sparsely sampled.

With our approach, the original volumetric mesh is
deformed and voxels are repositioned. The varying im-
portance values introduce various region deformations,
which could cause region intersections and distortion of
large features. We apply edge flipping constraints to avoid
region intersections, and introduce Laplacian smoothing to
minimize the distortion around the features of interest. All
these constraints are formulated into energy functions
which are minimized using a global optimization system.
After deforming the grid space, voxels within each region
are trilinearly resampled on the GPU.

Our feature-preserving data reduction method has
several advantages. First, the continuous space deformation
guarantees similar resolutions along neighboring grid
boundaries. This seamless deformation obviates the need
of extra data packing or blending [35] to avoid gaps or to
handle unmatched data resolutions among neighboring
blocks, which are problems commonly found in multi-
resolution methods. Second, our method outputs a very
simple data format: only a reduced data set and a deformed
grid for shape recovery. At runtime, the full size volume
can be directly rendered via texture lookup on the GPU.
Since no data reconstruction is needed, significant memory
saving is achieved. This approach, therefore, provides a
cost-effective way for representing and rendering large
volume data. Third, our solution may reduce the original
volume to various sizes in a continuous fashion. The flexible

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011 171

. Y.-S. Wang and T.-Y. Lee are with the Computer Science and Information
Engineering, National Cheng Kung University, CSIE, No. 1, Ta-Hsueh
Road, Tainan, Taiwan, ROC. E-mail: braveheart@csie.ncku.edu.tw,
tonylee@mail.ncku.edu.tw.

. C. Wang is with the Department of Computer Science, Michigan
Technological University, 308 Rekhi Hall, 1400 Townsend Drive,
Houghton, MI 49931. E-mail: chaoliw@mtu.edu.

. K.-L. Ma is with the Department of Computer Science, University of
California, Davis, 2121 Kemper Hall, One Shields Avenue, Davis,
CA 95616. E-mail: ma@cs.ucdavis.edu.

Manuscript received 23 July 2009; revised 21 Oct. 2009; accepted 14 Jan.
2010; published online 9 Feb. 2010.
Recommended for acceptance by T. Möller.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number
TVCGSI-2009-07-0155.
Digital Object Identifier no. 10.1109/TVCG.2010.34.

1077-2626/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

choice of volume data size draws a clear difference from
building a multiresolution data hierarchy which often has
the 2:1 ratio for each data dimension between two
neighboring levels. Besides data reduction, our real-time
voxel reposition technique also achieves focus+context
visualization by rendering the features as the focus and
the rest as the context. Unlike many previous methods [5],
[31], [33] based on a magnifying lens which only allows a
single focus at a time, our method automatically recognizes
all features of interest for focus+context visualization. This
characteristic is particularly useful for volumetric feature
specification since features in volume data usually have
complicated shapes and are surrounded by homogenous
materials. In all, our method enhances our ability to
visualize large, complex volume data.

2 RELATED WORK

2.1 Volume Data Reduction

Data reduction remains one of the important themes in the
field of visualization as the size and complexity of data
continue to increase at rapid rates. The simplest way of data
reduction is uniform subsampling. Another way is to build
a multiresolution data hierarchy and compress the data
associated with each node in the hierarchy. This allows us to
visualize data at different levels of detail and trade image
quality for interactivity. Many algorithms have been devel-
oped to provide hierarchical data representation for volu-
metric data. Examples include the Laplacian pyramid [9],
multidimensional trees [36], and octree-based hierarchies [2],
[16]. The use of wavelet transform and compression for
volumetric data was also introduced [24] and coupled with
octree-based data compression and rendering [11]. Besides
the octree structure, other researchers took a simpler scheme
that constructs a flat block-based hierarchy [18], [20]. In that
scenario, the entire volume is first subdivided into smaller
subvolumes. Then, for each subvolume, coarser levels of the

data are created by repeatedly filtering the data. In Section 5,
we will compare this flat block-based multiresolution
method with our data reduction method.

One complication with multiresolution schemes is the
management of individual data blocks. It requires extra
effort to either pack them into a single volume or render
them separately in multiple passes and then compose all
partial images to generate the final image. Another
complication is rendering the transition between two
neighboring blocks with different resolutions. To avoid
seams between adjacent blocks, data along the block
boundaries need to be replicated for correct interpolation
[35]. In contrast, our deformation-based data reduction is
much simpler. It generates a reduced volume along with a
grid for shape recovery. There is no need for data block
management and no special handling of mismatched
resolutions. Moreover, our solution does not require explicit
data reconstruction before rendering, which is necessary for
many multiresolution methods.

There are several research efforts in volume visualization
that incorporate transfer functions into multiresolution data
compression and rendering [10], [20], [30], [37]. Their
common goal was to adapt data precision and resolution
according to the visualization content so that a better trade-
off between data compression and rendering quality can be
achieved. Our work shares similar ideas in terms of utilizing
the transfer function to determine important regions. Unlike
previous work, we magnify important regions to allocate
more samples for preserving greater details of the features.
We also allow the user to reverse this deformation process
either directly or progressively at runtime. The reversal is
very fast since the interpolation of each voxel value is
independent and can be accelerated using the GPU.

