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Opening the Black Box: Strategies for Increased User Involvement
in Existing Algorithm Implementations

Thomas Mühlbacher, Harald Piringer, Samuel Gratzl, Michael Sedlmair and Marc Streit

Abstract— An increasing number of interactive visualization tools stress the integration with computational software like MATLAB and
R to access a variety of proven algorithms. In many cases, however, the algorithms are used as black boxes that run to completion in
isolation which contradicts the needs of interactive data exploration. This paper structures, formalizes, and discusses possibilities to
enable user involvement in ongoing computations. Based on a structured characterization of needs regarding intermediate feedback
and control, the main contribution is a formalization and comparison of strategies for achieving user involvement for algorithms with
different characteristics. In the context of integration, we describe considerations for implementing these strategies either as part of
the visualization tool or as part of the algorithm, and we identify requirements and guidelines for the design of algorithmic APIs. To
assess the practical applicability, we provide a survey of frequently used algorithm implementations within R regarding the fulfillment
of these guidelines. While echoing previous calls for analysis modules which support data exploration more directly, we conclude that
a range of pragmatic options for enabling user involvement in ongoing computations exists on both the visualization and algorithm
side and should be used.

Index Terms—Visual analytics infrastructures, integration, interactive algorithms, user involvement, problem subdivision

1 INTRODUCTION

A tight interplay between visualization, interaction, and analytical
computation is the core aspect of Visual Analytics [25, 45]. The mo-
tivation is to combine cognitive and perceptual capabilities of human
analysts with computational capabilities for tasks like statistical mod-
eling, planning, and decision making [43]. In addition to intelligent
visualization and interaction concepts, involving the user in the anal-
ysis process implies delivering results and visual feedback within at
most a few seconds [9] and ideally less than 100 ms [42]. Particularly
for large data, this requirement contradicts the computational effort of
many advanced algorithms like clustering or dimension reduction.

As a compromise, a growing number of systems apply strategies
like early visual feedback of partial results [17, 23], cancellation
on arrival of new input [36], or active steering of a computation in
progress [10]. In current practice, however, this type of application-
specific fine-tuning often involves a reimplementation of algorithms
by researchers and practitioners in Visual Analytics [15]. The obvious
disadvantages include a sub-optimal use of skills and resources and an
explosion of proprietary implementations rather than standardized and
tested solutions.

In contrast, existing systems and languages for data analysis have
widely been used for a long time and offer a variety of proven algo-
rithms. In fact, an increasing number of academic and commercial
visualization tools stress the integration with software like MATLAB
and R (e.g., the R integration in Tableau1 or [38]). Two key goals are to
offer the algorithmic functionality within the visualization tool and to
increase the acceptance by data analysts who have been working with
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these script-based environments for years. Packages like RServe2 or
the MATLAB API3 make the integration reasonably easy from a soft-
ware engineering point of view. However, as pointed out by Fekete,
“computation and analyses are often seen as black boxes that take ta-
bles as input and output, along with set of parameters, and run to com-
pletion or error without interruption” [15]. In general, it is commonly
stated in the Visual Analytics community that exploration is not taken
into account in most infrastructures for analysis computation [25], ex-
plaining “calls for more research [...] on designing analysis modules
that can repair computations when data changes, provide continuous
feedback during the computation, and be steered by user interaction
when possible” [15].

Motivated by and echoing these calls, we structure requirements
and formalize strategies to achieve them. Using this formalization, we
argue that a range of possibilities for implementing these strategies al-
ready exists based on currently available computation infrastructures.
Specifically, the focus of this paper is on studying conceptual possi-
bilities for tightly integrating analytical algorithms of existing com-
putation software into interactive visualization tools. A main goal of
the paper is to increase the awareness and the understanding of these
possibilities within the Visual Analytics community. Another goal is
to improve the understanding of the needs of Visual Analytics appli-
cations within communities focusing on algorithm design like Knowl-
edge Discovery and Data Mining. To this extent, the contributions of
the paper can be summarized as follows:

• A structured characterization of visual exploration needs con-
cerning user involvement in ongoing computations.

• A formal characterization and comparison of strategies for
achieving user involvement in different types of algorithms

• Considerations for implementing these strategies either as part
of the visualization tool or as part of the algorithm, including an
identification of requirements and guidelines for the design of
algorithmic APIs in favor of a tight integration.

• A survey of frequently used algorithms for knowledge extraction
and model building of multivariate data regarding the fulfillment
of these guidelines as a case study based on the software R.

2 RELATED WORK
Over the last decades, the interplay between computational environ-
ments and visualization has been addressed in numerous research pa-
pers and commercial systems. On the one hand, visualization systems

2http://rforge.net/Rserve
3http://www.mathworks.com/products/matlab
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integrate computational tools to perform calculations, as found in re-
search [24, 38, 47] as well as in commercial products like Tableau,
JMP4, or Spotfire5. However, these implementations often boil down
to a black box integration that is insufficient for realizing interac-
tive exploration of large datasets as envisioned in this paper. On
the other hand, there are graphical libraries developed for extending
computational environments by visualization capabilities, such as the
GGobi[44] package for R. However, these extensions are usually not
designed for dealing with large datasets and do not allow users to ac-
tively interact with ongoing computations.

The visualization community has already identified the need for in-
termediate results, which state-of-the-art computational environments
cannot provide in most of the cases. According to Fekete [15], an-
alytical environments are not designed for exploration and algorithm
designers often make no effort to provide such early results during
computation. In the VisMaster book [25, p. 97f], the authors take
the same line by explicitly identifying needs and goals for realizing
interactive visual analysis. The major goals are to get fast initial re-
sponse with progressive refinement, to provide means for triggering
recomputation following small changes, and to allow analysts to steer
the computation. The work by Fisher et al. [17] confirms the need
for early feedback during computations by a user study on incremen-
tal visualization. A more general discussion of user involvement in
online algorithms together with a description of example implementa-
tions has been provided by the CONTROL project [23]. We take this
requirements analysis one step further, and provide a detailed discus-
sion of how different types of early information exchange support user
involvement in interactive exploration.

User interaction in a more general sense was investigated by Yi et
al. [52], who proposed seven interaction categories for visualization
based on the user’s intent, Card et al.’s venerable work [9] on three lev-
els of time constraints in interaction, or in Nielsen’s book on usability
engineering [32]. While these works cover important needs of user
involvement in general, we focus on bidirectional user involvement in
ongoing computations (Sec. 3), and we derive strategies for achieving
the desired involvement in practice (Sec. 4).

To enable earlier user involvement, strategies to accelerate result
availability have been proposed in various contexts. Examples in-
clude pre-aggregation strategies for databases such as OLAP and data
cubes [28], as well as sampling and filtering techniques for progres-
sive refinement in online aggregation [16, 17, 23], enumerative queries
[23], or data mining [51]. For subdividable problems, Divide-and-
recombine (D&R) approaches split up a problem into multiple parts,
solve the parts individually, and finally recombine the partial results.
Examples include MapReduce [12] or RHIPE [21]. However, these
examples focus more on speeding up the computation of large data by
parallelization, rather than actively involving the user.

The need of visualizing incremental results can be found in many
different application contexts beyond multivariate data analysis. Pro-
gressive drawing is a well-known approach in volume rendering [8],
map rendering applications such as Google or Bing Maps, or the draw-
ing of function graphs [35]. Particularly interesting in this respect is
the work by Angelini and Santucci [1], as it provides a formal model
that allows characterizing and evaluating incremental visualizations
regardless of the application context. Furthermore, much research has
gone into visually representing the uncertainty of incomplete results
[17, 20, 34]. While this is important, the focus of this paper lies on
achieving intermediate feedback in the first place, while particular vi-
sualization techniques are out of scope.

In summary, many approaches have been proposed to achieve user
involvement in ongoing computations. Building on these possibilities,
our primary goal is to provide a more formal characterization and com-
parison of strategies for achieving user involvement for different types
of algorithms, together with a discussion in the context of integration
with existing computational environments.
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Fig. 1. Types of User Involvement (TUI) structure the needs of visual
exploration concerning user involvement in ongoing computations along
two directions: the direction of information and the entity of interest.

3 TYPES OF USER INVOLVEMENT

As a starting point for discussing integration concepts, this section
describes four different Types of User Involvement (TUI) that an in-
teractive visualization may support for an ongoing computation of an
algorithm P. In the context of this paper, the main goal of the TUI is to
discuss the needs of visual exploration regarding the integration with
ongoing computations more specifically.

The scope of the TUI is limited to the time between the start and the
end of a computation of P, i.e., it does neither include a priori param-
eterization, nor any further application of the final result rP. Accord-
ingly, we define the scope of P such as to include any bounded compu-
tation or algorithm that has a well-defined end. Note that this explicitly
excludes problems that can change over time, such as accounting for
new data that concurrently arrives via streaming. We will refer to a va-
riety of algorithms from multivariate analysis for illustrating the TUI
and other concepts. In particular, we will relate to the well-known al-
gorithms k-means clustering (as in the R method kmeans) and model-
based feature subset selection (as in the R method regsubsets) as
recurring examples whenever reasonable, and refer to them using the
abbreviations KMEANS and SUBSETS.
We define the TUI based on two orthogonal dimensions (see Fig. 1):

1. The direction of information. We distinguish between feedback
and control. Feedback comprises information which is passed
from the computation to the user and requires an appropriate vi-
sual representation to enable an efficient and correct interpreta-
tion by the user. Control is information passed from the user to
the computation and requires appropriate interaction techniques.

2. The entity of interest. We distinguish between information
concerning the execution of the computation, and information
concerning final or intermediate results of P.

The four TUI are defined as the Cartesian product of these dimensions
and will be discussed in the following sections: execution feedback
(Sec. 3.1), result feedback (Sec. 3.2), execution control (Sec. 3.3), and
result control (Sec. 3.4). This classification of TUI is independent of
any specific algorithm or the structure of its result as well as any partic-
ular implementation and strategy how a certain involvement has been
realized. We emphasize that our focus is on the question what can
be visualized and controlled and why from a user’s perspective rather
than on the issue how, which depends on the particular algorithm P.
We also stress that this paper does not assume every type of user in-
volvement to be indiscriminately beneficial for each situation. User
involvement may incur costs and complexities on multiple levels in-
cluding the implementation, the computation, and the application by
users. Identifying the most appropriate degree of user involvement is
a key topic of Visual Analytics [3, 11, 27, 46] and depends on the al-
gorithm and the application context. Our focus is on the classification
of known types of user involvement and on general strategies to ac-
complish it on a technical level rather than on the assessment, when
specific TUI are appropriate.

4http://www.jmp.com
5http://spotfire.tibco.com

3.1 Execution Feedback
This TUI comprises any kind of feedback about the ongoing compu-
tation of P as such. Common types of information include:

• Aliveness confirms that the computation is in progress and no
event has occurred that may cause failure to eventually deliver
the final result, e.g., a crash, a deadlock, or a lost connection.

• Absolute progress includes information about the current ex-
ecution phase of P which may be qualitative (e.g., “comput-
ing distance matrix...”) or quantitative (e.g., “iteration 12” for
KMEANS or the number of processed data items [1]).

• Relative progress includes information about the degree of com-
pleteness of P which is frequently provided as percentage or as
an estimate of the remaining time.

From the user point of view, execution feedback should mainly an-
swer two questions: First, can any result be expected at all? This may
not be the case either due to the occurrence of a failure or an unaccept-
ably long time required for computation. Second, does it make sense
to wait for the result or do something else in between?

3.2 Result Feedback
This TUI involves any kind of intermediate feedback regarding the
result rP of the ongoing computation of P. We distinguish between
four common classes of result feedback:

• Structure-preserving intermediate results ˜rPi are structurally
equivalent to the final result rP in the sense that the same tech-
niques for visualization and data processing can be applied to
them as surrogates while rP is not yet available. This is typi-
cally the case for iterative and anytime algorithms. For example,
the intermediate object positions after each iteration of a multi-
dimensional scaling algorithm are structurally equivalent to the
final positions. In case of the SUBSETS example, the best subset
found so far has the same structure as the eventually best sub-
set. Further examples from literature include non-negative ma-
trix factorization [10], self-organizing maps [40], and data aggre-
gation [17]. The structure of rP may be multi-faceted, however,
and consist of multiple parts of which only a subset is provided
as feedback during computation. In the KMEANS example, rP
comprises both the cluster centers and the cluster assignments of
all data points. To limit data transfer, showing only the interme-
diate centers during computation could be a reasonable option.

• Aggregated information provides a certain aspect of interme-
diate results ˜rPi without preserving the structure in full detail.
Common examples are quality measures of ˜rPi [5], e.g., the good-
ness of fit for the best subset so far with respect to a certain type
of model (in the SUBSETS example) or the overall stress of the
current solution in case of multidimensional scaling.

• Uncertainty concerning the final result rP as estimated based on
the available intermediate information. An example are confi-
dence bounds for rP [17].

• Provenance includes any type of meta-information concerning
simplifications made for generating ˜rPi . Depending on the strat-
egy to enable user involvement (see Sec. 4), this class may in-
volve information about the considered data or the settings of
complexity parameters. In this respect, provenance information
is related to execution feedback about the absolute progress, but
always refers to a particular intermediate result ˜rPi .

An appropriate visual representation depends on many aspects like
the type and structure of the intermediate results ˜rPi , the update rate of
˜rPi , the involved amount of transferred data, and the intended goal of

the visualization. It should, however, ensure that the result is perceived
as intermediate. One option for doing so is to explicitly represent the
change of the intermediate results over time. Examples include tech-
niques of comparative visualization [19] to represent the difference
between ˜rPi and ˜rPi−1 , or line graphs to visualize the convergence of
aggregated information or uncertainty over time [17].

