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ABSTRACT

Effective analysis and visualization of time-varying multivariate
data is crucial for understanding complex and dynamic variable in-
teraction and temporal evolution. Advances made in this area are
mainly on query-driven visualization and correlation exploration.
Solutions and techniques that investigate the important aspect of
causal relationships among variables have not been sought. In this
paper, we present a new approach to analyzing and visualizing time-
varying multivariate volumetric and particle data sets through the
study of information flow using the information-theoretic concept
of transfer entropy. We employ time plot and circular graph to show
information transfer for an overview of relations among all pairs of
variables. To intuitively illustrate the influence relation between a
pair of variables in the visualization, we modulate the color satu-
ration and opacity for volumetric data sets and present three dif-
ferent visual representations, namely, ellipse, smoke, and metaball,
for particle data sets. We demonstrate this information-theoretic
approach and present our findings with three time-varying multi-
variate data sets produced from scientific simulations.

1 INTRODUCTION

Detecting interdependencies and causal relationships among mul-
tiple variables is one of the most important issues in multivariate
time series data analysis. This issue is receiving increasing atten-
tion as our scientists’ ability to generate data multiples every year.
Applications of studying correlation and causation can be found in
many fields of science, such as physics, economics, and physiology,
to name a few. For example in brain studies, information about the
interaction among recorded channels of an electroencephalogram
(EEG) can aid clinical practice by identifying the region of the brain
that is acting as a recruiting focus in epilepsy. In atmospheric pre-
diction, improving the initial conditions through the investigation
of information flow can reduce uncertainty in predictions at other
locations and with respect to other dynamical variables.

Commonly-used techniques for the estimation of dependencies
are linear cross-correlation and mutual information. However, these
measures share the property of being symmetric and therefore are
not suited for assessing causality within relationships. To study the
directional aspect of interactions, Schreiber took a general nonpara-
metric test of causality based on information theory and introduced
the concept of transfer entropy [14] for quantifying the flow of in-
formation between time series. With minimal assumptions about
the dynamics of the systems and the nature of their coupling, this
information-theoretic measure can quantify the exchange of infor-
mation between two systems, separately for each direction.

In visualization, existing work on time-varying multivariate data
centers on query-driven visualization and correlation structure ex-
ploration. The challenging problem of identifying causal relation-
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ships among different variables in the time series has not been paid
due attention. To respond, we focus on analyzing and visualizing
causal relationships using transfer entropy. Besides being a general
and easily applicable measure, two additional advantages regarding
the nature of transfer entropy make it very attractive for our usage:
First, this model-free approach does not assume anything about the
coupling between the variables. Second, it allows us to detect sta-
tistical dependencies not limited to linear statistics and to reveal all
types of temporal correlations.

The contributions of our work are: First, we have utilized the
transfer entropy to study causal connections among time-varying
multivariate data, which is seldom investigated in visualization due
to the lack of appropriate techniques. Second, we have developed
multiple views using information and scientific visualization tech-
niques for effective display of information transfer. Third, we ap-
plied this new approach to visualizing volumetric and particle data
sets, and verified the results with combustion scientists. Fourth, we
expand the concept of transfer entropy by defining relative trans-
fer entropy and discussing how to generalize the original pair-wise
transfer entropy to simultaneously handle multiple variables. We
also point out the challenges associated with this generalization.

2 RELATED WORK

Information Theory and Visualization Concepts of information
theory have been applied to many areas of visualization including
view selection for polygon and volume rendering [19, 2], camera
path planning for focus of attention and visualizing time-varying
data [20, 7], and analysis of the importance of multifield and time-
varying data [6, 21]. These solutions are useful for coping with the
massive growth of data in both scale and complexity. This paper
leverages the concept of transfer entropy to study the influences
among multiple variables.

Multivariate Data Analysis and Visualization Multivariate
data analysis and visualization has gained considerable attention
in recent years. Among them, one stream of research focused on
query-driven visualization such as compound range queries [17]
and fuzzy queries using textual pattern matching [4]. Another re-
search stream focused on correlation study such as point-wise cor-
relation coefficients [13, 10, 12, 4, 18] and gradient similarity mea-
sure [13]. Although correlation is often used to study the relation-
ships between variables, it does not imply (or suggest) causation. In
visualization, little work has been done to identify the causal rela-
tionships among multivariate data.

