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Abstract

Strange attractors of 3D vector field flows sometimes have a fractal geometric structure in one dimension, and

smooth surface behavior in the other two. General flow visualization methods show the flow dynamics well, but not

the fractal structure. Here we approximate the attractor by polygonal surfaces, which reveal the fractal geometry.

We start with a polygonal approximation which neglects the fractal dimension, and then deform it by the flow to

create multiple sheets of the fractal structure. We use adaptive subdivision, mesh decimation, and retiling methods

to preserve the quality of the polygonal surface in the face of extreme stretching, bending, and creasing caused by

the flow. A GPU implementation provides efficient visualization, which we also apply to other turbulent flows.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction

Advected streak or time surfaces have long been used to vi-
sualize flow. However, they must be adaptively subdivided,
simplified, and/or retiled if they are to faithfully track turbu-
lent motion. We have developed methods to do this, which
we apply to strange attractors. Since the motion towards
these attractors exhibits strong stretching, bending, and fold-
ing, these examples serve as good test cases for our adaptive
surface advection algorithms. In addition, we show visual-
ization of turbulent flows found in real-world applications.

An n-dimensional vector field V defines a flow F(t,x) by
the differential equation

dF(t,x)

dt
= V (t) (1)

with initial conditions F(0,x) = x. This is a system of n first
order ordinary differential equations (ODEs) in n variables.

For such a system of ODEs, a set A is called an attractor
for an open set U if a) for every x in U , the distance from
F(t,x) to A approaches 0 as t approaches infinity, b) if x is in
A, then F(t,x) is in A for all t, and c) A has no smaller subset
with these properties. Thus, a sink point for a linear vector
field is an attractor. If there is sensitive dependence on ini-
tial conditions on A, so that trajectories starting at arbitrarily

close initial conditions eventually diverge, we get a so called
strange attractor, with a fractal structure.

In 1932, while trying to model convection in the atmo-
sphere, Edward Lorenz [Lor63] discovered such a 3D vec-
tor field with sensitive dependence on initial conditions. It
has an attractor of two spiral lobes, as shown in figures 1
and 2, with a trajectory jumping unpredictably from one to
the other. Guckunheimer and Williams [GW79] analyzed
the geometric nature of a simplified version of this attrac-
tor in terms of two and one dimensional ways of abstract-
ing the flow, and Tucker [Tuc02] used interval arithmetic to
show that the original Lorentz attractor in equation 2 has
the same properties as the simplified version. Paiva et al.

[PdFS06] visualize 2D strange attractors using affine arith-
metic, which gives tighter bounds than interval arithmetic.
Rössler [Rös76] discovered a simpler system of three ODEs,
whose attractor has only one spiral lobe. In both of these
systems, the flow spreads or folds the attractor A over on
top of itself infinitely many times, like phyllo or croissant
dough, so that the attractor has a fractal Cantor set struc-
ture in one dimension, and a smooth surface structure in the
other two. A good visual explanation of this phenomenon is
given in Abraham and Shaw [AS83], a more technical but
still readable explanation is given in Strogatz [Str94], and a
more thorough discussion of methods for analyzing and cat-
egorizing attractors is given in Gilmore and Lefranc [GL02].
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Figure 1: A:The Lorenz attractor, as triangulated by Cocone. B:The Lorenz attractor, from points triangulated by Cocone, with

an annular region removed. C:Lorenz attractor of Figure 1B with added triangles in green.

We also consider two other attractors from the Van der Pol
and Duffing equations, describing forced oscillators.

Most visualization systems for these strange attractors
track a collection of isolated points as they move in the flow,
and visualize either their positions or their streamlines. A
notable exception is the work of Saupe and Tvedt [ST94],
which uses volume rendering to visualize the invariant mea-
sure determined by the Lorenz attractor, by tracking the po-
sitions of a collection of points, and using their local den-
sity to estimate the invariant measure. A related approach
is taken by Dellnitz et al. [DHJR97], who approximate the
attractor by a k-D tree hierarchy of boxes, and use Monte-
Carlo integration and an eigenvector solution to determine
an invariant measure that is constant on each box. Krauskopf
et al. [KOD∗05] survey multiple numerical methods for
finding the 2D stable and unstable manifolds of critical
points, illustrating them on the stable manifold of the critical
point at the origin in the Lorenz flow. Here we use polyg-
onal surface rendering to visualize the fractal behavior of
the attractor itself. This presents special challenges, since
the flows involved stretch and fold the surface into multi-
ple layers which are very close to each other. We solve these
challenges using adaptive subdivision, retiling, and a new
method for creating aligned triangulations on nearby layers.