The key benefit of intermediate result feedback for the user is to
enable an earlier continuation of the analysis based on preliminary
information. Moreover, result feedback supports the decision whether
the ongoing computation should be cancelled. This may be the case

if the current intermediate result is already good enough or if the final
result is not likely to be good enough. Finally, access to intermediate
results is a key requirement for result control (see Sec. 3.4).

3.3 Execution Control
This TUI involves any kind of control of the execution of the ongo-
ing computation of P as such. The most important type of execution
control is cancellation, i.e., an explicit or implicit request to cancel
the execution prematurely. Explicit requests are issued by the user if
control feedback or result feedback suggests that either intermediate
results are good enough, or the final result is unlikely to be good, or
no result can be expected in acceptable time at all. Implicit requests
are typically triggered by updated dependencies of the algorithms like
changed input data and algorithm parameters. Such requests often en-
tail a subsequent restart of the computation, a paradigm described in
the context of multi-threaded visual analysis [36].

Another type of execution control is the prioritization of the re-
maining work. While the final result rP is not affected, the purpose
is to alter the sequence of intermediate results in order to generate
presumably more interesting ones earlier. In this respect, prioritiza-
tion can be regarded as borderline case between execution and result
control. Examples include algorithms involving spatial partitioning or
hierarchical structures where users may want to process more interest-
ing parts first [50]. As another example, algorithms processing search
spaces may benefit from looking into more promising regions first.

3.4 Result Control
This TUI refers to user interaction with the ongoing computation of P
in order to steer the final result rP. This enables users to take advan-
tage from human perception and domain knowledge [3, 25, 45], e.g.,
for early validation of intermediate results, guided feature selection,
weighting, and for avoidance of being stuck in local extrema. In the
widest sense, this TUI corresponds to the common understanding of
the Visual Analytics process as defined by Keim et al. [26]. Conse-
quently, a significant share of the Visual Analytics literature addresses
this TUI, e.g., clustering [31], classification [48], regression [30], di-
mension reduction [14], distance functions [7], and many others.

In the context of this paper, it is helpful to distinguish between in-
ner and outer result control. The difference is whether the steering is
based on intermediate results of a single execution of P, or on final
results of multiple individual executions. Inner result control thus
refers to the ability of controlling a single ongoing computation of P
before it eventually returns a final result. Typical examples are partial
modifications of the computation state between two consecutive itera-
tions of P. In the KMEANS example, users could be allowed to shift,
merge, or split cluster centers between iterations.

Outer result control involves multiple consecutive executions of
P that do not directly re-use previous results. It imposes no require-
ments on the algorithm, but relies on the visualization tool to enable
the discourse between the user and the computation. As stated above,
our scope of the TUI is limited to the time between the start and the
end of a single computation of P. Therefore, outer result control is not
relevant for this paper from the point of view of algorithm design.

4 STRATEGIES FOR ACHIEVING USER INVOLVEMENT
The previous section defined types of user involvement in ongoing
computations. This section describes four strategies S1 – S4 to achieve
user involvement for algorithms with different characteristics. We note
that our focus is on the technical applicability of these strategies for
enabling any type of user involvement, not on the discussion when
specific TUI are appropriate from an application point of view. The
motivation of these strategies within this paper is achieving a tighter
user involvement in integrations of interactive visualization software
with computational environments, such as R or MATLAB. However,
their formulation does not rely on this application context, but can be
regarded as a contribution to general algorithm design regarding early
user involvement.

The common key idea of the four strategies is to replace the ex-
ecution of an algorithm P by a series of smaller steps {P̃1, ..., P̃n} in
order to allow feedback and control between any subsequent steps P̃i
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integrate computational tools to perform calculations, as found in re-
search [24, 38, 47] as well as in commercial products like Tableau,
JMP4, or Spotfire5. However, these implementations often boil down
to a black box integration that is insufficient for realizing interac-
tive exploration of large datasets as envisioned in this paper. On
the other hand, there are graphical libraries developed for extending
computational environments by visualization capabilities, such as the
GGobi[44] package for R. However, these extensions are usually not
designed for dealing with large datasets and do not allow users to ac-
tively interact with ongoing computations.

The visualization community has already identified the need for in-
termediate results, which state-of-the-art computational environments
cannot provide in most of the cases. According to Fekete [15], an-
alytical environments are not designed for exploration and algorithm
designers often make no effort to provide such early results during
computation. In the VisMaster book [25, p. 97f], the authors take
the same line by explicitly identifying needs and goals for realizing
interactive visual analysis. The major goals are to get fast initial re-
sponse with progressive refinement, to provide means for triggering
recomputation following small changes, and to allow analysts to steer
the computation. The work by Fisher et al. [17] confirms the need
for early feedback during computations by a user study on incremen-
tal visualization. A more general discussion of user involvement in
online algorithms together with a description of example implementa-
tions has been provided by the CONTROL project [23]. We take this
requirements analysis one step further, and provide a detailed discus-
sion of how different types of early information exchange support user
involvement in interactive exploration.

User interaction in a more general sense was investigated by Yi et
al. [52], who proposed seven interaction categories for visualization
based on the user’s intent, Card et al.’s venerable work [9] on three lev-
els of time constraints in interaction, or in Nielsen’s book on usability
engineering [32]. While these works cover important needs of user
involvement in general, we focus on bidirectional user involvement in
ongoing computations (Sec. 3), and we derive strategies for achieving
the desired involvement in practice (Sec. 4).

To enable earlier user involvement, strategies to accelerate result
availability have been proposed in various contexts. Examples in-
clude pre-aggregation strategies for databases such as OLAP and data
cubes [28], as well as sampling and filtering techniques for progres-
sive refinement in online aggregation [16, 17, 23], enumerative queries
[23], or data mining [51]. For subdividable problems, Divide-and-
recombine (D&R) approaches split up a problem into multiple parts,
solve the parts individually, and finally recombine the partial results.
Examples include MapReduce [12] or RHIPE [21]. However, these
examples focus more on speeding up the computation of large data by
parallelization, rather than actively involving the user.

The need of visualizing incremental results can be found in many
different application contexts beyond multivariate data analysis. Pro-
gressive drawing is a well-known approach in volume rendering [8],
map rendering applications such as Google or Bing Maps, or the draw-
ing of function graphs [35]. Particularly interesting in this respect is
the work by Angelini and Santucci [1], as it provides a formal model
that allows characterizing and evaluating incremental visualizations
regardless of the application context. Furthermore, much research has
gone into visually representing the uncertainty of incomplete results
[17, 20, 34]. While this is important, the focus of this paper lies on
achieving intermediate feedback in the first place, while particular vi-
sualization techniques are out of scope.

In summary, many approaches have been proposed to achieve user
involvement in ongoing computations. Building on these possibilities,
our primary goal is to provide a more formal characterization and com-
parison of strategies for achieving user involvement for different types
of algorithms, together with a discussion in the context of integration
with existing computational environments.
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Fig. 1. Types of User Involvement (TUI) structure the needs of visual
exploration concerning user involvement in ongoing computations along
two directions: the direction of information and the entity of interest.

3 TYPES OF USER INVOLVEMENT

As a starting point for discussing integration concepts, this section
describes four different Types of User Involvement (TUI) that an in-
teractive visualization may support for an ongoing computation of an
algorithm P. In the context of this paper, the main goal of the TUI is to
discuss the needs of visual exploration regarding the integration with
ongoing computations more specifically.

The scope of the TUI is limited to the time between the start and the
end of a computation of P, i.e., it does neither include a priori param-
eterization, nor any further application of the final result rP. Accord-
ingly, we define the scope of P such as to include any bounded compu-
tation or algorithm that has a well-defined end. Note that this explicitly
excludes problems that can change over time, such as accounting for
new data that concurrently arrives via streaming. We will refer to a va-
riety of algorithms from multivariate analysis for illustrating the TUI
and other concepts. In particular, we will relate to the well-known al-
gorithms k-means clustering (as in the R method kmeans) and model-
based feature subset selection (as in the R method regsubsets) as
recurring examples whenever reasonable, and refer to them using the
abbreviations KMEANS and SUBSETS.
We define the TUI based on two orthogonal dimensions (see Fig. 1):

1. The direction of information. We distinguish between feedback
and control. Feedback comprises information which is passed
from the computation to the user and requires an appropriate vi-
sual representation to enable an efficient and correct interpreta-
tion by the user. Control is information passed from the user to
the computation and requires appropriate interaction techniques.

2. The entity of interest. We distinguish between information
concerning the execution of the computation, and information
concerning final or intermediate results of P.

The four TUI are defined as the Cartesian product of these dimensions
and will be discussed in the following sections: execution feedback
(Sec. 3.1), result feedback (Sec. 3.2), execution control (Sec. 3.3), and
result control (Sec. 3.4). This classification of TUI is independent of
any specific algorithm or the structure of its result as well as any partic-
ular implementation and strategy how a certain involvement has been
realized. We emphasize that our focus is on the question what can
be visualized and controlled and why from a user’s perspective rather
than on the issue how, which depends on the particular algorithm P.
We also stress that this paper does not assume every type of user in-
volvement to be indiscriminately beneficial for each situation. User
involvement may incur costs and complexities on multiple levels in-
cluding the implementation, the computation, and the application by
users. Identifying the most appropriate degree of user involvement is
a key topic of Visual Analytics [3, 11, 27, 46] and depends on the al-
gorithm and the application context. Our focus is on the classification
of known types of user involvement and on general strategies to ac-
complish it on a technical level rather than on the assessment, when
specific TUI are appropriate.

4http://www.jmp.com
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3.1 Execution Feedback
This TUI comprises any kind of feedback about the ongoing compu-
tation of P as such. Common types of information include:

• Aliveness confirms that the computation is in progress and no
event has occurred that may cause failure to eventually deliver
the final result, e.g., a crash, a deadlock, or a lost connection.

• Absolute progress includes information about the current ex-
ecution phase of P which may be qualitative (e.g., “comput-
ing distance matrix...”) or quantitative (e.g., “iteration 12” for
KMEANS or the number of processed data items [1]).

• Relative progress includes information about the degree of com-
pleteness of P which is frequently provided as percentage or as
an estimate of the remaining time.

From the user point of view, execution feedback should mainly an-
swer two questions: First, can any result be expected at all? This may
not be the case either due to the occurrence of a failure or an unaccept-
ably long time required for computation. Second, does it make sense
to wait for the result or do something else in between?

3.2 Result Feedback
This TUI involves any kind of intermediate feedback regarding the
result rP of the ongoing computation of P. We distinguish between
four common classes of result feedback:

• Structure-preserving intermediate results ˜rPi are structurally
equivalent to the final result rP in the sense that the same tech-
niques for visualization and data processing can be applied to
them as surrogates while rP is not yet available. This is typi-
cally the case for iterative and anytime algorithms. For example,
the intermediate object positions after each iteration of a multi-
dimensional scaling algorithm are structurally equivalent to the
final positions. In case of the SUBSETS example, the best subset
found so far has the same structure as the eventually best sub-
set. Further examples from literature include non-negative ma-
trix factorization [10], self-organizing maps [40], and data aggre-
gation [17]. The structure of rP may be multi-faceted, however,
and consist of multiple parts of which only a subset is provided
as feedback during computation. In the KMEANS example, rP
comprises both the cluster centers and the cluster assignments of
all data points. To limit data transfer, showing only the interme-
diate centers during computation could be a reasonable option.

• Aggregated information provides a certain aspect of interme-
diate results ˜rPi without preserving the structure in full detail.
Common examples are quality measures of ˜rPi [5], e.g., the good-
ness of fit for the best subset so far with respect to a certain type
of model (in the SUBSETS example) or the overall stress of the
current solution in case of multidimensional scaling.

• Uncertainty concerning the final result rP as estimated based on
the available intermediate information. An example are confi-
dence bounds for rP [17].

• Provenance includes any type of meta-information concerning
simplifications made for generating ˜rPi . Depending on the strat-
egy to enable user involvement (see Sec. 4), this class may in-
volve information about the considered data or the settings of
complexity parameters. In this respect, provenance information
is related to execution feedback about the absolute progress, but
always refers to a particular intermediate result ˜rPi .

An appropriate visual representation depends on many aspects like
the type and structure of the intermediate results ˜rPi , the update rate of
˜rPi , the involved amount of transferred data, and the intended goal of

the visualization. It should, however, ensure that the result is perceived
as intermediate. One option for doing so is to explicitly represent the
change of the intermediate results over time. Examples include tech-
niques of comparative visualization [19] to represent the difference
between ˜rPi and ˜rPi−1 , or line graphs to visualize the convergence of
aggregated information or uncertainty over time [17].

The key benefit of intermediate result feedback for the user is to
enable an earlier continuation of the analysis based on preliminary
information. Moreover, result feedback supports the decision whether
the ongoing computation should be cancelled. This may be the case

if the current intermediate result is already good enough or if the final
result is not likely to be good enough. Finally, access to intermediate
results is a key requirement for result control (see Sec. 3.4).

3.3 Execution Control
This TUI involves any kind of control of the execution of the ongo-
ing computation of P as such. The most important type of execution
control is cancellation, i.e., an explicit or implicit request to cancel
the execution prematurely. Explicit requests are issued by the user if
control feedback or result feedback suggests that either intermediate
results are good enough, or the final result is unlikely to be good, or
no result can be expected in acceptable time at all. Implicit requests
are typically triggered by updated dependencies of the algorithms like
changed input data and algorithm parameters. Such requests often en-
tail a subsequent restart of the computation, a paradigm described in
the context of multi-threaded visual analysis [36].