Multivariate data pose a unique challenge for visualization due
to the large number of variables considered and the amount of data
presented to the user simultaneously. Woodring and Shen [23] used
boolean set operations to select voxels of interest and combine dif-
ferent variables together into a single volume for visualization. Sis-
neros et al. [16] presented a point classification algorithm that fuses
key aspects of multiple data attributes into a single image for con-
current viewing. Other researchers explored the use of information
visualization techniques to show variable relations. For example,
Sauber et al. [13] developed multifield-graph for a complete visual-
ization of scalar fields and their correlations. Qu et al. [12] created a
weighted complete graph to reveal the overall correlation of all data
attributes. Blaas et al. [1] used scatterplots in the high-dimensional
multifield feature space and allowed arbitrary projection. Jänicke
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(a) (b) (c) (d)

Figure 1: (a) and (b) illustrate the relations of entropies HX , HY , mutual information MXY , conditional entropies HX|Y , HY |X , and transfer
entropy TY →X using the Venn diagram. (c) illustrates the simplified calculation of TY →X where each step considers one more term in Equation
3 and the red number indicates how many times each portion gets counted. (d) shows a generalization of transfer entropy to three variables.

et al. [5] transformed multivariate data from their high-dimensional
attribute space to a 2D attribute cloud for brushing and linking.

Visualization of Causal Relations There are only a few research
efforts in causality visualization. Simple visualization includes the
use of a node-link diagram such as Hasse diagrams to offer intuitive
viewing of causal relations. Ware et al. [22] introduced the visual
causal vector, an animation-enhanced metaphor that represents the
perceptual impression of a causal relation between two graphical
entities. Elmqvist and Tsigas [3] presented growing polygons for
visualizing causal relations and information flow in a complex sys-
tem with many nodes and relations. In scientific visualization, Sil-
ver et al. [15] juxtaposed 4D space-time vector fields where one
contains a source variable and the other the response field to high-
light the topological relationship between the two fields. In this
work, we utilize time plot and circular graph to show pair-wise in-
formation flows and present different techniques to visualize causal
relationships for volumetric and particle data sets.

3 MEASURING INFORMATION TRANSFER

3.1 Transfer Entropy

To identify causal dependency or information transfer, we need to
incorporate dynamical structure by investigating transition proba-
bilities instead of static probabilities. Let us consider a system that
can be approximated by a stationary Markov process of order k, that
is, the conditional probability X in state xn+1 is independent of the
state xn−k: p(xn+1|xn, . . . , xn−k) = p(xn+1|xn, . . . , xn−k+1).

Let us denote x
(k)
n = (xn, . . . , xn−k+1) for words of length k,

where the subscript denotes the state (or time step) and the super-
script denotes the length of states (or time steps) considered. Ac-
cording to Schreiber [14], the transfer entropy between two vari-
ables X and Y is defined as follows

TY →X =
X

p(xn+1, x
(k)
n , y

(l)
n ) log

p(xn+1|x
(k)
n , y

(l)
n )

p(xn+1|x
(k)
n )

, (1)

where TY →X denotes the influence of Y on X . The most natural
choices for l are l = k (the same number of time steps is considered
for both X and Y ) or l = 1 (only one time step for Y is considered
at a time). Usually, the latter is preferable due to a lower computa-
tional cost. An illustration of transfer entropy and related terms is
shown in Figure 1 (a) and (b).

Transfer entropy can be treated as a version of mutual informa-
tion operating on conditional probabilities. It shares some of the de-
sired properties of mutual information but takes the dynamics of in-
formation transport into account. As shown in Figure 1 (b), TY →X

can be regarded as the information about future observations xn+1

gained from past observations of x
(k)
n and y

(l)
n minus the informa-

tion about future observations xn+1 gained from past observations

of x
(k)
n only. Thus, it is the information flow from Y to X . TY →X

is explicitly nonsymmetric under the exchange of X and Y (a sim-
ilar expression exists for TX→Y ) and can thus be used to detect

the directed exchange of information between the two time series.
Transfer entropy has been used to study information flow among
time series data in areas such as spatiotemporal systems [14], phys-
iological studies [14, 11], financial markets [9], and sensorimotor
networks [8]. We utilize transfer entropy to analyze and visualize
information flow in scientific data sets.

