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Fig. 1. A screenshot of DecisionFlow being used to analyze electronic medical data. This view (b-d) summarizes the medical records
for 514 cardiology patients that match (a) the user-defined query. The query results include over 113,000 individual events of more
than 1,600 distinct event types. (e) Highlighted is a subgroup of patients who developed heart failure at significantly higher rates
(p < 0.01) than peers who received (f) a particular type of lab test earlier in the episode.

Abstract— Temporal event sequence data is increasingly commonplace, with applications ranging from electronic medical records
to financial transactions to social media activity. Previously developed techniques have focused on low-dimensional datasets (e.g.,
with less than 20 distinct event types). Real-world datasets are often far more complex. This paper describes DecisionFlow, a visual
analysis technique designed to support the analysis of high-dimensional temporal event sequence data (e.g., thousands of event
types). DecisionFlow combines a scalable and dynamic temporal event data structure with interactive multi-view visualizations and
ad hoc statistical analytics. We provide a detailed review of our methods, and present the results from a 12-person user study. The
study results demonstrate that DecisionFlow enables the quick and accurate completion of a range of sequence analysis tasks for
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datasets containing thousands of event types and millions of individual events.

Index Terms—Information Visualization, Temporal Event Sequences, Visual Analytics, Flow Diagrams, Medical Informatics

1 INTRODUCTION

Temporal event data is nearly ubiquitous in this era of mobile devices,
electronic communication, and sensor networks. It can be found in
everything from social network activity, to financial transactions, to
electronic health records. More than ever before, large collections of
this sort of data are being recorded that capture (a) what type of event
is happening, (b) when it happens, and (c) the entities (e.g., customer,
bank account, or patient) involved.

Often, such temporal events are grouped by entity and chained to-
gether to form sequences sorted by order of occurrence. The resulting
sequences provide a sampled record of what has happened to the cor-
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responding entity over time. For example, in a patient’s electronic
medical record, we see a time-stamped sequence of diagnoses, treat-
ments, medications, and lab tests.

Given the wide availability of such data sets and the valuable in-
sights they potentially contain, a number of recent efforts have ex-
plored a range of visual analytic methods specifically designed for
temporal event sequence data. These techniques typically begin by
building an aggregate data structure that captures statistics (such as
frequency and timing) for each of the various permutations of the event
sequences found in the original data set. This structure is subsequently
visualized, often using flow-based techniques reminiscent of Sankey
diagrams [10, 19, 31, 32].

This aggregation approach can effectively handle large numbers of
entities, and has proven powerful in a wide range of applications. It
is, however, critically constrained in that it is only effective for small
numbers of event types. For example, LifeFlow [32] uses colors to
distinguish between event types and is shown being used with just
six event types. Outflow [31], while avoiding color-coding, still has
trouble as the number of event types grows (e.g., to over 20), causing
the visualization to break down into a complex web of event pathways.
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Inconveniently, real-world data sets often contain a large variety of
event types. For example, medical data can have thousands of event
types, given the complex coding systems used for diagnoses, treat-
ments, medications, and lab tests. For such data sets, which we call
high-dimensional, users are often forced to work around this limita-
tion by either pre-filtering to a small group of event types (e.g., a set of
18 specific heart failure symptoms [10]), or collapsing multiple low-
level event types into a small number of high-level categories (e.g., by
grouping specific drugs into more generic medication classes [20]).

Recognizing this limitation, recent attempts have applied simplifi-
cation algorithms to the high-dimensional problem. Approaches in-
clude event filtering, graph simplification [31], and pattern-based sub-
stitution [17]. These methods address the challenge by first present-
ing users with a complex, full-resolution visualization. They then
provide interaction-driven techniques to help users simplify the high-
dimensional type space. As a result, while they enable the effective
analysis for marginally more complex data sets, they do little to ad-
dress the fundamental problem: they do not allow for the visual analy-
sis of data sets with thousands - or more - distinct event types because
the initial starting condition is too complex.