Another type of execution control is the prioritization of the re-
maining work. While the final result rP is not affected, the purpose
is to alter the sequence of intermediate results in order to generate
presumably more interesting ones earlier. In this respect, prioritiza-
tion can be regarded as borderline case between execution and result
control. Examples include algorithms involving spatial partitioning or
hierarchical structures where users may want to process more interest-
ing parts first [50]. As another example, algorithms processing search
spaces may benefit from looking into more promising regions first.

3.4 Result Control
This TUI refers to user interaction with the ongoing computation of P
in order to steer the final result rP. This enables users to take advan-
tage from human perception and domain knowledge [3, 25, 45], e.g.,
for early validation of intermediate results, guided feature selection,
weighting, and for avoidance of being stuck in local extrema. In the
widest sense, this TUI corresponds to the common understanding of
the Visual Analytics process as defined by Keim et al. [26]. Conse-
quently, a significant share of the Visual Analytics literature addresses
this TUI, e.g., clustering [31], classification [48], regression [30], di-
mension reduction [14], distance functions [7], and many others.

In the context of this paper, it is helpful to distinguish between in-
ner and outer result control. The difference is whether the steering is
based on intermediate results of a single execution of P, or on final
results of multiple individual executions. Inner result control thus
refers to the ability of controlling a single ongoing computation of P
before it eventually returns a final result. Typical examples are partial
modifications of the computation state between two consecutive itera-
tions of P. In the KMEANS example, users could be allowed to shift,
merge, or split cluster centers between iterations.

Outer result control involves multiple consecutive executions of
P that do not directly re-use previous results. It imposes no require-
ments on the algorithm, but relies on the visualization tool to enable
the discourse between the user and the computation. As stated above,
our scope of the TUI is limited to the time between the start and the
end of a single computation of P. Therefore, outer result control is not
relevant for this paper from the point of view of algorithm design.

4 STRATEGIES FOR ACHIEVING USER INVOLVEMENT
The previous section defined types of user involvement in ongoing
computations. This section describes four strategies S1 – S4 to achieve
user involvement for algorithms with different characteristics. We note
that our focus is on the technical applicability of these strategies for
enabling any type of user involvement, not on the discussion when
specific TUI are appropriate from an application point of view. The
motivation of these strategies within this paper is achieving a tighter
user involvement in integrations of interactive visualization software
with computational environments, such as R or MATLAB. However,
their formulation does not rely on this application context, but can be
regarded as a contribution to general algorithm design regarding early
user involvement.

The common key idea of the four strategies is to replace the ex-
ecution of an algorithm P by a series of smaller steps {P̃1, ..., P̃n} in
order to allow feedback and control between any subsequent steps P̃i
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Fig. 2. S1: Data Subsetting. Additional passes of P for increasing sub-
sets of data are computed to allow user involvement after a shorter time.

and ˜Pi+1. The simplification of P to steps P̃i can be achieved in several
ways, which can be characterized based on two orthogonal aspects:
(1) The dimension of simplification of P can either be the input data,
the parameters, or the algorithm itself. (2) The approach of simplifi-
cation along these dimensions can be realized by subdivision of P for
divisible problems, or based on simplified extra passes if a subdivi-
sion is not possible. The Cartesian product of these two aspects yields
six combinations which are entirely covered by our four strategies: S1
computes extra passes for simplified data, S2 computes extra passes
for simplified parameters or a simplified algorithm. S3 subdivides P
into subproblems with respect to data or parameters, while S4 subdi-
vides the control flow of the algorithm as such. In this sense, we argue
that our set of strategies is complete in the context of our scope, i.e.,
enabling user involvement during the computation of operations with
bounded effort.

Motivated by the structured approach of describing and compar-
ing design patterns in software engineering [18], we characterize each
strategy in terms of the name, definition, scope, examples, considera-
tions regarding user involvement, and computational implications.

4.1 S1: Data Subsetting
Definition. Perform computations of P for increasingly larger subsets
Di ⊆ Di+1 ⊆ D of data records or dimensions of a data table D in
additional passes and enable user involvement after completing every
pass P̃i = P(Di) (see Fig. 2).

Scope. S1 operates solely in the data space. As a consequence, S1
is structurally applicable to any algorithm that operates on a data table
or data vector D. From an application point of view, S1 requires that
intermediate results provide a meaningful approximation of the final
result rP. Specifically, this is the case for algorithms inferring a global
structure like clusters, trends, and aggregation.

In contrast to strategies subdividing the workload into disjoint seg-
ments (i.e., S3), the subsetting of D does not rely on reusing results
between passes. As a consequence, S1 is in particular applicable in sit-
uations where algorithms cannot reasonably be subdivided for inherent
structural reasons or due to constraints imposed by their programming
interface. This makes S1 the most generally applicable strategy that
requires little knowledge about the inner structure of P.

However, the type of P determines whether subsetting is possible
and reasonable in terms of data records (i.e., rows of D) or in terms of
data dimensions (i.e., columns of D). Another important consideration
is the method for defining the subsets of D, which significantly affects
how representative the intermediate results are. This issue is directly
related to sampling, which is discussed extensively in the literature
also in context of visualization [4, 13, 28, 33].

Examples. As stated above, S1 is generally suitable for algorithms
inferring a global structure or information. This includes, for example,
most algorithms from unsupervised statistical learning [22]. In this
case, subsetting data records may enable an early detection and poten-
tially correction of wrong assumptions or inadequate parameters, e.g.,
a wrong number of clusters in the KMEANS example. Dimension
reduction techniques like PCA and MDS may also benefit from sub-
setting of data records just as most descriptive statistics like statistical
moments (e.g., mean, variance, skewness), percentiles, etc.

While the purpose of subsetting in S1 is achieving early user in-
volvement, techniques from supervised learning may already include
record-based subsetting for the purpose of model validation [22].
Depending on the purpose of the model, however, applying S1 for
speedup may still be applicable, e.g., when visually indicating linear
trends in a scatter plot. More care must be taken with subsetting of
dimensions in machine learning, as the selection of features is very
critical for the quality and representativity of results.
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Fig. 3. S2: Complexity Selection. Additional passes of P for simplified
parameters are computed to allow user involvement after a shorter time.

User involvement. The key parameters for enabling user involve-
ment are the number and the size of the data subsets Di. These param-
eters enable a tradeoff between frequency of user involvement, quality
in terms of completeness of intermediate results, and computational
overhead. The typically known size of Di relative to D enables a direct
quantification of the completeness in terms of the considered data size.
This information should especially be conveyed as feedback regarding
result provenance and can also be seen as absolute progress. Feed-
back concerning the relative progress with respect to the overall time,
however, requires intimate knowledge of the computational complex-
ity of P. Especially for client-driven implementations (Sec. 5.1), this
may also be a major challenge for enabling user control mechanisms
at an approximately equal rate.

Computational implications. The computational overhead of S1
is the sum of all P(Di), which can be very significant. On the other
hand, the execution of the P(Di) and the P(D) is easily parallelizable.
In so far, S1 does not necessarily incur a latency for receiving the final
result. In an extreme case, all P(Di) as well as P(D) are scheduled
independently, loosely relying on the increasing effort for computing
increasing percentages of D to arrive in order. The memory consump-
tion, however, typically also increases with the degree of paralleliza-
tion due to a multiplication of algorithm-internal structures. Regarding
the storage of Di, indexing of D should be used whenever possible to
avoid data duplication and reduce data transfer.

4.2 S2: Complexity Selection
Definition. Perform computations of P for less complex parameter
configurations P̃i in additional passes before computing P itself, and
enable user involvement after completing every pass P̃i (see Fig. 3).

Scope. S2 operates in the parameter space of P. Therefore, the
applicability of S2 is determined by the existence and accessibility of
complexity parameters that enable a speed vs. quality tradeoff. In par-
ticular, this applies to approximation algorithms [49] and many heuris-
tics of computationally intractable problems in operations research,
but also to many algorithms in other fields like statistics (see below).

In contrast to S1 that operates in data space, the application of S2
is very dependent on P and typically requires structural knowledge of
P and the effect of parameter changes in context of the specific data.
This is a highly non-trivial issue in general as also shown by the grow-
ing importance of parameter space analysis as a topic in visualization
literature [41]. In particular, the purpose of many complexity param-
eters in statistics is to adjust the suitability for particular data and a
particular purpose rather than to simply trade off quality versus speed.
An example is the bias vs. variance tradeoff of many types of sta-
tistical models [22], where additional complexity improves the model
quality only to a certain point before degrading generalizability due
to over-fitting. As a consequence, S2 should only be considered for
algorithms where concluding from intermediate results ˜rPi to the final
result rP is meaningful.

On the other hand, S2 does not require any structural decomposabil-
ity of P, as it is the case for S3 and S4. In contrast to S1 which requires
vector- or tabular-oriented data, S2 is also applicable to algorithms
working on non-decomposable operands like analytical functions.

Examples. In operations research, approximation algorithms for
computationally intractable problems are common. They provide a
solution that is provably optimal up to a constant – and often definable
– factor and have provable run-time bounds [49]. For nearest neighbor
search, for example, ε-approximate variants exist that enable to trade
off the probability of finding the true nearest neighbor versus space and
time costs especially in high-dimensional spaces (e.g., Arya et al. [2]).

Further examples of complexity parameters include the refinement
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Fig. 4. S3: Divide and Combine involves (1) applying P to indepen-
dent parts wk of a workload W , and (2) recombining the results using a
combination C to obtain intermediate results or the final result.

of subdivision schemes, the size of search radii, thresholds for stop-
ping criteria, or even the algorithm itself as long as different algorithms
yield structurally equivalent results, which includes most heuristics.
Many algorithms for feature subset selection (SUBSETS), for exam-
ple, differ in whether they perform a greedy or an exhaustive search.

User involvement. The key parameters for enabling user involve-
ment are the number of approximation steps and the complexities of
the steps. Unlike for S1, the degree of freedom for both parameters is
determined by P. Quantitative complexity parameters like thresholds
may enable a precise choice of the number of approximations and even
a quantification of the completeness or precision (e.g., for estimating
relative progress). Conversely, categorical parameters such as avail-
able heuristic algorithms may impose a strict limitation on the number
and complexities of steps, and complexities may be hard to estimate
or even order. This makes a quantification of the progress difficult or
impossible in general and only enables qualitative feedback regard-
ing progress and result provenance. While feedback regarding result
provenance is essential especially for strategy S2, however, only expert
users will often be able to interpret the information. As for S1, another
challenge for client-driven implementations (Sec. 5.1) will typically be
to enable user control mechanisms at an approximately equal rate.

Computational implications. The computational overhead of S2
is the sum of additional passes for computing the steps P̃i. However,
these computations are independent and thus easily parallelizable. As
discussed for S1, this enables to reduce or avoid the latency for receiv-
ing the final result rP at the cost of increasing memory consumption.

4.3 S3: Divide and Combine
Definition. Subdivide a workload W into n disjoint parts {w1, ...,wn},
apply P independently to each part wk to generate partial results
{rP(w1), ...,rP(wn)}, and compute intermediate results or the final re-
sult based on combining some or all rP(wk) (see Fig. 4).

Scope. S3 imposes two requirements on P: First, independent ap-
plications of P to parts wk of a subdivided workload W must be possi-
ble in order to generate the partial results rP(wk). Second, a meaningful
combination C must exist to combine subsets of partial results to inter-
mediate results ˜rPi that are structurally equivalent to the final result rP.
In particular, applying C to all partial results yields the final result rP
of P. In context of S3, a single step P̃i thus comprises the computation
of a subset of partial results and the application of C to them.

The subdivision of W can be defined in terms of data (i.e., data
space-based) or parameters (i.e., parameter space-based) that P is ap-
plied to. A data space-based subdivision is specifically possible in
cases where applying P to a collection of elements (e.g., a set, a vec-
tor, a matrix) internally involves applying the same operation to each
element. A parameter space-based subdivision is applicable to algo-
rithms that take a specification of a domain (e.g., the extents of a search
space) as a parameter, given that disjoint parts of the domain can be
processed independently. It should be noted that a disjoint subdivision
of the workload W does not in all cases imply a disjoint subdivision
of the data or parameter space considered by each P(wk) for compu-
tation. In other words, the disjoint subdivision applies to the output
of P rather than the input of P. Tolerating a certain overlap in the in-
puts of multiple P(wk) extends the applicability of S3 to operations
that require a specified context around each processed element, e.g.,
for convolution or pattern search.

The characteristics of the combination C depend on the structure of
the result rP. In many cases, C is a composition of partial results in
order to restore their context within W which has been lost due to the
initial subdivision. Sometimes, C may also be a simple aggregation
(e.g., maximum or mean). In any case, a practical requirement is that
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Fig. 5. S4: Dependent subdivision. The idea is to involve the user
between sequentially dependent steps of algorithms P, e.g., iterations.

an application of C should be cheap to perform compared to comput-
ing the partial results themselves. The reason is that the intermediate
results ˜rPi are composed of arbitrary and non-disjoint subsets of the
partial results (see Fig. 4). C may thus be applied to a single partial
result multiple times for generating different intermediate results.

In order to avoid confusion, we point out that S3 is related and
often applicable yet not equivalent to divide and conquer (D&C) algo-
rithms [6]. For D&C algorithms, the subdivision is an inherent prop-
erty of the algorithm while S3 refers to a subdivision-based strategy in
a broader sense. In particular, S3 does not require that the application
of P to a single element P(wk) becomes trivial. In this respect, S3 is
more related to parallelization paradigms like MapReduce [12].