3.2 Relative Transfer Entropy

As we can see from Figure 1 (b), transfer entropy TY →X shows the
amount of influence of Y on X . We point out that in other cases,
it is also meaningful to consider the rate of influence by taking
into account the amount of information in X and Y , i.e., Hxn+1

and H
(l)
yn . As such, we define the relative transfer entropy as a

normalized version of transfer entropy, i.e.,

RTY →X =
TY →X

q

Hxn+1
H

(l)
yn

. (2)

If Hxn+1
H

(l)
yn = 0, then TY →X = 0 and we define RTY →X = 0.

RTX→Y can be defined similarly.

3.3 Multiple Variables and Multiple Time Steps

The original definition for transfer entropy expressed in Equation 1
only operates on two variables X and Y . We can generalize this
to simultaneously handle multiple variables by replacing a single
variable with a set of variables. In Figure 1 (d), we show an example
where we consider the transfer entropy from variable Z to the set
of two variables X and Y . To compute this, we use joint entropies

Hxn+1,yn+1
and H

(k)
xn,yn to replace entropies Hxn+1

and H
(k)
xn ,

respectively, shown in Figure 1 (b). This treatment can be extended
to study the general case of information transfer between a set of s
variables and another set of r variables.

Note that Equation 1 already gives a general form in terms of
time steps included. As such, the most general form of transfer
entropy can deal with a set of s variables over k time steps and
another set of r variables over l time steps. The central issue that
prevents us from computing this generalized transfer entropy is the
huge cost involved. As we shall see in Section 3.4, adding one
more variable or one more time step would increase the dimension
of joint histograms computed. For instance in Figure 1, if k = 1
and l = 1, we need 3D joint histograms for (b) but 5D histograms
for (d). If we use the same number of bins for each dimension,
the computation and storage costs for joint histograms will increase
dramatically. Solutions that can efficiently evaluate the histogram
for a high-dimensional data is the key to break the “curse of dimen-
sionality”, which we leave as our future work.

3.4 Simplified Calculation

For fast calculation of transfer entropy, we simplify Equation 1 by
letting k = 1 and l = 1 and rewrite transfer entropy in the more
convenient, albeit less intuitive form (refer to Figure 1 (c))

TY →X = Hxt,xt+1
+ Hxt,yt′

− Hxt − Hxt,xt+1,yt′
, (3)
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where t = t′ + ∆t and ∆t (≥ 0) is some lag time. If ∆t >
0, we imply that past time steps of Y influence current or future
time steps of X . Hxt,xt+1

, Hxt,yt′
, and Hxt,xt+1,yt′

are the joint
entropies. Similar to Equation 3, we have

TX→Y = Hy
t′

,y
t′+1

+ Hy
t′

,xt − Hy
t′
− Hy

t′
,y

t′+1
,xt . (4)

For discrete data, entropy computation usually takes the his-
togram of data and uses the normalized heights as the probabilities.
Note that in Equations 3 and 4, we only compute entropies and joint
entropies. As such, we only need to compute joint histograms for
(xt, xt+1, yt′) and (yt′ , yt′+1, xt). These 3D histograms are used
to compute joint entropies Hxt,xt+1,yt′

and Hyt′ ,yt′+1
,xt . Other

joint entropies (entropies) in Equations 3 and 4 can be computed by
projecting the 3D histograms to 2D (1D) accordingly.

3.5 Calculation for Volumetric and Particle Data

For volumetric data sets, we take the Eulerian view and observe the
information flow at fixed regions in the space through which the
time-dependent phenomena evolve. We take a block-wise approach
and partition the data into spatial blocks. Then, we evaluate the
influence relation between any pair of variables within each indi-
vidual data block. The computation of transfer entropy takes a data
block as input and computes its joint histograms for (xt, xt+1, yt′)
and (yt′ , yt′+1, xt) in Equations 3 and 4. Finally, we compute the
transfer entropy of a particular time step as the summation of the
transfer entropy values of all data blocks in the volume.

For particle data sets, we take the Lagrangian view and follow
particle motions through space and time. We partition all particles
at a time step into different groups according to certain criteria (a
domain-specific partitioning example is presented in Section 5.2).
Since particles can be traced forward and backward through time
via their unique IDs, it is straightforward to build connections be-
tween a region of interest (particles within that region or group are
selected) and its correspondence over time (identify where those
particles have been drifted to). We thus compute the transfer en-
tropy for each particle group where the particle correspondence in
the joint histogram computation follows its ID.

When we consider information transfer in a block-wise or group-
wise manner, we implicitly assume that data outside the block or
group do not have influence on the block or group being investi-
gated. This assumption is not entirely correct. For example, some
of the data quantities could be derivatives, which are dependent on
the values of neighboring blocks. Nevertheless, we make this as-
sumption to simplify our transfer entropy calculation.

