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Leveraging the power of high-performance 
supercomputers and advanced numerical al-
gorithms, scientists can perform 3D direct 

numerical simulations of many complex phenom-
ena in unprecedented detail, leading to new sci-
entific discoveries. Nowadays, a typical scientific 
simulation might produce data containing several 
hundred million voxels, hundreds of time steps, 
and tens of variables. The vast amounts of data 
generated from simulations present a challenge to 
data visualization. Even though the past several 
years witnessed great advancements in commodity 
graphics hardware, the video memory in graphics-
hardware accelerators is still limited to around 
one gigabyte. Transferring data from a disk to the 
main memory and from the main memory to the 
video memory thus remains a key performance 
bottleneck for large-data visualization.

To address this issue, researchers have proposed 
different approaches to reducing the data sent 
through the graphics pipeline. These include dif-
ferent multiresolution data representations and 
a variety of data-reduction techniques, such as 
quantization and transform-based compression. 
Many algorithms, however, don’t explicitly con-
sider domain knowledge or the visualization tasks 
when representing and reducing data. Although 
these algorithms are general and easy to use for 
different data sets, they’re not tightly coupled with 
specific visualization needs. So, the trade-off be-

tween reduction efficiency and visualization qual-
ity isn’t ideal.

We advocate an application-driven approach to 
compressing and rendering large-scale time-varying 
scientific-simulation data. Scientists often have spe-
cific visualization tasks in mind 
based on certain domain knowl-
edge. For example, in the context 
of time-varying, multivariate 
volume-data visualization, a sci-
entist’s domain knowledge might 
include the salient isosurface of 
interest for some variable. Given 
this knowledge, the scientist 
might want to observe spatiotem-
poral relationships among other 
variables in the neighborhood of 
that isosurface. We’ve tried to 
directly incorporate such knowl-
edge and tasks into data reduc-
tion, compression, and rendering. Here, we present 
our solution and experimental results for two large-
scale time-varying, multivariate scientific data sets.

Algorithm Overview
Figure 1 illustrates the flowchart of our application-
driven compression and rendering approach. (For 
information on related approaches, see the “Com-
pression Methods for Time-Varying Volume Data” 
sidebar.)

An application-driven 
approach to compressing 
large-scale time-varying 
volume data achieves high 
compression rates and 
interactive rendering while 
preserving fine details 
surrounding regions of 
interest. Such an approach 
could help computational 
scientists cope with the large-
data problem.
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During preprocessing, we compress a given large 
time-varying data set. The compression starts with 
spatial partitioning and temporal grouping, which 
take into account domain knowledge that scien-
tists provide. We then partition the data set into 
space-time blocks for individual compression. At 
runtime, we partially decode the compressed data 
blocks and perform bit padding in the CPU for tex-
ture loading. Then, we pack data blocks into the 
graphics memory and perform deferred filtering to 
reconstruct and render the data in the GPU. Our 
solution significantly reduces the amount of data 
transferred and efficiently uses the limited graph-
ics memory.

Our Compression Scheme
Our scheme comprises the following three steps.

Spatial Partitioning
We assume that scientists know the regions of 
interest in their data. (For an example of the 
turbulent-combustion simulation data, see the 
related sidebar.) To measure each voxel’s distance 

from the region of interest, we create a distance 
volume for each time step, where each voxel’s dis-
tance value is the shortest distance between the 
voxel and the surface of interest.

We implement an algorithm similar to the fast 
marching method.1 (The FMM is a technique for 
computing the arrival time of a front (that is, a 
moving contour) expanding in the normal direc-
tion at a set of grid points.) Instead of calculating 
the actual surface, we start with a front containing 
voxels that intersect with the surface and push the 
front outward gradually. We calculate the voxel
wise shortest distance for each voxel on the cur-
rent front as an approximation of the distance to 
the actual surface. We can temporarily keep the 
distance volume in memory, or we can compress 
it and use it during runtime—for distance-based 
rendering, for example.

