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ABSTRACT

Current simulations of turbulent flames are instrumented with par-
ticles to capture the dynamic behavior of combustion in next-
generation engines. Categorizing the set of many millions of par-
ticles, each of which is featured with a history of its movement
positions and changing thermo-chemical states, helps understand
the turbulence mechanism. We introduce a dual-space method to
analyze such data, starting by clustering the time series curves in
the phase space of the data, and then visualizing the correspond-
ing trajectories of each cluster in the physical space. To cluster
time series curves, we adopt a model-based clustering technique in
a two-stage scheme. In the first stage, the characteristics of shape
and relative position are particularly concerned in classifying the
time series curves, and in the second stage, within each group of
curves, clustering is further conducted based on how the curves
change over time. In our work, we perform the model-based clus-
tering in a semi-supervised manner. Users’ domain knowledge is
integrated through intuitive interaction tools to steer the clustering
process. Our dual-space method has been used to analyze parti-
cle data in combustion simulations and can also be applied to other
scientific simulations involving particle trajectory analysis work.

1 INTRODUCTION

Next-generation combustion engines will operate in the non-
conventional, mixed-mode, and turbulent conditions. Combustion
processes in these environments, combined with new physical and
chemical fuel properties, result in complicated interactions that are
poorly understood at a fundamental level. To obtain a better under-
standing, direct numerical simulation (DNS) is used to capture and
describe the key turbulence-chemistry interactions. S3D [9], a mas-
sively parallel solver, has been developed at Sandia National Lab-
oratories to solve the DNS governing equations originating from a
Eulerian viewpoint.

Besides the Eulerian viewpoint, in fluid mechanics, the La-
grangian viewpoint is another commonly used method to describe
a flow. The Eulerian specification of the flow field is a way of
looking at fluid motion that focuses on specific locations in the
space through which the fluid flows as time passes [5, 23]. The La-
grangian specification of the flow field is a way of looking at fluid
motion where the observer follows an individual fluid parcel as it
moves through space and time [5, 23]. The parcel evolves along a
path with the instantaneous position X(Xy,#) and the initial position
Xo according to [34]:
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where i(Xo,t) is the instantaneous field velocity at the position
X(Xp,1). Since the transport of combustion turbulence is dominated
in an advective way, the Lagrangian description is natural and use-
ful for the analysis of combustion turbulence [34]. Recent com-
bustion simulations of a turbulent lifted autoignitive ethylene/air jet
flame in a hot air coflow are instrumented with particles originating
from both the fuel and oxidizer sources. These simulations provide
Lagrangian description of the combustion environment. The pas-
sive tracer particles are disseminated in the combustion flames and
advected by the velocity field in siru with a fourth order Runge-
Kutta time advance. At each Runge-Kutta substep, trilinear inter-
polation is used to determine the particle velocity from the Eulerian
solution. While the particle position is integrated during the sim-
ulation time, the thermo-chemical state (temperature, composition,
etc.), interpolated from the Eulerian grid to the particle positions,
is also saved. In this sense, DNS provides a set of particles, each
of which contains a record of the history of its movement positions
and changing thermo-chemical states.

In our work, we study the particles’ movement trajectories in the
physical space, and their thermo-chemical evolution, represented as
time series curves, in the phase space. The phase space is a 2D do-
main with space dimensions of temperature and mixture fraction,
two key combustion parameters encapsulating the unsteadiness as-
sociated with turbulent mixing and autoignition. The mixture frac-
tion is a mixing measure of fuel and oxidizer, which takes a value of
unity in pure fuel and zero in pure oxidizer. No matter in the physi-
cal space or in the phase space, with the passage of time, particles’
histories can be recorded as a sequence of points. Thus, a trajectory
or time series curve can be represented in the following manner,

R =[r{,ra,...1] ()

where n, the number of sample timestamps in R, is defined as the
length of R, and r; is a data item of dimension d that is sampled at
timestamp #;.

