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Abstract 

We present an application-driven approach to compressing large-scale time-varying volume data. Our 
method identifies a reference feature to partition the data into space-time blocks, which are compressed with 
various precisions depending on their association to the feature. Runtime decompression is performed with 
bit-wise texture packing and deferred filtering. We show that our method achieves high compression rates and 
interactive rendering while preserving fine details surrounding regions of interest. Such an application-driven 
approach points us to a promising direction for coping with the large data problem facing computational 
scientists. 
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Introduction 

Leveraging the power of high-performance supercomputers and the advancement of numerical algorithms, 
scientists are able to perform three-dimensional direct numerical simulations of many complex phenomena in 
unprecedented details, leading to new scientific discoveries. Nowadays, a typical scientific simulation may 
produce data that contain several hundred million voxels, hundreds of time steps, and tens of variables. The 
vast amounts of data generated from simulations post a challenge to data visualization. Even though the past 
several years witnessed the great advancement of commodity graphics hardware, the size of the video memory 
in the current generation of graphics hardware accelerators is still limited to several hundred megabytes. 
Therefore, transferring data from the disk to the main memory and from the main memory to the video 
memory remains a key performance bottleneck for large data visualization. 

To address this issue, different approaches have been proposed to effectively reduce the data sent to the 
graphics pipeline. These include different multiresolution data representations and a wide variety of data 
reduction techniques, such as quantization and transform-based compression. Many existing algorithms, 
however, do not explicitly take any domain knowledge or the visualization tasks into account for data 
representation and reduction. Although these algorithms are general and easy to use for different data sets, they 
often suffer from the fact that they are not tightly coupled with specific visualization needs. Therefore, they are 
not an optimal solution in terms of reduction efficiency and visualization quality tradeoff. 

We advocate an application-driven approach to compressing and rendering large-scale time-varying 
scientific simulation data. We notice that quite often scientists have certain domain knowledge and specific 
visualization tasks in their minds. In the context of time-varying, multivariate volume data visualization, such 
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knowledge could be the salient isosurface of interest for some variable and the visualization task could be 
observing spatio-temporal relationships among other variables in the neighborhood of that isosurface. We have 
attempted to directly incorporate such knowledge and tasks into the whole data reduction, compression, and 
rendering process. Experimental results on two large-scale time-varying, multivariate scientific data sets show 
that: 

 our approach is applicable to visualization of large-scale time-varying data where regions of importance 
can be identified; 

 our method achieves high compression rates (around 20x) on disk by taking into account features of 
interest and spatio-temporal coherence in the data; 

 our GPU-based bit-wise decompression and rendering solution proves effective for performance speedup 
and visualization quality tradeoff. 
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Compression Methods for Time-Varying Volume Data 

There exists a wealth of research in volume data compression and rendering. Here, we only review 
related work on time-varying data visualization. Shen and Johnson1 proposed differential volume rendering 
that utilizes temporal coherence between consecutive time steps to compress the data and accelerate 
volume animation. An approach dealing with large-scale time-varying fields was described by Shen et al.2. 
The data structure, called the time space partitioning (TSP) tree, captures both the spatial and temporal 
coherence of the data. The TSP tree uses an octree for spatial partitioning and a binary tree for storing 
temporal information at each octree node. Both these approaches treat the spatial and temporal dimension 
separately. Alternatively, temporal and spatial dimensions can also be treated uniformly. For example, 
Wilhelms and Van Gelder3 encoded time-varying data using a multidimensional tree (i.e., a 4D tree). 

Other research efforts in time-varying data visualization focused on transform-based compression and 
rendering. Guthe and Straßer4 introduced an algorithm that uses the wavelet transform to encode each 
spatial volume, and then applies a motion compensation strategy to match the volume blocks in adjacent 
time steps. Lum et al.5 proposed to use the discrete cosine transform (DCT) to encode individual voxels 
along the time dimension, and employed a color table animation technique to render the volumes using 
texture hardware. Sohn et al.6 described a compression scheme where the wavelet transform is used to 
create intra-coded volumes and difference encoding is applied to compress the time sequence. Schneider 
and Westermann7 presented a hierarchical vector quantization solution to compress time-varying 
volumetric data where both decompression and rendering are performed at runtime in graphics hardware. 
Fout et al.8 also used vector quantization for time-varying, multivariate volume data reduction in which 
correlations among related variables are exploited. 

