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ABSTRACT

Parallel numerical simulation is a powerful tool used by scientists to
study complex problems. It has been a common practice to save the
simulation output to disk and then conduct post-hoc in-depth anal-
yses of the saved data. System I/O capabilities have not kept pace
as simulations have scaled up over time, so a common approach
has been to output only subsets of the data to reduce I/0. However,
as we are entering the era of peta- and exa-scale computing, this
sub-sampling approach is no longer acceptable because too much
valuable information is lost. In situ visualization has been shown
a promising approach to the data problem at extreme-scale. We
present a novel in situ solution using depth maps to enable post-hoc
image-based visualization and feature extraction and tracking. An
interactive interface is provided to allow for fine-tuning the gener-
ation of depth maps during the course of a simulation run to bet-
ter capture the features of interest. We use several applications in-
cluding one actual simulation run on a Cray XE6 supercomputer to
demonstrate the effectiveness of our approach.

1 INTRODUCTION

As simulations reach exa-scale, researchers can no longer depend
on the traditional method of simply saving raw data occasionally,
then performing visualization in a post-process. The portion of the
raw simulation data that can be feasibly stored for post-hoc visual
analysis has simply become too small to be useful as computational
capabilities on large parallel systems have outstripped the available
I/0. Maximally efficient use of this I/O has therefore become criti-
cal. Ultimately, it has become necessary to find ways to process the
raw data before output. The goal is to capture as many interesting
aspects of the raw data as possible, while minimizing the output
size.

One technique to improve I/O efficiency has been to perform vi-
sualization in situ with the simulation. This method reduces the size
of raw outputs to visualization outputs, which is often simply a set
of images or videos. A disadvantage of this technique has been the
loss of the capability for exploration of the output data: Because
good visualization parameters are often not known a priori, a “best
guess” must be used. Poor parameter choices may result in wasted
simulation time, so researchers must manually search for good vi-
sualization parameters via repetitive small-scale simulations, then
hope that these parameters will still be appropriate for full-scale,
full-length simulations. Alternatively, researchers may opt to sim-
ply generate many in situ images with a variety of settings in the
hope that any relevant data is captured. Even so, the generated im-
ages are static, so researchers are limited to these specific views of
their results. Even though it is possible to alter the settings of the
in situ images for the future time steps of the simulation, with no
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exploration on the static images, there is no effective way for re-
searchers to come up with new image settings other than guessing.

Different techniques are proposed to enhance the explorability
of in situ visualization, such as volumetric depth images [11], im-
age databases [2], and explorable images [30]. In this paper, we
present a new in situ approach based on depth maps, which enables
a new level of post-hoc visual exploration. First, depth maps are
generated in situ by rendering volumetric data into multiple layers
of isosurfaces in image space. Isosurface exploration is then made
possible with a novel algorithm that we have introduced to recon-
struct from the depth maps for visualization of any isovalue. Sec-
ond, the same depth maps allow post-hoc 3D feature extraction and
tracking (FET) in image space without requiring the original volu-
metric data. This concept of performing 3D FET in image space is
novel; especially, its cost in term of both computational and storage
requirements is orders of magnitude lower than that of conventional
methods. An interactive interface is created for depth maps based
visualization and FET. In addition, through this interface, the user
is allowed to tune the parameter setting for generating depth maps
over the remaining simulation run or a new run. That is, by preview-
ing an early part of the simulation using depth maps, it is possible
for the scientists to adjust the setting to better capture flow features
of interest in the simulation.

To summarize, our work makes the following contributions:

e A novel algorithm to reconstruct isosurface by interpolating
nearby layers of isosurfaces.

e A posteriori feature extraction and tracking via depth maps
without requiring the raw simulation data.

e A feedback mechanism allowing users to fine-tune the depth
maps rendering for future simulation time steps.

o A workflow allowing users to monitor simulations and modify
visualization results in situ.

2 RELATED WORK

Ma [18] and Johnson et al. [14] first demonstrated coupling visu-
alization with simulation back in the 1990s. Ma [19] presents the
challenges and opportunities of in situ visualization. Later, Ahern et
al. [1] also discusses the pros and cons of in situ processing. There
are different types of in situ processing, as described by Dreher et
al. [10]. Essentially in situ processing can be divided depending on
where the data is being processed:

e Tightly-coupled synchronous: Data processing and the sim-
ulation use the same set of compute nodes [16,25,32]. As a
result, it is important that in situ data processing does not com-
pete computing time and storage space with the simulation.
The general rule of thumb is to keep the in situ processing
time under 5% of the total simulation time [19]. Damaris [9]
extends this category by utilizing a dedicated core per com-
pute node for asynchronous I/O operations, which hides the
I/0 cost from the main simulation.

e Loosely-coupled asynchronous: The data is first transferred
to another set of compute nodes or another computer over
the network without touching the hard disk, and then anal-
ysis/visualization is performed there with little impact to the
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simulation. Moving the data is expensive, but this approach
does not pause the simulation in order to perform analy-
sis/visualization. In transit is usually used to describe loosely-
coupled asynchronous. Moreland et al. [21] gives a few ex-
amples of in transit visualization.