Figure 1 (a) shows the particles’ time series curves in the phase
space, providing Lagrangian statistics correlating temperature and
mixture fraction. Figure 1 (b) shows the corresponding trajectories
of the same group of particles in the physical space. In Figure 1 (a),
the green and red axes represent temperature and mixture fraction
respectively. We can see that the path by which fluid particles (blue
spots) traverse from the frozen flow mixing limit (bottom line in
Figure 1 (a)) to the equilibrium limit (upper tent shaped line in Fig-
ure 1 (a)) is captured in the phase space of temperature and mixture
fraction.

There are millions of particles in the simulations used to capture
the dynamic behavior of combustion flames. Our work is motivated
by the scientists’ interests on what different patterns of time series
curves are in the phase space and how particles’ time series curves
and trajectories are related. However, categorizing and understand-
ing the large amount of particle histories is non-trivial. As shown
in Figure 1, substantial clutter is introduced by heavily interweav-
ing of dense lines, which brings unique challenges to scientists to
perceive detailed correlation patterns.

This paper focuses on analyzing dynamic combustion behavior
by categorizing particles’ time series curves in the phase space and
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Figure 1: (a) shows the time series curves representing correlation
between temperature and mixture fraction, which are two key param-
eters in the combustion simulation of a turbulent lifted autoignitive
ethylene/air jet flame. There is a great deal of clutter and it is hard to
perceive detailed correlation patterns. (b) shows the corresponding
particle trajectories in the physical space, with volume rendering of
the hydroperoxy field.

visualizing particles’ trajectories in the physical space. The rela-
tionship between the time series curves and trajectories is analyzed.
The structure of this paper is organized as follows: right after a
detailed introduction of the related work in Section 2, Section 3
talks about the dual-space analytical methodology we use, includ-
ing automatic and interactive model-based clustering and two-stage
cluster analysis; Section 4 shows the dual-space method we use to
analyze the particle data; Section 5 summarizes the current work
and discusses further research.

2 RELATED WORK

How to visually analyze time-varying data has been broadly studied
by the visualization researchers. In medical data analysis, Fang et
al. [12] regarded a time-varying data set as a 3D array where each
voxel contains a time-activity curve (TAC). He defined three sim-
ilarity metrics to quantify the difference among TACs so that dif-
ferent regions of interest containing these TACs can be segmented
and visualized. Van Wijk and Selow [30] proposed a cluster and
calendar based analytical tool to explore and visualize univariate
time series data. They utilize automatic hierarchical clustering to
find similar daily patterns for the analysis of time series data of one
year. The results are visualized using two conventional representa-
tions: average daily patterns of clusters are shown as graphs, and
the days per cluster are shown on a calendar.

Aside from automatic methods, interactive analysis approaches
are also developed to extract interesting patterns in the time-varying
data. For example, TimeSearcher [19] is such a time series ex-
ploratory and visualization tool that allows users to retrieve time
series by creating queries. This is achieved by use of “TimeBoxes”,
which are rectangular query locators that specify the regions in
which the users are interested within any given time series. Akiba
and Ma [2] introduced a novel Tri-space visualization interface to
address the problem of examining multivariate time-varying data.
Konyha et al. [22] presented a valuable tool by combining the
established visualization techniques, linked views, and advanced
brushing features for interactive visual exploration and analysis of
families of function graphs. To deal with overdrawing and visual
cluttering when depicting large amounts of function graphs, Muigg
et al. [26] developed a four-level focus+context interactive visu-
alization method, with the context information for orientation and
also three different levels of focus in every attribute view.

