
Published by the IEEE Computer Society	 0272-1716/10/$26.00 © 2010 IEEE	 IEEE Computer Graphics and Applications� 59

Feature Article

Application-Driven Compression
for Visualizing Large-Scale
Time-Varying Data
Chaoli Wang ■ Michigan Technological University

Hongfeng Yu ■ Sandia National Laboratories

Kwan-Liu Ma ■ University of California, Davis

Leveraging the power of high-performance
supercomputers and advanced numerical al-
gorithms, scientists can perform 3D direct

numerical simulations of many complex phenom-
ena in unprecedented detail, leading to new sci-
entific discoveries. Nowadays, a typical scientific
simulation might produce data containing several
hundred million voxels, hundreds of time steps,
and tens of variables. The vast amounts of data
generated from simulations present a challenge to
data visualization. Even though the past several
years witnessed great advancements in commodity
graphics hardware, the video memory in graphics-
hardware accelerators is still limited to around
one gigabyte. Transferring data from a disk to the
main memory and from the main memory to the
video memory thus remains a key performance
bottleneck for large-data visualization.

To address this issue, researchers have proposed
different approaches to reducing the data sent
through the graphics pipeline. These include dif-
ferent multiresolution data representations and
a variety of data-reduction techniques, such as
quantization and transform-based compression.
Many algorithms, however, don’t explicitly con-
sider domain knowledge or the visualization tasks
when representing and reducing data. Although
these algorithms are general and easy to use for
different data sets, they’re not tightly coupled with
specific visualization needs. So, the trade-off be-

tween reduction efficiency and visualization qual-
ity isn’t ideal.

We advocate an application-driven approach to
compressing and rendering large-scale time-varying
scientific-simulation data. Scientists often have spe-
cific visualization tasks in mind
based on certain domain knowl-
edge. For example, in the context
of time-varying, multivariate
volume-data visualization, a sci-
entist’s domain knowledge might
include the salient isosurface of
interest for some variable. Given
this knowledge, the scientist
might want to observe spatiotem-
poral relationships among other
variables in the neighborhood of
that isosurface. We’ve tried to
directly incorporate such knowl-
edge and tasks into data reduc-
tion, compression, and rendering. Here, we present
our solution and experimental results for two large-
scale time-varying, multivariate scientific data sets.

Algorithm Overview
Figure 1 illustrates the flowchart of our application-
driven compression and rendering approach. (For
information on related approaches, see the “Com-
pression Methods for Time-Varying Volume Data”
sidebar.)

An application-driven
approach to compressing
large-scale time-varying
volume data achieves high
compression rates and
interactive rendering while
preserving fine details
surrounding regions of
interest. Such an approach
could help computational
scientists cope with the large-
data problem.

60	 January/February 2010

Feature Article

During preprocessing, we compress a given large
time-varying data set. The compression starts with
spatial partitioning and temporal grouping, which
take into account domain knowledge that scien-
tists provide. We then partition the data set into
space-time blocks for individual compression. At
runtime, we partially decode the compressed data
blocks and perform bit padding in the CPU for tex-
ture loading. Then, we pack data blocks into the
graphics memory and perform deferred filtering to
reconstruct and render the data in the GPU. Our
solution significantly reduces the amount of data
transferred and efficiently uses the limited graph-
ics memory.

Our Compression Scheme
Our scheme comprises the following three steps.

Spatial Partitioning
We assume that scientists know the regions of
interest in their data. (For an example of the
turbulent-combustion simulation data, see the
related sidebar.) To measure each voxel’s distance

from the region of interest, we create a distance
volume for each time step, where each voxel’s dis-
tance value is the shortest distance between the
voxel and the surface of interest.

We implement an algorithm similar to the fast
marching method.1 (The FMM is a technique for
computing the arrival time of a front (that is, a
moving contour) expanding in the normal direc-
tion at a set of grid points.) Instead of calculating
the actual surface, we start with a front containing
voxels that intersect with the surface and push the
front outward gradually. We calculate the voxel
wise shortest distance for each voxel on the cur-
rent front as an approximation of the distance to
the actual surface. We can temporarily keep the
distance volume in memory, or we can compress
it and use it during runtime—for distance-based
rendering, for example.

During spatial partitioning, we build an octree
skeleton with a predefined block dimension for
leaf nodes. Then, we start from the root node in
the octree and partition the volume. If the data as-
sociated with the octree node doesn’t include any
isosurface voxels (voxels that intersect with the
surface), or if the data block contains more than
a certain percentage of isosurface voxels, then we
don’t partition the block any further. Otherwise,
we partition the data block into eight subblocks
and perform this process recursively until we ar-
rive at the leaf nodes. In this way, we partition the
entire volume at a time step into blocks of differ-
ent sizes. The corresponding octree nodes consti-
tute a cut through the full octree skeleton (see
Figure 2).