The desired scientists’ workflow determines which type of in situ
processing to be adopted. Bennett et al. [4] combine in situ and
in transit processing to take advantage of both techniques. The ap-
proach is to perform highly efficient parallel data processing in situ
and the reduced data is asynchronously processed (i.e., in transit)
to possibly use more computationally demanding calculations. The
cost of using our technique is small when compared to the simula-
tion, so we use the tightly-coupled synchronous approach.

In situ data compression algorithms are introduced to reduce I/0
and storage requirements. Schendel et al. [26] present an asyn-
chronous method exploiting data access patterns for more efficient
data compression and I/0. Lakshminarasimhan et al. [17] introduce
an error bounded in situ compression algorithm for scientific data,
which offers up to 85% compression ratio by taking advantage of
both spatial and temporal coherence of the data.

In situ rendering to generate static images is commonly used.
There are multiple toolkits that enable in situ visualization, includ-
ing ParaView Catalyst [3, 25], Vislt [7, 25, 31] and Damaris [9].
Static images represent the smallest possible data size output from
in situ visualization, but static images can present only a very small
fraction of the original volumetric data to the scientists. To address
this limitation, a common solution is to generate multiple sets of
static images with different settings. Kageyama et al. [15] gener-
ate images from many viewpoints, allowing post-hoc exploration in
different perspectives of the original data. However, this approach
could require too much storage space both online and offline.

Explorable Images, introduced by Tikhonova et al. [29], is a vol-
ume data exploration method without requiring the original volume
data and a powerful computer. The basic concept is to quantize the
intensity levels into a small number of bins and each bin is used
to store the attenuation values from ray casting. With ray attenua-
tion functions, post-hoc interactive volume visualization and explo-
ration is enabled. The parallelized version of explorable images can
be generated in situ with the simulations [30]. Our technique can
be coupled with ray attenuation function calculations because both
use ray casting as the rendering algorithm.

Ahern et al. [2] extends on the idea of generating images from
multiple viewpoints to enable camera space exploration. Instead of
only storing the final rendering results, multiple objects per view-
point is stored and a post-hoc composition of objects is rendered as
final image. As meta-data for each object is stored, object query-
ing is also enabled. Our approach focuses on the exploration of a
single object in a single viewpoint, which not only allows opaque
isosurface rendering but also allows rendering of semitransparent
multiple layers of isosurfaces.

Volumetric depth images, introduced by Frey et al. [12], is an-
other approach to creating post-hoc view-dependent volume visual-
ization. Instead of subdividing the intensity domain like ray attenu-
ation functions, volumetric depth images breaks each view ray into
depth ranges with composited color and opacity. Final visualization
result is then the composition of the stored depth ranges. Volumet-
ric depth images are later parallelized into an in situ technique by
Fernandes et al. [11]. Since depth ranges are used, generating iso-
surfaces with volumetric depth images can be uncertain. The depth
value of isosurface in our technique is generated during ray casting,
which is the ground truth value.

Volumetric depth images are based on layered depth images
(LDI), which is introduced by Shade et al. [27]. In LDI, multi-
ple pixels at different depths are stored per line of sight. Each pixel
contains multiple attributes, including color. LDI is mainly devel-
oped to enable viewpoint changes. Our depth maps only store the
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Figure 1: Workflow for data analysis of active simulation with
depth maps. Depth maps are outputted in situ while the simulation
is running. With depth maps, multiple layers of semitransparent
isosurfaces can be visualized. Furthermore, feature extraction and
tracking can be performed on top of depth maps. Finally, users can
provide feedback to the ongoing simulation in order to enhance the
quality of depth maps.

depth information of isosurfaces, and is mainly used for isosurfaces
visualization.

Biedert et al. [5] construct depth images from ray casting seg-
mented volume data based on the contour tree of the data. The con-
tour tree defines the relationship among the different isosurfaces,
with which ray casting can be optimized accordingly. However,
with their design, isosurfaces might not be generated at the exact
isovalues that the user desires. Their design is potentially usable
for in situ visualization, but it was not evaluated nor demonstrated
in a massively parallel setting. Ours can also utilize the contour tree
of the data for handling features across multiple layers within the
same depth maps.