In practice, both automatic and interactive approaches have their
own advantages and limitations. There has been a trend towards in-
tegrating the automatic methods and users’ interaction in large com-

plex data analysis and visualization [7, 20]. Woodring and Shen
[32] proposed a technique to semi-automatically generate trans-
fer functions for time-varying data via temporal clustering and se-
quencing. Lee and Shen [24] presented a new algorithm identifying
important trend relationships among the variables based on how the
values of the variables change over time and how those changes are
related to each other in different spatial regions and time intervals.
Schreck et al. [28] proposed a user-supervised SOM clustering al-
gorithm that enables users to control and monitor the computation
process visually to leverage their domain knowledge.

Our work follows the idea of integrating automatic data analy-
sis with human domain knowledge, relying on interaction means.
The automatic data analysis technique, namely, time series curves
clustering in our work, has been a research focus in both the visual-
ization and data mining communities and great advances have been
made. To get a better understanding, interested readers are referred
to the comprehensive surveys on visual analysis of time-oriented
data [1] and time-series data mining [31, 21]. In general, regarding
clustering time series data, similarity-based methods and model-
based methods are the two major kinds. In similarity-based meth-
ods, it is critical to determine how to present the time series data and
how to measure the similarity or distance between a pair of data
objects. The commonly used distance metrics include Euclidean
distance and dynamic time warping (DTW) distance [6]. For other
complex data types, defining a good similarity measure is mostly
data dependent and often requires expert domain knowledge. Ding
et al. [11] conducted an extensive experimental consolidation on
the state-of-the-art representation methods and similarity measures
for time series data. In order to provide a comprehensive validation,
the authors re-implemented 8 different representation methods and
9 similarity measures and their variants, and tested their effective-
ness on 38 time series data sets from a wide variety of application
domains.

Unlike similarity-based methods that assume some weak struc-
ture of the data, model-based methods assume some strong struc-
ture, the model. The commonly used models for time series data
include [33]: markov chains, hidden markov models, regression
models, and autoregressive moving average models. This category
of clustering methods is often based on the assumption that the data
are generated by a mixture of underlying probability distributions.
The probabilistic representation allows for the derivation of con-
sistent expectation-maximization (EM) learning algorithms for the
clustering problem, in a sense of maximum likelihood (ML) estima-
tion. Model-based clustering can handle complex time series data,
such as those with different lengths.

3 DUAL-SPACE ANALYSIS METHODOLOGY
3.1 An Overview

Our method operates in two spaces, the phase space and the physi-
cal space, to analyze and visualize particle data. The phase space is
composed of the particles’ attributes parameters, specifically, tem-
perature and mixture fraction. In our study, the physical space is
the 3D simulation domain, in which the particles are advected. In
our system, we first automatically cluster time series curves based
on their shapes and positions in the phase space. Next, according
to the preliminary clustering results with much less clutter, users
can set the clustering parameters through interaction tools and re-
conduct cluster analysis to refine the results. Last, the movement
of corresponding particles in each cluster is visualized to verify the
users’ hypothesis.

Automatic cluster analysis is a critical component in our sys-
tem. As we introduced in Chapter 2, there are two major groups of
clustering algorighms: similarity-based methods and model-based
methods. A hierarchical similarity-based method seeks to build
a hierarchy of clusters, starting from either each individual data
ojbect as a cluster (agglomerative clustering) or the whole collec-



tion of data as a cluster (divisive clustering). The hierarchical tech-
nique creates a set of nested clusterings, making a good visualiza-
tion. However, since pairwise distances have to be computed, hi-
erarchical methods tend to have computational complexity that is
quadratic in the number of data patterns and hence becomes pro-
hibitive for large data sets like in our case. A partitional similarity-
based method, such as the K-means algorithm, partitions data ob-
jects into a number (often specified by a priori) of clusters directly
according to some optimization criterion. This kind of methods
have computational complexity that is linear to the number of data
size. Nevertheless, regarding time series or trajectory data, espe-
cially when the lengths of which vary, it is nontrivial to design an
apropriate similarity metrics. And so is the case for hierarchical
similarity-based methods. Taking these situations into considera-
tion, we adopt a model-based clustering method, which assumes
a strong statistical model about the data. This method provides
a principled approach for handling the problem of modeling and
clustering time series of different lengths and can incorporate prior
knowledge naturally. The only problem with model-based clus-
tering is that it reqiures users’ setting how many clusters the data
should be partitioned into. Since we build an interactive environ-
ment for the users to examine data and determine the number of
clusters, the model-based method fits well in our application.