Examples. An example for data space-based S3 is the sampled
evaluation of a function, e.g., for progressive rendering of increas-
ingly fine-grained function graphs. In this case, P is the evaluation
of the function for a set of positions, W are the positions of all sam-
ples, wk is a certain subset, and C restores the context (i.e., the position
and order) of results of P within W . Another example is the progres-
sive computation of aggregates, e.g., the average [17]. In this case, P
may involve potentially optimized algorithms for computing the ag-
gregate for blocks of data wk and C further aggregates multiple rP(wk)

according to their cardinality.

A parameter space-based example is the computation of the auto-
correlation of a time series. The parameter refers to the interval (W )
of considered lags. This interval can be separated in disjoint parts and
C recomposes the autocorrelation as a function of the lag-size.

User involvement. The two key characteristics of S3 are the degree
of subdivision (DIVIDE, i.e., the number n of wk), and the strategy to
generate the intermediate results ˜rPi (COMBINE). In general, DIVIDE
is the more decisive factor for execution feedback and control while
COMBINE determines the frequency and quality of result feedback.
An approximately uniform subdivision of W facilitates feedback re-
garding the relative progress as compared to S1 and S2 and also en-
ables user control like cancellation at a roughly equal rate.

Regarding result feedback, COMBINE defines the ordering of the
computations for all parts wk, and the amount of additional complete-
ness for each intermediate result ˜rPi . As the number of intermediate
results ˜rPi is independent of DIVIDE, the rates for feedback and con-
trol may be different. It is therefore a possible strategy to internally
decouple the processing of COMBINE from DIVIDE (e.g., by multi-
threading), and to define the progress for each P̃i in terms of additional
time rather than W by applying C to all already completed rP(wk).

Computational implications. Increasing the degree of subdivi-
sion DIVIDE enables more fine-grained execution feedback and con-
trol without inherently inferring higher costs for obtaining the final
result rP(W). In practice, however, each application of P may involve a
certain overhead for reasons including the internal structure of P, po-
tentially overlapping inputs of multiple P(wk), and implementation-
related issues (e.g., data transfer, initialization, etc.). The latter
are typically more significant for client-driven implementations (see
Sec. 5.1). In addition, the overhead of S3 includes generating interme-
diate results from partial results and thus depends on COMBINE.

The independence of all P(wk) makes S3 suitable for performing
computations in parallel. In general, parallelization is typically a key
motivation for subdivision. In the context of user involvement, how-
ever, a certain degree of sequential scheduling is required in order to
involve the user between independent subsets of workload parts.
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Fig. 2. S1: Data Subsetting. Additional passes of P for increasing sub-
sets of data are computed to allow user involvement after a shorter time.

and ˜Pi+1. The simplification of P to steps P̃i can be achieved in several
ways, which can be characterized based on two orthogonal aspects:
(1) The dimension of simplification of P can either be the input data,
the parameters, or the algorithm itself. (2) The approach of simplifi-
cation along these dimensions can be realized by subdivision of P for
divisible problems, or based on simplified extra passes if a subdivi-
sion is not possible. The Cartesian product of these two aspects yields
six combinations which are entirely covered by our four strategies: S1
computes extra passes for simplified data, S2 computes extra passes
for simplified parameters or a simplified algorithm. S3 subdivides P
into subproblems with respect to data or parameters, while S4 subdi-
vides the control flow of the algorithm as such. In this sense, we argue
that our set of strategies is complete in the context of our scope, i.e.,
enabling user involvement during the computation of operations with
bounded effort.

Motivated by the structured approach of describing and compar-
ing design patterns in software engineering [18], we characterize each
strategy in terms of the name, definition, scope, examples, considera-
tions regarding user involvement, and computational implications.

4.1 S1: Data Subsetting
Definition. Perform computations of P for increasingly larger subsets
Di ⊆ Di+1 ⊆ D of data records or dimensions of a data table D in
additional passes and enable user involvement after completing every
pass P̃i = P(Di) (see Fig. 2).

Scope. S1 operates solely in the data space. As a consequence, S1
is structurally applicable to any algorithm that operates on a data table
or data vector D. From an application point of view, S1 requires that
intermediate results provide a meaningful approximation of the final
result rP. Specifically, this is the case for algorithms inferring a global
structure like clusters, trends, and aggregation.

In contrast to strategies subdividing the workload into disjoint seg-
ments (i.e., S3), the subsetting of D does not rely on reusing results
between passes. As a consequence, S1 is in particular applicable in sit-
uations where algorithms cannot reasonably be subdivided for inherent
structural reasons or due to constraints imposed by their programming
interface. This makes S1 the most generally applicable strategy that
requires little knowledge about the inner structure of P.

However, the type of P determines whether subsetting is possible
and reasonable in terms of data records (i.e., rows of D) or in terms of
data dimensions (i.e., columns of D). Another important consideration
is the method for defining the subsets of D, which significantly affects
how representative the intermediate results are. This issue is directly
related to sampling, which is discussed extensively in the literature
also in context of visualization [4, 13, 28, 33].

Examples. As stated above, S1 is generally suitable for algorithms
inferring a global structure or information. This includes, for example,
most algorithms from unsupervised statistical learning [22]. In this
case, subsetting data records may enable an early detection and poten-
tially correction of wrong assumptions or inadequate parameters, e.g.,
a wrong number of clusters in the KMEANS example. Dimension
reduction techniques like PCA and MDS may also benefit from sub-
setting of data records just as most descriptive statistics like statistical
moments (e.g., mean, variance, skewness), percentiles, etc.

While the purpose of subsetting in S1 is achieving early user in-
volvement, techniques from supervised learning may already include
record-based subsetting for the purpose of model validation [22].
Depending on the purpose of the model, however, applying S1 for
speedup may still be applicable, e.g., when visually indicating linear
trends in a scatter plot. More care must be taken with subsetting of
dimensions in machine learning, as the selection of features is very
critical for the quality and representativity of results.
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Fig. 3. S2: Complexity Selection. Additional passes of P for simplified
parameters are computed to allow user involvement after a shorter time.

User involvement. The key parameters for enabling user involve-
ment are the number and the size of the data subsets Di. These param-
eters enable a tradeoff between frequency of user involvement, quality
in terms of completeness of intermediate results, and computational
overhead. The typically known size of Di relative to D enables a direct
quantification of the completeness in terms of the considered data size.
This information should especially be conveyed as feedback regarding
result provenance and can also be seen as absolute progress. Feed-
back concerning the relative progress with respect to the overall time,
however, requires intimate knowledge of the computational complex-
ity of P. Especially for client-driven implementations (Sec. 5.1), this
may also be a major challenge for enabling user control mechanisms
at an approximately equal rate.

Computational implications. The computational overhead of S1
is the sum of all P(Di), which can be very significant. On the other
hand, the execution of the P(Di) and the P(D) is easily parallelizable.
In so far, S1 does not necessarily incur a latency for receiving the final
result. In an extreme case, all P(Di) as well as P(D) are scheduled
independently, loosely relying on the increasing effort for computing
increasing percentages of D to arrive in order. The memory consump-
tion, however, typically also increases with the degree of paralleliza-
tion due to a multiplication of algorithm-internal structures. Regarding
the storage of Di, indexing of D should be used whenever possible to
avoid data duplication and reduce data transfer.

4.2 S2: Complexity Selection
Definition. Perform computations of P for less complex parameter
configurations P̃i in additional passes before computing P itself, and
enable user involvement after completing every pass P̃i (see Fig. 3).

Scope. S2 operates in the parameter space of P. Therefore, the
applicability of S2 is determined by the existence and accessibility of
complexity parameters that enable a speed vs. quality tradeoff. In par-
ticular, this applies to approximation algorithms [49] and many heuris-
tics of computationally intractable problems in operations research,
but also to many algorithms in other fields like statistics (see below).

In contrast to S1 that operates in data space, the application of S2
is very dependent on P and typically requires structural knowledge of
P and the effect of parameter changes in context of the specific data.
This is a highly non-trivial issue in general as also shown by the grow-
ing importance of parameter space analysis as a topic in visualization
literature [41]. In particular, the purpose of many complexity param-
eters in statistics is to adjust the suitability for particular data and a
particular purpose rather than to simply trade off quality versus speed.
An example is the bias vs. variance tradeoff of many types of sta-
tistical models [22], where additional complexity improves the model
quality only to a certain point before degrading generalizability due
to over-fitting. As a consequence, S2 should only be considered for
algorithms where concluding from intermediate results ˜rPi to the final
result rP is meaningful.

On the other hand, S2 does not require any structural decomposabil-
ity of P, as it is the case for S3 and S4. In contrast to S1 which requires
vector- or tabular-oriented data, S2 is also applicable to algorithms
working on non-decomposable operands like analytical functions.

Examples. In operations research, approximation algorithms for
computationally intractable problems are common. They provide a
solution that is provably optimal up to a constant – and often definable
– factor and have provable run-time bounds [49]. For nearest neighbor
search, for example, ε-approximate variants exist that enable to trade
off the probability of finding the true nearest neighbor versus space and
time costs especially in high-dimensional spaces (e.g., Arya et al. [2]).

Further examples of complexity parameters include the refinement
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Fig. 4. S3: Divide and Combine involves (1) applying P to indepen-
dent parts wk of a workload W , and (2) recombining the results using a
combination C to obtain intermediate results or the final result.

of subdivision schemes, the size of search radii, thresholds for stop-
ping criteria, or even the algorithm itself as long as different algorithms
yield structurally equivalent results, which includes most heuristics.
Many algorithms for feature subset selection (SUBSETS), for exam-
ple, differ in whether they perform a greedy or an exhaustive search.

User involvement. The key parameters for enabling user involve-
ment are the number of approximation steps and the complexities of
the steps. Unlike for S1, the degree of freedom for both parameters is
determined by P. Quantitative complexity parameters like thresholds
may enable a precise choice of the number of approximations and even
a quantification of the completeness or precision (e.g., for estimating
relative progress). Conversely, categorical parameters such as avail-
able heuristic algorithms may impose a strict limitation on the number
and complexities of steps, and complexities may be hard to estimate
or even order. This makes a quantification of the progress difficult or
impossible in general and only enables qualitative feedback regard-
ing progress and result provenance. While feedback regarding result
provenance is essential especially for strategy S2, however, only expert
users will often be able to interpret the information. As for S1, another
challenge for client-driven implementations (Sec. 5.1) will typically be
to enable user control mechanisms at an approximately equal rate.

Computational implications. The computational overhead of S2
is the sum of additional passes for computing the steps P̃i. However,
these computations are independent and thus easily parallelizable. As
discussed for S1, this enables to reduce or avoid the latency for receiv-
ing the final result rP at the cost of increasing memory consumption.

4.3 S3: Divide and Combine
Definition. Subdivide a workload W into n disjoint parts {w1, ...,wn},
apply P independently to each part wk to generate partial results
{rP(w1), ...,rP(wn)}, and compute intermediate results or the final re-
sult based on combining some or all rP(wk) (see Fig. 4).

Scope. S3 imposes two requirements on P: First, independent ap-
plications of P to parts wk of a subdivided workload W must be possi-
ble in order to generate the partial results rP(wk). Second, a meaningful
combination C must exist to combine subsets of partial results to inter-
mediate results ˜rPi that are structurally equivalent to the final result rP.
In particular, applying C to all partial results yields the final result rP
of P. In context of S3, a single step P̃i thus comprises the computation
of a subset of partial results and the application of C to them.

The subdivision of W can be defined in terms of data (i.e., data
space-based) or parameters (i.e., parameter space-based) that P is ap-
plied to. A data space-based subdivision is specifically possible in
cases where applying P to a collection of elements (e.g., a set, a vec-
tor, a matrix) internally involves applying the same operation to each
element. A parameter space-based subdivision is applicable to algo-
rithms that take a specification of a domain (e.g., the extents of a search
space) as a parameter, given that disjoint parts of the domain can be
processed independently. It should be noted that a disjoint subdivision
of the workload W does not in all cases imply a disjoint subdivision
of the data or parameter space considered by each P(wk) for compu-
tation. In other words, the disjoint subdivision applies to the output
of P rather than the input of P. Tolerating a certain overlap in the in-
puts of multiple P(wk) extends the applicability of S3 to operations
that require a specified context around each processed element, e.g.,
for convolution or pattern search.

The characteristics of the combination C depend on the structure of
the result rP. In many cases, C is a composition of partial results in
order to restore their context within W which has been lost due to the
initial subdivision. Sometimes, C may also be a simple aggregation
(e.g., maximum or mean). In any case, a practical requirement is that

Input

P

P

P

P

S4
Algorithm P Result rP

rP

rP1
~

rP1
~ rP2

~

rP2
~

Fig. 5. S4: Dependent subdivision. The idea is to involve the user
between sequentially dependent steps of algorithms P, e.g., iterations.

an application of C should be cheap to perform compared to comput-
ing the partial results themselves. The reason is that the intermediate
results ˜rPi are composed of arbitrary and non-disjoint subsets of the
partial results (see Fig. 4). C may thus be applied to a single partial
result multiple times for generating different intermediate results.

In order to avoid confusion, we point out that S3 is related and
often applicable yet not equivalent to divide and conquer (D&C) algo-
rithms [6]. For D&C algorithms, the subdivision is an inherent prop-
erty of the algorithm while S3 refers to a subdivision-based strategy in
a broader sense. In particular, S3 does not require that the application
of P to a single element P(wk) becomes trivial. In this respect, S3 is
more related to parallelization paradigms like MapReduce [12].

Examples. An example for data space-based S3 is the sampled
evaluation of a function, e.g., for progressive rendering of increas-
ingly fine-grained function graphs. In this case, P is the evaluation
of the function for a set of positions, W are the positions of all sam-
ples, wk is a certain subset, and C restores the context (i.e., the position
and order) of results of P within W . Another example is the progres-
sive computation of aggregates, e.g., the average [17]. In this case, P
may involve potentially optimized algorithms for computing the ag-
gregate for blocks of data wk and C further aggregates multiple rP(wk)

according to their cardinality.