2. The Lorenz and Rössler Attractors

The flow for the original 1963 Lorenz attractor is given by
the equations

dx

dt
= 10y− 10x

dy

dt
= 28x− xz− y

dz

dt
= xy−

8

3
z

(2)

with two non-linear terms, xz and xy, and for the Rössler

attractor, the equations are

dx

dt
= −y− z

dy

dt
= x+0.2y

dz

dt
= 0.2+ xz− 5.7z

(3)

with only one non-linear term xz.

Our initial approach was to model the "template" or
"branched manifold" (see [GL02] [BW83]) of these two at-
tractors directly, from a collection of tracked points. We did
this by taking a large collection of random points in a cube
enclosing the attractor, and moving them by the flow for
many time steps, using 4th order Runge-Kutta integration
(Press et al. [PTVF92]), until they approach the attractor.
For the Lorenz attractor shown in Figure 1, we added points
along the unstable manifold of the critical point at the ori-
gin, to get a smooth outer edge. Next we applied the Co-
cone program of Dey et al. [DG01] to create an initial trian-
gulation. The triangles were incorrect where surface sheets
approached each other, because triangles were formed join-
ing different sheets of the surface, as shown in Figure 1A.
Therefore we interactively chose an annular sector of trian-
gles to remove from the surface, as in Figure 1B, leaving
gaps where two surfaces exist on one side, and merge to be-
come one on the other side. The gaps were partially closed
by identifying two arcs on the boundary where the removal
cut the surface, and joining them by a collection of long thin
triangles, shown green in Figure 1C.

The shape in Figure 1C, even if colored by a uniform
color, does not give a good visualization of the fractal nature
of the surface, because the multiple adjacent sheets are not
shown. If this polygonal surfaces is used as the initial condi-
tion for further flow, and adaptively subdivided and retiled as
the flow progresses, as described in section 4, multiple layers
can be formed. Lorenz [Lor63] has shown that the distance
between layers decreases by a factor of .00007 each time the
flow circles around one of the two holes in Figure 1C, so
there is no hope of visualizing the fractal structure directly.
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However, if we artificially separate the layers, as shown in
Figure 2, we can see how they spiral around the holes.

The Rössler attractor folds its surface repeatedly on top of
itself, but the folded part does not completely cover the orig-
inal surface. This leads to a banded invariant measure of the
density of the tracked random dots shown in Figure 3A, and
of the fractal. Polygonal surface rendering can help visual-
ize this density. Figure 3B shows the an opaque triangulated
surface after multiple further advection steps in the flow. Fig-
ure 3C shows the same surface, rendered with partially trans-
parent polygons. The colors from the regions overlapped by
different numbers of semi-transparent layers reveal and ex-
plain the density variation of the dots in Figure 3A.

3. The Duffing and Van der Pol attractors

The Duffing attractor describes a periodically forced particle
moving in a double well potential. We used the differential
equation from [Kan]:

d2x

dt2 +0.2
dx

dt
− x+ x

3 = 0.3cos(t). (4)

If we make y = dx
dt

a new variable, we get a system of two
first order differential equations

dx

dt
= y

dy

dt
= −0.2y+ x− x3 +0.3cos(t).

(5)

Then to get a 3D attractor, we let t be the third variable.
Since the right hand sides of these equations are periodic
with period 2π in the phase t, we can let t vary around a
circle of radius r (we used r = 1.7) in the (u,v) plane in 3D
(u,v,w) space, and wrap a part of the 2D plane orthogonal
to this circle around it, to get a solid torus containing the
attractor. The map from (x,y, t) to (u,v,w) is given by

u = (r + y) cos(t)
v = (r + y) sin(t)
w = x

(6)

We can use a closed torus as an initial smooth surface,
which, if placed appropriately, will approach the attractor.
Figure 12D shows early stages of this motion.

The Van der Pol equations are,

dx

dt
= y+0.245sin(t)

dy

dt
= 9(0.11− x2)y− 0.72x

(7)

and can be similarly represented and visualized in 3D.

Figure 2: Artificially separated layers of the Lorenz attrac-

tor.