After spatial partitioning, we calculate each data
block’s importance value, which is inversely pro-
portional to the average distance values of all the
voxels in that block. Our experiments show that
regions closer to the surface of interest usually
have finer partitioning. So, rather than using the
conservative minimum distance value of all voxels
in a data block to calculate the importance value,
we use the average distance for a more aggressive
compression afterward. In our implementation,
we further scale the importance value using the
ratio γ (<1.0), which decreases linearly as the av-
erage distance increases. Essentially, we use γ to
steer the compression rate of space-time blocks.

Temporal Grouping
Spatial partitioning results in a list of different-
sized blocks at each time step with different im-
portance values. In general, the volume data at
consecutive time steps exhibit strong temporal co-
herence in local neighborhoods. So, there’s a large

Spatial
partitioning

Temporal
grouping

Nonuniform
quantization

Difference and
run-length encoding

Texture
packing

Difference and
run-length decoding

Deferred
�ltering

Volume
rendering

Preprocessing, CPU Runtime, CPU Runtime, GPU

Bit
padding

Figure 1. The flowchart of our application-driven compression and
rendering approach. Our approach leverages a reference feature to
partition the data for distance-based compression, which works hand-
in-hand with traditional compression techniques for a greater amount
of savings.

Time step i

Time step j

Figure 2. We partition the volume data at a time step into a list of
different-sized blocks. The corresponding octree nodes constitute a
cut through the full octree skeleton. Two neighboring time steps i and
j share a subset of data blocks (drawn in orange), which we merge into
space-time blocks in temporal groupings. For illustration purposes, we
show a binary tree instead of an octree.

	 IEEE Computer Graphics and Applications� 61

degree of node overlap in the block lists for neigh-
boring time steps, as Figure 2 shows.

To use this temporal coherence for compres-
sion, for each octree node, we merge spatial blocks
at consecutive time steps into space-time blocks.
Meanwhile, we specify a maximum window size w
to control the trade-off between compression rate
and decompression speed. Figure 3 shows an ex-
ample of a temporal grouping on an octree node. In

essence, temporal grouping consolidates data blocks
at different time steps into space-time blocks, which
become the basic units for the following encoding.

Encoding
We compress all the space-time blocks using non-
uniform quantization together with difference
and run-length encoding, resulting in a highly
compacted data representation. We first create a

A wealth of research exists on volume data compres-
sion and rendering. Here, we review only related work

on time-varying data visualization. Han-Wei Shen and
Christopher Johnson have proposed differential volume
rendering that uses temporal coherence between con-
secutive time steps to compress the data and accelerate
volume animation.1 Shen, along with Ling-Jen Chiang and
Kwan-Liu Ma, has also described an approach dealing
with large-scale time-varying fields.2 The data structure,
called the time-space partitioning (TSP) tree, captures
the data’s spatial and temporal coherence. The TSP tree
uses an octree for spatial partitioning and a binary tree
for storing temporal information at each octree node.
Both approaches treat the spatial and temporal dimen-
sion separately. Alternatively, we can treat temporal and
spatial dimensions uniformly. For example, Jane Wilhelms
and Allen Van Gelder encoded time-varying data using a
multidimensional (4D) tree.3

Other research efforts in time-varying data visualization
have focused on transform-based compression and ren-
dering. Stefan Guthe and Wolfgang Straßer introduced an
algorithm that uses the wavelet transform to encode each
spatial volume, then applies a motion compensation strat-
egy to match the volume blocks in adjacent time steps.4
Eric Lum and his colleagues proposed using the discrete
cosine transform to encode individual voxels along the
time dimension.5 They employed a color table animation
technique to render the volumes using texture hardware.
Bong-Soo Sohn and his colleagues described a compres-
sion scheme that uses the wavelet transform to create
intracoded volumes and applies difference encoding to
compress the time sequence.6 Jens Schneider and Rudiger
Westermann presented a hierarchical vector quantization
solution to compress time-varying volumetric data, per-
forming both decompression and rendering at runtime in
graphics hardware.7 Nathaniel Fout and his colleagues also
used vector quantization for time-varying, multivariate
volume-data reduction that exploits correlations among
related variables.8

Research work closely related to ours includes that of Ma
and his other colleagues9 and of Chandrajit Bajaj and his
colleagues.10 Ma and his colleagues used octree encoding
and difference encoding for spatial and temporal domain

compression, respectively. They also investigated how
quantization might affect further compression, rendering
optimization, and image results. Bajaj and his colleagues
classified voxels according to their importance in visual-
ization, and assigned weights to them. To compress the
volume data, they used the Haar wavelet transform and
defined weight functions for wavelet coefficients based on
voxels’ weights in the same spatial-frequency locations.

References
	 1.	 H.-W. Shen and C.R. Johnson, “Differential Volume Rendering:

A Fast Volume Visualization Technique for Flow Animation,”

Proc. IEEE Visualization Conf., IEEE CS Press, 1994, pp. 180–187.