A parameter space-based example is the computation of the auto-
correlation of a time series. The parameter refers to the interval (W )
of considered lags. This interval can be separated in disjoint parts and
C recomposes the autocorrelation as a function of the lag-size.

User involvement. The two key characteristics of S3 are the degree
of subdivision (DIVIDE, i.e., the number n of wk), and the strategy to
generate the intermediate results ˜rPi (COMBINE). In general, DIVIDE
is the more decisive factor for execution feedback and control while
COMBINE determines the frequency and quality of result feedback.
An approximately uniform subdivision of W facilitates feedback re-
garding the relative progress as compared to S1 and S2 and also en-
ables user control like cancellation at a roughly equal rate.

Regarding result feedback, COMBINE defines the ordering of the
computations for all parts wk, and the amount of additional complete-
ness for each intermediate result ˜rPi . As the number of intermediate
results ˜rPi is independent of DIVIDE, the rates for feedback and con-
trol may be different. It is therefore a possible strategy to internally
decouple the processing of COMBINE from DIVIDE (e.g., by multi-
threading), and to define the progress for each P̃i in terms of additional
time rather than W by applying C to all already completed rP(wk).

Computational implications. Increasing the degree of subdivi-
sion DIVIDE enables more fine-grained execution feedback and con-
trol without inherently inferring higher costs for obtaining the final
result rP(W). In practice, however, each application of P may involve a
certain overhead for reasons including the internal structure of P, po-
tentially overlapping inputs of multiple P(wk), and implementation-
related issues (e.g., data transfer, initialization, etc.). The latter
are typically more significant for client-driven implementations (see
Sec. 5.1). In addition, the overhead of S3 includes generating interme-
diate results from partial results and thus depends on COMBINE.

The independence of all P(wk) makes S3 suitable for performing
computations in parallel. In general, parallelization is typically a key
motivation for subdivision. In the context of user involvement, how-
ever, a certain degree of sequential scheduling is required in order to
involve the user between independent subsets of workload parts.
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4.4 S4: Dependent Subdivision
Definition. Subdivide P into sequentially dependent steps P̃i so that
the result ˜rPi of each step is an input to the next step ˜Pi+1, and is struc-
turally equivalent to the final result rP. Enable user involvement be-
tween steps (see Fig. 5).

Scope. S4 poses requirements regarding the decomposability of P
and the structural equivalence of the result of each step ˜rPi to rP. In
particular, this includes iterative algorithms where the result of each
iteration serves as input to the next. In addition to inherently iterative
problems, multiple problems can directly be transformed to iterative
problems (e.g., recursive problems [6]), or an iterative variant exists
(e.g., iterative PCA [39]). While iterative algorithms are the by far
most important example of S4, the sequential steps could also be de-
fined in terms of an ordered domain that needs to be processed sequen-
tially, e.g., progressive signal reconstruction as described below.

In contrast to S1 and S2, each step P̃i can reuse the previous result
˜rPi−1 to avoid redundant computation. In contrast to S3, each step P̃i

depends on the previous step ˜Pi−1, i.e., it is not possible to decompose
the workload into independent parts.

Examples. S4 is in particular applicable to inherently iterative al-
gorithms. In statistical learning, prominent examples include (1) the
training of regression or classification models such as neural networks,
(2) dimension reduction algorithms like multi-dimensional scaling,
and (3) clustering algorithms such as partitioning around medoids or
the recurring example KMEANS. Other examples are force-based al-
gorithms for graph layout [29], as well as algorithms that – potentially
recursively – build hierarchical structures (e.g., decision trees), where
each recursion adds to the complexity of ˜rPi .

Concerning sequential processing of an ordered domain, consider
a progressive reconstruction of a signal (e.g., a time series or an im-
age) from a frequency-based representation, as common for displaying
large JPEG images. An implementation of S4 could define P̃i as to re-
construct a certain disjoint band of increasingly higher frequencies and
to add the result to the already reconstructed part of the signal.

User involvement. The key parameter for enabling user involve-
ment is the step size, denoted by s. Varying s enables to trade off
the frequency of feedback and user control against the computational
overhead involved with each step. For iterative algorithms, s is typi-
cally defined in terms of iterations which enables user involvement at
an approximately equal rate. Whether relative feedback can reason-
ably be provided depends on whether the number of steps is known
in advance. As this often does not apply to convergent algorithms, a
distance from a termination criterion may be provided instead.

In contrast to all other strategies, each step P̃i depends on the result
of the previous step ˜Pi−1 for S4. We argue that this is a requirement for
permitting meaningful control of the ultimate result rP within an ongo-
ing computation of P, i.e., enabling inner result control (see Sec. 3.4).
For S1 and S2, changing data or parameters typically requires to restart
computing all intermediate results, beginning with the simplest step.
For S3, obtaining a homogeneous final result rP requires that each
step P(wk) is computed in the same way for all independent workload
parts wk. For these reasons, outer result control is more appropriate
when applying S1, S2, or S3. In contrast, for iterative algorithms, in-
ner result control can be reasonable to enable domain knowledge for
affecting convergence (e.g., avoiding local extrema).

Computational implications. As discussed for the degree of sub-
division of S3, the step size s may have a practical effect on the compu-
tational overhead imposed by S4. Unlike for S3, however, the sequen-
tial dependence of the P̃i on each other does not permit parallelization.

5 CLIENT-DRIVEN VS ALGORITHM-DRIVEN IMPLEMENTATION
OF STRATEGIES

The previous sections characterized types of user involvement in on-
going computations (Sec. 3) and described four strategies to achieve
user involvement for algorithms with different characteristics (Sec. 4).
This section discusses possibilities of realizing the strategies when in-
tegrating interactive visualization software and computational environ-
ments. We will refer to these environments as VIS and COMP, where
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Fig. 6. Reimplementing algorithms P in VIS allows to achieve user in-
volvement but involves substantial effort for VIS (left). In client-driven
integration, VIS implements strategies for achieving user involvement
by connecting to existing P that provide adequate interfaces (middle). In
algorithm-driven integration, VIS connects to algorithms that implement
strategies and provide communication directly from within (right).

VIS can be any interactive visualization tool and COMP can be com-
putational environments such as R or MATLAB, as well as any other
external computational resource or library.

We discriminate between three responsibilities:
Algorithm refers to performing the computation of P or P̃i.
Client refers to visualizing the feedback of Algorithm and the han-

dling of user input, i.e., the elements for human-computer interaction.
Flow control refers to implementing the control flow and commu-

nication between Algorithm and Client. This includes the implemen-
tation of a strategy for defining and scheduling the steps P̃i.

Currently, a frequent situation in Visual Analytics is that all three
responsibilities, i.e., Algorithm, Client and Flow control are imple-
mented as part of VIS (see Fig. 6, left column), which has disadvan-
tages as pointed out in related work [15] and in the introduction. In
context of integrating VIS and COMP, however, we assume that the
role of the Algorithm is provided by COMP and the role of the Client is
taken by VIS. In this case, the Flow control can either be a responsibil-
ity of VIS (client-driven integration, center column in Fig. 6), or a re-
sponsibility of COMP (algorithm-driven integration, right column in
Fig. 6). Characterizing, comparing, and discussing these two scenar-
ios is the purpose of this section. We establish requirements imposed
by client- and algorithm-driven integration, and we derive guidelines
to the design of the interface of P in favor of flexible client control.

5.1 Client-driven integration
In client-driven integration, the definition and scheduling of the P̃i is
managed by VIS, while their computation is performed by COMP. Be-
tween any steps P̃i and ˜Pi+1, VIS can realize user involvement, e.g., by
visualizing ˜rPi or by adjusting the call of ˜Pi+1 according to user input.
This externalization of the control flow requires that the programming
interface of P exposes all parameters that clients need to define P̃i. We
subsequently analyze these requirements for each strategy.

In S1, the P̃i are defined as executions of P on subsets of the input
data D. Externally produced subsets can be fed to P instead of the
full D, making S1 applicable for client-driven integration without ad-
ditional requirements. In S2, a client-driven selection of complexity
involves calling P for different parameters. This yields the following
interface Requirement for a Client-driven integration (RC) for S2:

RC 1. Expose complexity parameters to trade off speed for quality.

Considering the central role of most complexity parameters, this
criterion is not very limiting in practice (see Sec. 6). For S3, clients
need to define a part of the subdivided workload W for each call of P.
To support S3, the interface of P must meet the requirement RC2:

RC 2. Enable a precise specification of the processed workload.

For data space-based applications of S3, a subdivision into coherent
blocks is often possible on the client side. Parameter space-based ap-
plications of S3 require the possibility to fully specify boundaries via
the interface, e.g., the lower and upper limit of a considered subspace.

Requirement RC2 also holds for S4, as the sequential processing of
iterations is also based on a decomposition of workload. The specifi-
cation can either be explicit, i.e., the number of iterations performed
in P̃i, or implicit, by means of a stopping criterion.

A second requirement of S4 is the ability to pass the final state of P̃i
on to ˜Pi+1. We identify RC3 for S4 as follows:
RC 3. Provide access to all parts of the state as output, and accept
equivalent information as input, in order to enable resuming the com-
putation with minimal redundancy.

The form of this state information depends on P. For statistical
learning, the state is often the model itself (e.g., a regression model or
cluster centers). While the model is typically the output of such P, not
all interfaces support accepting a model as an input to proceed with.

It should be noted that not all strategies are appropriate for every
algorithm. Given that a particular strategy is appropriate for P, algo-
rithm developers should account for those RC that are required by this
strategy in order to enable an appropriate degree of user involvement.
Regarding execution feedback, the arrival of steps P̃i and their defini-
tion can be reported for aliveness and absolute progress. Regarding
result feedback, the client may directly visualize intermediate results
˜rPi or use any output of steps P̃i to derive information such as quality

metrics as a post-processing step in VIS. Regarding execution con-
trol, considering user input in between enables to call a specific ˜Pi+1
for prioritization, or not at all for premature cancellation. Regarding
result control, ˜Pi+1 can be called for modified inputs.

Client-driven control enables several possibilities of realizing par-
allelization of steps P̃i. For S1, S2, and S3, multiple invocations of
P can be parallelized using multiple threads within COMP, multiple
instances of COMP, or even different computers in network- or cloud-
based environments. In practice, however, the incurred latency may
exclude some options regarding responsiveness for user involvement.

As an inherent limitation of client-driven integration, user involve-
ment is only possible between steps P̃i, i.e., invocations of P. This
may limit the achievable frequency of user involvement as opposed to
a reimplementation of P.

5.2 Algorithm-driven integration
In algorithm-driven integration, the Flow Control is realized directly
within the implementation of P. Specifically, P is responsible for
defining simplification steps P̃i according to a particular strategy, and
for communicating with the Client in order to enable user involvement.
Definition of the simplification steps. When defining the steps P̃i,
four objectives can be identified for different TUI: (1) Execution feed-
back should be provided as precisely as possible and at approximately
equal rates. (2) Result feedback should provide good approximations
of rP as early as possible. (3) Both execution control and result con-
trol should have a minimal latency. (4) The computational overhead
of user involvement should be minimal.

These objectives are partly contradicting each other. Defining the
steps P̃i represents a mechanism to control this tradeoff for optimiza-
tion within a given context. While the four objectives generally apply
to client-driven as well as algorithm-driven integration scenarios, typi-
cally the client knows their preference in context. For algorithm-driven
integration scenarios, it is thus desirable that the client has means of
controlling the definition of steps P̃i via the interface of P. However,
a direct definition of steps often requires an intimate knowledge about
the inner structure of P. In this sense, an algorithm-driven Flow Con-
trol provides two key advantages over client-driven integration:

First, the implementation of P is the more appropriate place to be
aware of the inner structure and any implications than the client. Ide-
ally, the client can specify the preference of the objectives and certain
constraints (e.g., a minimal frequency of feedback) while the algo-
rithm knows how to realize this specification. Based on this consid-
eration, we formulate the following Guideline for the design of P’s
interface in the context of Algorithm-driven integration (GA):
GA 1. Offer means for specifying preference and constraints by the
client regarding desired feedback and control rates.

A second advantage of algorithm-driven integration is that commu-
nication is not limited to the times between structurally equivalent P̃i.

For example, execution control can be realized after arbitrary blocks of
code, allowing to check for cancellation signals often without having
to generate result feedback at the same rate. This source-code level of
granularity also allows minimizing the overhead of executing multi-
ple steps P̃i instead of a single P, as the products of potential common
initialization steps can be reused.
Communication with the Client. In algorithm-driven integration,

the extent of supported feedback and control is entirely up to P. This
makes sense, as appropriate types of user involvement are strongly
algorithm-dependent. On that account, it is a key goal of this paper
to encourage algorithm developers to acknowledge the degree of sup-
ported user involvement as a conscious design choice.

The exchange of information between P and VIS can be imple-
mented in different ways. A simple feedback mechanism commonly
found in command line-based computation environments is providing
a textual trace of the ongoing computation to a console. This one-
directional form of communication is usually intended to be read di-
rectly by users, not clients like VIS. As a result, parsing the trace may
be difficult and highly algorithm-specific. As it is intended for console
display, larger amounts of data can not be communicated reasonably.

A more flexible option is the definition of an interface by the algo-
rithm for sending feedback to and querying control information from
an unknown client during the computation. Technically, a broad set
of communication techniques exists, including the registration of call
back procedures, dedicated points of code insertion, registration mech-
anisms implementing the Observer design pattern [18], message pass-
ing and application-layer network protocols.