4. Polygonal surface advection

4.1. Related work

Dynamic re-meshing, intensively studied in many areas,
generally falls into two categories, parameterization-based
and mesh adaption. While a parameterization based method
maps the original mesh to a parameter space and create a
new mesh by re-sampling, the mesh adaption method di-
rectly adjusts the original topology with edge operations and
vertex positioning. For example Surazhsky et al. [SAG03]
refine the original mesh with a desired number of primi-
tives, using weighted centroidal Voronoi tessellation to re-
place vertices. Vorstaz et al. [VRS03] use local parameteri-
zation and relax edge connectivity to create a regular mesh.
Alliez et al. [ACSD∗03] proposed the idea of anisotropic
sampling using lines of curves to better preserve features
with fewer primitives.

Re-meshing based streak surfaces and time surfaces are
common tools in flow field visualization. However, efficient
implementation of these methods for real-time uses is a chal-
lenge due to the fact that mesh adjustment is computation in-
tensive. To deal with this problem, Funck et al. [vFWTS08]
have proposed the smoke surface idea. Although this method
is based on geometric surfaces, re-meshing is avoided by ap-
plying transparency to the area with high distortion. While
the smoke surface approach is efficient for real time appli-
cations, it fails to display the long term behavior of turbu-
lent data sets due to the quick fade out of the smoke sur-
face. Later, Krishnan et al. [KGJ09] implemented on par-
allel CPUs an adaptive edge subdivision method for streak
surfaces. Their method uses an efficient but simple length
test to subdivide or contract edges, which is less sensitive
than ours, and did not give us good results on our test cases.

A good solution to re-meshing is to break geometry prim-
itives into isolated elements. Computation on each is hence
separate and suitable for a GPU implementation. Schafhitzel
et al. [STWE07] therefore developed the idea of using point
clouds to represent streak surfaces. However in that paper,
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Figure 3: The Rössler attractor, with dots, opaque surfaces, and transparent surfaces.

a simple connectivity between time lines and between ad-
jacent points on a same time line is still maintained. Extra
points are inserted into this implicit connectivity if the local
point density is not enough to cover the surface.

Buerger et al. [BFTW09] developed a real-time streak
surface visualization method, isolating geometry primitives
by using separate patches. Topology change on each patch is
carried out by a parallel GPU program. Subdivided patches
become new isolated primitives in the next advection round.
Artifacts, such as the cracks between patches, are dealt with
by using a point-based rendering method.

Mesh adaption and re-triangulation operations are hard
to do efficiently on a GPU. No matter which edge picking
strategy is used, the topology adjustment method itself, for
example edge contraction, is a serial process due to poten-
tial conflicts when removing neighboring primitives. There-
fore, we chose to implement two independent decimation
methods on the CPU and only execute them infrequently.
For greatest speed, standard quadric matrix simplification is
used, because it is a good balance between accuracy, speed
and simplicity, while for alleviating self-intersection prob-
lems, a more time consuming mesh retiling method is used.

4.2. Overview of our method

Our algorithm is a GPU subdivision based animation, with a
CPU decimation method executed when needed. The input
of our method is a starting mesh, which we deform accord-
ing to the flow. The proposed method consists of three major
steps: moving vertices according to the flow, adaptively sub-
dividing the object to approximate the flow-deformed shape,
and simplifying the object with a better triangulation when
the object becomes too complex.

A key innovation is our method for creating and main-
taining aligned vertices and triangulations on nearby layers
of the surface during our simplification process, so that it
is less likely that they intersect. Gumhold et al. [GBK03]
have developed a related method of surface simplification
that avoids intersections of nearby layers, and have applied
it to simplify human models together with the clothes around

them. Their method works by finding the time during a con-
tinuous geomorph for an edge collapse when an intersection
first occurs, and trying to avoid this intersection by finding an
alternate position for the vertex to which the edge collapses.
However, the intersection situation we met is different than
theirs, as in our case, the mesh is not static and intersections
happen when the mesh deforms under the flow. Although the
intersection free simplification prevents intersection during
the simplification procedure, it does not prevent intersection
as the animation proceeds. Applying intersection check for
every frame is expensive for an interactive animation. On the
other hand, our method produces surfaces with matched tri-
angulations on nearby layers, which are then less likely to
intersect again later as they are deformed by the flow, so it
does not need to be applied very often. It is tailored for the
applications to attractors and to other surfaces advected by
turbulent flows, rather than to general triangle mesh simpli-
fication.