Research work closely related to ours includes that of Ma et al.9 and Bajaj et al.10. Ma et al. used octree 
encoding and difference encoding for spatial and temporal domain compression, respectively. They also 
investigated how quantization might affect further compression, rendering optimization, and image results. 
Bajaj et al. classified voxels according to their importance in visualization, and assigned weights to them. 
To compress the volume data, they used the Haar wavelet transform and defined weight functions for 
wavelet coefficients based on voxels’ weights in the same spatial-frequency locations. 
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Turbulent Combustion Simulation 

Scientists at the Sandia National Laboratories perform terascale turbulent combustion simulation to 
study the basic phenomena of reacting flows in the combustion process1. The scientific interest is on the 
main flame structure, which corresponds to the stoichiometric mixture fraction (mixfrac) surface at 
isovalue = 0.2. In particular, scientists would like to observe how other variables distribute along the main 
flame surface since knowing this is critical for evaluating the efficiency of the combustion process. As a 
matter of fact, this kind of analytical visualization is quite common in scientific data analysis. Such domain 
knowledge should be translated into a reference feature to guide our application-driven data compression 
and rendering. The intuition is that the closer a voxel to the surface of interest, the higher precision we 
should preserve in order to ensure reconstruction quality. In other words, the precisions of data should vary 
according to their associations to the reference feature. 
 

 
 

Simultaneous rendering of two variables of the turbulent combustion simulation data set. The mixfrac surface (at the isovalue 

of 0.2) is rendered in white and the HO2 variable is depicted in a volume rendering style. 

 

References 
1. E. R. Hawkes, R. Sankaran, J. C. Sutherland, and J. H. Chen, “Direct Numerical Simulation of Turbulent 

Combustion: Fundamental Insights Towards Predictive Models,” Journal of Physics: Conference Series (Proc. DOE 

SciDAC 2005 Conf.), vol. 16, 2005, pp. 65–79. 

 
 
 
 
 
 
 
 

 5

Digital Object Indentifier 10.1109/MCG.2009.104              0272-1716/$26.00 © 2009 IEEE

This article has been accepted for publication in IEEE Computer Graphics and Applications but has not yet been fully edited.
Some content may change prior to final publication.



Algorithm overview 
Figure 1 illustrates the flowchart of our application-driven compression and rendering approach. The 

compression of a large time-varying data set is performed in a preprocessing stage. The compression starts 
with spatial partitioning and temporal grouping, which take into account domain knowledge provided by 
scientists. Accordingly, the time-varying data set is partitioned into space-time blocks and each space-time 
block is then compressed individually. At runtime, we first partially decode the compressed data blocks and 
perform bit padding in the CPU for texture loading. Then, we pack data blocks into graphics memory, perform 
deferred filtering to reconstruct and render the data in the GPU. The effectiveness of our solution lies in 
significant reduction in data transferring and efficient usage of limited graphics memory. This approach 
enables us to render large time-varying data sets interactively while preserving fine details around regions of 
interest for visual analysis. 
 

 
Figure 1 The flowchart of our application-driven compression and rendering approach. 

 
Compression 

Our compression scheme consists of three steps: first, we partition the volume data at each time step into a 
list of blocks with different sizes and importance values. The partition is based on the domain knowledge given 
by scientists. Then, we merge together spatial blocks at the same octree node along the time dimension to 
create space-time blocks. This allows us to utilize temporal coherence for compression. Finally, we encode 
each space-time data block in a bit-wise manner based on its data range and importance value. 