As a common guideline in software engineering, we argue for a
separation of concerns in that algorithm implementations should need
to care more about what to communicate and when, rather than about
how and to whom. Details of the communication such as the number
and location of clients, or issues like parsing protocols should be de-
coupled from the actual implementation of P in order to minimize the
implementation effort of algorithm developers and to maximize the
reusability of an implementation in various environments. We see two
options to achieve this:

The first option is pragmatic in the sense that the algorithm develop-
ers should support the communication technique that incurs the min-
imal effort on their side. Translating one of the aforementioned tech-
niques to another is typically possible and requires an Adapter [18]
which can – and should – be realized outside the algorithm, for exam-
ple by the client developer. In many cases, the most simple technique
is providing means for registering callback methods in the same pro-
gramming language as the algorithm implementation. This inversion
of control enables a single client to insert code into P that is called at
semantically meaningful positions of the control flow for exchanging
feedback and control signals, e.g., between iterations. P does not need
to know the client but executes callbacks as a black box. A direct use
by clients may pose certain challenges, such as different languages of
VIS and COMP, or requiring VIS and COMP to be executed on the
same machine. However, as argued above, Adapter objects can be de-
fined to address these challenges, e.g., by translating local calls to Re-
mote Procedure Calls (RPC). We thus suggest the following interface
guideline as a pragmatic step towards separation of concern:

GA 2. Provide a callback interface to allow a client-side customiza-
tion of the communication protocol.

The second option of the algorithm developer is to rely on an exist-
ing communication infrastructure, which may be external or internal.
External refers to libraries and middleware outside the environment of
COMP, e.g., for message passing. While this typically enables more
powerful communication possibilities (e.g., over a network), a disad-
vantage for clients could be to incur the communication infrastructure
as potentially unwanted dependency. In contrast, an internal infras-
tructure refers to a dedicated extension of the COMP environment it-
self (e.g., MATLAB or the R core) that algorithms and clients can
use for benefit without additional complexity or dependency. How-
ever, such extensions are typically not provided today. We thus recom-
mend to realize powerful and easy-to-use communication mechanisms
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4.4 S4: Dependent Subdivision
Definition. Subdivide P into sequentially dependent steps P̃i so that
the result ˜rPi of each step is an input to the next step ˜Pi+1, and is struc-
turally equivalent to the final result rP. Enable user involvement be-
tween steps (see Fig. 5).

Scope. S4 poses requirements regarding the decomposability of P
and the structural equivalence of the result of each step ˜rPi to rP. In
particular, this includes iterative algorithms where the result of each
iteration serves as input to the next. In addition to inherently iterative
problems, multiple problems can directly be transformed to iterative
problems (e.g., recursive problems [6]), or an iterative variant exists
(e.g., iterative PCA [39]). While iterative algorithms are the by far
most important example of S4, the sequential steps could also be de-
fined in terms of an ordered domain that needs to be processed sequen-
tially, e.g., progressive signal reconstruction as described below.

In contrast to S1 and S2, each step P̃i can reuse the previous result
˜rPi−1 to avoid redundant computation. In contrast to S3, each step P̃i

depends on the previous step ˜Pi−1, i.e., it is not possible to decompose
the workload into independent parts.

Examples. S4 is in particular applicable to inherently iterative al-
gorithms. In statistical learning, prominent examples include (1) the
training of regression or classification models such as neural networks,
(2) dimension reduction algorithms like multi-dimensional scaling,
and (3) clustering algorithms such as partitioning around medoids or
the recurring example KMEANS. Other examples are force-based al-
gorithms for graph layout [29], as well as algorithms that – potentially
recursively – build hierarchical structures (e.g., decision trees), where
each recursion adds to the complexity of ˜rPi .

Concerning sequential processing of an ordered domain, consider
a progressive reconstruction of a signal (e.g., a time series or an im-
age) from a frequency-based representation, as common for displaying
large JPEG images. An implementation of S4 could define P̃i as to re-
construct a certain disjoint band of increasingly higher frequencies and
to add the result to the already reconstructed part of the signal.

User involvement. The key parameter for enabling user involve-
ment is the step size, denoted by s. Varying s enables to trade off
the frequency of feedback and user control against the computational
overhead involved with each step. For iterative algorithms, s is typi-
cally defined in terms of iterations which enables user involvement at
an approximately equal rate. Whether relative feedback can reason-
ably be provided depends on whether the number of steps is known
in advance. As this often does not apply to convergent algorithms, a
distance from a termination criterion may be provided instead.

In contrast to all other strategies, each step P̃i depends on the result
of the previous step ˜Pi−1 for S4. We argue that this is a requirement for
permitting meaningful control of the ultimate result rP within an ongo-
ing computation of P, i.e., enabling inner result control (see Sec. 3.4).
For S1 and S2, changing data or parameters typically requires to restart
computing all intermediate results, beginning with the simplest step.
For S3, obtaining a homogeneous final result rP requires that each
step P(wk) is computed in the same way for all independent workload
parts wk. For these reasons, outer result control is more appropriate
when applying S1, S2, or S3. In contrast, for iterative algorithms, in-
ner result control can be reasonable to enable domain knowledge for
affecting convergence (e.g., avoiding local extrema).

Computational implications. As discussed for the degree of sub-
division of S3, the step size s may have a practical effect on the compu-
tational overhead imposed by S4. Unlike for S3, however, the sequen-
tial dependence of the P̃i on each other does not permit parallelization.

5 CLIENT-DRIVEN VS ALGORITHM-DRIVEN IMPLEMENTATION
OF STRATEGIES

The previous sections characterized types of user involvement in on-
going computations (Sec. 3) and described four strategies to achieve
user involvement for algorithms with different characteristics (Sec. 4).
This section discusses possibilities of realizing the strategies when in-
tegrating interactive visualization software and computational environ-
ments. We will refer to these environments as VIS and COMP, where
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Fig. 6. Reimplementing algorithms P in VIS allows to achieve user in-
volvement but involves substantial effort for VIS (left). In client-driven
integration, VIS implements strategies for achieving user involvement
by connecting to existing P that provide adequate interfaces (middle). In
algorithm-driven integration, VIS connects to algorithms that implement
strategies and provide communication directly from within (right).

VIS can be any interactive visualization tool and COMP can be com-
putational environments such as R or MATLAB, as well as any other
external computational resource or library.

We discriminate between three responsibilities:
Algorithm refers to performing the computation of P or P̃i.
Client refers to visualizing the feedback of Algorithm and the han-

dling of user input, i.e., the elements for human-computer interaction.
Flow control refers to implementing the control flow and commu-

nication between Algorithm and Client. This includes the implemen-
tation of a strategy for defining and scheduling the steps P̃i.

Currently, a frequent situation in Visual Analytics is that all three
responsibilities, i.e., Algorithm, Client and Flow control are imple-
mented as part of VIS (see Fig. 6, left column), which has disadvan-
tages as pointed out in related work [15] and in the introduction. In
context of integrating VIS and COMP, however, we assume that the
role of the Algorithm is provided by COMP and the role of the Client is
taken by VIS. In this case, the Flow control can either be a responsibil-
ity of VIS (client-driven integration, center column in Fig. 6), or a re-
sponsibility of COMP (algorithm-driven integration, right column in
Fig. 6). Characterizing, comparing, and discussing these two scenar-
ios is the purpose of this section. We establish requirements imposed
by client- and algorithm-driven integration, and we derive guidelines
to the design of the interface of P in favor of flexible client control.

5.1 Client-driven integration
In client-driven integration, the definition and scheduling of the P̃i is
managed by VIS, while their computation is performed by COMP. Be-
tween any steps P̃i and ˜Pi+1, VIS can realize user involvement, e.g., by
visualizing ˜rPi or by adjusting the call of ˜Pi+1 according to user input.
This externalization of the control flow requires that the programming
interface of P exposes all parameters that clients need to define P̃i. We
subsequently analyze these requirements for each strategy.

In S1, the P̃i are defined as executions of P on subsets of the input
data D. Externally produced subsets can be fed to P instead of the
full D, making S1 applicable for client-driven integration without ad-
ditional requirements. In S2, a client-driven selection of complexity
involves calling P for different parameters. This yields the following
interface Requirement for a Client-driven integration (RC) for S2:

RC 1. Expose complexity parameters to trade off speed for quality.

Considering the central role of most complexity parameters, this
criterion is not very limiting in practice (see Sec. 6). For S3, clients
need to define a part of the subdivided workload W for each call of P.
To support S3, the interface of P must meet the requirement RC2:

RC 2. Enable a precise specification of the processed workload.

For data space-based applications of S3, a subdivision into coherent
blocks is often possible on the client side. Parameter space-based ap-
plications of S3 require the possibility to fully specify boundaries via
the interface, e.g., the lower and upper limit of a considered subspace.

Requirement RC2 also holds for S4, as the sequential processing of
iterations is also based on a decomposition of workload. The specifi-
cation can either be explicit, i.e., the number of iterations performed
in P̃i, or implicit, by means of a stopping criterion.

A second requirement of S4 is the ability to pass the final state of P̃i
on to ˜Pi+1. We identify RC3 for S4 as follows:
RC 3. Provide access to all parts of the state as output, and accept
equivalent information as input, in order to enable resuming the com-
putation with minimal redundancy.

The form of this state information depends on P. For statistical
learning, the state is often the model itself (e.g., a regression model or
cluster centers). While the model is typically the output of such P, not
all interfaces support accepting a model as an input to proceed with.

It should be noted that not all strategies are appropriate for every
algorithm. Given that a particular strategy is appropriate for P, algo-
rithm developers should account for those RC that are required by this
strategy in order to enable an appropriate degree of user involvement.
Regarding execution feedback, the arrival of steps P̃i and their defini-
tion can be reported for aliveness and absolute progress. Regarding
result feedback, the client may directly visualize intermediate results
˜rPi or use any output of steps P̃i to derive information such as quality

metrics as a post-processing step in VIS. Regarding execution con-
trol, considering user input in between enables to call a specific ˜Pi+1
for prioritization, or not at all for premature cancellation. Regarding
result control, ˜Pi+1 can be called for modified inputs.

Client-driven control enables several possibilities of realizing par-
allelization of steps P̃i. For S1, S2, and S3, multiple invocations of
P can be parallelized using multiple threads within COMP, multiple
instances of COMP, or even different computers in network- or cloud-
based environments. In practice, however, the incurred latency may
exclude some options regarding responsiveness for user involvement.

As an inherent limitation of client-driven integration, user involve-
ment is only possible between steps P̃i, i.e., invocations of P. This
may limit the achievable frequency of user involvement as opposed to
a reimplementation of P.

5.2 Algorithm-driven integration
In algorithm-driven integration, the Flow Control is realized directly
within the implementation of P. Specifically, P is responsible for
defining simplification steps P̃i according to a particular strategy, and
for communicating with the Client in order to enable user involvement.
Definition of the simplification steps. When defining the steps P̃i,
four objectives can be identified for different TUI: (1) Execution feed-
back should be provided as precisely as possible and at approximately
equal rates. (2) Result feedback should provide good approximations
of rP as early as possible. (3) Both execution control and result con-
trol should have a minimal latency. (4) The computational overhead
of user involvement should be minimal.

These objectives are partly contradicting each other. Defining the
steps P̃i represents a mechanism to control this tradeoff for optimiza-
tion within a given context. While the four objectives generally apply
to client-driven as well as algorithm-driven integration scenarios, typi-
cally the client knows their preference in context. For algorithm-driven
integration scenarios, it is thus desirable that the client has means of
controlling the definition of steps P̃i via the interface of P. However,
a direct definition of steps often requires an intimate knowledge about
the inner structure of P. In this sense, an algorithm-driven Flow Con-
trol provides two key advantages over client-driven integration:

First, the implementation of P is the more appropriate place to be
aware of the inner structure and any implications than the client. Ide-
ally, the client can specify the preference of the objectives and certain
constraints (e.g., a minimal frequency of feedback) while the algo-
rithm knows how to realize this specification. Based on this consid-
eration, we formulate the following Guideline for the design of P’s
interface in the context of Algorithm-driven integration (GA):
GA 1. Offer means for specifying preference and constraints by the
client regarding desired feedback and control rates.

A second advantage of algorithm-driven integration is that commu-
nication is not limited to the times between structurally equivalent P̃i.

For example, execution control can be realized after arbitrary blocks of
code, allowing to check for cancellation signals often without having
to generate result feedback at the same rate. This source-code level of
granularity also allows minimizing the overhead of executing multi-
ple steps P̃i instead of a single P, as the products of potential common
initialization steps can be reused.
Communication with the Client. In algorithm-driven integration,

the extent of supported feedback and control is entirely up to P. This
makes sense, as appropriate types of user involvement are strongly
algorithm-dependent. On that account, it is a key goal of this paper
to encourage algorithm developers to acknowledge the degree of sup-
ported user involvement as a conscious design choice.

The exchange of information between P and VIS can be imple-
mented in different ways. A simple feedback mechanism commonly
found in command line-based computation environments is providing
a textual trace of the ongoing computation to a console. This one-
directional form of communication is usually intended to be read di-
rectly by users, not clients like VIS. As a result, parsing the trace may
be difficult and highly algorithm-specific. As it is intended for console
display, larger amounts of data can not be communicated reasonably.

A more flexible option is the definition of an interface by the algo-
rithm for sending feedback to and querying control information from
an unknown client during the computation. Technically, a broad set
of communication techniques exists, including the registration of call
back procedures, dedicated points of code insertion, registration mech-
anisms implementing the Observer design pattern [18], message pass-
ing and application-layer network protocols.