The automatic clustering methods help disclose data patterns and
facilitate the following visualization. However, automatic clus-
ter analysis may not always generate satisfying results to fulfill
the users requirements. As is stated in [17], knowledge discov-
ery would be most effective if one could develop an environment
for human-centered, exploratory mining of data, that is, where the
human user is allowed to play a key role in the process. We adopt
a similar idea as the semi-supervised clustering method in [4] by
coupling both the users’ domain knowledge and clustering algo-
rithm through intuitive interaction methods. The user can intervene
and guide the clustering process by setting the critical parameters in
the clustering process, specifically, the number of clusters and the
corresponding parameter values.

After categorizing particles’ time series curves in the phase space
by the clustering method, we incorporate line rendering and volume
rendering to visualize the trajectories with respect to each cluster
in the physical space. The trajectories are embedded into the sur-
rounding instantaneous field data at each time step, and the particle
movement can be animated simultaneously in the phase and phys-
ical spaces. By this means, the movement pattern of each particle
category can be examined individually to reveal the evolution of the
particles and the correlation between the particle attributes.

3.2 Automatic Clustering of Time Series Curves
3.2.1 Fitting Time Series Curves with B-spline

As with most problems in computer science, a suitable choice of
data representation would lead to the ease and efficiency of time
series curves clustering. In our application, since the domain ex-
perts discriminate time series curves according to their shapes and
relative positions in the phase space, we are prone to use a curve
representation method that can encompass both characteristics. The
B-spline model matches our need. To represent a time series curve,
we first fit it with a B-spline model and then sample a sequence of
points at equal arc length along the modeled curve.

Uniform B-Spline A uniform B-spline is a convenient form to
represent complex, smooth curves. It is in general chosen because
of the ease of manipulation. An open cubic uniform B-spline can
be written in a matrix notation as,

p(s)=[1s s> S’ ]xBxGxp 3)

wherei <s <i+ 1 and

-1 13A+32-3i+1) —%3—ﬂ+% 1(i+1)3
B | 2% —3Gi-1)(i+1) $(3i2 +4i) —%U+1V
1y 1@Bi+1) -13i+2) F(i+1)
1 1 1 1
6 6 2 6
for the matrix G,
1 ifn=i+m-3
G(m, n) = { 0  otherwise
and p is the vector of control points,
P1
p=:
Pn
We denote the B-spline basis matrix as M(s),
M(s) = [I s s> '] xBxG 4)

which is a 1 X n matrix, then Equation (3) can be written as,

p(s) = M(s)  p )

Arc Length Parameterization of B-spline Curves By being
fitted to the uniform B-spline model, time series curves are defined
as a function of parameter ¢ in the range of [fyin, fmax], Where i,
and fmax correspond to the beginning and end of the curve. That is,

c(t) = ("(t))
y(1)
In our application, the curve is represented by the sample points
of equal arc length. Thus, it is desirable to evaluate parametric
B-spline curves at points based on their arc length instead of the
curve’s original parameter. The curve needs to be represented as a

function of parameter s in the range of [0,L], where L is the total
length of the curve. i.e.,

This parameterization operation can be implemented with nu-
merical method, such as Runge-Kutta.