During spatial partitioning, we build an octree 
skeleton with a predefined block dimension for 
leaf nodes. Then, we start from the root node in 
the octree and partition the volume. If the data as-
sociated with the octree node doesn’t include any 
isosurface voxels (voxels that intersect with the 
surface), or if the data block contains more than 
a certain percentage of isosurface voxels, then we 
don’t partition the block any further. Otherwise, 
we partition the data block into eight subblocks 
and perform this process recursively until we ar-
rive at the leaf nodes. In this way, we partition the 
entire volume at a time step into blocks of differ-
ent sizes. The corresponding octree nodes consti-
tute a cut through the full octree skeleton (see 
Figure 2).

After spatial partitioning, we calculate each data 
block’s importance value, which is inversely pro-
portional to the average distance values of all the 
voxels in that block. Our experiments show that 
regions closer to the surface of interest usually 
have finer partitioning. So, rather than using the 
conservative minimum distance value of all voxels 
in a data block to calculate the importance value, 
we use the average distance for a more aggressive 
compression afterward. In our implementation, 
we further scale the importance value using the 
ratio γ (<1.0), which decreases linearly as the av-
erage distance increases. Essentially, we use γ to 
steer the compression rate of space-time blocks.

Temporal Grouping
Spatial partitioning results in a list of different-
sized blocks at each time step with different im-
portance values. In general, the volume data at 
consecutive time steps exhibit strong temporal co-
herence in local neighborhoods. So, there’s a large 
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Figure 1. The flowchart of our application-driven compression and 
rendering approach. Our approach leverages a reference feature to 
partition the data for distance-based compression, which works hand-
in-hand with traditional compression techniques for a greater amount 
of savings.

Time step i 

Time step j 

Figure 2. We partition the volume data at a time step into a list of 
different-sized blocks. The corresponding octree nodes constitute a 
cut through the full octree skeleton. Two neighboring time steps i and 
j share a subset of data blocks (drawn in orange), which we merge into 
space-time blocks in temporal groupings. For illustration purposes, we 
show a binary tree instead of an octree.
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degree of node overlap in the block lists for neigh-
boring time steps, as Figure 2 shows.

To use this temporal coherence for compres-
sion, for each octree node, we merge spatial blocks 
at consecutive time steps into space-time blocks. 
Meanwhile, we specify a maximum window size w 
to control the trade-off between compression rate 
and decompression speed. Figure 3 shows an ex-
ample of a temporal grouping on an octree node. In 

essence, temporal grouping consolidates data blocks 
at different time steps into space-time blocks, which 
become the basic units for the following encoding.

Encoding
We compress all the space-time blocks using non-
uniform quantization together with difference 
and run-length encoding, resulting in a highly 
compacted data representation. We first create a 

A wealth of research exists on volume data compres-
sion and rendering. Here, we review only related work 

on time-varying data visualization. Han-Wei Shen and 
Christopher Johnson have proposed differential volume 
rendering that uses temporal coherence between con-
secutive time steps to compress the data and accelerate 
volume animation.1 Shen, along with Ling-Jen Chiang and 
Kwan-Liu Ma, has also described an approach dealing 
with large-scale time-varying fields.2 The data structure, 
called the time-space partitioning (TSP) tree, captures 
the data’s spatial and temporal coherence. The TSP tree 
uses an octree for spatial partitioning and a binary tree 
for storing temporal information at each octree node. 
Both approaches treat the spatial and temporal dimen-
sion separately. Alternatively, we can treat temporal and 
spatial dimensions uniformly. For example, Jane Wilhelms 
and Allen Van Gelder encoded time-varying data using a 
multidimensional (4D) tree.3