 
Spatial partitioning. We assume that scientists know regions of interest in their data. An example of the 

turbulent combustion simulation data is given in the sidebar. To measure the distances of voxels to the region 
of interest, we create a distance volume for each time step, where the distance value of each voxel is the 
shortest distance of the voxel to the surface of interest. We implement an algorithm similar to the fast marching 
method (FMM)1. The FMM is a technique for computing the arrival time of a front expanding in the normal 
direction at a set of grid points. Instead of calculating the actual surface, we start with a front containing voxels 
that intersect with the surface and push the front outwards gradually. The voxel-wise shortest distance is 
calculated for each voxel on the current front as an approximation of the distance to the actual surface. The 
distance volume can be temporarily kept in memory for compression purpose. Or, it itself can be compressed 
and saved for runtime use, such as distance-based rendering. 

Spatial partitioning works as follows: first, we build an octree skeleton where the block dimension for leaf 
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nodes is predefined. Then, we start from the root node in the octree and partition the volume: if the data 
associated with the octree node does not include any isosurface voxels (i.e., voxels that intersect with the 
surface) or the data block contains more than a certain percentage of isosurface voxels, then we stop and do not 
partition the block any further. Otherwise, we partition the data block into eight subblocks and perform this 
process recursively until the leaf nodes are reached. In this way, the entire volume at a time step is partitioned 
into blocks with different sizes. The corresponding octree nodes constitute a cut through the full octree 
skeleton, as illustrated in Figure 2. 

 

Figure 2 The volume data at a time step is partitioned into a list of blocks of different sizes. The corresponding octree nodes 

constitute a cut through the full octree skeleton. Two neighboring time steps i and j share a subset of data blocks (drawn in 

orange), which are merged into space-time blocks in temporal grouping. For illustration purpose, a binary tree instead of an 

octree is drawn in the figure. 

 
After spatial partitioning, we calculate the importance value of each data block which is proportional to one 

over the average distance values of all the voxels in that block. Our experiments show that regions closer to the 
surface of interest usually get finer partitioning. Therefore, rather than of using the conservative minimum 
distance value of all voxels in a data block for the importance value calculation, we use the average distance 
for a more aggressive compression afterwards. In our implementation, the importance value is further scaled 
by a ratio γ (<1.0) which keeps decreasing linearly as the average distance increases. Essentially, we use γ to 
steer the compression rate of space-time blocks. 
 

Temporal grouping. The result of spatial partitioning is a list of blocks at each time step with different sizes 
and importance values. In general, the volume data at consecutive time steps exhibit strong temporal coherence 
in local neighborhoods. This means that there is a large degree of node overlap in the block lists for 
neighboring time steps, as illustrated in Figure 2. For example, experimental results on the combustion data set 
show that the average percentage of node overlap for any two consecutive time steps is 90%. To utilize this 
temporal coherence for compression, for each octree node, we merge spatial blocks at consecutive time steps 
into space-time blocks. In the meanwhile, a maximum window size w is specified to control the tradeoff 
between compression rate and decompression speed. An example of temporal grouping on an octree node is 
sketched in Figure 3. In essence, temporal grouping consolidates data blocks at different time steps into 
space-time blocks, which become the basic units for the following encoding. 
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Figure 3 Temporal grouping merges spatial blocks in the same octree node at consecutive time steps into space-time blocks. In 

this example, the maximum window size is five. For each space-time block, we record the beginning and ending indices to the 

non-uniform quantization table and the offset index for each voxel in the block. In the figure, a time step (e.g., 5) which does not 

appear in the octree node stays on one of its ancestor or descendant nodes instead. 