During each animation step, we update the vertex po-
sitions by the standard 4th order Runge-Kutta integration
(Press et al. [PTVF92]). To evaluate the curvature of each
edge, we also update the position of the center point of each
edge. When the vertices of the seeding object move by the
flow field, the object is stretched and twisted. The original
vertices of the object may not be dense enough to represent
the twisted shape. Therefore we use a subdivision method to
increases the number of points in areas with small details.

The subdivision process used in this paper occurs on each
edge. We use thresholds to check the length and bending de-
gree of an edge, to see if an edge split is necessary. Normally,
a re-meshing method checks only the length of the stretched
edges. An edge split is made if the length surpasses a cer-
tain threshold. We discovered that checking only the edge
length causes discontinuities and jagged creases if the start-
ing triangulation is not fine enough. But checking only the
bending degree as the edge splitting criterion tends to create
long thin triangles. Therefore in this paper, we use both the
edge bending degree and edge length to determine if an edge
requires a splitting.

To check the edge bending degree, we examine the per-
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Figure 4: The workflow of the subdivision method. A: in-

put data including vertices, edges, and edge midpoints. B:

Advected vertices, midpoints and edge bending information.

C: new memory space for subdivided edges. D: Subdivided

facets.

pendicular distance h of the tracked midpoint from the
straight edge. If the bending exceeds our threshold, we then
make a cut on the edge. This degree of bending b is given by
the equation

b =
h

l

√

l =
h
√

l
, (8)

where l is the length of the edge. Since, we want the subdi-
vision to happen less frequently on short edges, we added an
extra factor of the square root of the edge length to h/l, to
decrease the bending measure as the edge becomes shorter.
This is useful to prevent overly detailed subdivision, espe-
cially when the triangles have become smaller than a pixel.
Once an edge is split, triangles are then subdivided accord-
ing to the number of the split edges.

4.3. The GPU implementation

The GPU has proved very suitable for subdivision algo-
rithms. DirectX 11 even supports tessellation on a hardware
level with the new Hull shader and the Domain shader. How-
ever, the output of these shaders is a highly detailed model,
to be used with displacement maps for better rendering re-
sults. This does not require the triangle connectivity that is
important in our method. Therefore, we used CUDA instead
for the implementation of the adaptive subdivision, and have
achieved it at interactive speeds.

The workflow of our subdivision method has three ma-
jor computational steps done in the GPU, and two simpler
clerical steps done in the CPU, as shown in Figure 4. The
inputs of the algorithm are vertices, edges, edge midpoints
and facets. The GPU program first advects the position of
vertices and midpoints and identifies bent edges. Then the
CPU program assigns new memory spaces for new primi-
tives that will be created during the subdivision step. Finally
the GPU creates new primitives for subdivided facets and

Figure 5: The storage change of a split edge. A is before sub-

division, B is after subdivision. The original edge a1a2 has

generated four new edges a1m, ma2, ma3 and ma4. The bot-

tom table shows the storage of the edge a1a2 in the memory

before and after the subdivision.

edges. This section covers the data structure and the imple-
mentation details.

Some data structures for representing a triangle mesh, for
example the half-edge or winged-edge structures, are diffi-
cult to implement efficiently on a GPU due to the complex
connectivity they maintain. Our data structure maintains a
much simpler connectivity, using three types of primitives.
A point is a 3-tuple of the position coordinates. An edge is
a 2-tuple of the indices of its end points. A triangle is a 3-
tuple of the signed indices (defined below) of its edges. Four
arrays are used to store these primitives: two point arrays for
the vertices and for the edge midpoints, one edge array, and
one triangle array. We define the direction of an edge a1a2

by the vector of a2 −a1. The three edge indices of a triangle
are in counter clockwise order. An edge is shared between
two adjacent facets. The direction of the edge within each
facet is important for subdivision and rendering. We add a
sign to the edge’s index to determine the edge’s direction.

Before the algorithm begins, the program creates the four
arrays for the initial object and ships them to the GPU global
memory (Figure 4, A). Vertices as well as edge midpoints are
first advected in parallel by the flow equations. The result of
the first step is kept in the GPU memory and another GPU
program reads it to check the bending degree and length of
each edge. An output memory space is allocated by the CPU
program in advance for this step that holds the new midpoint
position of each split edge. If splitting does not occur, the
corresponding memory position will be filled with a specific
value that is easy to distinguish, for example, a position that
is known to be outside the flow domain. This result is then
read back by the CPU program (Figure 4, B) to assign mem-
ory for new primitives due to subdivision, including new ver-
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tices, edges and triangles. The reason that we implement this
step in the CPU is that creating a continuous and dense mem-
ory space is a serial operation that is difficult and inefficient
on a GPU. Although some bandwidth is sacrificed, most of
this data, for example the new vertex positions, needs to be
read back eventually for display and mesh decimation.