2.2 Focus+Context Visualization

Focus+context techniques have long been used in visualiza-
tion for interactive data exploration. In information

172 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

Fig. 1. The overview of our system. The top left bar indicates the mapping of cube importance to color. The bottom left bar is the transfer function
based on voxel intensity. Our algorithm takes the original volume data set and the input transfer function to identify features of interest. It then
deforms the volumetric grid so that important features (corresponding to red, yellow, and green space cubes) are expended and unimportant regions
(corresponding to blue space cubes) are shrunk, thus, enabling focus+context visualization. Feature-preserving data reduction is achieved by
downsampling the deformed data set, followed by a shape recovering step based on the deformed grid. Our data reduction result is able to preserve
features better than direct downsampling (both have a reduction rate of 10:1).

visualization, researchers have introduced fisheye view
methods to magnify the focal area and either distort or
overlay the neighboring regions to highlight the region of
interest. For example, Carpendale et al. [5] presented
several distortion patterns, such as stretch orthogonal and
nonlinear radial, to demand more space for the focal region
to achieve 3D viewpoint-independent distortion. Keahey et
al. [12], [13], [14] deformed texts or 2D images by a
transformation grid which is determined by nonlinear
magnification fields. In volume visualization, Viola et al.
[29] presented importance-driven volume rendering for
automatic focus+context display of objects. They used
predetermined object importance to encode voxel visibility
priority. This information is used to guide rendering so that
important regions are not occluded by unimportant ones.
They also presented a technique for automatic focusing on
features [28]. A focus is selected from a set of predefined
features and their algorithm automatically determines the
most expressive view of the features.

Researchers have also developed solutions for highlight-
ing features in 3D volumetric data sets through deformation.
McGuffin et al. [23] applied deformation techniques for
volumetric data browsing. Their techniques allow the user to
open up, spread apart, or peel away the outer layers to reveal
hidden structures. Correa et al. [7] used physical and optical
illustration operators to manipulate the geometry of data
objects. Wang et al. [33] presented a focus+context technique
based on an energy optimization model to magnify a region
of interest for closer examination while deforming other
regions without perceivable distortion.

Other researchers attempted volume deformation
through the manipulation of optical attributes with a
magnifying lens. For instance, LaMar et al. [17] deformed
rendered 2D images or 3D volumes using hardware
acceleration. Their approach dynamically computes texture
coordinates for grid vertices and renders the texture with
coordinates projected onto a homogeneous space to ensure
desirable results. Wang et al. [31] presented an interactive
focus+context technique for rendering volumetric models
according to the optical lens theory. Their approach
simulates the ray direction that is determined by the position
of the focal point. The expanded image is displayed within
the magnification lens. Although both [17] and [31] provide
different shapes of bounded lenses for the user to magnify
regions of interest, there is no guarantee of a nice fit into local
feature shapes. In particular, the specification could be very
inconvenient for interior features. This is not an issue for our
approach with the assumption that features of interest are
already well defined by the given transfer function.

3 VOXEL REPOSITION

We deform the volume space to reposition the voxels.
Important regions are magnified while unimportant regions
are shrunk to maintain the original volume size. This idea is
inspired by the resizing technique proposed by Wang et al.
[32], [33], [34], and we revise it to meet our application needs.
Specifically, the given volumetric data set is partitioned using
auniformgridG ¼ fV;E;Cg,whereV ¼ fvT0 ;vT1 ;vT2 ; . . . vTng
denotes the vertex positions, and E and C are the set of edges
and space cubes, respectively. We attempt to analyze the
content of each local region and assign importance values to
space cubes. While deforming the volume space, cubes with
higher importance values deserve more samples to keep more
information when the whole data set is downsampled or is

rendered within a low-resolution display. In other words,
cubes are resized according to their importance values.
Unfortunately, the variation of cube deformations leads to
some problems such as space intersection and shape variation
between neighboring cubes. In contrast, the method pre-
sented in [33] does not have this problem since it handles
polygonal models and cubes are partitioned into only two
categories, making cube deformation relatively simple. In this
paper, we smooth the deformation of neighboring cubes by
reducing the change of the Laplacian coordinate of their
sharedgridvertex.Wealso introduce inequalityconstraints to
prevent edges from flipping to avoid space intersection. These
constraints are formulated into energy terms to serve the
requirements and we strive to search for a deformed grid that
minimizes our objective function. Finally, the voxels within
the space cubes are trilinearly resampled based on space
deformation [3].

3.1 Feature Specification

In volume visualization, the most common way to present
features for a data set is through specification of the transfer
function. For example, the user can specify color and
opacity to highlight voxels of interest with distinct colors
and high opacity values. As such, we use the following
equation to compute the importance of a voxel p:

wðpÞ ¼ �ðpÞ � krgðpÞkF ; ð1Þ

where �ðpÞ is the opacity and krgðpÞkF is the Frobenius
norm (magnitude) of the color gradient. To make this closer
to human perception, we adopt the perceptually adapted
CIELab color model for importance evaluation. We notice
that certain saliency measures such as [15] can better
identify features from the volume data set. However, our
interactive system requires efficient computation and we
found this simple method works well in most situations.
Finally, each cube importance value is determined by
averaging the interior voxel importance values and then
normalized to ½0; 1� as a weighting factor used in (2).

3.2 Grid Space Deformation

3.2.1 Weighted Space Cube Expansion

We magnify the cubes ck to emphasize the content within.
Namely, c0k ¼ sck, where s is a scaling factor specified by
the user and c0k is the deformed version of ck. To better
utilize less important space and to minimize the distortion
of important regions (see Fig. 2), we allow cube rotation by
embedding the rotation matrix R0c into the energy term

Df ¼
X
ck2C

ð�þ wkÞDfðckÞ; where DfðcÞ ¼ kc0 � sR0cck
2;

ð2Þ

where wk is a weighting factor representing the cube
importance, � is a small constant to avoid instability when
wk is very close to zero. With the fixed volume space, cubes
with larger wk are expanded due to the larger forces of
magnification. Similar to the method presented in [33], we
represent each local space cube with a set of vertices and
edges. We then solve for each vertex position to fit the
deformations of the cubes which share it. Specifically, we
transform (2) into the following form:

DfðcÞ ¼
X
fi;jg2Ec

je0ij � sR0ceijj
2; ð3Þ

WANG ET AL.: FEATURE-PRESERVING VOLUME DATA REDUCTION AND FOCUS+CONTEXT VISUALIZATION 173

where Ec denotes the edges of cube c, e0ij ¼ v0i � v0j and eij ¼
vi � vj denote the deformed and original edges, respectively.