3.2.2 Cluster Analysis of Time Series Curves

B-spline Regression Mixture Models We model the time se-
ries curves Y = {yy, -+, ¥y} in the phase space with a B-spline
regression model [14, 15, 16] in which arc length s; is the indepen-
dent variable. The regression equations can be defined as follows:

yi=Mp+g, &~ N (0,6%) (6)

where M; is the B-spline basis matrix, as in Equation (4), evaluated
ats; (si=(s1,~*,5m) )

M; = [M(s1), -, M(sm)]'
and p is control points vector. & is a noise term following a Gaus-

sian distribution, with the mean vector and covariance matrix as 0
and 621 respectively.
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Figure 2: This figure shows the ten different groups of time series curves generated by the automatic model-based clustering algorithm. The
result provides an initial partition of the curve with much less clutter, which can facilitate the user to adjust the clustering parameters and refine

the clustering process with domain knowledge.

Model-based Clustering Model-based clustering can be re-
garded as the generalization of K-means algorithm [25, 18]. In
the context of model-based clustering, the whole set of time series
curves is assumed to derive from a mixture model of K components,
which correspond to K clusters. Each component of the mixture
model is associated with a probabilistic density function p;. Then
the mixture density for one curve y; of length d is,

p(yil®) =Y oupi(vil 6x) (7
%

where ¢y denotes the probability of assigning curve y; to clus-
ter k and 6 is the distribution parameters of cluster k, with @ =
{6;, ---, Ox}. We use a normal distribution in our work. That
means 6 contains parameters of a d-dimensional mean vector and
a d X d covariance matrix. The mixture weights oy sum to one and
are nonnegative.

As a flavor of K-means method, the objective function model-
based clustering maximizes is the likelihood of Y given the model
mixture parameters @, namely, p(Y|®). In practice, the likelihood
can be represented by any function of @ that is proportional to the
probability of the data p(Y|®). In our application, the log of the
likelihood of Y is applied,

K
Z(B|Y) =log p(Y|©) =Y log}" oupi(yil6k) (8)
i k

To this end, conducting model-based clustering is to learn the pa-
rameters of the K component models given the set of time series
curves and then assign each curve to individual clusters. An EM
algorithm [10] can be applied to learn the model parameters.

We use the B-spline regression mixture model in our work, and
the model component takes a form as Equation (6). As a result,
the regression model leads to a cluster-specific probabilistic density
function for y;:

Pi(vilsi, ) = A (yi|Mipy, o7T) )

where p; and szl are the mean vector and covariance matrix of the
kth Gaussian component model. Then, the EM algorithm is executed
as follows.

e E-step We assume that z;, associated with each y;, indicates
the curve membership from one of the K clusters. In the E-
step, the posterior p(z;|y;,s;) is calculated, which gives the
probability that the i-th curve is generated by cluster z;. The
probability of y; being generated by cluster k takes the form
[15],

wik = plzi = Klyi,si) o o pe(yilsi) = o (vi|Mipg, o¢1)
(10)

e M-step In the M-step, the likelihood (8) is maximized with
respect to the parameters {pg, Ok, 04}. The solutions [15]
are given as

-1
pi = [ Y waMiM;] Y wyMiy; (1)
i i
02 = —— Y wllyi — Mipy | (12)
Ziwik i
1
%= ) Wik (13)
i

After obtaining these mixture model parameters, we can refer each
time series curve to a cluster.

3.3 Interactive Re-clustering of Time Series Curves

How to initialize the number of mixture model components and
their parameters is a critical problem in model-based clustering. In
many real-world problems, the actual model size is unknown. Two
families of model selection methods that help determine the clus-
ter number are cross validation [29] and Bayesian model selection
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Figure 3: This figure shows six groups of curves, which are selected
by the user as cluster prototypes for the re-clustering process. Com-
paring to those in Figure 2 (a), (d), (e), (h) and (i), the outlier curves
(in gray) in (a), (b), (c), (d) and (e) are rejected using our mouse-
based picking tool.