Other research efforts in time-varying data visualization 
have focused on transform-based compression and ren-
dering. Stefan Guthe and Wolfgang Straßer introduced an 
algorithm that uses the wavelet transform to encode each 
spatial volume, then applies a motion compensation strat-
egy to match the volume blocks in adjacent time steps.4 
Eric Lum and his colleagues proposed using the discrete 
cosine transform to encode individual voxels along the 
time dimension.5 They employed a color table animation 
technique to render the volumes using texture hardware. 
Bong-Soo Sohn and his colleagues described a compres-
sion scheme that uses the wavelet transform to create 
intracoded volumes and applies difference encoding to 
compress the time sequence.6 Jens Schneider and Rudiger 
Westermann presented a hierarchical vector quantization 
solution to compress time-varying volumetric data, per-
forming both decompression and rendering at runtime in 
graphics hardware.7 Nathaniel Fout and his colleagues also 
used vector quantization for time-varying, multivariate 
volume-data reduction that exploits correlations among 
related variables.8

Research work closely related to ours includes that of Ma 
and his other colleagues9 and of Chandrajit Bajaj and his 
colleagues.10 Ma and his colleagues used octree encoding 
and difference encoding for spatial and temporal domain 

compression, respectively. They also investigated how 
quantization might affect further compression, rendering 
optimization, and image results. Bajaj and his colleagues 
classified voxels according to their importance in visual-
ization, and assigned weights to them. To compress the 
volume data, they used the Haar wavelet transform and 
defined weight functions for wavelet coefficients based on 
voxels’ weights in the same spatial-frequency locations.
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histogram (with 2N entries) from the volume data 
at all time steps. Then, we build a nonuniform 
quantization table (with 2M entries, where M < N) 
from the histogram.

We can apply many solutions for histogram 
quantization. One simple yet effective solution 
is to partition the histogram into 2M parts with 
equal areas (that is, accumulated bin counts) and 
pick the data value with the highest bin count (the 
most frequently occurring value) in each part as 
the quantized value.2 Furthermore, our quantiza-
tion also incorporates data-specific domain knowl-
edge, such as ranges of interest. This ensures that 
particular data ranges of interest are sufficiently 
sampled and represented in the quantization table.
The encoding works as follows. For each space-
time block, we use the minimum and maximum 
values to retrieve the beginning and ending in-
dices with respect to the quantization table, as 
Figure 3 shows. For each voxel in the space-time 
block, recording the offset index (Io) with respect 
to the beginning index (Ib) is sufficient to look 
up the corresponding quantized value. Moreover, 
from the beginning and ending indices, we can 
calculate the number of bits (Bn) needed to encode 
each voxel’s offset index.

The number of bits is further modulated by the 
average distance of the space-time block to the sur-
face of interest. That is, the farther a block is from 
the surface, the fewer bits we use to represent each 
voxel in the block. Adjusting relevant parameters 
such as γ gives different bit modulations for space-
time blocks and thus different compression levels.

Let Bm represent the number of bits after dis-
tance modulation, where Bm ≤ Bn. The actual index 
I with respect to the quantization table is

I I Ib o
Bn Bm= + �× 2 .	�  (1)

After the quantization step, each voxel in the 
same space-time block is represented with a few 
bits. We can further compress the entire space-
time block using a combination of difference and 
run-length encoding. First, we calculate the dif-
ferences of index values for neighboring time steps 
in each space-time block. Then, we can compress 
the difference values using run-length encoding to 
exploit temporal coherence.

Our Decompression and Rendering 
Scheme
At runtime, we partially decompress the compressed 
time-varying data using difference and run-length 
decoding. As Figure 1 shows, we conduct this step 
in the CPU to produce space-time blocks storing 
offset indices with respect to the quantization table. 
To render volume data at a time step, the corre-
sponding data blocks are categorized, padded, and 
packed into texture memory. Finally, we render the 
volume using deferred filtering.