For each bent edge, we need to assign new memory space
for the storage of the newly created middle points and sub-
edges. The CPU program which travels through the returned
data assigns memory that can hold four new edges for each
subdivided edge. (Besides, the two sub-edges, two others are
needed when the two adjacent facets need to be subdivided
to create new triangles later. New memory space is right after
the end of the old edge memory array.) Suppose the tracked
edge midpoint is m. As shown in Figure 5, if the edge a1a2

has been split, the four new edges caused by this edge cut are
a1m, ma2, ma3 and ma4. We reuse the address of edge a1a2

to store the sub-edge a1m. Three new addresses are allocated
to store the other three, starting at adr. The sub-edge ma2 is
always at adr. And adr + 1 stores the new edge ma3 at the
left side of the original edge while adr + 2 stores the new
edge ma4 at the right side of the original edge. Although the
storage space for the new edges ma3 and ma4 is allocated,
the space is empty and will be filled during the next stage.
The storage for edge mn will be allocated when edge a2a4 is
subdivided. Similarly, for each subdivided facet, a piece of
memory is also assigned for the storage of new sub-facets.
The newly created memory space is then read back to a GPU
program again (Figure 4, C). The last GPU program sub-
divides each triangle by creating new edges and facets and
writes to the corresponding memory address. The output af-
ter this step is a new set of the four arrays. This information
is used for display and decimation and becomes the input of
the next round (Figure 4, D).

4.4. Mesh decimation

Most polygon streak surface approaches, for example that of
Buerger et al. [BFTW09], only split edges when they get too
long. Methods with this kind of subdivision often do not re-
port the need for mesh decimation, as the geometry grows at
a relative slow rate. However, due to jagged creases and other
artifacts caused by these methods, we use edge bending de-
gree as a supplementary criterion. But as a consequence the
geometry data increase very rapidly. Much of the geome-
try is unnecessarily detailed, especially, for example, when a
relatively flat surface deforms parallel to itself. This is a no-
ticeable issue in the Lorenz data set. Therefore, as a part of
the algorithm, we apply mesh decimation on the geometry
data when it has become too large.

A good mesh decimation method should decrease the
geometry amount while preserving the object shape, and
should improve the triangulation. For efficiency, direct mod-
ification of mesh topology is a good approach.

The quadric matrix decimation method by Garland

et al. [GH97] is a popular mesh simplification method. It
creates a good triangulation of the initial model with a spec-
ified number of geometry primitives. However, a parallel im-
plementation of such a method is difficult due to the fact that
it requires a global sort on the errors of removing primitives
and parallel edge contraction has potential conflicts contract-
ing neighboring edges. Many researchers have proposed out-
of-core implementations of simplification by breaking down
the model into portions and carrying out the simplification
in a local area (DeCoro et al. [DT07]). This idea sacrifices
image quality for speed and tends to create non-manifolds
more easily. Therefore, we chose to implement the decima-
tion on the CPU. Although quadric matrix decimation takes
a few seconds in our tests, it doesn’t need to be called very
often, and thus doesn’t compromise the performance very
much. For details about this method, please refer to Garland
et al. [GH97]. We applied it to the Lorentz attractor, with
results shown in Figure 12A.

4.5. The polygon retiling method with attraction forces

One issue we face while visualizing the strange attractors
with polygons is that the fractal structure tends to have inter-
secting sheets due to the small distance and inconsistent tri-
angulations of two nearby layers. If only the advection and a
conventional decimation method is applied, self-intersection
artifacts can be seen at a very early stage. To alleviate this
problem, we want to create consistent triangulations at a
stage when multiple fractal sheets are formed but the self-
intersection has not yet occurred.

Therefore, as an alternative decimation method, we
also implement a polygon retiling method similar to
Turk’s [Tur92]. The major difference is that in our method,
points on nearby sheets may have attraction forces that main-
tain a consistent triangulation of these sheets.