[3]. The initialization of mixture model parameters largely influ-
ences the quality of the clustering result. Since the standard EM
algorithm adopts a strategy of randomly initializing the parameter
values, it can only guarantee finding a local maximum, which may
not correspond to satisfying clustering results. A number of variants
of the EM algorithm have been studied to reduce its dependence on
parameter initialization. These methods include the SEM algorithm
[13] and the CEM algorithm [8]. Although these techniques reduce
the effect of parameter initialization, they cannot solve the problem
completely.

We solve the parameter initialization problem by introducing the
domain experts’ knowledge into the clustering process. In our ap-
plication, we first empirically set the number of clusters as a com-
paratively large one in the hope of disclosing component patterns
thoroughly. An extreme case is that if the cluster number is tuned
the same as that of time series curves, all curve patterns are re-
vealed. But we try to use the fewest number of clusters to represent
patterns as completely as possible. Based on the preliminary results
generated by automatic clustering, the user can browse through the
clusters, and designate the number of clusters and what type of

curves are in each one through interaction tools. We provide two
mechanisms with which the user can select representative curves.
The first is a mouse-based picking tool which selects the curve un-
der the cursor during a user click. The second is a brushing tool,
by using which the user sketches directly on the interface and all
the underlying curves intersecting with the sketching are selected.
Through users’ repeating this selection, the number of clusters, to-
gether with the representative curves in each cluster, is determined.
The component Gaussian model parameters, namely, the mean vec-
tor and covariance matrix, are learned from the prototype curves in
each cluster. These parameters serve as the initial parameter values
for the model-based clustering. In this way, the clustering process
can be refined by integrating experts’ domain knowledge.

3.4 Sub-clustering with Time Dimension

Until now, our clustering is focused on categorizing the general
trends of time series curves in the 2D phase space. We partition
the curves into clusters based on their geometric shapes and spa-
tial positions. In that stage of cluster analysis, temporal relation
among sample points on the curve is interpreted as the sequence or-
der in the curve representation; nevertheless, how the curve change
over time is not considered explicitly. It is possible that two curves
possess similar correlation patterns in the 2D phase space, but are
very different in how they vary over time. To handle this situation,
we provide an option to further categorize time series curves in the
clusters by considering the time dimension explicitly. Specifically,
we extend the 2D phase space to 3D with time serving as a dimen-
sion, and the time series curve can be represented in the following
way,

R= [(I‘]7 l‘]),(r27 l‘2)7...(l‘n, l‘n)} (14)

where n, the number of sample timestamps in R, is defined as the
length of R, and r; is a data item of dimension d that is sampled at
timestamp #;. Comparing to the form (2), this representation treats
time as an independent dimension.

The clustering method is similar to that introduced in Section
3.2, except that the time series curve is in 3D instead of 2D. By
this means, we can further partition each cluster that is identified
in the 2D phase space, and expose the patterns of temporal change
in thermo-chemical state. Because a much clearer result is already
generated after the 2D curve clustering step, we only use automatic
clustering to partition the 3D time series curves.

4 PARTICLE DATA ANALYSIS AND VISUALIZATION IN DUAL-
SPACE

4.1 Background Knowledge about Particle Data in Com-
bustion Simulations

Regarding non-premixed combustion (fuel and oxidizer initially
separated), in the phase space, the thermo-chemical state is largely
a function of the mixture fraction. To a coarse approximation, an-
alytic approaches based on using mixture fraction to form a coor-
dinate system [27] are frequently employed to solve the governing
equations of non-premixed flames. Even for such simplified ap-
proximations, the equations admit many solutions, two typical ones
of which are the ‘mixing’ and ‘burning’ solutions. For the ‘mix-
ing’ solution (without any flame present), temperature varies lin-
early with mixture fraction. The ‘burning’ solution takes a more
complex representation. There is a maximum temperature around
what is called the ‘stoichiometric’ mixture fraction, where the fuel
and air are mixed in exactly the right proportions; at lower mixture
fractions, there is extra air left over after the fuel is all gone, and
at higher mixture fractions, there is extra fuel left over when the
air is used up. Take the scatter plots of temperature - mixture frac-
tion correlation in Figure 1 for an example, the points around the
spot P2 are found in the fuel jet before it mixes with the oxidizer
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Figure 4: In this figure, (al1), (b1), (c1), (d1), (e1) and (f1) show the clustering results based on the user specified cluster prototypes; the light
blue dots, calculated with the mean vector of component Gaussian models, represent the average trends of clusters. (a2), (b2), (c2), (d2), (e2)
and (f2) show the particle trajectories in the physical space corresponding to (al1), (b1), (c1), (d1), (e1) and (f1) respectively. We can see that
particles with distinct patterns of time series curves traverse differently in the physical space.