In a parallel processing setting, after rendering the images lo-
cally, a final composition is required to generate a global image.
Moreland et al. evaluates multiple image composition techniques
[20]. In our work, we adopt an implementation of the 2-3 swap
algorithm [33]. The 2-3 swap requires multiple rounds of commu-
nication among processes but in each round only a few messages
are received by each process, meeting our efficiency requirements.

Feature-based data exploration is considered a key approach to
the study of large time-varying flow field data. Conventional ap-
proaches extract features from individual time steps and then asso-
ciate them between consecutive time steps. More recent work uti-
lizes either higher-dimensional iso-surfacing [13] or non-scalar rep-
resentations of the data [28] for feature tracking. These techniques
require users to manually track features in different time steps. On
the other hand, prediction-correction based approaches [6,22, 24]
first predict candidate regions according to the feature descriptors
(such as boundary or centroid location) extracted from previous
time steps, and then adjust the predicted region to match the cor-
responding region in the next time step for correct feature tracking.
The prediction-correction based approaches are appealing for their
computing efficiency and reliability in an interactive system.

3 METHODOLOGY

This section introduces our depth maps based design and corre-
sponding operations.

3.1 Workflow

The expected workflow with our system is shown in Figure 1. The
simulation periodically generates depth maps according to a config-
uration file, which is set by the user. In situ exploration of the sim-
ulation results is done by interacting with depth maps on a desktop
computer or even a mobile device. With depth maps, isosurfaces
can be rendered over the entire range of isovalues. Furthermore,
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feature extraction and tracking is performed on top of the isosur-
faces. Sometimes, the original configuration file can not reveal the
features of interest. Scientists can update the configuration file ac-
cording to what are seen with the current depth maps. Then the up-
dated configuration file is uploaded to the simulation in situ, which
impacts the depth maps generation for future time steps.

3.2 Depth maps

Depth maps are the fundamental elements of our workflow. There
are two main advantages of depth maps. First, the data size of
depth maps is orders of magnitude smaller than raw simulation
data, therefore outputting only depth maps effectively increases the
I/O efficiency. Secondly, unlike static images, depth maps enable
multiple visualization operations: 1) Normal estimation, 2) lighting
based on the estimated normals, and 3) image-based feature extrac-
tion and tracking. Depth maps consist of multiple depth layers.
Each layer is a depth map of an isosurface from the camera point of
view, as shown in Figure 3a. Only the front most surface of an iso-
surface is stored. Users can choose how many isovalues and which
isovalues to generate depth layers.

Marching cubes and ray casting are both common ways to gen-
erate isosurfaces. Ray casting is used in our workflow because ray
casting is strictly view dependent, which avoids the extra compu-
tation outside of the view frustum that occurs in marching cubes.
Biedert et al. [5] also use ray casting to generate depth images. Be-
cause they perform volume segmentation before ray casting, they
are able to skip voxels if the eight corners of a voxel are within the
same branch in the contour tree. In our case, we have no volume
segmentation information so we have to step through each voxel
along the rays to identify the isosurfaces. Even though a full ray
casting algorihtm is slower, we save time on not performing vol-
ume segmentation.

3.3 Adaptive Isovalue Selections

Making depth maps with uniform value intervals is simple and
generally produces acceptable results. However, when the data is
skewed, which means a lot of the interesting features are within a
small interval of the scalar value range, there is a high chance that
this small interval is in between two default isovalues. Such an ex-
ample is shown in Figure 2.

An array of isovalues is used to instruct the rendering of isosur-
faces. During the ray casting process, each ray segment is tested
against this isovalues array. When the ray segment crosses an iso-
surface, the depth is compared and recorded to the depth maps.
Users can modify the array in order to generate more isosurfaces
in the interesting intervals of the scalar value range.

(a) Default Isovalues

(b) Adaptive Isovalues

Figure 2: The comparison of default constant interval among iso-
values and adaptive selected isovalues is shown using the vorticity
dataset. (a) shows two nested isosurfaces in blue and red. The inter-
nal structures of certain features become indiscernible. In (b), those
structures are revealed by adding two more isosurfaces between the
original two isosurfaces.

3.4 In Situ Rendering of Depth maps

In this work, we focus on supporting parallel 3D flow simulations
that distribute the modeled 3D spatial domain among all the pro-

(a) Depth Layer

(b) Normal Map (c) Isosurface

Figure 3: The process of visualizing an isosurface consists of 1)
obtaining a depth layer from depth maps, as shown in (a), 2) ex-
tracting a normal map from the depth layer, as shown in (b), and
finally 3) applying phong shading, as shown in (c).

cessing nodes and output volume data.