 
Encoding. In the encoding step, we compress all the space-time blocks using non-uniform quantization 

together with difference and run-length encoding, resulting in a highly compacted data representation. We first 
create a histogram (with 2N entries) from the volume data at all time steps. Then, we build a non-uniform 
quantization table (with 2M entries, where M < N) from the histogram. Many solutions can be applied for 
histogram quantization. One solution2 we find simple yet effective is to partition the histogram into 2M parts 
with equal areas (i.e., accumulated bin counts), and pick the data value with the highest bin count (i.e., the 
most frequently occurring value) in each part as the quantized value. Furthermore, our quantization scheme 
also incorporates data-specific domain knowledge, such as ranges of interest, into quantization. This is to 
ensure that particular data ranges of interest are sufficiently sampled and represented in the quantization table. 

The encoding works as follows: for each space-time block, we use its minimum and maximum values to 
acquire the beginning and ending indices to the quantization table, as shown in Figure 3. For each voxel in the 
space-time block, recording the offset index (Io) with respect to the beginning index (Ib) is sufficient to look up 
the corresponding quantized value. Moreover, from the beginning and ending indices, we can calculate the 
number of bits (denoted as Bn) needed to encode the offset index for each voxel. The number of bits is further 
modulated by the average distance of the space-time block to the surface of interest. That is, the farther a block 
is away from the surface, the less number of bits we use to represent each voxel in the block. Adjusting 
relevant parameters such as the ratio γ gives different bit modulations for space-time blocks, thus different 
compression levels. Let the number of bits after distance modulation be BBm. We have Bm B ≤ Bn. The actual index 
I to the quantization table is: 

mn BB
ob III 2 .   (1) 

After the quantization step, each voxel in the same space-time block is represented with a few bits. The 
entire space-time block can be further compressed using a combination of difference and run-length encoding: 
first, we calculate the differences of index values for neighboring time steps in each space-time block; then, the 
difference values can be compressed using a run-length encoding scheme to exploit temporal coherence. 
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Texture Packing 

To effectively utilize limited graphics memory, Kraus and Ertl1 introduced adaptive texture maps with 
locally adaptive resolution. They demonstrated the usage of adaptive texture maps for packing data blocks 
of different resolutions. This technique allows us to represent fine details in images and volumes without 
the need to increase the resolution of the whole texture map. Binotto et al. 2 developed a similar approach 
for texture packing and compression of sparse time-varying volume data into 3D textures. During 
rendering, the decompression is performed by the fragment shader in the GPU. Li et al. 3 studied texture 
partitioning and packing for skipping empty space and accelerating slice-based volume rendering. In their 
approach, the entire volume is first partitioned into sub-volumes with similar properties. Sub-volumes are 
then packed and stitched together into larger textures for rendering. Akiba et al. 4 used data packing for 
time-varying data reduction. Data packing was achieved by discarding data blocks with values outside the 
data interval of interest and encoding the remaining data in a way so that they can be efficiently decoded in 
the GPU. 
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Decompression and rendering 
At runtime, the compressed time-varying data are first partially decompressed with difference and 

run-length decoding. As illustrated in Figure 1, this step is conducted in the CPU and the results are space-time 
blocks storing offset indices to the quantization table. To render a volume data at a time step, its corresponding 
data blocks are categorized, padded, and packed into texture memory. Finally, the volume is rendered with the 
deferred filtering scheme. 
 

Bit padding. Let us assume that the non-uniform quantization table has up to 1024 entries. Thus, the offset 
indices stored in a space-time block could range from 1 to 10 bits. Note that the number of bits to represent 
offset indices varies from block to block due to its data range and importance value. Since the standard 
OpenGL only defines a list of fixed formats of the pixel data for texture loading, we specifically pick the 
formats listed in Table 1. Clearly, this bit padding step involves space overhead and increases texture memory 
consumption. However, our experiments show that, the size increase due to bit padding is around 10%, which 
is quite affordable. 
 

original 

# bits 

padded 

# bits 

# elements 

in a texel 

overhead 

(%) 

data type 

for pixel data 

internal 

texture format 

1, 2 2 3 166.7, 33.3 GL_UNSIGNED_BYTE_3_3_2 GL_R3_G3_B2

3, 4 4 4 33.3, 0.0 GL_UNSIGNED_SHORT_4_4_4_4 GL_RGBA4 

5 5 3 6.67 GL_UNSIGNED_SHORT_5_5_5_1 GL_RGB5_A1 

6 , 7, 8 8 4 33.3, 14.3, 0.0 GL_UNSIGNED_INT_8_8_8_8 GL_RGBA8 

9, 10 10 3 18.5, 6.67 GL_UNSIGNED_INT_10_10_10_2 GL_RGB10_A2

Table 1 A space-time block is padded into one of the five different OpenGL pixel data formats for texture loading. 