The workflow of our polygon retiling method contains
three major steps. The first step randomly samples a set of
new points inside triangles of the initial mesh based on prob-
ability, such that more points are sampled in areas with high
curvature and in triangles of larger size, as shown in Fig-
ure 6A. Each sample point has repelling forces from every
other sample point and may have attraction forces also if
close points exist on nearby sheets. The strengths as well
as the repelling radii of the forces are different according to
the curvature of the triangle containing the point. For high
curvature triangles, points have a smaller repelling force, so
more points will flock there after repulsion. The second step
moves the points on the surface mesh according to the forces.
We fold the motion path of each point to force it to fall
onto the mesh surface. This motion procedure repeats several
times to create a physically stable state where the distances
between the new points are almost equal (Figure 6B). Once
they are evenly distributed, we project each point to a local
least square surface fit to the neighboring original vertices.
Surface re-triangulation with only the new points as vertices
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Figure 6: A: Random points sampled on the Duffing data set based on curvature and triangle size (More points are sampled on

the creases). B: Evenly distributed points after repulsion. C: Retiling result with the new points.

Figure 7: The attraction forces help to preserve nearby

sheets of the Duffing attractor.

and edge flipping after that will produce a better triangula-
tion (Figure 6C). Below, we will mostly focus on attraction
forces. For details about the retiling method, please refer to
Turk [Tur92].

Figure 8: A crease area after retiling.

Sharp creases tend to generate dents after retiling. We
therefore increase sampling on crease areas. And if the
crease becomes too sharp, as in the Rössler data set, we start
to consider the crease as a sharp feature. The sharp edge will
push nearby points away to create a clear and simple mesh
topology. Also, the re-triangulation method will not remove
any point on the sharp edge and the edge flipping method

will not flip such an edge. Figure 8 shows a crease in the
Duffing data set after retiling.

4.6. Attraction force

Because these attractors have infinitely many parallel sheets
in a Cantor set arrangement, these sheets eventually become
inseparable due to the limited floating point precision. We
still want our method to be able to visualize as many layers
as possible. However, if the advection or the retiling method
create different triangulations on two nearby curved sheets,
the two layers may intersect each other, the way two nearby
concentric regular n-gon circle approximations will intersect
each other if one of them is rotated by π/n. Without this rota-
tion we say that the two approximations are aligned, because
corresponding edges are parallel and do not intersect.

Before the self-intersection happens, we apply attraction
force on the mesh to create aligned vertices and matching
triangulations. Point positions on nearby sheets correspond
closely and remain close for a time during the flow. Any sub-
division and decimation that happens later on will also main-
tain matching triangulation topology.

We tried to align the triangulations on nearby sheets by
assigning nearby points on two different close sheets an at-
traction force. Our initial hope was that the attraction forces
could align points on different sheets consistently, and be-
cause the close sheets are similar in shape, we could have
consistent triangulation. However, experiments showed that
the attraction force alone doesn’t help to make the triangu-
lation consistent on different layers, because a point may be
attracted by many points on the other layer. Also, due to the
random sampling of points, the numbers of points on differ-
ent sheets are inconsistent, and it is hard to create consistent
triangulations with different numbers of points. So instead of
simply applying attraction forces, we also pair points from
different sheets, and apply the attraction force only between
those paired points.

The point pairs are generated during the sampling stage.
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Figure 9: Left. Self-intersection artifacts caused by incon-

sistent triangulation on different sheets. Red areas are parts

of the second layer that penetrate the first layer. Right. Sam-

pling point pairs on close sheets. Pink points along the ray

are paired sampled points on different sheets. Attraction

force will be applied between them. Blue points are topology

neighbors that have only repelling forces to the pink point

on the yellow sheet.

As in [Tur92], we randomly pick a triangle based on a prob-
ability proportional to the curvature. But after creating the
random point in it, we also shoot out a ray from the point
in the direction of the point’s normal to test for intersection
with other triangles of the nearby sheets. If an intersection
point is close enough to the sampled point, we also consider
it as a sampled point and pair it with the original sampled
point (Figure 9, right). Therefore, for a part of the surface
with no close neighboring sheets, the improved sampling
method acts as before, but for close sheets, the sampling
method can create equal numbers of points on both layers.