Two parameters affect the efficiency and effectiveness of joint
histogram calculation. The first parameter is the block size (for
volumetric data) or the number of particle in each group (for parti-
cle data). For a meaningful evaluation of histogram distribution, the
number of voxels or particles considered must be at least an order
of magnitude higher than the number histogram bins chosen. The
block size also affects the efficiency of computation. Using smaller
blocks will take more time to compute the transfer entropy for the
whole volume. We should in general choose a block size that is in
proportion to the volume size. As such, a good practice is to deter-
mine the desired number of blocks we want (typically in the order of
hundreds or thousands), and then determine the proper block size.
The second parameter is the number of histogram bins. Normally,
using 256 bins that uniformly sample the 1D histogram is a good
choice. In Section 6.1, we will provide the results with different
parameter values chosen and discuss their impacts on computation
efficiency and accuracy.

4 VISUALIZING INFORMATION TRANSFER

We present two different ways to visualize information transfer.
One way is to utilize information visualization techniques to dis-
play information transfer in a separate view. Another way is to

Figure 2: The mapping of transfer entropies to two vertices (corre-
sponding to variables Vi and Vj ) and the edge in our circular graph.

directly visualize information transfer in the spatial view. We use
time plot and circular graph for overview of influence for all pairs
of variables. For visualization with the spatial view, we adjust the
color saturation and opacity of different variables to indicate in-
fluence relations in volumetric data blocks. For particle data, we
present three different visual representations, namely, metaball, el-
lipse, and smoke, to simultaneously visualize the influences among
different groups of particles.

4.1 Time Plot and Circular Graph

As shown in Figure 7, a straightforward way to show information
transfer among variables is to draw time plots with the two axes
for time step and transfer entropy respectively. Although time plots
clearly display variable influence over time, it is difficult to observe
the relation of one variable with all other variables in this view. Al-
ternatively, we also display information transfer using the circular
graph. As illustrated in Figure 2, we draw a circle at vertex vi to
denote the total outgoing and incoming influence corresponding to
variable Vi at a certain time step. The size of circle shows the total
amount of influence with green/orange for outgoing/incoming in-
fluence. An edge eij indicates the influence between variables Vi

and Vj . We map transfer entropy TVi→Vj
to edge width at vertex vi

and TVj→Vi
to vj . Green/orange indicates more outgoing/incoming

influence. The color saturation is adjusted according to the abso-
lute difference between the two transfer entropies so that pairs of
variables with larger difference would stand out. Edge width and
color in between are linearly interpolated. To reduce the occlusion
among edges, we first sort all edges in the decreasing order of their
average thickness and then draw the edges accordingly. As shown
in Figure 3, such circular graphs are intuitive for inferring the re-
lation among all pair of variables, as a group and as an individual.
Since every time step corresponds to such a graph, we can produce
a time-varying graph showing information transfer.

4.2 Visualization for Volumetric Data

To visualize information transfer for volume data sets, we modu-
late the color saturation and opacity of variables for each data block
with its normalized transfer entropy value. Given two variables Vi

and Vj , we use TVi→Vj
to modulate Vi and TVj→Vi

to modulate
Vj . As shown in Figure 4, data blocks of higher amount of influ-
ence would be highlighted as data blocks of lower amount of influ-
ence are attenuated. In this way, the user is able to intuitively infer
information transfer between variables at different spatial regions
over the time series when all time steps are animated.

4.3 Visualization for Particle Data

Ellipse and Smoke Representations For particle data sets, infor-
mation transfer can be mapped to visual properties, such as color,
opacity, size, or shape, of each individual particle in a group. In
this case, each particle in the group undergoes the same change. We
perturb the conventional disk representation (i.e., the view-aligned
sphere) of particle to an ellipse representation. The ellipse’s color
maps to influence relation while the lengths of its two axes indicate
their respective transfer entropy values. As shown in Figure 6, given
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Hurricane Isabel, 40GB in total Ionization Front Instability, 220GB in total Lifted-Flame Combustion, 201GB in total
(x, y, z, v, t) = (500, 500, 100, 9, 48) (x, y, z, v, t) = (600, 248, 248, 8, 200) (n, v, t) = (30M, 6, 300)

variable description variable description variable description

QC cloud moisture mixing ratio H H mass abundance YOH hydroxyl radical mass fraction
QI cloud ice mixing ratio H+ H+ mass abundance YCH2O formaldehyde mass fraction
QG graupel mixing ratio He He mass abundance YHO2 hydroperoxyl mass fraction
QR rain mixing ratio He+ He+ mass abundance Z nitrogen-based mixture fraction
QS snow mixing ratio He++ He++ mass abundance T temperature
QV water vapor mixing ratio H2 H2 mass abundance G mixture fraction gradient
PR pressure PD total particle density
TC temperature GT gas temperature
WS wind speed (magnitude)