 
Texture packing. After bit padding, data blocks are ready for texture packing into one of the five index 

textures (each for one of the internal texture formats). The purpose of texture packing is to reduce the number 
of textures used as well as the overall texture memory consumption. Texture packing can be performed as 
usual by treating each data block as a 3D array and by utilizing a greedy algorithm to optimize block 
arrangement. It is important to note that when deferred filtering is used in decompression, volume slices are 
being reconstructed voxel by voxel using the nearest neighbor interpolation rather than the trilinear 
interpolation. Therefore, in our scenario, texture packing does not have to be performed directly in 3D. As an 
alternative, we can treat each 3D data block as a 1D array and pack it into a 3D texture in the form of a cube. 
The dimension of the packed 3D texture is calculated as follows: 

                     (2) 
where ||A|| denotes the length of array A. This treatment greatly simplifies data packing and yields a better 
utilization of the texture memory. The only overhead is that we need to map (x, y, z) tuples to 1D indices for 
texture lookup. 
 

Deferred filtering and volume rendering. At runtime, each voxel in the volume is decompressed for 
rendering, where the trilinear interpolation is performed on a per-fragment basis. Note that a single voxel may 
be needed multiple times for neighboring sample reconstructions and gradient calculations. To avoid redundant 
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decompressions, we can cache a proxy geometry (i.e., a small subset of decompressed volume) first and then 
use the subset for conventional rendering. This deferred filtering technique3 separates decompression and 
interpolation into two passes so that a voxel needs to be decompressed only once no matter how many times it 
is needed for interpolation. In our case, the proxy geometry is multiple axis-aligned slices assembled from 
volume partitions, as illustrated in Figure 4. To render a single slab, we first decompress two consecutive slices 
of the volume in the first pass. In the second pass, we render sampling slices as usual using trilinearly 
interpolated samples. The volume is thus rendered slab by slab. The main advantage of using axis-aligned 
slices is that data blocks in the volume do not need to be padded to ensure seamless rendering along block 
boundaries. 
 

 
 

Figure 4 Texture lookups with the deferred filtering scheme. The address texture stores data blocks’ addresses to the packed index 

texture. The offset texture stores data blocks’ beginning indices and bit differences. The packed index texture stores voxels’ offset 

indices to the value texture, i.e., the non-uniform quantization table. Red dashed lines correspond to texture fetches and green 

solid lines correspond to texture lookups. To reconstruct a data block on a sampling slice, two texture lookups are needed on a per 

block basis; and two texture lookups are needed on a per voxel basis. 

 
Figure 4 sketches our texture lookups with the deferred filtering scheme. Axis-aligned slices that are most 

perpendicular to the viewing direction are dynamically reconstructed. The address of each data block to the 
packed index texture is stored in the address texture. For each data block on a sampling slice, we first look up 
its block address and the beginning index and bit difference (BBd = Bn – BmB ) in the address texture and offset 
texture, respectively. Then, for each voxel in the data block, we look up its offset index in the corresponding 
packed index texture using its voxel id and the block address. Finally, the voxel’s offset index and the block’s 
beginning index and bit difference are used to compute the actual index to the value texture (Equation 1). Note 
that depending on the number of bits used, a data block is classified into one of the five different texture 
formats (as listed in Table 1), and accordingly, texture lookup is performed on its corresponding packed index 
texture. 
 