(the spot P3). Between these extreme spots P2 and P3, the major-
ity of the points are found along one of two branches: a ‘burning’
branch and a ‘mixing’ branch. The green curve illustrates ‘mix-
ing’ behavior - negatively correlated. The blue curve corresponds
to the "burning’ solution: positive correlation for low mixture frac-
tion and negative correlation for high mixture fraction; the red spot
P1 is the stoichiometric mixture fraction point. The two correlation
curves corresponding to the different branches of the temperature -
mixture fraction solutions are relatively well understood; however,
lots of particles are transitioning between the branches, which are
less clear. Hence, combustion domain experts have a sound fun-
damental basis for expecting particle trajectories to move from the
edges to the centre along either the mixing or burning branch, and
to transition between the branches. In the following section, we use
interactive clustering based on these expectations to either confirm
(or deny) them, and to qualify the nature of the transition between
the branches.

In one simulation, the Sandia DNS code S3D can generate sev-
eral millions of particles with history records relating 3D particle
positions and thermo-chemical states. To illustrate our method, we

use a smaller data set of several hundreds of sampled time series
curves. Figure 1 (a) shows an overview of the set of time series
curves in the phase space, and Figure 1 (b) shows the correspond-
ing trajectories in the physical space.

4.2 Automatic Clustering Results

In the 2D phase space, we first partition all time series curves into an
estimated number of groups using the model-based clustering. Con-
sidering there are at least two distict groups of correlation cruves
(the ‘mixing’ and ‘burning’ branches) and some others going be-
tween the two branches, we set the initial number of clusters to
be ten, which is a comparatively large one, in the hope of disclos-
ing component patterns thoroughly. In fact, to name an even larger
number would not hurt the final results since we can revise this
parameter in the following step. The aim of this automatic cluster-
ing is to address the visual clutter problem in a single visualization
(Figure 1 (a)), and reveals interesting cluster patterns, as shown in
Figure 2. Mostly, these initial clustering results may not be most
satisfying. For example, Figure 2 (a) and (f) are of similar pattern
and better to be combined together, as is the case for (b) and (j), (d)
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Figure 5: (a1), (b1) and (c1) show the temporal correlation curves
corresponding to those in Figure 4 (c1), (e1) and (f1) respectively,
and the 3D time series curves are clustered into two groups (ren-
dered in yellow and blue); in (a2), (b2) and (c2), the particles with the
yellow or blue trajectories belong to the clusters of the same color in
(al1), (b1) and (c1)

and (g). In addition, clusters (a) and (f) contain obvious outliers.

4.3 Interactive Re-clustering Results

When analyzing the time series curves, domain experts usually have
certain background knowledge and may suggest their preference to
classify the data. Regarding our case, with the background knowl-
edge introduced in 4.1, two clusters of time series curves we want
to see include Figure 3 (a) and (f) which correspond to the ‘mix-
ing’ and ‘burning’ branches. Aside from these cases, there is also
a set of abnormal curves. Examples include Figure 3 (b) (c), (d)
and (e). The domain experts are very interested in such groups of
curves, which are not clearly understood yet. Consequently, we set
these six groups of representative curves as cluster prototypes and
re-cluster the whole data set. Figure 4 (al), (bl), (cl), (d1), (el) and
(f1) show the re-clustered results in the phase space, and (a2), (b2),
(c2), (d2), (e2), (f2) show the corresponding particle trajectories in
the physical space. The trajectory groups demonstrate that particles
with different patterns of time activity curves traverse distinctly in
the physical space. After this interactive clustering, a much more
reasonable and organized clustering result is generated.