Table 1: The three time-varying multivariate data sets and their variables tested. x, y, z, and t are for the three spatial and the temporal
dimensions, respectively. v is the number of variables. n is the number of particles. For the combustion data set, we investigated a subset of
particles (around 109K, total 747MB) that is believed to participate in flame stabilization.

a pair of variables (Vi, Vj), we use orange for TVi→Vj
> TVj→Vi

,
white for TVi→Vj

= TVj→Vi
, and blue for TVi→Vj

< TVj→Vi
.

The particles are rendered according to the visibility order. This
ellipse representation, however, would lead to visual clutter if the
number of particles drawn is fairly large. Therefore, as an option,
we also use the smoke representation to reduce the clutter by de-
creasing the radii and opacities of particles. The color mapping
stays the same. The influences among variables in different spatial
regions will be more easily discernible.

Metaball Representation Another way of visualizing informa-
tion transfer is to treat the group of particles as an entirety. Instead
of adjusting the properties of individual particles, we construct two
transparent layers which enclose all particles in the group. The two
layers have distinct colors indicating directional transfer entropies
and their sizes and enclosure relation show the corresponding in-
fluences between the two variables. To obtain this double-layer ef-
fect, one solution is to define the isosurfaces using two different
thresholds in the same density field. However, this solution does
not guarantee that the two surfaces agree with each other when the
difference between the isovalues of two surfaces is large. Alterna-
tively, we construct two density fields using two different radii for
the same group of particles, and define the isosurfaces in the two
fields using the same threshold. As shown in Figure 8, this treat-
ment gives us desirable results.

5 RESULTS

To demonstrate our approach, we investigated three time-varying
multivariate simulation data sets and studied variable causal rela-
tionships. The first two data sets are volumetric: Hurricane Isabel
data set from climate research and ionization front instability data
set from astronomy research. They were made available through
IEEE Visualization 2004 and 2008 Contests, respectively. The third
one is a lifted-flame particle data set from combustion research. The
variables used for the three data sets are listed in Table 1.

5.1 Hurricane Isabel and Ionization Front Instability

The Hurricane Isabel simulation data set was courtesy of NCAR
and NSF. We set the block size to 20 × 20 × 20 and the histogram
size for each variable to 256. We used Equations 3 and 4 with
∆t = 0 and calculated transfer entropy for every pair of variables
and every pair of neighboring time steps.

In Figure 4, we show the visualization of information transfer
among a pair of variables: QI and WS. The rendering of four se-
lected time steps is displayed where we modulated color saturation
and opacity for the variables according to their transfer entropy val-
ues. We can observe strong couplings of influence for the pair of
variables in space and time. The regions that preserve original col-
ors and opacities highlight data blocks with strong influence, which
are around the hurricane’s eye. The regions with attenuated colors

and opacities indicate less inter-influence. Our visualization thus
displays strong influence regions as the focus while keeping weak
influence regions as the context. Regions with little influence are
not displayed. The spatio-temporal coherence of the data leads to
meaningful visualization as we observe information transfer across
multiple continuous spatial data blocks over time. If we examine
closely, we can also observe the change of influence over time.
In early time steps, QI influences WS more in general as we can
see more saturated red regions in the leftmost image. In later time
steps, the influence of QI over WS drops as we can see less satu-
rated red regions in the rightmost image. Sine the transfer entropy
is calculated in the block-wise manner, we can see the variation of
inter-influence among individual blocks as well.

Scientists at LANL and SDSC performed three-dimensional ra-
diation hydrodynamical calculations of ionization front instabilities
to study a variety of phenomena in interstellar medium such as the
formation of stars. To compute the transfer entropy, we set the block
size to 30 × 31 × 31 and the histogram size for each variable to
256. Figure 5 shows the visualization of information transfer for
the He+ and H2 pair. We can observe that strong influence regions
are around the plane on the front.