	 2.	 H.-W. Shen, L.-J. Chiang, and K.-L. Ma, “A Fast Volume

Rendering Algorithm for Time-Varying Fields Using a Time-

Space Partitioning (TSP) Tree,” Proc. IEEE Visualization Conf.,

IEEE CS Press, 1999, pp. 371–377.

	 3.	 J. Wilhelms and A. Van Gelder, “Multi-dimensional Trees for

Controlled Volume Rendering and Compression,” Proc. IEEE

Symp. Volume Visualization, IEEE CS Press, 1994, pp. 27–34.

	 4.	 S. Guthe and W. Straßer, “Real-Time Decompression and

Visualization of Animated Volume Data,” Proc. IEEE Visualiza­

tion Conf., IEEE CS Press, 2001, pp. 349–356.

	 5.	 E.B. Lum, K.-L. Ma, and J. Clyne, “Texture Hardware Assisted

Rendering of Time-Varying Volume Data,” Proc. IEEE Visual­

ization Conf., IEEE CS Press, 2001, pp. 263–270.

	 6.	 B.S. Sohn, C.L. Bajaj, and V. Siddavanahalli, “Feature Based

Volumetric Video Compression for Interactive Playback,”

Proc. IEEE Symp. Volume Visualization, IEEE CS Press, 2002,

pp. 89–96.

	 7.	 J. Schneider and R. Westermann, “Compression Domain

Volume Rendering,” Proc. IEEE Visualization Conf., IEEE CS

Press, 2003, pp. 293–300.

	 8.	 N. Fout, K.-L. Ma, and J.P. Ahrens, “Time-Varying Multi

variate Volume Data Reduction,” Proc. ACM Symp. Applied

Computing, ACM Press, 2005, pp. 1224–1230.

	 9.	 K.-L. Ma et al., Efficient Encoding and Rendering of Time-

Varying Volume Data, ICASE report 98-22, Inst. Computer

Applications in Science and Eng., 1998.

	10.	 C.L. Bajaj, S. Park, and I. Ihm, “Visualization-Specific Compression

of Large Volume Data,” Proc. Pacific Graphics, IEEE CS Press,

2001, pp. 212–222.

Compression Methods for Time-Varying Volume Data

62	 January/February 2010

Feature Article

histogram (with 2N entries) from the volume data
at all time steps. Then, we build a nonuniform
quantization table (with 2M entries, where M < N)
from the histogram.

We can apply many solutions for histogram
quantization. One simple yet effective solution
is to partition the histogram into 2M parts with
equal areas (that is, accumulated bin counts) and
pick the data value with the highest bin count (the
most frequently occurring value) in each part as
the quantized value.2 Furthermore, our quantiza-
tion also incorporates data-specific domain knowl-
edge, such as ranges of interest. This ensures that
particular data ranges of interest are sufficiently
sampled and represented in the quantization table.
The encoding works as follows. For each space-
time block, we use the minimum and maximum
values to retrieve the beginning and ending in-
dices with respect to the quantization table, as
Figure 3 shows. For each voxel in the space-time
block, recording the offset index (Io) with respect
to the beginning index (Ib) is sufficient to look
up the corresponding quantized value. Moreover,
from the beginning and ending indices, we can
calculate the number of bits (Bn) needed to encode
each voxel’s offset index.

The number of bits is further modulated by the
average distance of the space-time block to the sur-
face of interest. That is, the farther a block is from
the surface, the fewer bits we use to represent each
voxel in the block. Adjusting relevant parameters
such as γ gives different bit modulations for space-
time blocks and thus different compression levels.

Let Bm represent the number of bits after dis-
tance modulation, where Bm ≤ Bn. The actual index
I with respect to the quantization table is

I I Ib o
Bn Bm= + �× 2 .	� (1)

After the quantization step, each voxel in the
same space-time block is represented with a few
bits. We can further compress the entire space-
time block using a combination of difference and
run-length encoding. First, we calculate the dif-
ferences of index values for neighboring time steps
in each space-time block. Then, we can compress
the difference values using run-length encoding to
exploit temporal coherence.

Our Decompression and Rendering
Scheme
At runtime, we partially decompress the compressed
time-varying data using difference and run-length
decoding. As Figure 1 shows, we conduct this step
in the CPU to produce space-time blocks storing
offset indices with respect to the quantization table.
To render volume data at a time step, the corre-
sponding data blocks are categorized, padded, and
packed into texture memory. Finally, we render the
volume using deferred filtering.

Bit Padding
Assume that the nonuniform quantization table
has up to 1,024 entries. So, the offset indices stored
in a space-time block could range from 1 to 10 bits.
The number of bits representing offset indices var-
ies depending on the block’s data range and impor-
tance value. However, standard OpenGL defines
only fixed formats for the pixel data for texture
loading, so we picked the formats listed in Table 1.
Clearly, this bit-padding step involves space over-
head and increases texture-memory consumption,
but our experiments show that the size increase is
affordable at approximately 10 percent.