Bit Padding
Assume that the nonuniform quantization table 
has up to 1,024 entries. So, the offset indices stored 
in a space-time block could range from 1 to 10 bits. 
The number of bits representing offset indices var-
ies depending on the block’s data range and impor-
tance value. However, standard OpenGL defines 
only fixed formats for the pixel data for texture 
loading, so we picked the formats listed in Table 1. 
Clearly, this bit-padding step involves space over-
head and increases texture-memory consumption, 
but our experiments show that the size increase is 
affordable at approximately 10 percent.

Texture Packing
After bit padding, we’re ready to pack the data 
blocks into one of the five index textures (one for 
each of the internal texture formats listed in Table 
1). Texture packing reduces the number of textures 
used and lowers texture-memory consumption 
(for more information, see the “Texture Packing” 
sidebar). We perform texture packing by treating 
each data block as a 3D array and by using a greedy 
algorithm to optimize block arrangement.

When we use deferred filtering during decom-
pression, we’re reconstructing volume slices voxel 
by voxel using the nearest-neighbor interpolation 
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Figure 3. Temporal grouping merges spatial blocks in the same octree 
node at consecutive time steps into space-time blocks. In this example, 
the maximum window size is five. For each space-time block, we record 
the beginning and ending indices with respect to the nonuniform 
quantization table and the offset index for each voxel in the block. In 
the figure, a time step (such as 5) that doesn’t appear in the octree node 
stays on one of its ancestor or descendant nodes instead.



	 IEEE Computer Graphics and Applications� 63

rather than the trilinear interpolation. So, in our 
scenario, we don’t have to perform texture packing 
directly in 3D. Instead, we can treat each 3D data 
block as a 1D array and pack it into a 3D texture 
in the form of a cube. We calculate the packed 3D 
texture’s dimension as

L A= ����
�
��

3 ,

where ||A|| denotes the length of array A. This 
treatment greatly simplifies data packing and bet-
ter uses the texture memory. The only overhead is 
that we need to map (x, y, z) tuples to 1D indices 
for texture lookup.

Deferred Filtering and Volume Rendering
At runtime, we decompress each voxel in the vol-
ume for rendering, performing the trilinear inter-
polation on a per-fragment basis. A single voxel 
might be needed multiple times for neighboring 
sample reconstructions and gradient calculations. 
To avoid redundant decompressions, we can first 
cache a proxy geometry (a small subset of decom-
pressed volume), then use the subset for conven-
tional rendering. This deferred-filtering technique 
separates decompression and interpolation into 
two passes so that we need to decompress a voxel 
only once no matter how many times it’s needed 
for interpolation.3

In our case, the proxy geometry is multiple axis-
aligned slices assembled from volume partitions 
(see Figure 4). To render a slab, we decompress two 
consecutive slices of the volume in the first pass. 
In the second pass, we render sampling slices us-
ing trilinearly interpolated samples. We thus ren-
der the volume slab by slab. The main advantage 
of using axis-aligned slices is that we don’t need to 
pad data blocks in the volume to ensure seamless 
rendering along block boundaries.

Figure 4 sketches our texture lookups using 
deferred-filtering. We dynamically reconstruct the 
axis-aligned slices most perpendicular to the view-
ing direction. The address texture stores each data 
block’s address in the packed index texture.

For each data block on a sampling slice, we first 
look up its block address. We also look up the be-
ginning index in the address texture and the bit 

Sandia National Laboratories scientists have performed terascale 
turbulent-combustion simulation to study the basic phenom-

ena of reacting flows in the combustion process.1 Of scientific 
interest is the main flame structure, which corresponds to the 
stoichiometric mixture fraction (mixfrac) surface at an isovalue of 
0.2 (see Figure A). In particular, scientists hope to observe how 
other variables distribute along the main flame surface—critical 
knowledge for evaluating the combustion process’s efficiency.