3.2.2 Laplacian Smoothing

As importance values of space cubes vary, the deformation
of neighboring space cubes may differ dramatically. This
would distort features that span across multiple space
cubes. Thus, we preserve the deformed Laplacian coordi-
nate [26] Lðv0Þ of each grid vertex as similar as possible to
its original version LðvÞ. Let us denote EðiÞ and CðiÞ as the
neighboring edges and cubes that share vi, respectively. We
achieve this constraint by the following energy term:

D‘ ¼
X
vi2V

jLðv0iÞ � s0iR0iLðviÞj
2;

LðviÞ ¼
1

jEðiÞj
X

fi;jg2EðiÞ
vi � vj;

s0i ¼
1

jCðiÞj
X
c2CðiÞ

s0c; R0i ¼
1

jCðiÞj
X
c2CðiÞ

R0c:

ð4Þ

where s0i is the average of scaling factors and R0i is the
rotation matrices averaged from the deformed cubes that
share vi. Note that the Laplacian coordinate LðviÞ is
rotation variant. The deformed cube sizes vary due to
different weighting factors, even though cubes are scaled
using the same transformation.

We constrain the boundary vertices moving along their
respective planes in order to retain the size and shape of
bounding space. Let @Vx; @Vy; and @Vz be the boundary
vertices in the yz, xz, and xy planes, respectively, we solve
for the deformed vertex positions by minimizing the energy
terms Df þD‘ subject to the volume boundary constraints

v0i;x ¼ vi;x; if vi 2 @Vx;
v0i;y ¼ vi;y; if vi 2 @Vy;
v0i;z ¼ vi;z; if vi 2 @Vz:

8<
: ð5Þ

We also preserve neighboring cubes from intersecting each
other using the edge flipping constraints. The deformed
edge e0ij is required to have a similar direction to the original
edge eij. Written in equation, each edge fi; jg should satisfy

e0ij � eij > 0: ð6Þ

Since (3), (4), and (5) can be written as the linear combination

of unknown vertex positions V0, we transform the objective

function into a linear system AV0 ¼ bðV0Þ, where A

represents the coefficients of unknown vertex positions,

and V0 and bðV0Þ are the vectors in the right-hand side of

simultaneous equations. We solve for the unknown vertex

positions in a least square sense because the number of

equations is much larger than that of the unknown vertex

positions. Since the scaling factor s0i and the cube rotations R0c
are unknown, we apply the Gaussian-Newton method [21],

[22] to minimize this constrained nonlinear objective func-

tion in an iterative way. We solve for three coordinates of the

vertex positions separately since the boundary constraints

applied to the x, y, and z coordinates are different.
Specifically, we consider the deformed scaling factor s0i

and the rotation matrix R0c as additional unknown variables

and update V0, s0i, and R0c alternatively. The system starts

from considering s0i ¼ 1:0 and R0c as an identity matrix and

solves for vertex positions only. It then keeps updating R0c,

S0i, and V0 until the system converges. To determine the

unknown scaling factor s0c and the rotation matrix R0c, we

place the original and deformed cubes at the origin and

compute a matrix that approximately transforms vertices of

the original cube to those of the deformed cube [1]. The

resulting transformation matrix is then decomposed into a

rotation matrix R and a shear matrix S using polar

decomposition. We set Rc to R and sc to the average of

diagonal elements in S.
The edge flipping constraints are inequalities which

make it impossible to solve using a linear system. Therefore,

we detect if there are edges conflicting with (6) once the

vertex positions V0 are updated. The flipped edges are

enforced to be in the directions of their original versions.

Specifically, we add the constraint

Deði; jÞ ¼ �je0ij � �eijj
2; ð7Þ

if the edge fi; jg is flipped. Here, � � 0 is a parameter for

preserving the space cube from being shrunk to zero size or

even being negatively scaled. We set � ¼ 0:1 and � ¼ 10 in

our implementation. For those legal edges (i.e., e0ij � eij > 0),

the edge flipping constraints are not necessary.
Equation (7) enforces the flipped edges to lie in their

original directions. However, it is not always appropriate to

hold these constraints since flipped edges may become legal

if the user decreases the scaling factor or changes the

transfer function. Constraining these edges to have nearly

zero lengths would abnormally deform the cube, thus,

resulting in more distortion to the data set. To avoid this,

we check the edge length of e0ij and remove its flipping

constraint when je0ijj > �jeijj. This is because we solve for

the vertex positions using soft constraints, which means

that we can only obtain the deformed edge e0ij with

0 � je0ij � �eijj � �, where � > 0 is a very small number.

je0ijj < �jeijj indicates that other energy terms are squeezing

the edge while je0ijj > �jeijj indicates that they are stretching

it. Since only squeezing may flip the edge, the flipping

constraint is not needed in the stretching case.

174 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

Fig. 2. Feature magnification (a) without and (b) with the use of rotation
R0c. We can see that the feature cubes (especially red cubes) become
larger and more regular (i.e., less distorted) if rotation is allowed.

4 APPLICATIONS

The voxel reposition technique brings us several applica-
tions in data reduction and rendering.

4.1 Data Reduction

We achieve data reduction through downsampling the
deformed volume data set. The extracted voxels are
trilinearly interpolated. Since features are magnified, more
samples from those important regions would be picked up
and then stored in the reduced data set. During rendering, the
corresponding deformed grid is used to locate the queried
voxel in the reduced data set. We show a 2D illustration to
explain how our 3D recovering grid works in Fig. 3.