Texture Packing
After bit padding, we’re ready to pack the data
blocks into one of the five index textures (one for
each of the internal texture formats listed in Table
1). Texture packing reduces the number of textures
used and lowers texture-memory consumption
(for more information, see the “Texture Packing”
sidebar). We perform texture packing by treating
each data block as a 3D array and by using a greedy
algorithm to optimize block arrangement.

When we use deferred filtering during decom-
pression, we’re reconstructing volume slices voxel
by voxel using the nearest-neighbor interpolation

MaximumMinimum

Quantization
table

Histogram0 2N–1

2M–10

space-time
blocks

2 3 4 7 9 10 12 13 14 16 17 18 19 20 21 22
Time steps

Space-time
blocks

Figure 3. Temporal grouping merges spatial blocks in the same octree
node at consecutive time steps into space-time blocks. In this example,
the maximum window size is five. For each space-time block, we record
the beginning and ending indices with respect to the nonuniform
quantization table and the offset index for each voxel in the block. In
the figure, a time step (such as 5) that doesn’t appear in the octree node
stays on one of its ancestor or descendant nodes instead.

	 IEEE Computer Graphics and Applications� 63

rather than the trilinear interpolation. So, in our
scenario, we don’t have to perform texture packing
directly in 3D. Instead, we can treat each 3D data
block as a 1D array and pack it into a 3D texture
in the form of a cube. We calculate the packed 3D
texture’s dimension as

L A= ����
�
��

3 ,

where ||A|| denotes the length of array A. This
treatment greatly simplifies data packing and bet-
ter uses the texture memory. The only overhead is
that we need to map (x, y, z) tuples to 1D indices
for texture lookup.

Deferred Filtering and Volume Rendering
At runtime, we decompress each voxel in the vol-
ume for rendering, performing the trilinear inter-
polation on a per-fragment basis. A single voxel
might be needed multiple times for neighboring
sample reconstructions and gradient calculations.
To avoid redundant decompressions, we can first
cache a proxy geometry (a small subset of decom-
pressed volume), then use the subset for conven-
tional rendering. This deferred-filtering technique
separates decompression and interpolation into
two passes so that we need to decompress a voxel
only once no matter how many times it’s needed
for interpolation.3

In our case, the proxy geometry is multiple axis-
aligned slices assembled from volume partitions
(see Figure 4). To render a slab, we decompress two
consecutive slices of the volume in the first pass.
In the second pass, we render sampling slices us-
ing trilinearly interpolated samples. We thus ren-
der the volume slab by slab. The main advantage
of using axis-aligned slices is that we don’t need to
pad data blocks in the volume to ensure seamless
rendering along block boundaries.

Figure 4 sketches our texture lookups using
deferred-filtering. We dynamically reconstruct the
axis-aligned slices most perpendicular to the view-
ing direction. The address texture stores each data
block’s address in the packed index texture.

For each data block on a sampling slice, we first
look up its block address. We also look up the be-
ginning index in the address texture and the bit

Sandia National Laboratories scientists have performed terascale
turbulent-combustion simulation to study the basic phenom-

ena of reacting flows in the combustion process.1 Of scientific
interest is the main flame structure, which corresponds to the
stoichiometric mixture fraction (mixfrac) surface at an isovalue of
0.2 (see Figure A). In particular, scientists hope to observe how
other variables distribute along the main flame surface—critical
knowledge for evaluating the combustion process’s efficiency.

This kind of analytical visualization is quite common in scientific
data analysis. Such domain knowledge should be translated into a
reference feature to guide our application-driven data compression
and rendering. The intuition is that the closer a voxel is to the sur-
face of interest, the higher precision we should preserve to ensure
reconstruction quality. In other words, the precisions of data should
vary according to their associations to the reference feature.

Reference
	 1.	 E.R. Hawkes et al., “Direct Numerical Simulation of Turbulent

Combustion: Fundamental Insights towards Predictive Models,” J.

Physics: Conf. Series, vol. 16, 2005, pp. 65–79.

Turbulent-Combustion Simulation

Figure A. Simultaneous rendering of two variables of the turbulent-

combustion simulation data set. The mixture fraction (mixfrac) surface (at an

isovalue of 0.2) is white; the HO2 variable is depicted in a volume-rendering

style. Our work exploits such a surface of interest to compress the data

effectively.

Table 1. A space-time block is padded into one of the five different OpenGL pixel data formats for texture
loading.