This kind of analytical visualization is quite common in scientific 
data analysis. Such domain knowledge should be translated into a 
reference feature to guide our application-driven data compression 
and rendering. The intuition is that the closer a voxel is to the sur-
face of interest, the higher precision we should preserve to ensure 
reconstruction quality. In other words, the precisions of data should 
vary according to their associations to the reference feature.
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Turbulent-Combustion Simulation

Figure A. Simultaneous rendering of two variables of the turbulent-

combustion simulation data set. The mixture fraction (mixfrac) surface (at an 

isovalue of 0.2) is white; the HO2 variable is depicted in a volume-rendering 

style. Our work exploits such a surface of interest to compress the data 

effectively.

Table 1. A space-time block is padded into one of the five different OpenGL pixel data formats for texture 
loading.

Original 
no. of bits

No. of 
padded bits

No. of elements 
in a texel Overhead (%) Data type for pixel data

Internal texture 
format

1, 2 2 3 166.7, 33.3 GL_UNSIGNED_BYTE_3_3_2 GL_R3_G3_B2

3, 4 4 4 33.3, 0.0 GL_UNSIGNED_SHORT_4_4_4_4 GL_RGBA4

5 5 3 6.67 GL_UNSIGNED_SHORT_5_5_5_1 GL_RGB5_A1

6, 7, 8 8 4 33.3, 14.3, 0.0 GL_UNSIGNED_INT_8_8_8_8 GL_RGBA8

9, 10 10 3 18.5, 6.67 GL_UNSIGNED_INT_10_10_10_2 GL_RGB10_A2
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difference (Bd = Bn – Bm) in the offset texture. Then, 
for each voxel in the data block, we look up its off-
set index in the corresponding packed index texture 
using its voxel ID and the block address. Finally, we 
use the voxel’s offset index and the block’s begin-
ning index and bit difference to compute the actual 
index to the value texture (Equation 1).

Results
We experimented with our algorithm on two 
floating-point data sets obtained from scientific 
simulations (see Table 2). We performed all tests 
on a PC with a 2.33-GHz Intel Xeon processor 
with 4 Gbytes of main memory and an Nvidia Ge-
Force 8800 GTX graphics card with 768 Mbytes of 
video memory.

Sandia National Laboratories scientists provided 
the combustion data set. The combustion simula-
tion ran thousands of time steps; at each time step 
it output dozens of variables representing different 
chemical species. A subset of the data set we used 
here has four variables: scalar dissipation rate (chi), 
stoichiometric mixture fraction (mixfrac), hydro-
peroxy radical (HO2), and hydroxyl radical (OH). 
The scientific interest for the combustion data is 
on the main flame structure, which corresponds to 
the mixfrac surface, for which the isovalue is 0.2.

We obtained the hurricane data set from the US 
National Center for Atmospheric Research. The 
hurricane modeled in the simulation is Hurricane 
Isabel, a strong hurricane that occurred during 
September 2003 in the West Atlantic. For our ex-

Axis-aligned sampling slices

Packed index texture i 
(offset index in the value texture)

Offset texture
(beginning index 
and bit difference)

Address texture
(block address in the index texture)

Value texture
(nonuniform 
quantization 

table)

Block ID

Voxel ID

Index

Block ID

Texture fetch
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Figure 4. Texture lookups with the deferred-filtering scheme. The address texture stores data blocks’ addresses in the packed 
index texture. The offset texture stores data blocks’ beginning indices and bit differences. The packed index texture stores 
voxels’ offset indices with respect to the value texture (that is, the nonuniform quantization table). To reconstruct a data block 
on a sampling slice, we need two texture lookups on a per-block basis and two on a per-voxel basis.

Table 2. The two data sets and their experimental results.

Combustion data set Hurricane data set

Volume dimension (800, 686, 215) (500, 500, 100)

No. of time steps 53 48

No. of variables 4 4

Data size 92.3 Gbytes 17.9 Gbytes

Block dimension (64, 64, 32) (32, 32, 16)

Average no. of nodes 278 275

Average node overlap 90% 62%

Compressed size (after quantization) 15.12 Gbytes 3.6 Gbytes

Compressed size (after difference and run-length encoding) 4.53 Gbytes 900 Mbytes

Data reduction on disk 20.57× 20.37×

Compression time 3 hrs. 40 min.