Compared to the direct downsampling method, our
algorithm preserves features better since it does not simply
uniformly discard voxels. Homogeneous regions are re-
duced more to leave more samples for features. Compared
to multiresolution techniques, our system provides a much
simpler data format for rendering. Rather than packing a
sequence of downsampled textures, rendering our reduced
data set requires only an additional texture lookup for
obtaining the corresponding voxels. This fits nicely into the
rendering pipeline since only the regular 3D data format is
used. Furthermore, with continuous deformation between
neighboring cubes, there is no need to smooth the
boundaries between low and high-resolution regions. The
above two advantages enable us to render the reduced data
set efficiently. The computational cost is only slightly higher
than that of rendering downsampled data sets. As illu-
strated in Fig. 4, the sampling resolutions along the
boundary of more and less important space cubes are
similar due to the shared boundary constraint.

4.2 Focus+Context Visualization

Our interactive deformation technique enables focus+con-
text visualization. When visualizing a high-resolution data
set on a low-resolution display, this interactive deformation
system allows the user to take a closer look of selected
features in context. Given the user-specified transfer func-
tion, our system magnifies regions with higher color gradient
magnitudes and shrinks the rest so that the whole data set can
be rendered within its original volume boundary. Our
system also minimizes distortions of features, similar to the

work in [33]. A significant limitation of [33] is that their
discrimination of the focus and context regions is binary and,
thus, is not sufficient to magnify features to different extents.
Another major advantage of our system is that it magnifies
the whole features without explicit feature specification. This
is because transfer functions usually provide sharp color
boundaries around features for effective visualization. Our
system, thus, sets high importance values to space cubes
covering the features. This distinction makes our feature
specification easy and intuitive, especially for the interior and
nonregular features (e.g., vessels) that are surrounded by
homogeneous materials.

Our system is flexible with different kinds of transfer
functions. For example, the applied transfer functions may
consider voxel intensity, size [6], shape [25], etc. In addition,
the system can take the combined multidimensional
transfer function for better feature specification since the
mapping to color and opacity from only a scalar value
(usually intensity) may fail to capture features of interest.
For focus+context visualization, since feature recognition is
based on the perceptual color difference, our system
responds to other types of criteria, such as color, opacity,
and frequency, that highlight the focal regions. By employ-
ing these criteria, we emphasize the matched focal regions
to attract attention.

4.3 Direct/Progressive Recovering

In addition to recovering a deformed data set back to its
original shape in one step, we give the user an option to
observe how the deformation is applied to the reduced data
set. LetG0 andGt be data sets with the original and deformed
shapes, respectively. The recovering grid Tt7!0 transforms the
deformed data set Gt back to its original shape G0

(G0 ¼ Tt 7!0G
t). By providing a list of grids Tt7!k, where

0 � k � t, we are able to show snapshots of the deformation
process in a progressive manner. In this way, the user can
intuitively understand how the deformation progresses.
These grids also allow the user to achieve focus+context
visualization with the specified transfer function.

5 RESULTS

We have implemented our algorithm and show some of the
test results in Figs. 1, 5, 6, 8, and 9 to demonstrate the
effectiveness of our approach. The magnification results
show focus+context visualization. They also show our

WANG ET AL.: FEATURE-PRESERVING VOLUME DATA REDUCTION AND FOCUS+CONTEXT VISUALIZATION 175

Fig. 3. The deformed grid records how the reduced data set is deformed.
Specifically, in this example, the voxels A and B are stored in the
positions of A0 and B0, respectively. The only additional computation of
rendering is a texture lookup to figure out where the voxel is stored.

Fig. 4. A 2D illustration of our 3D resampling technique. As the low and
high-resolution regions share the same edge (the same face in 3D), the
sampling rates along both sides of the grid boundary are similar.
Therefore, no smoothing between low and high-resolution regions is
necessary.

method can better preserve features and confirm the
sampling between neighboring blocks is continuous. The
features of interest are magnified so it is possible to visualize
them clearly on a small display.

5.1 Data Reduction

We downsampled the deformed data set to preserve
features. In Figs. 1, 5, and 8, we can observe that the data
sets reduced using pure downsampling suffer from aliasing
artifacts due to uniform loss of data content. In contrast, our
method produced smoother results and preserved feature
details better. We further compare our method with the
Daubechies D4 wavelet transformation (Fig. 8) and multi-
resolution method [18], [20] (Fig. 9) for reducing large data
sets to demonstrate the effectiveness of our method. To
make a fair comparison, all methods reduce the data set to
1/64 of the original size. In addition, we determine the
sampling rate of each cube in the multiresolution method
according to its importance values. Clearly, wavelet reduc-
tion overly smoothes the features (see Fig. 8) while the
multiresolution method produces discontinuity artifacts
(see Fig. 9). Therefore, our method achieves the best results.

In this paper, we do not compare our method with
widely used multiresolution methods since many of them
have the same discontinuity problem due to their discrete
nature. While interblock interpolation [19] can interpolate
between sample values within and between blocks of
arbitrary resolution levels to avoid discontinuity, its
implementation is not trivial. If an additional smoothing
process is applied as usual, it requires a large amount of
additional space [8], [35]. Based on the formula given in [8],
smoothing the boundaries for a 21� 21� 64 resolution

block requires nearly 11 percent of the original data set. In
contrast, rendering our reduced data sets requires only the
3D positions of 22� 22� 65 ¼ 30;976 grid vertices for shape
recovery. Specifically, in Fig. 9, additional 217 MB of data
are required to fix the boundary discontinuity while our
coarse deformed grid needs only 368 KB.