Original
no. of bits

No. of
padded bits

No. of elements
in a texel Overhead (%) Data type for pixel data

Internal texture
format

1, 2 2 3 166.7, 33.3 GL_UNSIGNED_BYTE_3_3_2 GL_R3_G3_B2

3, 4 4 4 33.3, 0.0 GL_UNSIGNED_SHORT_4_4_4_4 GL_RGBA4

5 5 3 6.67 GL_UNSIGNED_SHORT_5_5_5_1 GL_RGB5_A1

6, 7, 8 8 4 33.3, 14.3, 0.0 GL_UNSIGNED_INT_8_8_8_8 GL_RGBA8

9, 10 10 3 18.5, 6.67 GL_UNSIGNED_INT_10_10_10_2 GL_RGB10_A2

64	 January/February 2010

Feature Article

difference (Bd = Bn – Bm) in the offset texture. Then,
for each voxel in the data block, we look up its off-
set index in the corresponding packed index texture
using its voxel ID and the block address. Finally, we
use the voxel’s offset index and the block’s begin-
ning index and bit difference to compute the actual
index to the value texture (Equation 1).

Results
We experimented with our algorithm on two
floating-point data sets obtained from scientific
simulations (see Table 2). We performed all tests
on a PC with a 2.33-GHz Intel Xeon processor
with 4 Gbytes of main memory and an Nvidia Ge-
Force 8800 GTX graphics card with 768 Mbytes of
video memory.

Sandia National Laboratories scientists provided
the combustion data set. The combustion simula-
tion ran thousands of time steps; at each time step
it output dozens of variables representing different
chemical species. A subset of the data set we used
here has four variables: scalar dissipation rate (chi),
stoichiometric mixture fraction (mixfrac), hydro-
peroxy radical (HO2), and hydroxyl radical (OH).
The scientific interest for the combustion data is
on the main flame structure, which corresponds to
the mixfrac surface, for which the isovalue is 0.2.

We obtained the hurricane data set from the US
National Center for Atmospheric Research. The
hurricane modeled in the simulation is Hurricane
Isabel, a strong hurricane that occurred during
September 2003 in the West Atlantic. For our ex-

Axis-aligned sampling slices

Packed index texture i
(offset index in the value texture)

Offset texture
(beginning index
and bit difference)

Address texture
(block address in the index texture)

Value texture
(nonuniform
quantization

table)

Block ID

Voxel ID

Index

Block ID

Texture fetch
Texture lookup

Figure 4. Texture lookups with the deferred-filtering scheme. The address texture stores data blocks’ addresses in the packed
index texture. The offset texture stores data blocks’ beginning indices and bit differences. The packed index texture stores
voxels’ offset indices with respect to the value texture (that is, the nonuniform quantization table). To reconstruct a data block
on a sampling slice, we need two texture lookups on a per-block basis and two on a per-voxel basis.

Table 2. The two data sets and their experimental results.

Combustion data set Hurricane data set

Volume dimension (800, 686, 215) (500, 500, 100)

No. of time steps 53 48

No. of variables 4 4

Data size 92.3 Gbytes 17.9 Gbytes

Block dimension (64, 64, 32) (32, 32, 16)

Average no. of nodes 278 275

Average node overlap 90% 62%

Compressed size (after quantization) 15.12 Gbytes 3.6 Gbytes

Compressed size (after difference and run-length encoding) 4.53 Gbytes 900 Mbytes

Data reduction on disk 20.57× 20.37×

Compression time 3 hrs. 40 min.

Padding overhead 11% 12%

Texture reduction on GPU 82% 77%

Frame rate* 12.5 fps 28.5 fps

* We measured the frame rate (in frames per second) for rendering one variable with a 5122 viewport and a sampling rate of 1.0.

	 IEEE Computer Graphics and Applications� 65

periment, we picked four variables: pressure (P),
cloud moisture (Cloud), total precipitation (Pre-
cip), and water vapor (Qvapor). We focused on the
region with very low pressure (P ≈ 0), which cor-
responded to the hurricane’s center.

Compression
To construct the octree skeleton, we set the block
dimension for leaf nodes as (64, 64, 32) for the com-
bustion data set and (32, 32, 16) for the hurricane
data set. For spatial partitioning, we chose five per-
cent as the threshold for the percentage of isosurface
voxels in the data blocks. We determined the block
size for leaf nodes and the percentage threshold
for isosurface voxels on the basis of the number of
blocks generated during spatial partitioning.

With such configurations, the average number
of octree nodes with nonempty data blocks in a
time step was approximately 270. On the other
hand, the average node overlap for consecutive
time steps was 90 percent for the combustion data
set and 62 percent for the hurricane data set. This
indicates a great degree of coherence for compres-
sion. We set the maximum window size as five
(w = 5) in temporal grouping. For both data sets,
we chose N = 16 and M = 10 for the nonuniform
quantization, which let us sufficiently sample the
histogram in the 1,024-entry quantization table.

It took us three hours to compress the 93.2-Gbyte
combustion data set (on average, less than one
minute per variable per time step, which is approx-
imately 450 Mbytes). The compressed data size was
4.53 Gbytes, so the compression rate was 20.57×.
This means that, on average, we compressed each
variable in the time sequence to approximately 1.6
bits per voxel. We achieved a comparable compres-
sion performance for the hurricane data set.