Padding overhead 11% 12%

Texture reduction on GPU 82% 77%

Frame rate* 12.5 fps 28.5 fps

* We measured the frame rate (in frames per second) for rendering one variable with a 5122 viewport and a sampling rate of 1.0.
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periment, we picked four variables: pressure (P), 
cloud moisture (Cloud), total precipitation (Pre-
cip), and water vapor (Qvapor). We focused on the 
region with very low pressure (P ≈ 0), which cor-
responded to the hurricane’s center.

Compression
To construct the octree skeleton, we set the block 
dimension for leaf nodes as (64, 64, 32) for the com-
bustion data set and (32, 32, 16) for the hurricane 
data set. For spatial partitioning, we chose five per-
cent as the threshold for the percentage of isosurface 
voxels in the data blocks. We determined the block 
size for leaf nodes and the percentage threshold 
for isosurface voxels on the basis of the number of 
blocks generated during spatial partitioning.

With such configurations, the average number 
of octree nodes with nonempty data blocks in a 
time step was approximately 270. On the other 
hand, the average node overlap for consecutive 
time steps was 90 percent for the combustion data 
set and 62 percent for the hurricane data set. This 
indicates a great degree of coherence for compres-
sion. We set the maximum window size as five 
(w = 5) in temporal grouping. For both data sets, 
we chose N = 16 and M = 10 for the nonuniform 
quantization, which let us sufficiently sample the 
histogram in the 1,024-entry quantization table.

It took us three hours to compress the 93.2-Gbyte 
combustion data set (on average, less than one 
minute per variable per time step, which is approx-
imately 450 Mbytes). The compressed data size was 
4.53 Gbytes, so the compression rate was 20.57×. 
This means that, on average, we compressed each 
variable in the time sequence to approximately 1.6 
bits per voxel. We achieved a comparable compres-
sion performance for the hurricane data set.

Figure 5 shows the signal-to-noise ratio (SNR) 
and the peak signal-to-noise ratio (PSNR) of the 
compressed hurricane data set. Different curves 
correspond to different distance ranges from the 
surface of interest for the Cloud (Figure 5a), Pre-
cip (Figure 5b), and Qvapor (Figure 5c) variables. 
Generally, the regions with smaller distances 
(those closer to the surface) got higher SNRs or 
PSNRs (less distortion). At some time steps (such 
as time steps 1 to 8 for the SNR curves and time 
steps 40 to 48 for the PSNR curves), this observa-
tion didn’t always hold. This is because we employ 
blockwise compression instead of voxelwise com-
pression and because we use the average distance, 
instead of the minimum distance, to calculate a 
block’s importance value.

With these settings, the block size also mat-
tered, because all voxels in a block used the same 

encoding scheme. On the other hand, Figure 5c 
shows that Qvapor had higher SNRs and lower 
PSNRs than Cloud and Precip. This suggests that 
different variables might require customized bit 
modulations for compressing their space-time 
blocks to balance the overall rate distortion across 
all the variables.

Decompression and Rendering
At runtime, we padded and loaded the partially 
decoded data into texture memory. As Table 2 indi-
cates, bit padding only slightly increased memory 
usage. The overall texture reduction with respect 
to loading the original data was 82 and 77 per-
cent for the combustion and hurricane data sets, 

To effectively use limited graphics memory, Martin Kraus and 
Thomas Ertl introduced adaptive texture maps with locally 

adaptive resolution.1 They used these maps to pack data blocks of 
different resolutions. This technique lets us represent fine details 
in images and volumes without increasing the whole texture 
map’s resolution.

Alécio Binotto and his colleagues developed a similar approach 
for texture packing and compression of sparse time-varying volume 
data into 3D textures.2 During rendering, the fragment shader 
decompresses data in the GPU.