Figure 7 shows the result of applying attraction forces on
close sheets on the Duffing attractor. We cut out a slice of
the model to have a better visualization of the Cantor set
structure perpendicular to the sheets, and the effect of the
attraction forces. As shown in Figure 7, the triangulations
on two close sheets are almost identical. Our idea is based
on the assumption that geometrically close points stay to-
gether for a while under the flow field and are thus likely to
cause identical subdivision of nearby sheets later on. While
we cannot prove that this process will eliminate any self in-
tersections, nor predict how long after this retiling the ad-
vecting surfaces will remain intersection-free, since nearby
points eventually diverge, the method has performed well in
practice. Figure 12D represents frame 1000 of our anima-
tion sequence of the Duffing attractor, 400 frames after the
retiling took place. We colored the front and back surfaces
differently, and adjacent layers have opposite orientation, so
any intersections would be clearly visible, and none are seen.
In contrast, Figure 9A depicts the artifacts at frame 630 when
only the normal retiling without attractive forces is applied.

5. Results

Our method is implemented with the OpenGL API and
CUDA. Tests are carried out on a 1.86GHz Intel Core 2 pro-
cessor, with an Nvidia 8800 GTX graphics card. The out-

Figure 10: Vertex count per animation frame. Sudden de-

creases are from decimation.

put images are 1280x1024 in resolution. We have tested our
method on the four strange attractors, as well as on two tur-
bulent physical flows.

Table 1 shows the performance on the four strange attrac-
tors. Under certain conditions, for example, using a rela-
tively large threshold for splitting edges, we can achieve a
real-time frame rate. Figure 10 shows how the number of
vertices grows during the animations. For the Lorenz data
set, we apply quadric matrix decimation every 50 frames
to ensure a better triangulation, since otherwise the in-plane
stretching and bending can cause triangle orientations to flip.
For the Duffing data set, the retiling method was applied
once at frame 600.

Table 1: Performance. Ad: Advection time, Dt: Decimation

time, Dtimes: Decimation times per 1000 frames, Rt: Ren-

dering time.

Data set Ad (ms) Dt Dtimes Rt (ms)
Lorenz 18.03 825 (ms) 18.75 6.72
Rössler 33.94 n/a 0 18.43
Duffing 84.49 6.58(min) 1 28.75

Van der Pol 36.90 n/a 0 16.56

Figures 12A-12C and Figure 12E show animation se-
quences of the four attractors. In these figures, the struc-
ture of the attractor is shown by the semi-transparent sur-
faces. For the Duffing data set and the Van der Pol data set,
we use a torus as the initial surface. Figure 12C and Fig-
ure 12E show the motion of the torus approaching the attrac-
tors. Figure 12D rotates the last frame of the Duffing anima-
tion against a fixed sectioning plane, visualizing the periodic
change of the 2-D attractor. Our attraction force approach
successfully renders the close sheets without intersection.

Figure 11 gives two examples of using the same technique
on turbulent physical flow fields. Colors are used to indi-
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Figure 11: Two examples of using the polygon visualiza-

tion method on normal turbulent flow fields. Left: the Solar

Plume data set. Right: the Super Nova data set.

cate the local speed. Our adaptive triangulation successfully
tracks the complicated shapes created by the turbulence.

6. Conclusion

The contribution of this paper is a polygonal surface advec-
tion method to visualize flow fields with an efficient GPU
implementation. The algorithm is an adaptive subdivision
process together with an infrequently applied CPU polygon
decimation method accounting for nearby layers. We have
tested it mainly on the strange attractors and achieved in-
teractive or even real time performance. However we hope
that this method will be generic and useful for many other
flow field data sets. The attractor data sets are very extreme
cases, in that they stretch the surface severely and form sharp
creases and nearby parallel sheets. Therefore we believe that
the issues we have solved for the strange attractors will help
us to expand this polygonal surface advection method to
other data sets. As a future research focus, we will also in-
vestigate automatic seeding methods for our polygon surface
advection, so that a proper starting surface can be posed to
reveal important features of the flow field.

7. Acknowledgements

This research was supported by the U.S. Department of
Energy through the SciDAC program with Agreement No.
DE-FC02-06ER25777 and DE-FG02-08ER54956, and by
the Japan Society for the Promotion of Science. We thank
the anonymous reviewers for suggestions which greatly im-
proved the paper.

References

[ACSD∗03] ALLIEZ P., COHEN-STEINER D., DEVILLERS O.,
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Figure 12: A: An animation sequence of the Lorenz data set. B: An animation sequence of the Rössler data set. C: A torus

approaching the Duffing attractor. D: The Duffing attractor, rotating against a sectioning plane. The opposite sides of the
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