In this paper, we present an alternative approach called Decision-
Flow, that directly supports the visual analysis of high-dimensional
temporal event sequence data with orders-of-magnitude more event
types than previously achieved. For example, our user study shows
that our prototype is effective with over 3,500 unique event types.
Our scalable approach combines an incremental milestone-based data
representation with on-demand statistical analysis and an exploratory
flow-based visualization technique. Beginning with a relatively simple
milestone-based view, direct interaction capabilities let users explore
the high-dimensional event type space, test hypotheses, and make sta-
tistical comparisons between complex event pathways.

This paper describes the DecisionFlow technique in more detail, in-
cluding our milestone-based aggregate data structure and correspond-
ing temporal query methods. We also review our basic visualization
technique and a set of incremental data manipulation operations pro-
vided to enable users to perform exploratory analyses. We then review
a number of additional interaction capabilities and present the results
from a user study documenting the benefits of our approach in an ap-
plication from the healthcare domain. The key research contributions
presented are:

e A dynamic, milestone-based approach to temporal event se-
quence query, aggregation, and visualization that scales effec-
tively for datasets with large numbers of event types. Included
are user interaction methods for visual exploration and compari-
son.

e A scalable data representation and an associated set of interactive
operators that support ad hoc milestone-based pathway analyses.
Associated with these operators are a set of algorithms for anal-
ysis and data structure manipulation.

e Results and discussion from a user study evaluating human per-
formance with DecisionFlow on a set of event sequence analysis
tasks.

The remainder of this paper is organized as follows. Section 3 pro-
vides an overview of related work. Section 4 then describes the Deci-
sionFlow visualization while Section 5 presents additional algorithmic
details. Evaluation results are discussed last in Section 6. We then con-
clude the paper with a summary and brief discussion of future work.

2 MOTIVATION: HEALTH OUTCOMES ANALYSIS

While event sequence data can be found in a variety of domains, our
work is primarily motivated by health outcomes research. In this field,
analysts and epidemiologists study data from groups of patients to un-
derstand what factors may influence a particular outcome (e.g., read-
mission [3] or disease onset [25]). More specifically, such researchers
perform a two stage process.

First, selection defines a cohort of patients that are to be included
in a study. Selection often includes inclusion/exclusion criteria as well
as an episode of interest (e.g., two years prior to diagnosis with heart
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disease). Selection defines a number of key concepts for a given study
including which patients are included, the “time zero” for the study
(used to align patients around a cardinal event) and the period of time
to study.

Second, analysis is performed over the data that meets the selection
constraints. The results of this process inform the researcher as to
which factors, clinical pathways, or other structures in the data are
most associated with the outcome of interest.

Traditionally, the above steps are performed using structured query
languages (e.g. SQL) and dedicated statistical software (e.g., SAS).
However, this generally requires programming support and significant
amounts of time, especially as data sets grow larger and more complex.
This can make exploratory analysis extremely onerous, leading to an
interest in more efficient and easy-to-use visual analytics tools.

3 BACKGROUND

The visualization and analysis of temporal event data is a widely stud-
ied topic. Areas most relevant to the work presented here include tem-
poral data representations and query models, event sequence visual-
ization methods, and event sequence simplification/substitution tech-
niques.

3.1 Temporal Data Representations and Query Models

Given the ubiquitous nature of temporal data and the complexity of the
concept of time, a number of projects have explored the development
of efficient visual data representations. The work of Rind et. al is a
recent example of such work [23].

Many of these efforts have explored temporal models designed to
support visual time-based query capabilities. These representations
generally include key milestone events (e.g., temporal query con-
straints) which must be matched for an event sequence to satisfy a
query, along with ways to specify intervals, absences, and other tem-
poral constructs [12, 13, 18].