To generate depth maps in situ, each processing node indepen-
dently performs ray casting rendering to generate regional depth
maps. These local depth maps are then composited by taking the
minimum depth value of each isosurface to form the overall depth
maps. Our current implementation uses 2-3 swap [33], a state of
the art algorithm.

The simulation runs independently of what the user has to do
with the depth maps. Whenever the simulation is ready to generate
anew set of depth maps, it computes new depth maps with the most
updated configuration file.

3.5 Isosurfaces Visualization

The direct rendering of depth maps conveys very limited informa-
tion, as shown in 3a. Instead, isosurfaces can be visualized with the
depth maps, as shown in Figure 3c. In order to apply lighting to the
isosurfaces, normal maps are first estimated from the depth layers,
as shown in Figure 3b. Shading can then be applied according to
the normal maps.

A normal map is computed from each depth layer. The simple
way is Normal = Ax x Ay, where (x,y) is the current pixel position.
The Ax vector is < x+ 1,y,dyy1y > — <x—1,y,dy1, > and Ay
vector is < x,y+ 1,d, yy1 > — <x,y—1,dyy_1 >, where dy is
the depth of pixel (x,y). The 4 samples may not land on the same
feature, thus there appears to be a thin border at feature boundaries
with incorrect normals, as shown in Figure 5a.

The improved normal estimation procedure
is applied to each pixel in the depth layer. From 4 3 2
the current pixel to its 8 neighboring pixels, 8
triangles are formed according to Figure 4. The

normal of each triangle is then computed. If a 5 S 1
normal is pointing toward the side instead of to-
ward the screen, the corresponding triangle is at . 1 .

the isosurface edge and the normal is discarded.
The rest of the triangle normals are averaged to
produce the final normal for the current pixel.
The improved isosurface rendering is shown in
Figure 5b where features have no borders.

Once normals are available, we can apply lighting to the isosur-
faces. A simple phong shading is applied. A resulting isosurface
rendering image is shown in Figure 3c.

Figure 4: Cur-
rent pixel and its
8 triangles

3.6 Depth Layer Interpolation

Isosurface rendering and feature extraction and tracking (FET) are
performed on top of a depth layer. Since a depth layer corresponds
to one isovalue, isosurface rendering and FET are limited by the
available layers. With depth layer interpolation, we are able to esti-
mate isosurface and FET with any isovalue, allowing users to make
highly educated modifications to the isovalues array.

Consider two depth layers, A and B. A is in front of B in image
space. The general idea is to identify corresponding points on the
two depth layers then interpolate between them. A naive approach
would be to treat the same pixel locations on the two depth layers
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(a) Edge Artifacts (b) Improved Visualization

Figure 5: Using a more sophisticated normal estimation algorithm
effectively reduces the edge artifacts. A thin border of incorrect
normals appears in (a). Our normal estimation algorithm success-
fully eliminates the border, as shown in (b).

as corresponding points. In this case, only the overlapping areas in
image space would be interpolated, which is not ideal. Instead, we
trace a ray from each pixel on depth layer A according to its nor-
mal vector. This normal vector closely approximates the gradient
of the field, and thus will more likely intersect interior layers. The
origin point on the outer surface and the intersection point on the in-
terior surface are considered as corresponding points, even though
they do not overlap in image space. Given an interpolation ratio,
we linearly interpolate to find a point along each segment between
corresponding points, effectively forming a point cloud. A new in-
terpolated depth layer is then reconstructed from this point cloud.
More specifically, the following procedure is applied:

1. For each pixel P in image space, a 3D point Py is constructed
as (P.x,P.y,depth(P,A)), where depth(P,A) denotes the depth
value of P on depth layer A.

2. A 3D ray ray3d(Py) is constructed with origin P4 and di-
rection normal(Py), where normal(Py) denotes the normal
vector of P4 computed according to section 3.5. Also, a 2D
ray ray2d(P) is extracted from ray3d(Py) by taking the (x,y)
components of ray3d(Py)’s origin and direction.

3. The super cover of ray2d(P) is traversed according to the al-
gorithm introduced by Dedu [8]. A super cover is all the pix-
els a 2D ray crosses in an image. In our case, the super cover
represents all the possible intersecting locations of ray3d(Py)
on depth layer B.