To measure data loss using different algorithms, we
upsampled the reduced data sets to their original sizes by
trilinear interpolation, followed by the comparison of color
difference between corresponding voxels. Namely, the dis-
tortion at voxel p is computed using the following equation:

�ðpÞjCoðpÞ � CrðpÞj2; ð8Þ

where �ðpÞ denotes the opacity of p, CoðpÞ and CrðpÞ are the
colors of p obtained from the original and reduced data sets,
respectively. In the above equation, we multiply the color
difference by the voxel opacity since visual distortion of a
transparent voxel is unnoticeable. As shown in Table 1, with
respect to the measured root mean square distortions, the
multiresolution method has the minimum data loss. This is
because the multiresolution method optimizes the available
space to store important content. On the other hand, our
method wastes some homogeneous regions to satisfy the
space continuity. Although the distortions of the reduced
multiresolution data sets are the minimum, they are
gathered around block boundaries, which are sensitive to
human perception. The artifacts can be smoothed but it
requires extra effort to fix the boundary problem.

It can be observed that the overall distortion in our reduced
hurricane data set is high due to continuous resampling on

176 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

Fig. 5. The comparison between direct downsampling and our method. (a) The original and deformed data sets. (b) The downsampling result and our
shape recovered result. We also compare pixel color difference between the images rendered from the original and reduced data sets. (c) The error
distributions are displayed. (d) The zoomed-in results. We can see that the detail of the hurricane’s eye is better preserved in our result. Here, both
methods have a reduction rate of 10:1.

highly squeezed regions, although the hurricane’s eye is well
preserved. In Fig. 5, we show that the distortions of our
reduced data set are mostly distributed further away from the
hurricane’s eye, which is not important, and thus less
noticeable. We do not measure the distortion of wavelet
transformed data using root mean square since scalar data
values are transformed to frequency values.

5.2 Focus+Context Visualization

Our voxel reposition system magnifies the focal region based
on transfer functions. In Fig. 6, we adopt the size evaluation
method presented by Correa and Ma [6] to magnify different
parts of vessels using a 2D transfer function. By changing the
vessel opacity according to the evaluated size, our system
recomputes cube importances on the fly and magnifies
specified features. From our accompanying video, it should
become clear that our transfer-function-based feature recog-
nition approach is effective and much easier to use than
techniques based on magnifying lenses.

5.3 Performance

We run our system on a PC with a dual core 3.0 GHz CPU,
4 GB RAM, and an nVidia GTX 295 video card. Although the
objective function is nonlinear and there are lots of unknown
variables to be solved, our unoptimized code still achieves
interactive performance. The timing result is reported in
Table 2. As we can see, the computational cost of space
deformation depends on grid complexity, where the slowest
part is the minimization of the objective function. To trade
quality for interactivity, we apply coarse grids for volume

deformation. The grid resolutions we use are good enough
for generating desirable results. On the other hand, the
determination of cube importance depends on the data set
itself. We can apply a downsampled data set to reduce the
computation cost since only a scalar value from each cube is
needed. This simplification brings little side effects to the
results. Here, we render the volume data sets on an image of
640� 480 with 500 samples along each pixel. Although the
actual speed also depends on the viewing direction, we found
that the rendering achieves 14 frames per second on average.

In Table 2, we list the computation time of space
deformation for each iteration. In our experiment, the
iteration number of minimizing the nonlinear objective
function is usually less than five. It will get larger when more
edges are flipped. However, we seldom give such a high
scaling factor to the system since edge flipping implies that
less important regions are squeezed dramatically. Increasing

WANG ET AL.: FEATURE-PRESERVING VOLUME DATA REDUCTION AND FOCUS+CONTEXT VISUALIZATION 177

TABLE 1
The Root Mean Square Distortions of Downsampling,

Multiresolution, and Our Reduced Data Sets

The error is measured in the RGB color space.

Fig. 6. From left to right are the original data sets, the focus+context results with the magnification on the thinner and thicker vessels, respectively.
The deformed grids are displayed at the top row. The transfer functions used are shown at the bottom-right side of each result. The voxel’s color
(lower bar) and opacity (upper bar) are mapped from the intensity and the evaluated size [6], respectively. Our system conforms to the specified
transfer function and magnifies the vessels with different sizes.

the scaling factor further would not lead to a much different

result. To improve interactivity, our system renders the

deformed data set whenever the vertex positions are updated

at each iteration. This also produces an animation effect.
In this paper, we utilize a GPU implementation of the

concurrent number cruncher (CNC) sparse solver [4] to solve

the linear system. Given that the cube importance would be

changed whenever the transfer function is adjusted, as well

as new constraints would be added in when the edges are

flipped, the coefficient matrix A may change frequently. The

commonly used Cholesky direct solver is not sufficient in

such a scenario. This is because the factorization step is very

expensive and is necessary whenever the matrix A has been

changed. Although the CNC solver is implemented with the

conjugate gradient method, the computation is still efficient

with the GPU speedup. Hence, the grid space deformation

can be performed in real time, which is critical for interactive

focus+context visualization.

6 DISCUSSION

Our system allows the user to adjust the scaling factor s to

magnify interesting regions to different degrees. This

interactive operator helps the user balance the importance

of the focus and context regions. The scaling factor is usually

larger than 1.0 since our goal is to magnify the features.
The cube importance is determined based on the color

gradients of interior voxels, which highly depends on the

input transfer function. That is, features with smooth

boundaries may not be considered as important. Fortu-

nately, in this scenario, blurred features are usually less

important. Thus, reducing or distorting them is acceptable.