Figure 5 shows the signal-to-noise ratio (SNR)
and the peak signal-to-noise ratio (PSNR) of the
compressed hurricane data set. Different curves
correspond to different distance ranges from the
surface of interest for the Cloud (Figure 5a), Pre-
cip (Figure 5b), and Qvapor (Figure 5c) variables.
Generally, the regions with smaller distances
(those closer to the surface) got higher SNRs or
PSNRs (less distortion). At some time steps (such
as time steps 1 to 8 for the SNR curves and time
steps 40 to 48 for the PSNR curves), this observa-
tion didn’t always hold. This is because we employ
blockwise compression instead of voxelwise com-
pression and because we use the average distance,
instead of the minimum distance, to calculate a
block’s importance value.

With these settings, the block size also mat-
tered, because all voxels in a block used the same

encoding scheme. On the other hand, Figure 5c
shows that Qvapor had higher SNRs and lower
PSNRs than Cloud and Precip. This suggests that
different variables might require customized bit
modulations for compressing their space-time
blocks to balance the overall rate distortion across
all the variables.

Decompression and Rendering
At runtime, we padded and loaded the partially
decoded data into texture memory. As Table 2 indi-
cates, bit padding only slightly increased memory
usage. The overall texture reduction with respect
to loading the original data was 82 and 77 per-
cent for the combustion and hurricane data sets,

To effectively use limited graphics memory, Martin Kraus and
Thomas Ertl introduced adaptive texture maps with locally

adaptive resolution.1 They used these maps to pack data blocks of
different resolutions. This technique lets us represent fine details
in images and volumes without increasing the whole texture
map’s resolution.

Alécio Binotto and his colleagues developed a similar approach
for texture packing and compression of sparse time-varying volume
data into 3D textures.2 During rendering, the fragment shader
decompresses data in the GPU.

Wei Li and his colleagues studied texture partitioning and pack-
ing for skipping empty space and accelerating slice-based volume
rendering.3 They first partition the entire volume into subvolumes
with similar properties. Then they pack and stitch together the sub
volumes to create larger textures for rendering.

Hiroshi Akiba and his colleagues used data packing for time-
varying data reduction.4 To achieve data packing, they discarded
data blocks with values outside the data interval of interest and
encoded the remaining data such that they could efficiently de-
code it in the GPU.

References
	 1.	 M. Kraus and T. Ertl, “Adaptive Texture Maps,” Proc. ACM Siggraph/

Eurographics Conf. Graphics Hardware, Eurographics Assoc., 2002, pp.

7–15.

	 2.	 A.P.D. Binotto, J.L.D. Comba, and C.M.D. Freitas, “Real-Time Volume

Rendering of Time-Varying Data Using a Fragment-Shader Compression

Approach,” Proc. IEEE Symp. Parallel and Large-Data Visualization and

Graphics, IEEE CS Press, 2003, pp. 69–75.

	 3.	 W. Li, K. Mueller, and A.E. Kaufman, “Empty Space Skipping and

Occlusion Clipping for Texture-Based Volume Rendering,” Proc. IEEE

Visualization Conf., IEEE CS Press, 2003, pp. 317–324.

	 4.	 H. Akiba, K.-L. Ma, and J. Clyne, “End-to-End Data Reduction and

Hardware Accelerated Rendering Techniques for Visualizing Time-

Varying Non-uniform Grid Volume Data,” Proc. 4th Int’l Workshop

Volume Graphics, IEEE CS Press, 2005, pp. 31–39.

Texture Packing

66	 January/February 2010

Feature Article

respectively. Owing to difference and run-length
decoding and bit padding, we reduced the com-
pression rates in the texture memory to 5.6× and
4.3× for the combustion and hurricane data sets,
respectively.

With a 5122 viewport and a regular sampling
rate of 1.0 (one sample per voxel), we achieved
12.5 frames per second (fps) for rendering one
variable from the combustion data set and 28.5
fps for rendering one variable from the hurricane
data set (including deferred filtering and volume
rendering). This performance is comparable to

conventional volume rendering. Our application-
driven compression and rendering solution makes
interactive visualization of large-scale time-vary-
ing data possible, while dramatically reducing data
transferring between the memory hierarchies.

The savings in data transferring greatly shorten
the time to animate time-varying data. For ex-
ample, we reduced the total time (including I/O
and rendering) for animating the Cloud variable
of the 48 time-step hurricane data set from 36.96
seconds to 9.17 seconds. Table 3 breaks down the
timing for each stage: decoding, bit padding, tex-
ture packing, deferred filtering, and volume ren-
dering. (The decoding stage includes the time to
read compressed data from the disk.) The frame
rate improved from 1.3 fps (without compression)
to 5.2 fps (with compression), achieving a highly
desirable level of interactivity.