4. For each pixel in the super cover on depth layer B, an inter-
section test is performed against ray3d(Py). Since a pixel is
represented as a patch with 4 corners, we use a ray-patch in-
tersection algorithm introduced by Ramsey [23].

5. If ray3d(Py) intersects pixel Qp, an interpolation segment is
constructed. An interpolation segment consists with P4 and
QOp. The interpolation segments are then stored in a pool. Fig-
ure 6 shows how interpolation segments are obtained.

6. Given aratio in the range [0, 1], a 3D point can be interpolated
from each interpolation segment. All the interpolated points
form a point cloud which is used to reconstruct the new inter-
polated depth layer.

7. To effectively transform the point cloud into a surface, the
points are first stored into a 2D uniform grid.

8. For each pixel in the new depth layer, points within a certain
radius are queried from the 2D uniform grid, then a weighted
average function is applied to calculate the interpolated depth
value for the pixel. An example of depth layer interpolation is
shown in Figure 7.

Since only the rays that intersect with both depth layer A and
B are stored, some surface on the new depth layer can be missing,
especially when the new depth layer is close to depth layer A. The
resulting depth layer is provided as an estimation for users to make
adjustments to the isovalues array.

Depth Layer A

Al ! S,
"™~ »"Depth Layer B ’\;

Figure 6: Depth interpolation begins by tracing rays from depth
layer A according to the normals. The blue dashed arrows show the
rays that hit depth layer B, while the red arrow shows an example of
missed rays. Interpolation segments are constructed from the blue
arrows and later on used to reconstruct the interpolated depth layer.

Figure 7: Depth layer interpolation example: the left and right im-
ages are two isosurfaces rendered with existing depth layers. These
two depth layers are used to generate an interpolated depth layer
with ratio 0.5, and the resulting isosurface is shown in the center
image. Artifacts appear at the joint of the two features due to high
amount of discarded interpolation segments.

3.7 Feature Extraction and Tracking

Other than isosurfaces rendering, feature extraction and tracking
(FET) is also enabled by depth maps. Our FET algorithm operates
on a single depth layer in depth maps. A single depth layer can
be regarded as an image with pixels representing the depth values
of an isosurface. The key idea is to utilize depth discontinuity to
distinguish features in the same depth layer, as shown in the left
column of Figure 8.

The feature extraction process is illustrated in Figure 9. For each
depth layer, we first create a mask layer with all pixel values ini-
tiated to 0. Then we seed from the top-left corner of the depth
layer and assign corresponding pixel in the mask layer with an inte-
ger feature ID. The feature boundary expands to neighboring pixels
if the depth difference with the neighboring pixel is within range
(threshold defined by user). All the pixels within the same feature
are labeled using the same integer feature ID as the seed point. The
region growing process continues until there is no more pixels suf-
fice the threshold of the depth constraint. Then, we increase the
integer feature ID by one and search for the next non-background
(depth < 1.0) pixel, using it as the next seed point and repeat the
region growing process until all connected pixels are found to be
marked as the same feature in the mask layer. It takes a total of
O(numPixel) time to finish the feature extraction process. The out-
put is a 2D mask layer with each pixel containing the integer feature
ID it belongs to. An example of multiple features being extracted
is shown in Figure 10.

Our feature tracking on depth layer is a prediction-correction
based approach. To track a feature in depth layer from 7, to 7,41,
we first compute the movement vector by subtracting the centroids
(the unweighted average of the all pixel positions of the features)
from 7,_1 to T;,. Since depth maps are generated in situ as the sim-
ulation runs, the feature movement between two consecutive cal-
culation steps is small and thus predictable based on previous time
steps. Based on the movement vector, the mask of the feature in
T,+1 is predicted. We then shrink the predicted mask by the depth
layer in 7,41 to the common region. The shrinking process also
utilizes the depth discontinuity as feature identification. Finally, re-
gion growing is applied to obtain the actual feature in 7, 1. The
prediction-correction tracking schema is illustrated in the right col-
umn of Figure 8.
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Figure 8: The illustration of the feature tracking process. The
right column illustrates the prediction-correction schema of fea-
ture tracking. A candidate region of feature is first predicted based
on previous time steps. The candidate feature is then adjusted by
shrinking and then expanding to match the actual feature.
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Figure 9: The illustration of the feature extraction process. The
process starts by initializing a feature ID mask to all 0, and then
iterates through each pixel in the depth layer. If the current pixel
is in the background (depth >= 1.0) or its feature ID is already
set, the process skips to the next pixel. If the current pixel is in a
feature (depth < 1.0) and the feature ID is not set, region growing is
deployed to set a feature ID to all the pixels within the same feature.