Results 

We experimented with our algorithm on two floating-point data sets obtained from scientific simulations, as 
listed in Table 2. All tests were performed on a PC with a 2.33GHz Intel Xeon processor, 4GB main memory, 
and an nVidia GeForce 8800 GTX graphics card with 768MB video memory. 
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The combustion data set was provided by scientists at the Sandia National Laboratories. The combustion 
simulation ran thousands of time steps, and at each time step it output dozens of variables representing 
different chemical species. A subset of the data set we used here has four different variables. They are scalar 
dissipation rate (chi), stoichiometric mixture fraction (mixfrac), hydroperoxy radical (HO2), and hydroxyl 
radical (OH). The scientific interest for the combustion data is on the main flame structure, which corresponds 
to the mixfrac surface with isovalue = 0.2. 

The hurricane data set was obtained from the National Center for Atmospheric Research. The hurricane 
modeled in the simulation is Hurricane Isabel, a strong hurricane in the West Atlantic region during September 
2003. We picked four variables, namely, pressure (P), cloud moisture (CLOUD), total precipitation (PRECIP), 
and water vapor (QVAPOR) for our experiment. We focused on the region that has very low pressure (P ≈ 0), 
which corresponds to the center of the hurricane. 
 

data set combustion hurricane 

volume dimension (800, 686, 215) (500, 500, 100) 

# time steps 53 48 

# variables 4 4 

data size 92.3GB 17.9GB 

block dimension (64, 64, 32) (32, 32, 16) 

avg # node 278 275 

avg node overlap 90% 62% 

compressed size (after quantization) 15.12GB 3.6GB 

compressed size (after diff and RLE) 4.53GB 900MB 

data reduction on disk 20.57x 20.37x 

compression time 3hrs 40mins 

padding overhead 11% 12% 

tex reduction on GPU 82% 77% 

frame rate 12.5fps 28.5fps 

Table 2 The two data sets and their experimental results. We report the two-stage compression results, i.e., quantization and 

difference and run-length encoding (RLE) encoding, respectively. The frame rate is measured for rendering one variable with a 

5122 viewport and a sampling rate of 1.0. 
 

Compression. To construct the octree skeleton, we set the block dimension for leaf nodes as (64, 64, 32) 
and (32, 32, 16) for the combustion and hurricane data sets, respectively. For spatial partitioning, the threshold 
for the percentage of isosurface voxels in data blocks was chosen as 5% for both data sets. The decisions of 
block size for leaf nodes and the percentage threshold for isosurface voxels determine how many blocks are 
generated in spatial partitioning. 

With such configurations, the average number of octree nodes that have non-empty data blocks in a time 
step is around 270. On the other hand, the average percentages of node overlap for consecutive time steps are 
90% and 62% for the two data sets, respectively. This indicates a great degree of coherence for compression. 
We set the maximum window size w = 5 in temporal grouping. For both data sets, we chose N = 16 and M = 10 
for the non-uniform quantization, which allows the histogram to be sufficiently sampled in the 1024-entry 
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quantization table. 
It took us three hours to compress the 93.2GB combustion data set (on average, less than one minute per 

variable per time step, which is around 450MB). The compressed data size is 4.53GB so we achieved a 
compression rate of 20.57x. This means that on average each variable in the time sequence is compressed to 
about 1.6 bits per voxel. A comparable compression performance was achieved for the hurricane data set. 

In Figure 5, we show the signal-to-noise ratio (SNR) and the peak signal-to-noise ratio (PSNR) of the 
compressed hurricane data sets. Different curves in Figure 5 (a)-(c) correspond to different distance ranges 
from the surface of interest. It can be seen that generally the regions with smaller distances (i.e., closer to the 
surface) get higher SNRs or PSNRs (i.e., less distortion). At some time steps (such as time steps 1 to 8 for the 
SNR curves and time steps 40 to 48 for the PSNR curves), this observation does not always hold. This is 
because our compression scheme is block-wise instead of voxel-wise, and the average distance instead of the 
minimum distance is used to calculate a block’s importance value. With these settings, the choice of block size 
also matters since all voxels in a block use the same encoding scheme. On the other hand, Figure 5 shows that 
the QVAPOR variable has higher SNRs and lower PSNRs than the CLOUD and PRECIP variables. This 
suggests that different variables may require customized bit modulations for compressing their space-time 
blocks in order to balance the overall rate-distortion across all the variables. 
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(a) CLOUD 