Figure 6 compares the rendering of the com-
pressed data (Figures 6a and 6b) to the original
data (Figure 6c). To render more than one vari-
able simultaneously over time, we independently
decompressed each variable and loaded it into the
graphics card. For objective comparison, we cal-
culated pixelwise differences (the Euclidean dis-
tances) of images generated from the compressed
and original data in the CIELUV color space (see
Figure 6d). We mapped the noticeable pixel differ-
ences (with ΔE ≥ 4.0) to nonwhite colors in Figure
6e (clamping differences greater than 255).

Our application-driven solution preserves fine de-
tails near the regions of interest, while maintaining
the overall quality. We can perceive some visual dif-
ferences between the rendering of the compressed
versus original data. However, these correspond to
regions far from the reference feature, so they lost
more precision during quantization.

Figure 7 shows the rendering of the compressed
hurricane data set at different compression lev-
els. Adjusting the parameters for bit modulation
compresses the data with different reduction rates.
Figure 7 shows how the quality degrades with the
increased compression rate. Compared with the
Qvapor variable at the same compression level,
the Cloud variable gives less degradation in visual
quality. We rendered the P surface with Cloud and
Qvapor. The rendering let the scientists focus on

20.0
26.0
32.0
38.0
44.0
50.0
56.0
62.0
68.0
74.0

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Time step

(a)

(b)

(c)

D
ec

ib
el

s
D

ec
ib

el
s

D
ec

ib
el

s

0.0 ≤ d ≤ 16.0 16.0 < d ≤ 32.0 32.0 < d ≤ 64.0 64.0 < d ≤ max
0.0 ≤ d ≤ 16.0 16.0 < d ≤ 32.0 32.0 < d ≤ 64.0 64.0 < d ≤ max

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Time step

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Time step

20.0
26.0
32.0
38.0
44.0
50.0
56.0
62.0
68.0
74.0

20.0
26.0
32.0
38.0
44.0
50.0
56.0
62.0
68.0
74.0

Figure 5. The signal-to-noise ratio (SNR) and the peak signal-to-noise
ratio (PSNR) curves of the application-driven compressed hurricane data
set. We show four SNR (dashed lines) and PSNR (solid lines) curves with
different distance ranges from the surface of interest for the (a) Cloud,
(b) Precip, and (c) Qvapor variables. We used the theoretical signal peak
as a reference in PSNR calculation. In general, the regions close to the
surface yield higher SNRs or PSNRs and thus less distortion.

Table 3. Timing breakdown for rendering the Cloud
variable of the 48 time-step hurricane data set.

Compression and rendering stage Time (sec.)

Difference and run-length decoding 2.37

Bit padding 2.58

Texture packing 1.27

Deferred filtering and volume rendering 2.95

	 IEEE Computer Graphics and Applications� 67

the hurricane center and track other flow proper-
ties around the surface of interest.

For the combustion data set, where the variable
rendering could occlude the surface, we could use
the distance volume to perform flexible rendering
by changing the distance threshold (see Figure 8).
We assigned nonzero opacity values to only the
voxels in the given distance threshold. A scientist
can interactively control the amount of informa-
tion displayed around the surface to better observe
variable relationships at runtime. The accompany-
ing videos (see the Web Extras section of www.
computer.org/portal/web/computingnow/cga)
show side-by-side rendering of the original and
compressed combustion and hurricane data sets
over all time steps.

Discussion
We opted for scalar quantization instead of vector
quantization for data reduction because in vec-
tor quantization, the time to generate the codebook

could be prohibitively long for a large time-varying,
multivariate data set. The nonuniform quanti-
zation we implemented is simple and fast, and
produced good compression and reconstruction
results for the two test data sets.

With this quantization, however, we could miss
details for underrepresented scalar values. This
happens when the transfer function maps under-
represented scalar values to high opacity values.
We could also use other quantization approaches,
such as Lloyd’s quantizer, which guarantees to
converge to a local minimum in the L2 metric. We
need more research on quantization that couples
compression with visualization to strive for a bet-
ter trade-off between reduction performance and
rendering quality.

Our approach resembles the importance-driven
volume-rendering work by Ivan Viola and his col-
leagues.4 However, we use the importance values
of data blocks in relation to the surface of inter-
est in compression and rendering. The limitation

255

48

20
4

255

48

20
4

(a) (b) (c) (d) (e)

Figure 6. Comparing the compressed versus original data (the combustion data is on top; the hurricane data
is on the bottom). We rendered (a) compressed data for an overview of the mixfrac surface (in white) plus
the HO2 variable (top image) and the P surface (in yellow) plus the Qvapor variable (bottom image). We also
zoomed in on (b) the compressed data and (c) the original data. Finally, we show (d) the image difference of
the compressed and original data calculated in the CIELUV color space and provide (e) a color map. Regions
farther away from the surface of interest show more quantization artifacts in rendering.