During feature tracking, two types of feature events need to be
taken care of. When two separated features merge together, the
correction process of one feature will capture the pixels of the other
feature and the feature IDs of the latter feature on the mask layer
will be replaced. When a feature splits into two or more features,
the same feature ID will be used until users manually re-extract the
feature of interest.

4 TeST RESULTS

We conducted tests to measure the cost of depth maps generation
and to demonstrate the in situ process using a flow simulation on
NERSC’s Hopper, which is a Cray XE6 with peak performance of
1.28 Petaflops/sec. There are 6,384 compute nodes, and each node
consists of 24 compute cores and 32 GB memory. The simula-
tion of choice is FFV-C (FrontFlow / violet Cartesian), provided by
RIKEN (http://www.riken.jp). FFV-C is a three-dimensional un-
steady incompressible thermal flow simulator on a Cartesian grid
system. We performed a jet engine simulation using FFV-C, and
the scientists used Q-criterion to identify interesting vortices.

4.1 In Situ Computing Costs

The extra memory requirement for our method is the memory space
to store the depth maps, which is an array per pixel of the image.
The array size is the same as the isovalues array.

To assess the feasibility of our method, we conducted 3 sets of
tests against varying 1) subvolume voxel count, 2) image resolu-
tion, and 3) subvolume count. We isolate the impact of the variable
in focus by keeping the other two variables constant for each test.
Note the simulation time is measured as the average simulation time
per time step.

The time with respect to subvolume voxel count was measured
with 16 runs of the FFV-C simulation. Image resolution was set to
512x512 and 8 MPI processes were used. Subvolume size varies
from 4x4x4 to 64x64x64. We use a small number of MPI processes
because it only affects the image composition time, which is not

Figure 10: Image showing multiple features being extracted using
the depth maps generated from the vorticity dataset. Depth discon-
tinuity is used to distinguish the selected vortices from other ones.
The purple vortex on the left is correctly extracted with 2 other vor-
tices in front of it.

the concern of this test. The simulation time, local render time, and
image composition time are shown in Figure 11a. The local render
time and subvolume voxel count appear to be linearly related. The
simulation time is also linearly proportional to subvolume voxel
count, but we can see the rendering time is significantly lower than
the simulation time. Since a fixed number of subvolumes are be-
ing composited and the image resolution is also fixed, the image
composition time appears to be mostly constant across the multiple
FFV-C runs.

The study of time with respect to image resolutions was con-
ducted with 16 runs of the FFV-C simulation. Subvolume size was
set to 32x32x32 and total volume size was set to 256x256x256.
Therefore 512 MPI processes are used to ensure good evaluation
of image composition. The image resolution varies from 64x64 to
1024x1024. Figure 11b shows the resulting simulation time, local
render time, and image composition time. The simulation time re-
mains mostly constant because the subvolume size and the total vol-
ume size are fixed. The local render time and image composition
time increases linearly according to the pixel count, as expected.
The same reasoning applies to the image composition algorithm (2-
3 swap), plus sending a larger image buffer across the network also
increases the image composition time.

The study on the cost with respect to the subvolume count is used
to show the scalability of our technique. The results of 7 runs of the
FFV-C simulation are used. Subvolume size was set to 32x32x32
and image resolution was set to 512x512. Total volume size varies
from 64x64x64 to 256x256x256. The timing results are shown in
Figure 11c. The local render time remains mostly constant because
the subvolume size and the image resolution are fixed. The simu-
lation time and image composition time increases accordingly be-
cause more network communication is required. The image com-
position algorithm 2-3 swap has been shown scalable [33]. Again,
the time required for depth maps rendering is significantly lower
than the simulation time, making our in situ method acceptable.

4.2 Feature Extraction and Tracking

We demonstrate FET using the forced isotropic turbulence dataset
from the John Hopkins Turbulence databases. The “coarse” version
of the dataset has 1024 time steps, ranging from 0.000 to 2.048 with
0.002 interval. Each time step consists of a 1024% velocity field.
The following results are generated using time steps 1.000 to 1.120
and the central portion 5123 of the volumetric data. The velocity
field was first processed by a Gaussian filter with o = 10 and then
Q-criterion was calculated from the velocity field. Depth maps were
then generated using the 80 Q-criterion fields 512°.