5.2 Lifted-Flame Combustion

The lifted-flame combustion particle data set was provided by SNL
scientists. The combustion scientists employed a high-order finite
difference algorithm to solve the fully compressible Navier-Stokes
and chemically reacting species equations in their simulations and
produced large-scale time-varying multivariate volumetric and par-
ticle data sets. One of the issues in their investigation is to identify
the causal relationships among dozens of variables. In this experi-
ment, we specifically focused on the particle data set. The scientists
provided us with guidance for particle selection, partition, and trac-
ing. The causal relationships discovered in this study have been
confirmed by the scientists.

The spatial extent of the combustion data set is (2025, 1600,
400). We first performed a range query to retrieve particles of in-
terest with x ∈ (720, 740) and y ∈ (533, 693) ∪ (906, 1066) at
time step 155. The particles were selected as those passing through
a slab in the axial direction x, in the transverse direction y, and y
spanning the transition region which includes particles from both
the hot air coflow and the interior of the fast moving fuel jet. The
scientists conjectured that these particles were likely to participate
in flame stabilization. A total of 109,483 particles were selected.
We traced selected particles forward and backward over the 300
time steps. After that, the selected particles were partitioned based
on the spatial range along the y axis at time step 150. The resulting
30 groups have a nearly even number of particles in each group.

In Figure 6, we show the visualization of information transfer
among all groups of particles for a pair of variables: YOH and T.
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(a) (b) (c) (d)
Figure 3: Using circular graph to show information transfer. (a) hurricane, (b) ionization, (c) and (d) combustion. (a)-(c) show transfer entropy
while (d) shows relative transfer entropy. Each graph shows the influence among all pairs of variables at the selected time step. Our graphs
can answer questions such as which variable has the most total outgoing and incoming influence (find the largest circle), which variable’s total
outgoing influence is more than its total incoming influence and by how much (read green and orange portions of the circles), and for a pair of
variables, which variable influences the other more and by how much (compare edge color and width difference at both ends).

Figure 4: Visualization of information transfer on selected time steps of the hurricane data set. The QI and WS pair is shown. Regions that
preserve original colors and opacities indicate a higher amount of influence. Comparisons of normal rendering and modulated rendering are
given in the first and last images. Strong influence regions are around the hurricane’s eye.

The rendering of four selected time steps is displayed with the el-
lipse representation. The rightmost image shows the rendering with
the smoke representation. For ellipse rendering, the influence rela-
tion can be read from the colors of the particles. The lengths of the
two axes of a particle indicate respective transfer entropies. That
is, the size of a particle shows the magnitude of influence. Ellipse
rendering is good at revealing influences around local regions al-
though the inner particles could not be observed due to occlusion.
Smoke rendering yields a less cluttered view and may serve better
as an overview. However, the rendering could appear blurry.

Figure 7 shows transfer entropies between five pairs of variables
calculated on the particles falling into the interior group with y ∈
[690.0, 910.0). We can see strong couplings for pairs (T, G) and
(YOH, T) and read the inter-influence among these five pairs of
variables over time. The combustion scientists have confirmed that
some of the major causal relationships are consistent with the es-
tablished consensus in the combustion community, while the study
also sheds new light on active areas of research. The relationship
between mixing and combustion has long been a subject of inquiry:
the scalar dissipation rate, χ ≡ 2D(∇Z)2, where Z is the mix-
ture fraction and D is the mixture fraction diffusivity, is a key pa-
rameter in many models for turbulent combustion. This scalar dis-
sipation rate is closely related to the quantity G considered here
(χ = 2D(G)). For a non-premixed flame, as in the latter portion
of the domain (t > 150), the qualitative relationship is well known:
the rate of reaction adjusts to balance the rate of mixing, and the de-
pendent scalars (T, YOH, etc.), will vary as the quasi-steady balance
adjusts to changes in χ. In the early portion of the domain, where an
ignition/stabilization process is occurring, the understanding is less
clear. Some qualitative observations have been made that very high

mixing rates hinder ignition, while the thermal expansion from fine
flame fronts can dissipate the gradients and reduce the mixing rate.
The findings of this analysis in the pre-stabilization region are of
use to scientists seeking better understand of the coupling between
mixing and chemistry in this regime.

Snapshots of three selected time steps with the double-layer
metaball rendering are shown in Figure 8. The influences between
the pair of variables YOH and T are illustrated while the color map-
ping of particles is based on a third variable Z. Note that when
TY OH→T ≈ TT→Y OH , the two metaballs have very similar radii
and they are perceived as a grey metaball when blended together.