On the other hand, if the data contain noise, the importance

values of data cubes would increase since they have high

color contrasts. To handle this, an easy and intuitive way is

to apply denoising methods such as bilateral filtering [27]

before computing the cube importance. This strategy also

improves the quality of rendering.
For feature-preserving data reduction, it is clear that a

larger scaling factor would better preserve features. How-
ever, applying a very large scaling factor is not meaningful
since the bounding space is fixed. On the other hand, we
also want to avoid squeezing all unimportant regions into
zero size because totally missing that information is also
unacceptable. To balance the quality between feature and
nonfeature regions, we apply the following term to measure
the cube distortion:

1

n

X
ck2C

wkkck � ðs0kR0kÞ
�1c0kk

2; ð9Þ

where n is the number of cubes and wk denotes the cube’s
importance value. We transform the deformed cube c0k to
have the same size and orientation as the original cube ck
and compare their differences to measure the cube distor-
tion. Namely, the distance of corresponding vertices is
accumulated. We measure the distortion whenever the
volume data set is further magnified and stop the
magnification when the distortion increases rapidly. Instead
of transforming the original cube to its deformed version,
this strategy ensures that the measurement is determined
with the same size. Due to the embedded weighting factor
wk, the measured distortion would rapidly increase when
the important cubes are distorted. This means most of the
less important regions are already squeezed and we should
stop the magnification. The diagrams in Fig. 7 show the
relations between the distortion and the scaling factor for
different data sets. The distortion � always increases as the
scaling factor s increases, while the partial derivative @�=@s
may decrease because the deformation is nearly terminated.

The price of preserving space continuity is not to squeeze
all unimportant regions. This situation usually occurs
between the focus and context regions. Although our
system does not optimize the available space to preserve
interesting features in data reduction, it obviates the need to
handle boundary discontinuity. We admit that multiresolu-
tion methods can best preserve feature information with the
space constraint, but boundary smoothing usually incurs
additional space and/or processing overhead.

We implemented our algorithm using the GPU to
leverage its inherent parallelism. The tasks include the
determination of cube importance, minimization of objec-
tive function, and raycasting of volumetric data sets. Even
though the current generation of the GPU is already very
powerful, handling all of the tasks still entails a heavy
workload. With our current implementation, the CPU idles
during the deformation process. In the future, we would
like to balance the workload between the CPU and GPU so
that better overall efficiency can be achieved.

6.1 Limitation

Our deformation technique magnifies each local region based
on its importance value. This implies that the deformation
fails to magnify the features if they are everywhere. In this
scenario, our data reduction method would degenerate to
pure downsampling and focus+context visualization be-
comes invalid. In addition, to preserve space continuity and
uniform feature expansion, some homogeneous cubes would

178 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

TABLE 2
The Computation Time (in Seconds) of Space Deformation for Each Iteration

not be shrunk, which means that our system may not be able
to fully utilize available regions for feature preservation (see
Fig. 8, left). We will investigate how to fill out the
unimportant regions with features as much as possible.

Our system deforms the input data set according to local
information, i.e., the importance of space cube and
the smoothness between neighboring cubes. Therefore, the
system does not guarantee to preserve the global structure
such as straight lines or symmetry. Although this issue does
not affect data reduction, visualization of focus+context
information may require this global structure to be retained.
Fortunately, this is not a critical issue since our interactive

system allows the user to see the change on the fly. The user
can go back and forth to observe spatial structures and
relationships. We will develop an automatic method to
detect global structures and enforce space cubes covering
the corresponding features to have similar deformations.

7 CONCLUSION

We have introduced the concept of feature-directed voxel
repositioning for interactive focus+context volume visuali-
zation. Our design not only enables better utilization of both
screen and storage spaces but also offers rendering quality

WANG ET AL.: FEATURE-PRESERVING VOLUME DATA REDUCTION AND FOCUS+CONTEXT VISUALIZATION 179

Fig. 7. The relations between (a) the distortion � and the scaling factor s, and (b) the partial derivative @�=@s and the scaling factor s. Notice that the
rapid increase of distortion is due to the fact that most of the less important regions are already well squeezed. Increasing the scaling factor cannot
bring more space to features. When this happens, we stop the magnification.

Fig. 8. The original data set (middle left), the deformed data set (left) as well as the comparisons of direct downsampling, the Daubechies D4 wavelet
transform, and our result. In this example, all reduced data sets are only 1=64 of the original size. Clearly, the direct downsampling produces jaggy
artifacts while the wavelet transform overly smoothes the features. Only our method preserves the gaps between kneecaps well.

higher than that of previous methods. Features of interest
are suggested by a user-defined transfer function. No
additional operations by the user are required. To examine
different aspects of the data, the user may change feature
specification any time by interactively modifying transfer
functions. No expensive data preprocessing and waiting are
needed. According to the feature specification, our system
can automatically magnify the feature to show greater
details in context, which is convenient and intuitive to the
user. We achieve high interactivity with GPU acceleration
of compute-intensive steps, and high quality with contin-
uous sampling a deformation grid of the original volume.
Our test results clearly verify our design.

We have shown a prototype system of our design to a
group of surgeons, and they confirmed the value of the
quality and interactivity of focus-context visualization
offered by our system. We, therefore, plan to continue our
work and involve these surgeons in the development and
evaluation of a production-level system.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous
reviewers for their constructive comments. They also
thank Jeremiah Caron for the video narration. Yu-Shuen
Wang and Tong-Yee Lee are supported by the Landmark
Program of the NCKU Top University Project (contract
B0008) and the National Science Council (contracts NSC-
97-2628-E-006-125-MY3, NSC-96-2628-E-006-200-MY3, and
NSC-99-2221-E-006-066-MY3), Taiwan. This research was
supported in part by the US National Science Foundation
through grants OCI-0325934, OCI-0749217, CNS-0551727,
CCF-0811422, OCI-0749227, OCI-0950008, CCF-0938114,
and OCI-0850566, and the US Department of Energy
through the SciDAC program with Agreements No. DE-
FC02-06ER25777 and DE-FG02-08ER54956.

REFERENCES

[1] P.J. Besl and N.D. McKay, “A Method for Registration of 3D
Shapes,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239-256, Feb. 1992.