A large vortex tube is being extracted and tracked in multiple
depth layers of depth maps. We show the extracted features cor-
responding to isovalues 6.875 and 18.125 in Figure 12 and Figure
13. The tracked vortex tube with isovalue 6.875 remains as a single
feature throughout the time span. However, with isovalue 18.125,
the vortex tube splits at time step 1.080. Our algorithm is able to
detect the split and track both features. By tracking the same fea-
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Figure 11: Simulation time, local render time, and image composition time are measured for different settings, indicating the cost of comput-
ing depth maps. Y axis is time in milliseconds. With varying subvolume sizes, shown in (a), the simulation time and local render time appear
to be linearly related to the subvolume voxel count, while the local render time is significantly lower than the simulation time. The image
composition time appears to be constant over the multiple FFV-C runs. With varying image resolutions, shown in (b), the simulation time
stays unchanged. The local render time and image composition time linearly increase according to image pixel count. With varying number
of subvolumes, shown in (c), the local render time appears to be constant across the multiple FFV-C runs. The simulation time and image
composition time increases accordingly. The rendering time again is significantly lower than the simulation time.

(a) 1.000 (b) 1.040 (c) 1.080 (d) 1.120

Figure 12: The central vortex tube of the isotropic data set from
John Hopkins turbulence databases is extracted and tracked at iso-
value 6.875. The entire vortex tube is being extracted at time step
1.000 and tracked through time step 1.120.

(a) 1.000

(b) 1.040 (c) 1.080 (d) 1.120

Figure 13: Layer with isovalue 18.125 in the depth maps are shown
with FET. The feature of interest is the central vortex tube of the
isotropic dataset from John Hopkins turbulence databases. The en-
tire vortex tube is extracted at time step 1.000 and 1.040. The vortex
tube later on splits into two features from time step 1.080.

ture with multiple isovalues, more behavioral insights of the feature
are revealed.

4.3 Tuning In Situ Depth Maps Generation

Here, we show from generating depth maps in situ to tuning the
isovalues array when running FFV-C on Hopper.

The volume dimension is 5123, which is divided up by 16 in
each dimension, resulting 4096 subvolumes with the size of each
subvolume to be 323. Each MPI process is assigned one subvol-
ume, while 6 OpenMP threads are enabled per MPI process. As a
result, each compute node is responsible for 4 subvolumes with 6
cores are used per subvolume. Thus the entire 24 compute cores of
each compute node are utilized. Total 24,576 compute cores (1024
compute nodes) are utilized for the simulation.

To demonstrate that we do not require depth maps at every time
step, we choose to generate a set of depth maps every 80th simula-
tion step. The camera configuration is preselected and uploaded as
model view projection matrices. 16 layers are generated per set of
depth maps and the resolution of each layer is [1375, 1007]. The
simulation time, local render time, and image composition time fol-

lows closely to the trends described in section 4.1. An actual per-
formance number is not shown here because the performance can
be affected differently depending on which changes are made to the
configuration file.

From the beginning of the simulation, the layers are generated
using a uniformly distributed isovalues array. Because the flow in
the early time steps of the simulation is not fully developed yet, we
wait until time step 8040 to inspect the depth maps.

The depth maps generated at time step 8040 has a scalar value
range of [-20.63, 11.245]. Isovalues are uniformly distributed
within this range. Six selected layers are shown in the top row of
Figure 14. Not many interesting features are revealed by the depth
maps because most of the layers are mostly empty. As a result,
refinement of the isovalues array is necessary.

By inspecting the isosurfaces of time step 8040, we can tell
the isosurfaces generated in the range [-20.63, -1.505] and [4.87,
11.245] are mostly empty. As a result, we want to focus on the
range [-1.505, 4.87]. Since we still don’t know the distribution of
isovalues within the focused range, a uniformly distributed isoval-
ues array within the focus range is uploaded to generate the next
set of depth maps. The resulting isosurfaces from time step 8120
are shown in the middle row of Figure 14. More layers are filled
with features and we get a better capture of the simulation from the
updated depth maps. However, the isosurfaces near isovalue 0.0 are
too cluttered. As a result, we want to avoid isovalue 0.0.

To avoid isovalue 0.0, we need to modify the isovalues array to
focus on the range [-0.485, -0.23] and range [1.045, 1.895]. The
resulting isosurfaces from time step 8200 are shown in the bottom
row of Figure 14. All the isosurfaces are filled with interesting
features while some layers focus on the negative values and the
other layers focus on the positive values.

We are able to refine the depth maps rendering as above while
the simulation is running. We started from the default isovalues
array and finally arrived at the optimal isovalues array with focused
intervals of interest.