6 DISCUSSION

6.1 Parameter Choices

The top row of Figure 9 shows the side-by-side comparison of in-
formation transfer for the pair of variables QI and WS with three
different block sizes used. We used the same transfer function and
the same set of parameters to adjust the color and opacity for the
three block sizes. As we can see, using a smaller block size leads
to finer results. Note that the right image with the smallest block
size shows the center of hurricane better where the inter-influence
of the pair of variables is fairly weak, while the left image with the
largest block size essentially averages the inter-influence within a
very large region.

We point out that information-theoretic measures including
transfer entropy require a large number of sample points as input.
When much fewer samples are used, the estimation of the probabil-
ities would be dominated by fluctuations. This is not a problem for
analyzing volumetric and particle data sets as long as the region of
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Figure 5: Visualization of information transfer on selected time steps of the ionization front instability data set. The He+ and H2 pair is shown.
Strong influence regions are around the plane on the front moving upward.

Figure 6: Visualization of information transfer on selected time steps for all 30 groups of the combustion particle data set. The YOH and T pair
is shown and time steps are 80, 150, 220, 290, and 290 from left to right. The rightmost image shows the smoke representation while the rest
show the ellipse representation. The influences between YOH and T are nearly equal in early time steps. After that, different groups of particles
exhibit different inter-influence relations.

interest or the group of particles we select contains enough samples
(e.g., at least in the order of thousands) for stable calculation. The
bottom row of Figure 9 shows the side-by-side comparison of in-
formation transfer for the pair of variables YCH2O and YOH with
three different histogram bins used. As we can see, using a larger
bin size leads to more accurate results. The overall influence pat-
tern, however, is very similar. Normally, using 256 bins for his-
togram suffices. If the value distribution of the data set is highly
skewed, i.e., a large portion of the data values falls into a narrow
range of the bins, nonuniform histograms should be used instead.

6.2 Timing

Table 2 lists the timing breakdown of transfer entropy calculation
for a pair of variables per time step. The calculation was performed
on an Intel Xeon 2.0GHz CPU. The numbers of groups (i.e., blocks)
for the hurricane and ionization data sets are derived from the vol-
ume size and the block size used. For the hurricane data set, the
block sizes are 50 × 50 × 20, 20 × 20 × 20, and 10 × 10 × 20 re-
spectively from top to bottom. For the ionization data set, the block
sizes are 30×31×31, 15×31×31, and 10×31×31 respectively
from top to bottom. For a pair of variables, we read the time steps
sequentially and only kept neighboring two time steps required for
the computation in the memory. Every time step was read only once
and the average data read per time step was calculated accordingly.
The number of groups and the size of joint histograms largely de-
termine the time required for joint histogram and transfer entropy

computation. The computation time increases as we decrease the
block size or increase the number of histogram bins used. On aver-
age, it took several minutes to process hundreds of megabytes (for
a pair of variables per time step) and tens of hours to process hun-
dreds of gigabytes (for all pairs of variables and all time steps).

The dominating time for transfer entropy calculation is due to
the large numbers of log operations involved. Clearly, the com-
putation is CPU bound. Since the calculation of transfer entropy
is performed independently for every time step and for every data
group, parallel preprocessing on a PC cluster or GPU implementa-
tion can speed up the computation. Another way of improving the
performance is to replace the log function in the standard C/C++
library with direct table lookup or some fast approximation func-
tion. Moreover, as we discuss in Section 3.3, the increase of num-
ber of variables or time steps considered in the transfer entropy cal-
culation has a significant impact on the timing performance. We
will investigate efficient solutions for estimating joint histograms
of high-dimensional data in the future.

6.3 Visualization Techniques

We use a separate view to visualize information transfer for all pairs
of variables using time plot and circular graph. Time plots provide
a good overview of influence changes over time in a single view,
which is a familiar visualization to most users. Circular graphs
allow us to easily capture variable relations, which is difficult to
track with time plots. The time-varying graph shows influence over
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Figure 7: Using time plot to show transfer entropies between five pairs of variables calculated on the particles falling into the interior group.

Figure 8: Side-by-side comparison of the three particle groups at three selected time steps: 70 (top-left), 170 (bottom-left), and 270 (right). The
magnitudes of influence and their relations can be read from the sizes of the two metaballs.