[2] I. Boada, I. Navazo, and R. Scopigno, “Multiresolution Volume
Visualization with a Texture-Based Octree,” Visual Computer,
vol. 17, no. 3, pp. 185-197, 2001.

[3] T. Brunet, K.E. Nowak, and M. Gleicher, “Integrating Dynamic
Deformations into Interactive Volume Visualization,” Proc. Euro-
graphics/IEEE Visualization and Graphics Technical Committee
(VGTC) Symp. Visualization, pp. 219-226, 2006.

[4] L. Buatois, G. Caumon, and B. Lévy, “Concurrent Number
Cruncher—A GPU Implementation of a General Sparse Linear
Solver,” Int’l J. Parallel, Emergent and Distributed Systems, vol. 24,
no. 3, pp. 205-223, 2009.

[5] M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia,
“Distortion Viewing Techniques for 3-Dimensional Data,” Proc.
IEEE Information Visualization Symp., pp. 46-53, 1996.

[6] C.D. Correa and K.-L. Ma, “Size-Based Transfer Functions: A New
Volume Exploration Technique,” IEEE Trans. Visualization and
Computer Graphics, vol. 14, no. 6, pp. 1380-1387, Nov. 2008.

[7] C.D. Correa, D. Silver, and M. Chen, “Illustrative Deformation for
Data Exploration,” IEEE Trans. Visualization and Computer Gra-
phics, vol. 13, no. 6, pp. 1320-1327, Nov./Dec. 2007.

[8] N. Fout, H. Akiba, K.-L. Ma, A. Lefohn, and J.M. Kniss, “High-
Quality Rendering of Compressed Volume Data Formats,” Proc.
Eurographics/IEEE Visualization and Graphics Technical Committee
(VGTC) Symp. Visualization, pp. 77-84, 2005.

[9] M.H. Ghavamnia and X.D. Yang, “Direct Rendering of Laplacian
Pyramid Compressed Volume Data,” Proc. IEEE Visualization
Conf., pp. 192-199, 1995.

[10] S. Guthe and W. Straßer, “Advanced Techniques for High-Quality
Multi-Resolution Volume Rendering,” Computers and Graphics,
vol. 28, no. 1, pp. 51-58, 2004.

[11] S. Guthe, M. Wand, J. Gonser, and W. Straßer, “Interactive
Rendering of Large Volume Data Sets,” Proc. IEEE Visualization
Conf., pp. 53-60, 2002.

[12] T.A. Keahey, “The Generalized Detail In-Context Problem,” Proc.
IEEE Information Visualization Symp., pp. 44-51, 1998.

[13] T.A. Keahey and E.L. Robertson, “Techniques for Non-Linear
Magnification Transformations,” Proc. IEEE Information Visualiza-
tion Symp., pp. 38-45, 1996.

180 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 2, FEBRUARY 2011

Fig. 9. (a) The original data set and (b) the comparisons between the multiresolution and our method. Both reduced data sets are only 1=64 of the
original size. Although the discontinuity artifacts produced by the multiresolution method can be smoothed out through an additional process, our
method does not need this process thanks to continuous deformation.

[14] T.A. Keahey and E.L. Robertson, “Nonlinear Magnification
Fields,” Proc. IEEE Information Visualization Symp., pp. 51-58, 1997.

[15] Y. Kim and A. Varshney, “Saliency-Guided Enhancement for
Volume Visualization,” IEEE Trans. Visualization and Computer
Graphics, vol. 12, no. 5, pp. 925-932, Sept./Oct. 2006.

[16] E. LaMar, B. Hamann, and K.I. Joy, “Multiresolution Techniques
for Interactive Texture-Based Volume Visualization,” Proc. IEEE
Visualization Conf., pp. 355-362, 1999.

[17] E. LaMar, B. Hamann, and K.I. Joy, “A Magnification Lens for
Interactive Volume Visualization,” Proc. Pacific Graphics Conf.,
pp. 223-232, 2001.

[18] X. Li and H.-W. Shen, “Time-Critical Multiresolution Volume
Rendering Using 3D Texture Mapping Hardware,” Proc. IEEE
Symp. Vol. Visualization, pp. 29-36, 2002.

[19] P. Ljung, C. Lundström, and A. Ynnerman, “Multiresolution
Interblock Interpolation in Direct Volume Rendering,” Proc.
Eurographics/IEEE Visualization and Graphics Technical Committee
(VGTC) Symp. Visualization, pp. 259-266, 2006.

[20] P. Ljung, C. Lundström, A. Ynnerman, and K. Museth, “Transfer
Function Based Adaptive Decompression for Volume Rendering
of Large Medical Data Sets,” Proc. IEEE Symp. Volume Visualiza-
tion, pp. 25-32, 2004.

[21] K. Madsen, H.B. Nielsen, and O. Tingleff, Methods for Non-Linear
Least Squares Problems, second ed., Informatics and Math. Model-
ling, Technical Univ. of Denmark, 2004.

[22] K. Madsen, H.B. Nielsen, and O. Tingleff, Optimization with
Constraints, second ed., Informatics and Math. Modelling, Tech-
nical Univ. of Denmark, 2004.

[23] M.J. McGuffin, L. Tancau, and R. Balakrishnan, “Using Deforma-
tions for Browsing Volumetric Data,” Proc. IEEE Visualization
Conf., pp. 401-408, 2003.

[24] S. Muraki, “Approximation and Rendering of Volume Data Using
Wavelet Transforms,” Proc. IEEE Visualization Conf., pp. 21-28,
1992.

[25] Y. Sato, C.-F. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S.
Tamura, and R. Kikinis, “Tissue Classification Based on 3D Local
Intensity Structures for Volume Rendering,” IEEE Trans. Visualiza-
tion and Computer Graphics, vol. 6, no. 2, pp. 160-180, Apr.-June 2000.