5 LIMITATIONS

Our technique allows scientists to save a fraction of the simulation
data and be able to explore the isosurfaces using the depth maps.
We expect in most cases scientists will continue to save out all sim-
ulation data due to the fact that depth maps are view dependent.
However, we hope that after incorporating depth maps, scientists
will be confident enough to reduce the amount of saved simulation
data. Following are immediate limitations of our technique.
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Figure 14: Images showing the in situ process of fine tuning the isovalues array. The top row of images are generated at simulation time
step 8040 with 16 uniformly spaced isovalues across the scalar value range. Only selected images are shown. The middle row of images
are generated with 16 isosurfaces within the range [-1.505, 4.87]. The resulting isosurfaces are more meaningful yet some of them are still
unwanted. The bottom row of the isosurfaces are generated by concentrating at two separate ranges: [-0.485, -0.23] and [1.045, 1.895]. Thus,

generating isosurfaces that match our expectations.

(a) Ground Truth

(b) Interpolated Depth Layer

Figure 15: Limitations of depth layer interpolation (red circles):
1) Artifact due to rapid change of the normal vectors, 2) missing
interpolation segments at the overlapping areas, and 3) low density
interpolation segments due to small features.

5.1 Isosurface Rendering

Since depth maps capture the smallest depth values of isosurfaces,
only the front face of an isosurface can be visualized. If the iso-
surface is a manifold or multiple layers of isosurfaces are the same
isovalue, our current system is unable to visualize the other layers.
Multiple layers of the same isosurfaces can be stored to solve this
problem, but this drastically increases the storage requirement.

An isosurface can be rendered using an interpolated depth layer.
The quality of the rendered isosurface greatly depends on the re-
constructed depth layer, which in turn greatly depends on the in-
terpolation segments found between the two adjacent depth layers.
The low density areas of interpolation segments are typically prone
to artifacts, and the low density areas are usually found at the over-
lapping areas, sharp features, and small features. Figure 15 shows a
comparison of interpolated depth layer and the ground truth, where
various artifacts are shown in the interpolated depth layer.

5.2 Feature Extraction

There are two major limitations of our image-space isosurface
based feature extraction method. 1) We can only extract features
that are defined by isosurfaces. 2) Only post-hoc visual tracking
is supported, which precludes feature-based statistics such as the
tracking of a quantity for a given feature over time. For quantities

that can be calculated in image space, it may be possible to pregen-
erate desired values and encode them into maps in much the same
way that depth maps are generated currently. An example of such
a quantity might be surface temperature or curvature. However,
quantities relying on full 3D shape of the feature, such as volume,
are not directly supported with this technique and would require
additional in situ precalculation.

We compare our image-based feature extraction method with 3D
feature extraction. The comparison results are shown in Figure 16.
Feature extraction on depth maps greatly depends on the view con-
figuration. When features are obstructed by other features, as in
Figure 16b, image-based feature extraction considers the visible
segments of the obstructed features to be individual features, while
3D feature extraction is able to correctly connect the obstructed fea-
tures. There are also cases where the depth difference between dif-
ferent features are within the user defined threshold. As a result,
image-based feature extraction identifies them as a single feature
while in 3D they are separate.

6 FUTURE WORK

Depth layer interpolation serves as a user feedback technique for
generating future depth maps. Presently, there is no quantitative
measure for conveying the quality of interpolated depth layers. We
plan to develop a model for uncertainty evaluation of the interpo-
lated depth layer to better guide the users.

Currently, our system cannot correlate the features with different
isovalues. Contour trees are a good candidate for connecting the
features within the same depth maps.

Our technique suffers from the locked view frustum. Limited
view exploration can be enabled using an incremental warping al-
gorithm described by Shade et al. in [27].

7 CONCLUSION

We have introduced an in situ visualization method using depth
maps. Depth maps enable post-hoc visualization of multiple semi-
transparent isosurfaces with any isovalues, providing a way to ex-
plore the flow field without requiring the original 3D volumetric
data. Furthermore, feature extraction and tracking can be done on
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(a) Ground truth feature extraction result on volumetric data

AR

(b) Feature extraction result on depth maps

Figure 16: Comparing FET on volumetric data and FET on depth
maps. The extracted features are in bright green color while the
other features are rendered as semitransparent or darkened. The
leftmost image in both (a) and (b) show that the unobstructed fea-
tures can be correctly extracted. However, the feature shown in the
right image in (a) is partially hidden. As a result, feature extraction
with depth maps recognize the two pieces as two separate features,
as shown in the images on the right in (b).

top of depth maps, allowing features to be tracked both forward and
backward in time. It is also possible to tune the in situ depth maps
generation for future time steps to better capture modeled features
of interest. The concept of extracting and tracking flow features in
image space in terms of depth maps is a sound and powerful one,
suggesting extensions to support other visualization operations.
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