As a common guideline in software engineering, we argue for a
separation of concerns in that algorithm implementations should need
to care more about what to communicate and when, rather than about
how and to whom. Details of the communication such as the number
and location of clients, or issues like parsing protocols should be de-
coupled from the actual implementation of P in order to minimize the
implementation effort of algorithm developers and to maximize the
reusability of an implementation in various environments. We see two
options to achieve this:

The first option is pragmatic in the sense that the algorithm develop-
ers should support the communication technique that incurs the min-
imal effort on their side. Translating one of the aforementioned tech-
niques to another is typically possible and requires an Adapter [18]
which can – and should – be realized outside the algorithm, for exam-
ple by the client developer. In many cases, the most simple technique
is providing means for registering callback methods in the same pro-
gramming language as the algorithm implementation. This inversion
of control enables a single client to insert code into P that is called at
semantically meaningful positions of the control flow for exchanging
feedback and control signals, e.g., between iterations. P does not need
to know the client but executes callbacks as a black box. A direct use
by clients may pose certain challenges, such as different languages of
VIS and COMP, or requiring VIS and COMP to be executed on the
same machine. However, as argued above, Adapter objects can be de-
fined to address these challenges, e.g., by translating local calls to Re-
mote Procedure Calls (RPC). We thus suggest the following interface
guideline as a pragmatic step towards separation of concern:

GA 2. Provide a callback interface to allow a client-side customiza-
tion of the communication protocol.

The second option of the algorithm developer is to rely on an exist-
ing communication infrastructure, which may be external or internal.
External refers to libraries and middleware outside the environment of
COMP, e.g., for message passing. While this typically enables more
powerful communication possibilities (e.g., over a network), a disad-
vantage for clients could be to incur the communication infrastructure
as potentially unwanted dependency. In contrast, an internal infras-
tructure refers to a dedicated extension of the COMP environment it-
self (e.g., MATLAB or the R core) that algorithms and clients can
use for benefit without additional complexity or dependency. How-
ever, such extensions are typically not provided today. We thus recom-
mend to realize powerful and easy-to-use communication mechanisms
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Algorithm (package) Description Operates Exposes Definable State Provides Comm. Allows
on table complexity workload restorability communication granularity callbacks

param. (RC1) (RC2) (RC3) from within (GA1) (GA2)
tsne (tnse) T-SNE dimension reduction � � � � � (trace+GA2) � �

neuralnet (neuralnet) Neural network � � � � � (trace) � �

optim (stats) Optimization - � � � � (trace) � �

sammon (MASS) Multi-dimensional scaling � � � � � (trace) � �

vegas (R2Cuba) Monte Carlo Integration - � � � � (trace) � �

kmeans (cluster) K-means clustering � � � � � � �

som (kohonen) Self organizing map � � � � � � �

emcluster (EMCluster) Expectation max. clustering � � � � � � �

rpart (rpart) Recursive tree construction � � � � � � �

regsubsets (leaps) Best subset feature selection � � � � � � �

biglm (biglm) Linear model � � � � � � �

pam (cluster) Partitioning around medoids � � � � � (trace) � �

acf (stats) Autocorrelation � � � � � � �

ksvm (kernlab) Support vector machine � � � � � � �

Table 1. A survey of frequently used R algorithms regarding the fulfillment of the identified requirements and guidelines in favor of a tight integration.

between algorithms and clients as valuable future core extensions of
widely-used COMP environments.

A key consideration of respective extensions refers to their level of
abstraction. Low-level mechanisms do not directly support any se-
mantics of the communicated information but rely on the end points
to do so. Conversely, high-level mechanisms could directly provide
support for specific types of user involvement. For execution feed-
back and control (e.g., cancellation), this seems rather straightforward.
For result feedback and control, however, defining standardized means
seems highly non-trivial, but would enable benefits like querying in-
termediate results of different algorithms transparently to the client.
While this may be a too demanding step for current computation en-
vironments, considerations like these could be a starting point for de-
signing new computation infrastructures, as suggested by Fekete [15].

6 CASE STUDY “R”: APPLICABILITY OF STRATEGIES

In the previous section, we identified a set of requirements and guide-
lines for the design of algorithmic interfaces in favor of an applicabil-
ity of the proposed strategies. In this section, we investigate to which
degree an exemplary computational environment fulfills the require-
ments of client-driven integration or even actively supports user in-
volvement in the sense of algorithm-driven integration. Specifically,
we surveyed 14 common algorithms for important problems related to
multivariate analysis from the scripting environment R. The selection
of R was motivated by its broad acceptance in academia and corporate
research, the choice of algorithms was inspired by R’s reference list of
recommended packages for common topics, CRAN Task Views6.

Table 1 gives an overview of the survey results. The table suggests
that the large majority of the inspected algorithms supports a client-
driven application of multiple strategies, while only a few of them
directly provide algorithm-driven feedback. This indicates that there is
currently a large potential of realizing user involvement at the hands of
VIS developers, as well as potential for COMP developers to support
user involvement more directly.

The data-based S1 is applicable to all algorithms operating on a
data table. This applies to all our examples except for optimization
(optim) and monte-carlo integration (vegas), which take analytic
functions as inputs. Also, all investigated algorithms expose some
complexity parameter or method selector that influences the runtime
of single steps (RC1). For example, the pamonce option enables al-
gorithmic short cuts in Partitioning-around-medoids clustering (pam),
and best-subset feature selection (regsubsets) offers a selector of
exhaustive vs. stepwise methods. Furthermore, the majority of inves-
tigated subdividable algorithms fulfills the interface requirements of
strategies S3 and S4 (RC2, RC3).

However, not all surveyed algorithms fulfill RC1 - RC3, which al-
lows us to discuss potential interface improvements for specific real-
world examples. Note that this discussion is neither an assessment of
the algorithms themselves nor their specific implementations.

6http://cran.r-project.org/web/views

Example 1: The clustering method pam iteratively performs an ex-
haustive search of medoids, i.e., data records that exhibit a minimal
sum of distances to all other records. While pam allows the specifica-
tion of an initial set of medoids (RC3), it is not possible to subdivide
iterations into separate calls (RC2). Adding a numeric parameter indi-
cating the number of iterations to perform in each step would enable
users to suggest cluster medoids in-between, in order to speed up con-
vergence for large datasets as well as to avoid local minima.

Example 2: The iterative training of support vector machines as
provided by ksvm does not expose the divisibility of the underlying
Sequential Minimal Optimization [37]. However, the usefulness and
convergence of SVMs highly depends on the choice of multiple model
parameters. We suggest to enable a specification of the number of iter-
ations and the previously trained model as input parameters of ksvm.
This would allow early previews and cancellation of the model identi-
fication for an exploration of model parameters.

Example 3: Computing the autocorrelation function of a time se-
ries (acf) can be seen as a divide-and-combine approach of comput-
ing correlations between a time series T and different lags of T . While
acf allows a specification of the longest computed lag (lag.max) in
the sense of RC1, it lacks the counterpart lag.min needed for a work-
load specification according to RC2.

After surveying the examples regarding the client-driven applica-
bility of strategies, we now discuss the direct support of user in-
volvement as provided by algorithms. Several algorithms provide
a uni-directional trace of textual feedback to a console during their
execution (pam, vegas, sammon, optim, neuralnet and
tsne). Most of them allow specifying different levels of verbosity,
while tsne, neuralnet and optim even allow specifying the
interval between messages (GA1). Apart from this trace, one exam-
ple comes close to the perfectly accessible algorithm as outlined by
algorithm-driven integration: The iterative tsne algorithm for dimen-
sion reduction allows clients to define a callback (GA2) that is exe-
cuted instead of printing the trace at regular, client-definable intervals
(GA1). This enables flexible feedback in a consistent way.

However, we found no algorithms that consider control signals
during their execution. A possible explanation could be that R usu-
ally runs in single-threaded, stand-alone command line environments,
where the receiving of concurrent control signals is practically not fea-
sible. With callbacks at hand, however, algorithms could incorporate
control by considering the return value of callbacks in their control
flow. As long as measures like this have not been adopted, providing
user control is possible by implementing S1-S4 on the client-side.

This case study shows that very few of the examined R implemen-
tations directly provide intermediate feedback in a consistent way, and
none of them directly supports intermediate control. This confirms
the necessity of external means such as client-driven strategies when
integrating VIS with R for visual exploration. On the upside, all sur-
veyed algorithms fulfill the requirements of at least one client-driven
strategy. The fact that there are good as well as bad examples shows
that integrability lies at the hands of the single COMP developer, even

without the availability of standardized communication protocols.

7 DISCUSSION AND FUTURE WORK

This paper is intended to show individual developers in the VIS and
COMP communities practical measures of supporting integrability on
their end. We agree with previous work [15] that the development of
algorithms that directly provide standardized communication would be
highly desirable in this context, as it allows reuse and minimizes effort
for the VIS community. However, agreeing on protocol standards and
implementing them for existing P is tedious, and putting the full load
on the shoulders of COMP developers is not reasonable. The client-
driven application of S1-S4 can be seen as a practicable alternative that
allows VIS developers to achieve user involvement for a large number
of existing implementations. Adhering to interface requirements in
favor of client-driven integration is a more manageable first request to
COMP developers than providing perfectly accessible algorithms.

Fekete has identified two key limitations of current integrations be-
tween VIS and COMP for the purpose of exploration [15]: First, “al-
gorithms provided by analytical environments are not designed for ex-
ploration and make no effort in providing early results quickly to the
analyst”. Our paper directly addresses this issue, as the characterized
strategies and resulting guidelines pave the way for tighter integrations
that support user involvement during computations. As the second is-
sue, Fekete states that “when data is large [...] transfer time itself
exceeds the reactivity requirement” [15]. This issue is further aggra-
vated by the exchange of intermediate signals. However, many forms
of intermediate communication are substantially smaller than the regu-
lar inputs or outputs of P, e.g., the cluster centers in KMEANS. Apart
from data size, the severity of this limitation in practice depends on
infrastructural aspects of the integration that are beyond the scope of
this paper. Examples include network-based vs. memory-based com-
munication, same machine vs. different machine in LAN / Internet,
stateless vs. workspace-based COMP, internal data source vs. ter-
tiary database, as well as overheads incurred the internal data format
of COMP. As our discussion does not cover these aspects as such, we
demonstrate in the following that the presented strategies and integra-
tion scenarios can work for moderately large datasets.

As an initial proof of concept, we implemented four common inte-
gration scenarios by connecting our VIS environment Visplore [30, 35,
36] to R and MATLAB: We integrated Visplore with (1) the c-based
R-API as part of the Visplore process [24], (2) the COM interface of
the MATLAB engine in a different process (3) the RServe package via
TCP running on the same PC7 as Visplore, and (4) RServe running on
a different PC8 via Gigabit LAN. Table 2 reports timings of transfer-
ring arrays of randomized double precision values from VIS to COMP.
Timings for the other direction, i.e., COMP to VIS, were equivalent
in this measurement. As a second experiment, we implemented the
client-driven versions of S1 and S4 for the R-method kmeans based
on the local API integration of R. The input of a 20-dimensional table
of random data records is transferred to the R-workspace once, while
cluster labels for each record are returned to Visplore after every step
P̃i. Table 3 states average timings of early result availability for vary-
ing numbers of data records (S1) as well as percentages of the full
iteration count (S4), for k = 20 clusters. The intention of these tests is
to show that data transfer can be sufficiently fast for data sizes com-
monly found in real world analyses. Especially in local integrations,
computation times are often the more limiting factor.

Array size R API, local MATLAB, local RServe, local RServe, LAN
100 MB 0.017s 0.254s 0.476s 0.883s

1024 MB 0.171s 2.663s 5.018s 8.510s

Table 2. Timings of transferring arrays of double precision random val-
ues between Visplore and COMP environments using different integra-
tion scenarios. Measurements were averaged across 10 repetitions.

While most examples in this paper stem from the field of multi-
variate analysis, the discussed TUI and strategies are generalizable

7Windows PC, Intel Xeon E3-1245 V2 CPU @ 3.4 Ghz, 16GB RAM
8Windows Notebook, Intel i7-3612QM CPU @ 2.1 Ghz, 8GB RAM

Number of rows 2 iterations 5 iterations 10 iterations 20 iterations
20,000 0.105s 0.256s 0.490s 0.845s

200,000 1.594s 4.041s 8.728s 19.256s
2,000,000 19.744s 59.244s 128.209s 291.869s

Table 3. Timings of the availability of ˜rPi in Visplore when executing
kmeans on a 20-dim. dataset of random numbers for k = 20 clusters in
R. Visplore and R are executed on the same PC using the c-based API
of R. Measurements were averaged across 10 repetitions.

to many algorithms in other disciplines. However, there are contexts
where users will not consider all TUI as desirable. While result con-
trol might counteract the reproducibility of results in some cases, early
result feedback might as well be unfamiliar to users that are accus-
tomed to “seeing precise figures” [17]. In such cases, the potentially
large overheads of executing additional steps P̃i might be particularly
painful if these resources could have been used to execute P as a black
box more quickly. Finally, approximate solutions often introduce the
need for explicit encoding of incompleteness and uncertainty, which
increase the complexity of drawings and may even confuse users un-
familiar with such techniques.

We see multiple directions for future work: (1) We plan to imple-
ment client-driven integration strategies for different algorithms within
Visplore, in order to evaluate them in the context of real-world tasks.
(2) While our discussion of realizing client-driven strategies assumed
the client to be VIS, we intend to investigate implementing it as an au-
tonomous piece of reusable middleware. (3) To enable a more general
assessment of the applicability of strategies, we also intend to extend
our survey to include additional COMP environments like MATLAB
or Python.