 
(b) PRECIP 

 
(c) QVAPOR 

Figure 5 SNR and PSNR curves of the application-driven compressed hurricane data sets. In (a)-(c), four SNR (dashed lines) and 

PNSR (solid lines) curves are shown with different distance ranges from the surface of interest. Note that we used the theoretical 

signal peak as a reference in PSNR calculation. In general, the regions close to the surface yield higher SNRs or PSNRs, and thus 

less distortion. 
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difference and run-length decoding 2.37 s

bit padding 2.58 s

texture packing 1.27 s

deferred filtering and volume rendering 2.95 s

Table 3 Timing breakdown for rendering the CLOUD variable of the 48 time steps hurricane data set. 
 

 
 
 
 
 
 
 
 
 
 
 
 

(a) the mixfrac surface (in white) + the HO2 variable 

 

 

 

 

 

 

 

 

 

 

 

 

(b) the P surface (in yellow) + the QVAPOR variable 

Figure 6 Rendering comparisons of the compressed (a) combustion and (b) hurricane data with their original data. In (a) and 

(b), from left to right: rendering compressed data for an overview, zoom-in of compressed data, zoom-in of original data, 

image difference of the compressed and original data calculated in the CIELUV color space, and color map. Note that regions 

farther away from the surface of interest show more quantization artifacts in rendering. 

 
Decompression and rendering. At runtime, the partially-decoded data are padded and loaded into texture 

memory. As listed in Table 2, bit padding only incurs a slight increase of memory usage. The overall texture 
reduction with respect to loading the original data is 82% and 77% for the combustion and hurricane data sets, 
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respectively. Due to difference and run-length decoding and bit padding, the compression rates in the texture 
memory reduce to 5.6x and 4.3x for the combustion and hurricane data sets, respectively. 

With a viewport of 5122 and a regular sampling rate of 1.0 (i.e., one sample per voxel), we achieved  
12.5fps and 28.5fps (including deferred filtering and volume rendering) for rendering one variable from the 
combustion and hurricane data sets, respectively, which is comparable to conventional volume rendering. Our 
application-driven compression and rendering solution makes possible interactive visualization of large-scale 
time-varying data while dramatically reducing data transferring between the memory hierarchies. The saving in 
data transferring greatly shortens the time to animate time-varying data. For example, the total time (including 
I/O and rendering) to animate the CLOUD variable of the 48 time steps hurricane data set reduces from 36.96 
seconds to 9.17 seconds. Table 3 shows a breakdown of timing for each of the stages: decoding, bit padding, 
texture packing, deferred filtering and volume rendering. Note that the decoding part includes the time to read 
compressed data from disk. Thus, we improved the frame rate from 1.3fps (without compression) to 5.2fps 
(with compression), achieving a much desirable level of interactivity. 
 
 

               

(a) 20.37x, 0.048%    (b) 27.33x, 0.153%     (c) 34.13x, 1.787% 

 
 

               

(d) 16.13x, 0.810%    (e) 20.37x, 0.877%     (f) 27.33x, 2.547% 
Figure 7 Rendering the compressed hurricane data set at time step 24 with different compression levels. By adjusting the 

parameters for bit modulation, we can change the number of bits allocated to each of the space-time blocks and compress the data 

differently. The near zero pressure surfaces with the CLOUD and QVAPOR variables are shown in (a)-(c) and (d)-(f), respectively. 