# groups # bins Read Write I/O JH TE

hurricane

500 256 194MB 5.5MB 1.2s 0.4s 30s
3125 256 194MB 10.2MB 1.4s 0.3s 190s
12500 256 194MB 17.9MB 1.6s 0.3s 852s

ionization

1280 256 282MB 4.3MB 3.1s 0.7s 76s
2560 256 282MB 5.2MB 3.4s 0.8s 158s
3840 256 282MB 5.8MB 3.7s 0.6s 218s

combustion

30 128 858KB 117KB 4ms 0.3s 0.2s
30 256 858KB 206KB 5ms 0.3s 1.8s
30 512 858KB 327KB 8ms 0.3s 13s

Table 2: The average timing for calculating transfer entropies for a
pair of variables per time step. The output is joint histograms and
transfer entropy values. The timing consists of reading and writing
data (I/O), computing joint histograms (JH), and calculating transfer
entropies (TE).

time as an animation. Both of these information visualization tech-
niques, however, do not give the spatial context. This is comple-
mented by integrating information flow directly into data rendering.
The obvious advantage is that inter-influences can now be observed
with respect to different spatial regions via visual properties such
as color, opacity, or size. The downside is that exact transfer en-
tropy values are not readable and we have to only show one pair of
variables at a time. For particle rendering using metaball, showing
multiple data groups would easily lead to difficulty in visual inter-
pretation. This is generally not a problem with volume data block

rendering and particle rendering using ellipse or smoke.

Accurately communicating the spatial nature of the relationships
is a significant challenge both in terms of mental challenges (grasp-
ing the nature of the relationship and the implications) and the me-
chanics (occlusion, high-dimensional information). In both of these
respects, the domain scientists found it useful to have a variety
of representations available insofar as when their perceived under-
standing from different representations was inconsistent, they could
actively correct their understanding. The scientists who are co-
authors of our work found in particular that the ellipse and smoke
representation were complimentary—taken together they alleviated
the trade off between the occlusion level and the detail of informa-
tion shown. The metaball visualization provided an overview of the
relationships and the nature of the parcel of particle grouping to put
the time series in context.

6.4 Limitations

Although we outline the generalization of transfer entropy to more
than two variables, we need further research to address the funda-
mental challenge of dimension increase on both computation (time
and storage) and visualization (information mapping and interpre-
tation). In reality, studying more than two variables simultaneously
is needed. For instance, in the combustion data set, it is known that
there is a strong correlation between T, G, and Z, and it would be
illuminating to explore the influence of T on G while conditioning
both T and G on Z.

We use transfer entropy to measure information flow because it
makes minimal assumptions about the dynamics of the time series
and their coupling, captures both linear and nonlinear effects, and
is numerically stable even for a reasonably small sample size (e.g.,
1,000 samples). Transfer entropy is able to distinguish between
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Figure 9: Parameter changes on information transfer results. Top
row, left to right: QI and WS with block sizes of 50×50×20, 20×20×

20, and 10× 10× 20, respectively. Bottom row, left to right: YOH and
YCH2O with histogram bin sizes of 128, 256, and 512, respectively.
Although more refined/accurate results can be seen with a smaller
block size/a larger bin size, the overall influence pattern is similar.

different stochastic time series where a pure visual investigation is
difficult. However, care should be taken when interpreting causal
relationships using transfer entropy. Without considering the non-
linear, transient, and noisy quality of the data, inferring “causal de-
pendency” from mere time series data could be problematic. More-
over, the uncertainty introduced by the potential existence of unob-
served variables or hidden common sources may be overlooked. In
those cases, we tend to simply assume that no other factors have
influence on the two systems or variables under investigation. As
such, transfer entropy provides only one way of suggesting causa-
tion, not an evidence of causation. It is important to keep domain
scientists in the loop so that they can make the final judgment.

7 CONCLUSIONS

Techniques for studying the causal relationships among multiple
variables in time-varying data are in growing demand. Our tech-
nique is unique because it is based on measuring and visualizing
information flow in the data. In a quantitative manner, we derive in-
formation transfer using the concept of transfer entropy from infor-
mation theory. We show different ways to intuitively visualize in-
formation transfer for volumetric and particle data sets. Our causal
analysis and visualization results provide valuable cues for scien-
tists to understand complex time-varying multivariate data. Feed-
back from the scientists on this new approach is positive, suggesting
it as a promising direction for studying important aspects of causal
connections in the data.
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