Wei Li and his colleagues studied texture partitioning and pack-
ing for skipping empty space and accelerating slice-based volume 
rendering.3 They first partition the entire volume into subvolumes 
with similar properties. Then they pack and stitch together the sub
volumes to create larger textures for rendering.

Hiroshi Akiba and his colleagues used data packing for time-
varying data reduction.4 To achieve data packing, they discarded 
data blocks with values outside the data interval of interest and 
encoded the remaining data such that they could efficiently de-
code it in the GPU.
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respectively. Owing to difference and run-length 
decoding and bit padding, we reduced the com-
pression rates in the texture memory to 5.6× and 
4.3× for the combustion and hurricane data sets, 
respectively.

With a 5122 viewport and a regular sampling 
rate of 1.0 (one sample per voxel), we achieved 
12.5 frames per second (fps) for rendering one 
variable from the combustion data set and 28.5 
fps for rendering one variable from the hurricane 
data set (including deferred filtering and volume 
rendering). This performance is comparable to 

conventional volume rendering. Our application-
driven compression and rendering solution makes 
interactive visualization of large-scale time-vary-
ing data possible, while dramatically reducing data 
transferring between the memory hierarchies.

The savings in data transferring greatly shorten 
the time to animate time-varying data. For ex-
ample, we reduced the total time (including I/O 
and rendering) for animating the Cloud variable 
of the 48 time-step hurricane data set from 36.96 
seconds to 9.17 seconds. Table 3 breaks down the 
timing for each stage: decoding, bit padding, tex-
ture packing, deferred filtering, and volume ren-
dering. (The decoding stage includes the time to 
read compressed data from the disk.) The frame 
rate improved from 1.3 fps (without compression) 
to 5.2 fps (with compression), achieving a highly 
desirable level of interactivity.

Figure 6 compares the rendering of the com-
pressed data (Figures 6a and 6b) to the original 
data (Figure 6c). To render more than one vari-
able simultaneously over time, we independently 
decompressed each variable and loaded it into the 
graphics card. For objective comparison, we cal-
culated pixelwise differences (the Euclidean dis-
tances) of images generated from the compressed 
and original data in the CIELUV color space (see 
Figure 6d). We mapped the noticeable pixel differ-
ences (with ΔE ≥ 4.0) to nonwhite colors in Figure 
6e (clamping differences greater than 255).

Our application-driven solution preserves fine de-
tails near the regions of interest, while maintaining 
the overall quality. We can perceive some visual dif-
ferences between the rendering of the compressed 
versus original data. However, these correspond to 
regions far from the reference feature, so they lost 
more precision during quantization.

Figure 7 shows the rendering of the compressed 
hurricane data set at different compression lev-
els. Adjusting the parameters for bit modulation 
compresses the data with different reduction rates. 
Figure 7 shows how the quality degrades with the 
increased compression rate. Compared with the 
Qvapor variable at the same compression level, 
the Cloud variable gives less degradation in visual 
quality. We rendered the P surface with Cloud and 
Qvapor. The rendering let the scientists focus on 

20.0
26.0
32.0
38.0
44.0
50.0
56.0
62.0
68.0
74.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Time step

(a)

(b)

(c)

D
ec

ib
el

s
D

ec
ib

el
s

D
ec

ib
el

s

0.0 ≤ d ≤ 16.0 16.0 < d ≤ 32.0 32.0 < d ≤ 64.0 64.0 < d ≤ max
0.0 ≤ d ≤ 16.0 16.0 < d ≤ 32.0 32.0 < d ≤ 64.0 64.0 < d ≤ max

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Time step

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Time step

20.0
26.0
32.0
38.0
44.0
50.0
56.0
62.0
68.0
74.0

20.0
26.0
32.0
38.0
44.0
50.0
56.0
62.0
68.0
74.0

Figure 5. The signal-to-noise ratio (SNR) and the peak signal-to-noise 
ratio (PSNR) curves of the application-driven compressed hurricane data 
set. We show four SNR (dashed lines) and PSNR (solid lines) curves with 
different distance ranges from the surface of interest for the (a) Cloud, 
(b) Precip, and (c) Qvapor variables. We used the theoretical signal peak 
as a reference in PSNR calculation. In general, the regions close to the 
surface yield higher SNRs or PSNRs and thus less distortion.