68	 January/February 2010

Feature Article

of our approach is that because the reference fea-
ture derived from domain knowledge is explicitly
incorporated into data reduction, we must redo
the compression process if the scientific interest
changes. We assume that such a change doesn’t
happen frequently. We could encode all possible
input from scientists, letting users shift features
of interest at runtime, but this would reduce com-
pression efficiency.

Our application-driven approach clearly sug-
gests a viable direction for addressing the

data challenge presented by large-scale scientific
simulations. We can apply our solution to other
domains where the reference features are in dif-
ferent forms, such as vortices in the flow data. As
long as the identified regions of interest occupy
only a small percentage of the volume space, our
method would remain effective.

We hope to incorporate our data-reduction
scheme with multiresolution techniques to support
flexible level-of-detail rendering. We’ll also consider
a parallel implementation of our solution for com-
pressing and rendering large-scale time-varying data
in a massively parallel computing environment.�

Acknowledgments
This research was supported in part by the US Na-
tional Science Foundation’s Information Technology
Research program and the US Department of En-
ergy’s Scientific Discovery through Advanced Com-
puting program. We thank Jacqueline H. Chen at
Sandia National Laboratories for providing the com-
bustion data set and sharing her domain knowledge.
We also thank the reviewers for their constructive
suggestions.

References
	 1.	 M.W. Jones, J.A. Bærentzen, and M. Srámek, “3D

Distance Fields: A Survey of Techniques and
Applications,” IEEE Trans. Visualization and Computer
Graphics, vol. 12, no. 4, 2006, pp. 581–599.

	 2.	 A.E. Shortt, T.J. Naughton, and B. Javidi, “Histogram
Approaches for Lossy Compression of Digital
Holograms of Three-Dimensional Objects,” IEEE Trans.
Image Processing, vol. 16, no. 6, 2007, pp. 1548–1556.

	 3.	 N. Fout et al., “High-Quality Rendering of Com
pressed Volume Data Formats,” Proc. Eurographics/
IEEE VGTC Symp. Visualization, Eurographics Assoc.,
2005, pp. 77–84.

	 4.	 I. Viola, A. Kanitsar, and M.E. Gröller, “Importance-

(b)

20.37×, 0.048% 27.33×, 0.153% 34.13×, 1.787%

16.13×, 0.810% 20.37×, 0.877% 27.33×, 2.547%

(a)

Figure 7. Rendering the compressed hurricane data set at time step 24 with different compression levels. By
adjusting the parameters for bit modulation, we can change the number of bits allocated to each space-time
block and compress the data differently. The larger boxes show the near-zero pressure surfaces with the
(a) Cloud and (b) Qvapor variables. The smaller boxes show the corresponding difference image with respect
to the original image. We provide the compression rate and the percentage of noticeable pixel difference.

	 IEEE Computer Graphics and Applications� 69

Driven Volume Rendering,” Proc. IEEE Visualization
Conf., IEEE CS Press, 2004, pp. 139–145.

Chaoli Wang is an assistant professor of computer
science at Michigan Technological University. He pre-
viously was a postdoctoral researcher at the University
of California, Davis. His research focuses on large-scale
data analysis and visualization, high-performance
computing, and user interfaces and interaction. Wang
has a PhD in computer and information science from
Ohio State University. He’s a member of the IEEE.
Contact him at chaoliw@mtu.edu.

Hongfeng Yu is a postdoctoral researcher at Sandia
National Laboratories. His research interests include
scientific visualization and parallel computing. Yu has
a PhD in computer science from the University of
California, Davis. Contact him at hyu@sandia.gov.

Kwan-Liu Ma is a computer science professor at the
University of California, Davis, and directs the US
Department of Energy’s SciDAC (Scientific Discovery
through Advanced Computing) Institute for Ultrascale
Visualization. His research spans visualization, high-
performance computing, and user interface design. Ma
has a PhD in computer science from the University of
Utah. He serves on the editorial boards of IEEE Com-
puter Graphics and Applications and IEEE Trans-
actions on Visualization and Computer Graphics.
He’s a senior member of the IEEE and a member of the
ACM. Contact him at ma@cs.ucdavis.edu.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

d = 1.0, t = 1 d = 0.1, t = 1

d = 0.1, t = 27 d = 0.1, t = 53

Figure 8. Rendering the compressed combustion data (the mixfrac
surface with the HO2 variable) with distance control. By changing the
distance threshold (normalized to [0, 1]), the scientist can interactively
control the amount of information displayed around the surface to
better observe variable relationships.

MOBILE AND UBIQUITOUS SYSTEMS

IEEE Pervasive Computing

seeks accessible, useful papers on the latest

peer-reviewed developments in pervasive,

mobile, and ubiquitous computing. Topics

include hardware technology, software

infrastructure, real-world sensing and

interaction, human-computer interaction,

and systems considerations, including

deployment, scalability, security, and privacy.

 Call for

 Articles

Author guidelines:

www.computer.org/mc/

pervasive/author.htm

Further details:

pervasive@computer.org

www.computer.org/pervasive