The corresponding difference image with respect to the original image is displayed on the corner. The compression rate and the 

percentage of noticeable pixel difference are listed in each caption. 
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(a) d = 1.0, t = 1       (b) d = 0.1, t = 1 

    
(c) d = 0.1, t = 27      (d) d = 0.1, t = 53 

Figure 8 Rendering the compressed combustion data with distance control. By changing the distance threshold (normalized to [0, 

1]), the user can interactively control the amount of information displayed around the surface to better observe variable 

relationships. The mixfrac surface with the HO2 variable is shown in the figure. 

 
In Figure 6, we compare the rendering of the compressed data with the original data. To render more than 

one variable simultaneously over time, each variable is independently decompressed and loaded into the 
graphics card. For objective comparison, we calculated pixel-wise differences (i.e., the Euclidean distances) of 
images generated from the compressed and original data in the CIELUV color space. The noticeable pixel 
differences (with ΔE ≥ 4.0) were mapped to non-white colors (differences greater than 255 were clamped). It 
can be observed that our application-driven solution preserves fine details near the regions of interest, while 
maintaining the overall quality well. Some visual differences between the rendering of the compressed and the 
original data can be perceived. These correspond to regions that are far away from the reference feature and 
therefore lose more precision in the quantization. 
 

Figure 7 shows the rendering of the compressed hurricane data set at different compression levels. Adjusting 
the parameters for bit modulation leads to compression of the data with different reduction rates. From Figure 
7, we can observe how the quality degrades with the increase of the compression rate. Compared with the 
QVAPOR variable of the same compression level, the CLOUD variable gives less degradation in visual quality. 
The P ≈ 0 surface highlights the center region of the hurricane. We rendered the P surface with two other 
variables: CLOUD and QVAPOR. The rendering is informative, which allows the scientists to focus on the 
hurricane center and track other flow properties around the surface of interest. For the combustion data set 
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where the variable rendering could occlude the surface, we can utilize the distance volume to perform flexible 
rendering by changing the distance threshold, as shown in Figure 8. Only the voxels within the given distance 
threshold are assigned non-zero opacity values. The user can interactively control the amount of information 
displayed around the surface to better observe variable relationships at runtime. In the accompanying videos, 
we show side-by-side rendering of the original and compressed combustion and hurricane data sets over all 
time steps. 
 
Discussion 

In our work, we opted for scalar quantization instead of vector quantization for data reduction. This is 
because in vector quantization, the time to generate the codebook could be prohibitively long for a large 
time-varying, multivariate data set. The non-uniform quantization scheme we implemented is a simple and fast 
solution, which also gave us good compression and reconstruction results for the two test data sets. With this 
quantization scheme, however, we may miss details for underrepresented scalar values. This happens when the 
transfer function maps underrepresented scalar values to high opacity values. Other quantization schemes, such 
as the Lloyd’s quantizer which guarantees to converge to a local minimum in the L2 metric, could also be used. 
There is a need of further research on the quantization scheme that couples compression with visualization to 
strive for a better tradeoff between reduction performance and rendering quality. 

Our approach resembles the importance-driven volume rendering work by Viola et al.4; however, in our case, 
the importance values of data blocks in relation to the surface of interest are utilized in compression and 
rendering. The limitation of our approach is that since the reference feature derived from domain knowledge is 
explicitly incorporated into data reduction, we have to redo the compression process if the scientific interest 
changes. We assume that this kind of change is less likely to happen. An extension of this work is to encode all 
possible input from scientists. This would allow shifting features of interest at runtime but at the expense of 
compression efficiency. 

 
Conclusion 

Our application-driven approach clearly suggests a viable direction for addressing the data challenge 
presented by large-scale scientific simulations. The solution presented can be applied to other domains where 
the reference features are in different forms, such as vortices in the flow data. The bottom line is that as long as 
the identified regions of interest only occupy a small percentage of the volume space, our method would 
remain effective. In the future, we would like to incorporate our data reduction scheme with multiresolution 
techniques to support flexible level-of-detail rendering. We will also consider a parallel implementation of our 
solution for compressing and rendering large-scale time-varying data in a massively parallel computing 
environment. 
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