Table 3. Timing breakdown for rendering the Cloud 
variable of the 48 time-step hurricane data set.

Compression and rendering stage Time (sec.)

Difference and run-length decoding 2.37

Bit padding 2.58

Texture packing 1.27

Deferred filtering and volume rendering 2.95
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the hurricane center and track other flow proper-
ties around the surface of interest.

For the combustion data set, where the variable 
rendering could occlude the surface, we could use 
the distance volume to perform flexible rendering 
by changing the distance threshold (see Figure 8). 
We assigned nonzero opacity values to only the 
voxels in the given distance threshold. A scientist 
can interactively control the amount of informa-
tion displayed around the surface to better observe 
variable relationships at runtime. The accompany-
ing videos (see the Web Extras section of www.
computer.org/portal/web/computingnow/cga) 
show side-by-side rendering of the original and 
compressed combustion and hurricane data sets 
over all time steps.

Discussion
We opted for scalar quantization instead of vector 
quantization for data reduction because in vec-
tor quantization, the time to generate the codebook 

could be prohibitively long for a large time-varying, 
multivariate data set. The nonuniform quanti-
zation we implemented is simple and fast, and 
produced good compression and reconstruction 
results for the two test data sets.

With this quantization, however, we could miss 
details for underrepresented scalar values. This 
happens when the transfer function maps under-
represented scalar values to high opacity values. 
We could also use other quantization approaches, 
such as Lloyd’s quantizer, which guarantees to 
converge to a local minimum in the L2 metric. We 
need more research on quantization that couples 
compression with visualization to strive for a bet-
ter trade-off between reduction performance and 
rendering quality.

Our approach resembles the importance-driven 
volume-rendering work by Ivan Viola and his col-
leagues.4 However, we use the importance values 
of data blocks in relation to the surface of inter-
est in compression and rendering. The limitation 
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Figure 6. Comparing the compressed versus original data (the combustion data is on top; the hurricane data 
is on the bottom). We rendered (a) compressed data for an overview of the mixfrac surface (in white) plus 
the HO2 variable (top image) and the P surface (in yellow) plus the Qvapor variable (bottom image). We also 
zoomed in on (b) the compressed data and (c) the original data. Finally, we show (d) the image difference of 
the compressed and original data calculated in the CIELUV color space and provide (e) a color map. Regions 
farther away from the surface of interest show more quantization artifacts in rendering.
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of our approach is that because the reference fea-
ture derived from domain knowledge is explicitly 
incorporated into data reduction, we must redo 
the compression process if the scientific interest 
changes. We assume that such a change doesn’t 
happen frequently. We could encode all possible 
input from scientists, letting users shift features 
of interest at runtime, but this would reduce com-
pression efficiency.

Our application-driven approach clearly sug-
gests a viable direction for addressing the 

data challenge presented by large-scale scientific 
simulations. We can apply our solution to other 
domains where the reference features are in dif-
ferent forms, such as vortices in the flow data. As 
long as the identified regions of interest occupy 
only a small percentage of the volume space, our 
method would remain effective.

We hope to incorporate our data-reduction 
scheme with multiresolution techniques to support 
flexible level-of-detail rendering. We’ll also consider 
a parallel implementation of our solution for com-
pressing and rendering large-scale time-varying data 
in a massively parallel computing environment.�
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Figure 8. Rendering the compressed combustion data (the mixfrac 
surface with the HO2 variable) with distance control. By changing the 
distance threshold (normalized to [0, 1]), the scientist can interactively 
control the amount of information displayed around the surface to 
better observe variable relationships.
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