8 CONCLUSION

In this paper we characterized possibilities of achieving a tight integra-
tion between computational environments and visualization software.
We laid the ground by a structured characterization of needs for user
involvement in ongoing computations. Based on this classification,
we formalized and described strategies to realize these needs for algo-
rithms of different characteristics. A detailed discussion of considera-
tions for client-driven and algorithm-driven implementations enabled
us to identify guidelines to algorithmic interfaces which we evaluated
based on a survey of common algorithms of the software R.

The combination of automated analysis techniques with interactive
visualization is the key idea of Visual Analytics [25]. In this sense, we
see our work as contribution on multiple levels. On a theoretical level,
the formalization and comparison of technical strategies to achieve
user involvement is a contribution to the theoretical foundations of
Visual Analytics. On a practical level, we believe that the described
implementation considerations facilitate an adoption for numerous in-
tegration scenarios based on existing computation environments. On a
community level, we hope that the identification of specific require-
ments and guidelines for client-driven and algorithm-driven imple-
mentations fosters the development of computational infrastructures
which are better suited to the needs of visual exploration.
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Algorithm (package) Description Operates Exposes Definable State Provides Comm. Allows
on table complexity workload restorability communication granularity callbacks

param. (RC1) (RC2) (RC3) from within (GA1) (GA2)
tsne (tnse) T-SNE dimension reduction � � � � � (trace+GA2) � �

neuralnet (neuralnet) Neural network � � � � � (trace) � �

optim (stats) Optimization - � � � � (trace) � �

sammon (MASS) Multi-dimensional scaling � � � � � (trace) � �

vegas (R2Cuba) Monte Carlo Integration - � � � � (trace) � �

kmeans (cluster) K-means clustering � � � � � � �

som (kohonen) Self organizing map � � � � � � �

emcluster (EMCluster) Expectation max. clustering � � � � � � �

rpart (rpart) Recursive tree construction � � � � � � �

regsubsets (leaps) Best subset feature selection � � � � � � �

biglm (biglm) Linear model � � � � � � �

pam (cluster) Partitioning around medoids � � � � � (trace) � �

acf (stats) Autocorrelation � � � � � � �

ksvm (kernlab) Support vector machine � � � � � � �

Table 1. A survey of frequently used R algorithms regarding the fulfillment of the identified requirements and guidelines in favor of a tight integration.

between algorithms and clients as valuable future core extensions of
widely-used COMP environments.

A key consideration of respective extensions refers to their level of
abstraction. Low-level mechanisms do not directly support any se-
mantics of the communicated information but rely on the end points
to do so. Conversely, high-level mechanisms could directly provide
support for specific types of user involvement. For execution feed-
back and control (e.g., cancellation), this seems rather straightforward.
For result feedback and control, however, defining standardized means
seems highly non-trivial, but would enable benefits like querying in-
termediate results of different algorithms transparently to the client.
While this may be a too demanding step for current computation en-
vironments, considerations like these could be a starting point for de-
signing new computation infrastructures, as suggested by Fekete [15].

6 CASE STUDY “R”: APPLICABILITY OF STRATEGIES

In the previous section, we identified a set of requirements and guide-
lines for the design of algorithmic interfaces in favor of an applicabil-
ity of the proposed strategies. In this section, we investigate to which
degree an exemplary computational environment fulfills the require-
ments of client-driven integration or even actively supports user in-
volvement in the sense of algorithm-driven integration. Specifically,
we surveyed 14 common algorithms for important problems related to
multivariate analysis from the scripting environment R. The selection
of R was motivated by its broad acceptance in academia and corporate
research, the choice of algorithms was inspired by R’s reference list of
recommended packages for common topics, CRAN Task Views6.

Table 1 gives an overview of the survey results. The table suggests
that the large majority of the inspected algorithms supports a client-
driven application of multiple strategies, while only a few of them
directly provide algorithm-driven feedback. This indicates that there is
currently a large potential of realizing user involvement at the hands of
VIS developers, as well as potential for COMP developers to support
user involvement more directly.

The data-based S1 is applicable to all algorithms operating on a
data table. This applies to all our examples except for optimization
(optim) and monte-carlo integration (vegas), which take analytic
functions as inputs. Also, all investigated algorithms expose some
complexity parameter or method selector that influences the runtime
of single steps (RC1). For example, the pamonce option enables al-
gorithmic short cuts in Partitioning-around-medoids clustering (pam),
and best-subset feature selection (regsubsets) offers a selector of
exhaustive vs. stepwise methods. Furthermore, the majority of inves-
tigated subdividable algorithms fulfills the interface requirements of
strategies S3 and S4 (RC2, RC3).

However, not all surveyed algorithms fulfill RC1 - RC3, which al-
lows us to discuss potential interface improvements for specific real-
world examples. Note that this discussion is neither an assessment of
the algorithms themselves nor their specific implementations.

6http://cran.r-project.org/web/views

Example 1: The clustering method pam iteratively performs an ex-
haustive search of medoids, i.e., data records that exhibit a minimal
sum of distances to all other records. While pam allows the specifica-
tion of an initial set of medoids (RC3), it is not possible to subdivide
iterations into separate calls (RC2). Adding a numeric parameter indi-
cating the number of iterations to perform in each step would enable
users to suggest cluster medoids in-between, in order to speed up con-
vergence for large datasets as well as to avoid local minima.

Example 2: The iterative training of support vector machines as
provided by ksvm does not expose the divisibility of the underlying
Sequential Minimal Optimization [37]. However, the usefulness and
convergence of SVMs highly depends on the choice of multiple model
parameters. We suggest to enable a specification of the number of iter-
ations and the previously trained model as input parameters of ksvm.
This would allow early previews and cancellation of the model identi-
fication for an exploration of model parameters.

Example 3: Computing the autocorrelation function of a time se-
ries (acf) can be seen as a divide-and-combine approach of comput-
ing correlations between a time series T and different lags of T . While
acf allows a specification of the longest computed lag (lag.max) in
the sense of RC1, it lacks the counterpart lag.min needed for a work-
load specification according to RC2.

After surveying the examples regarding the client-driven applica-
bility of strategies, we now discuss the direct support of user in-
volvement as provided by algorithms. Several algorithms provide
a uni-directional trace of textual feedback to a console during their
execution (pam, vegas, sammon, optim, neuralnet and
tsne). Most of them allow specifying different levels of verbosity,
while tsne, neuralnet and optim even allow specifying the
interval between messages (GA1). Apart from this trace, one exam-
ple comes close to the perfectly accessible algorithm as outlined by
algorithm-driven integration: The iterative tsne algorithm for dimen-
sion reduction allows clients to define a callback (GA2) that is exe-
cuted instead of printing the trace at regular, client-definable intervals
(GA1). This enables flexible feedback in a consistent way.

However, we found no algorithms that consider control signals
during their execution. A possible explanation could be that R usu-
ally runs in single-threaded, stand-alone command line environments,
where the receiving of concurrent control signals is practically not fea-
sible. With callbacks at hand, however, algorithms could incorporate
control by considering the return value of callbacks in their control
flow. As long as measures like this have not been adopted, providing
user control is possible by implementing S1-S4 on the client-side.

This case study shows that very few of the examined R implemen-
tations directly provide intermediate feedback in a consistent way, and
none of them directly supports intermediate control. This confirms
the necessity of external means such as client-driven strategies when
integrating VIS with R for visual exploration. On the upside, all sur-
veyed algorithms fulfill the requirements of at least one client-driven
strategy. The fact that there are good as well as bad examples shows
that integrability lies at the hands of the single COMP developer, even

without the availability of standardized communication protocols.

7 DISCUSSION AND FUTURE WORK

This paper is intended to show individual developers in the VIS and
COMP communities practical measures of supporting integrability on
their end. We agree with previous work [15] that the development of
algorithms that directly provide standardized communication would be
highly desirable in this context, as it allows reuse and minimizes effort
for the VIS community. However, agreeing on protocol standards and
implementing them for existing P is tedious, and putting the full load
on the shoulders of COMP developers is not reasonable. The client-
driven application of S1-S4 can be seen as a practicable alternative that
allows VIS developers to achieve user involvement for a large number
of existing implementations. Adhering to interface requirements in
favor of client-driven integration is a more manageable first request to
COMP developers than providing perfectly accessible algorithms.

Fekete has identified two key limitations of current integrations be-
tween VIS and COMP for the purpose of exploration [15]: First, “al-
gorithms provided by analytical environments are not designed for ex-
ploration and make no effort in providing early results quickly to the
analyst”. Our paper directly addresses this issue, as the characterized
strategies and resulting guidelines pave the way for tighter integrations
that support user involvement during computations. As the second is-
sue, Fekete states that “when data is large [...] transfer time itself
exceeds the reactivity requirement” [15]. This issue is further aggra-
vated by the exchange of intermediate signals. However, many forms
of intermediate communication are substantially smaller than the regu-
lar inputs or outputs of P, e.g., the cluster centers in KMEANS. Apart
from data size, the severity of this limitation in practice depends on
infrastructural aspects of the integration that are beyond the scope of
this paper. Examples include network-based vs. memory-based com-
munication, same machine vs. different machine in LAN / Internet,
stateless vs. workspace-based COMP, internal data source vs. ter-
tiary database, as well as overheads incurred the internal data format
of COMP. As our discussion does not cover these aspects as such, we
demonstrate in the following that the presented strategies and integra-
tion scenarios can work for moderately large datasets.

As an initial proof of concept, we implemented four common inte-
gration scenarios by connecting our VIS environment Visplore [30, 35,
36] to R and MATLAB: We integrated Visplore with (1) the c-based
R-API as part of the Visplore process [24], (2) the COM interface of
the MATLAB engine in a different process (3) the RServe package via
TCP running on the same PC7 as Visplore, and (4) RServe running on
a different PC8 via Gigabit LAN. Table 2 reports timings of transfer-
ring arrays of randomized double precision values from VIS to COMP.
Timings for the other direction, i.e., COMP to VIS, were equivalent
in this measurement. As a second experiment, we implemented the
client-driven versions of S1 and S4 for the R-method kmeans based
on the local API integration of R. The input of a 20-dimensional table
of random data records is transferred to the R-workspace once, while
cluster labels for each record are returned to Visplore after every step
P̃i. Table 3 states average timings of early result availability for vary-
ing numbers of data records (S1) as well as percentages of the full
iteration count (S4), for k = 20 clusters. The intention of these tests is
to show that data transfer can be sufficiently fast for data sizes com-
monly found in real world analyses. Especially in local integrations,
computation times are often the more limiting factor.

Array size R API, local MATLAB, local RServe, local RServe, LAN
100 MB 0.017s 0.254s 0.476s 0.883s

1024 MB 0.171s 2.663s 5.018s 8.510s

Table 2. Timings of transferring arrays of double precision random val-
ues between Visplore and COMP environments using different integra-
tion scenarios. Measurements were averaged across 10 repetitions.

While most examples in this paper stem from the field of multi-
variate analysis, the discussed TUI and strategies are generalizable

7Windows PC, Intel Xeon E3-1245 V2 CPU @ 3.4 Ghz, 16GB RAM
8Windows Notebook, Intel i7-3612QM CPU @ 2.1 Ghz, 8GB RAM

Number of rows 2 iterations 5 iterations 10 iterations 20 iterations
20,000 0.105s 0.256s 0.490s 0.845s

200,000 1.594s 4.041s 8.728s 19.256s
2,000,000 19.744s 59.244s 128.209s 291.869s

Table 3. Timings of the availability of ˜rPi in Visplore when executing
kmeans on a 20-dim. dataset of random numbers for k = 20 clusters in
R. Visplore and R are executed on the same PC using the c-based API
of R. Measurements were averaged across 10 repetitions.

to many algorithms in other disciplines. However, there are contexts
where users will not consider all TUI as desirable. While result con-
trol might counteract the reproducibility of results in some cases, early
result feedback might as well be unfamiliar to users that are accus-
tomed to “seeing precise figures” [17]. In such cases, the potentially
large overheads of executing additional steps P̃i might be particularly
painful if these resources could have been used to execute P as a black
box more quickly. Finally, approximate solutions often introduce the
need for explicit encoding of incompleteness and uncertainty, which
increase the complexity of drawings and may even confuse users un-
familiar with such techniques.

We see multiple directions for future work: (1) We plan to imple-
ment client-driven integration strategies for different algorithms within
Visplore, in order to evaluate them in the context of real-world tasks.
(2) While our discussion of realizing client-driven strategies assumed
the client to be VIS, we intend to investigate implementing it as an au-
tonomous piece of reusable middleware. (3) To enable a more general
assessment of the applicability of strategies, we also intend to extend
our survey to include additional COMP environments like MATLAB
or Python.

8 CONCLUSION

In this paper we characterized possibilities of achieving a tight integra-
tion between computational environments and visualization software.
We laid the ground by a structured characterization of needs for user
involvement in ongoing computations. Based on this classification,
we formalized and described strategies to realize these needs for algo-
rithms of different characteristics. A detailed discussion of considera-
tions for client-driven and algorithm-driven implementations enabled
us to identify guidelines to algorithmic interfaces which we evaluated
based on a survey of common algorithms of the software R.

The combination of automated analysis techniques with interactive
visualization is the key idea of Visual Analytics [25]. In this sense, we
see our work as contribution on multiple levels. On a theoretical level,
the formalization and comparison of technical strategies to achieve
user involvement is a contribution to the theoretical foundations of
Visual Analytics. On a practical level, we believe that the described
implementation considerations facilitate an adoption for numerous in-
tegration scenarios based on existing computation environments. On a
community level, we hope that the identification of specific require-
ments and guidelines for client-driven and algorithm-driven imple-
mentations fosters the development of computational infrastructures
which are better suited to the needs of visual exploration.
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