4.4 Sub-clustering of Time Series Curves

Figure 5 (al), (bl) and (c1) show the 3D time series curves, with
the corresponding 2D projection in Figure 4 (c1), (el) and (f1). We

further partition each group of time series curves into two clusters,
which are rendered with different colors. Figure 5 (a2), (b2) and
(c2) show the particle trajectories in the physical space. By using
the two-stage clustering in 2D and 3D sequentially, we categorize
the patterns of temporal correlation between temperature and mix-
ture fraction. Moreover, particles movements in the physical space
are illustrated. The dual-space approach provides domain experts
an effective way to relate how particle state changes in both phase
and physical space.

4.5 Discussion

At this stage, the domain experts from the combustion field have
been working closely with the visualization experts as the capabil-
ities described in this paper are developed and deployed. In fact,
there is an ‘un-stimulated need’ for this capability: the domain ex-
perts, two of whom are co-authors on this paper, were struggling to
process the very data used to demonstrate the methodology in this
paper. At the inception of this effort, the domain experts had several
hypothesis about the nature of the particle trajectories as described
in Section 4.1, but were unable to determine if the particle data was
consistent with their expectations, nor were they able to present the
particle data coherently to the combustion community. The ability
of the clustering system to interactively partition the trajectories de-
pending on suggested trajectories is key to hypothesis testing. With
the current system, an expository movie has been made which the
domain scientists have been actively using as an aid for discussing
their simulation results with colleagues.

5 CONCLUSION AND FUTURE WORK

In this paper, we present a dual-space approach to analyze particles’
time series curves in the phase space and trajectories in the physi-
cal space for the combustion research. Regarding time series curves
analysis, we use a two-stage clustering strategy to analyze the time
series curves: in the first stage, time series curves are clustered in
the 2D phase space to exhibit distinct bivariate correlations, which
matches the combustion researchers’ primary interests; in the sec-
ond stage, within each cluster, we treat the temporal bivariate corre-
lations as 3D curves (temperature, mixture fraction and time serve
as the three dimensions) and partition them in several groups to
further reveal how the correlation changes over time. We also study
how to integrate the users’ domain knowledge into the model-based
clustering process. This integration improves the clustering results
by using domain knowledge to initialize the algorithm parameters.

Our dual-space technique highlights the relationship between the
particle trajectories in phase and physical space, which provides
combustion scientists with detailed information regarding the evo-
lution of fluid parcels traversing a turbulent autoignitive environ-
ment. Although we have designed our approach that targets to fa-
cilitate combustion studies, we expect that the basic methodology
can be applied to other scientific simulations involving particle tra-
jectory analysis work.

Interaction is the key in data analysis tasks, not only for manip-
ulating visual results, but also for steering automatic clustering. In
the future, we plan to improve our current design of interaction tools
and develop new ones to enrich users’ choices in expressing their
domain knowledge to steer clustering. For instance, free sketch-
ing is a promising interactive method, by which users can specify
different curve patterns according to their knowledge. These curve
patters can then be used to guide the clustering algorithm. Cur-
rently, we utilize model-based clustering to analyze bivariate time
series data. This algorithm can be easily extended to handle multi-
variate time series data clustering. But how to visualize and inter-
actively manipulate the clustering results of multivariate time series
curves needs further study. Thus, we will place efforts on develop-
ing proper visualization and interaction methods to represent and
operate the high-dimensional clustering results. Moreover, we will

97



98

also address the large data issue with parallel computing so that our
method can adopt to the ever-increasing large simulation data.
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