[26] O. Sorkine, Y. Lipman, D. Cohen-Or, M. Alexa, C. Rössl, and H.-P.
Seidel, “Laplacian Surface Editing,” Proc. Symp. Geometry Proces-
sing, pp. 179-188, 2004.

[27] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray and
Color Images,” Proc. Int’l Conf. Computer Vision, pp. 839-846, 1998.

[28] I. Viola, M. Feixas, M. Sbert, and M.E. Gröller, “Importance-
Driven Focus of Attention,” IEEE Trans. Visualization and Computer
Graphics, vol. 12, no. 5, pp. 933-940, Sept./Oct. 2006.

[29] I. Viola, A. Kanitsar, and M.E. Gröller, “Importance-Driven
Volume Rendering,” Proc. IEEE Visualization Conf., pp. 139-145,
2004.

[30] C. Wang, A. Garcia, and H.-W. Shen, “Interactive Level-of-Detail
Selection Using Image-Based Quality Metric for Large Volume
Visualization,” IEEE Trans. Visualization and Computer Graphics,
vol. 13, no. 1, pp. 122-134, Jan./Feb. 2007.

[31] L. Wang, Y. Zhao, K. Mueller, and A.E. Kaufman, “The Magic
Volume Lens: An Interactive Focus+Context Technique for
Volume Rendering,” Proc. IEEE Visualization Conf., pp. 367-374,
2005.

[32] Y.-S. Wang, H. Fu, O. Sorkine, T.-Y. Lee, and H.-P. Seidel,
“Motion-Aware Temporal Coherence for Video Resizing,” ACM
Trans. Graphics (Proc. ACM SIGGRAPH ASIA), vol. 28, no. 5, 2009.

[33] Y.-S. Wang, T.-Y. Lee, and C.-L. Tai, “Focus+Context Visualization
with Distortion Minimization,” IEEE Trans. Visualization and
Computer Graphics, vol. 14, no. 6, pp. 1731-1738, Nov./Dec. 2008.

[34] Y.-S. Wang, C.-L. Tai, O. Sorkine, and T.-Y. Lee, “Optimized Scale-
and-Stretch for Image Resizing,” ACM Trans. Graph. (Proc. ACM
SIGGRAPH ASIA), vol. 27, no. 5, 2008.

[35] M. Weiler, R. Westermann, C. Hansen, K. Zimmermann, and T.
Ertl, “Level-of-Detail Volume Rendering via 3D Textures,” Proc.
IEEE Symp. Volume Visualization, pp. 7-13, 2000.

[36] J. Wilhelms and A. van Gelder, “Multi-Dimensional Trees for
Controlled Volume Rendering and Compression,” Proc. IEEE
Symp. Volume Visualization, pp. 27-34, 1994.

[37] H. Younesy, T. Möller, and H. Carr, “Improving the Quality of
Multi-Resolution Volume Rendering,” Proc. Eurographics/IEEE
Visualization and Graphics Technical Committee (VGTC) Symp.
Visualization, pp. 251-258, 2006.

Yu-Shuen Wang received the BS degree from
the National Cheng Kung University, Tainan,
Taiwan, Republic of China, in 2004. Currently,
he is a PhD candidate in the Department of
Computer Science and Information Engineering
at the National Cheng Kung University. His
research interests include media retargeting,
segmentation, skeletonization, and deformation.

Chaoli Wang received the BE and ME degrees
in computer science from Fuzhou University,
China, in 1998 and 2001, respectively, and the
PhD degree in computer and information
science from The Ohio State University in
2006. He is an assistant professor of computer
science at Michigan Technological University.
His research focuses on large-scale data ana-
lysis and visualization, high-performance com-
puting, and user interfaces and interaction. From

2007 to 2009, he was a postdoctoral researcher at the University of
California, Davis. He is a member of the IEEE.

Tong-Yee Lee received the PhD degree in
computer engineering from Washington State
University, Pullman, in May 1995. He is
currently a distinguished professor in the
Department of Computer Science and Informa-
tion Engineering, National Cheng-Kung Univer-
sity, Tainan, Taiwan, ROC. He leads the
Computer Graphics Group, Visual System
Laboratory, National Cheng-Kung University
(http://graphics.csie.ncku.edu.tw/). His current

research interests include computer graphics, nonphotorealistic render-
ing, medical visualization, virtual reality, and media resizing. He is an
associate editor for the IEEE Transactions on Information Technology
in Biomedicine from 2000 to 2010. He served as a member of the
international program committees of several conferences including the
IEEE Visualization, the Pacific Graphics, the IEEE Pacific Visualization
Symposium, the IEEE Virtual Reality, the IEEE-EMBS International
Conference on Information Technology and Applications in Biomedi-
cine, and the International Conference on Artificial Reality and
Telexistence. He is a senior member of the IEEE and a member of
the the ACM.

Kwan-Liu Ma received the PhD degree in
computer science from the University of Utah
in 1993. He is a professor of computer
science at the University of California, Davis,
and he directs the DOE SciDAC Institute for
Ultrascale Visualization. His research interests
include visualization, high-performance com-
puting, and user interface design. He received
the US National Science Foundation (NSF)
PECASE Award in 2000, the Schlumberger

Foundation Technical Award in 2001, and the UC Davis College of
Engineerings Outstanding Mid-Career Research Faculty Award in
2007. He is the paper chair of the IEEE Visualization 2009
Conference. He also serves on the editorial boards of the IEEE
Computer Graphics and Applications and the IEEE Transactions on
Visualization and Graphics. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: FEATURE-PRESERVING VOLUME DATA REDUCTION AND FOCUS+CONTEXT VISUALIZATION 181