Perhaps most relevant is our own recent work on milestone-based
pattern mining [9]. In this work, milestones are entered by users as
query constraints to retrieve matching event sequences. The mile-
stones are then reused to partition the returned data into sub-sequences,
which are subsequently mined for frequent patterns. Finally, the mile-
stones are incorporated into a static visual representation that is used
to select a portion of the pre-computed mined pattern data for display.
This approach does not support exploratory ad hoc analysis. Rather, it
is analagous to the “mine-then-visualize™ approach taken by Wong et
al. [29] for pattern discovery in text corpora.

In contrast, our approach provides an exploratory visual environ-
ment that lets users incrementally build and visualize complex tempo-
ral constructs. This is done via a dynamic data representation that can
be manipulated interactively using a set of operators that modify the
structure and content of the representation. Our method performs on-
demand analyses of the data structure during its evolution in response
to these user-initiated operations.

3.2 Temporal Event Sequence Visualizations

Due to the variety of temporal data types and applications, a vast num-
ber of techniques have been developed [1]. Most relevant to the work
presented here are methods devoted to temporal event sequence data.
Historically, much of the work has focused on visualizing a single
record [2,4,5,7, 11, 14, 22].

Expanding on this work, methods for searching, filtering, and
grouping multiple event sequences (or subgroups within a single large
sequence) were developed [6, 8, 26, 27, 28, 33, 34]. Most recently,
other researchers have supported much larger numbers of event se-
quences by visually combining individual records into an aggregate
view [10, 30, 31, 32]. In theory, these techniques scale well to large
numbers of event sequences, as long as the number of distinct event
types is small (e.g., less than 20). In contrast, the work presented here
is suitable for both large numbers of event sequences and large num-
bers of event types (e.g, in the thousands).
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Fig. 2. DecisionFlow users first (a) issue a query to retrieve sub-
sequences of interest. The matching data is then (b) aggregated to
construct (c) a DecisionFlow Graph, G. G is then (d) analyzed to extract
statistics and (e) visualized. (f) Interaction allows exploratory analysis.
Certain interactions cause (g) transformation operations on G which, in
turn, trigger ad hoc analyses over the underlying event data.

Variable | Description
t The timestamp of an event
T The type of an event
e=(1,1) An individual event
id A unique event sequence identifier

5= (id,eg,e1,--.,e4]) | Anevent sequence of length n

§
é

= (id,[e;, ejr1,...,ej An episode, where é C §
C={50,51,...,5m A collection of event sequences
G=(M,D) A DecisionFlow Graph
mieM A milestone node in G
dieD A directed edge in G

Table 1. A summary of the notation used throughout this paper.

3.3 Temporal Event Simplification and Substitution

Recognizing the need to scale to large numbers of event types, there
has been an interest in representing data at higher levels of granular-
ity, focusing on patterns rather than low-level events [16]. Address-
ing this need, a variety of research projects have developed methods
for simplification or substitution. For example, people have explored
aggregation using the inherent structure of time (e.g., by day, week,
month or year) [21], as well as the use of kernel density estimation to
approximate frequency over time [15].

Outflow [31] includes a simplification feature based on hierarchical
clustering to reduce visual complexity. However, the utility of this ap-
proach is limited, due in part to structural limitations in that it can only
combine events in the same layer. Extensions of the Outflow technique
have used domain-specific type hierarchies to group semantically sim-
ilar event types [20]. However, this approach requires that the groups
be statically defined in advance.

A more flexible substitution-based approach was proposed by Mon-
roe et al [17]. It allows users to define individual meta-events that
could be substituted in the place of longer, common sub-sequences to
reduce visual complexity. However, this method begins by visualiz-
ing the data in full detail, then slowly reducing the data’s complexity.
Our approach is the opposite: we begin with a simplified visualization
and provide users with the tools to dynamically identify, insert, and
remove salient events during an analysis.

4 DESCRIPTION OF DECISIONFLOW

DecisionFlow consists of three principal elements: (1) a baseline event
sequence data representation that supports query and aggregation, (2)
a set of dynamic operators that manipulate the baseline representation,
allowing the ad hoc creation of temporal pathways during exploratory
analysis, and (3) visual encodings and interactions that support dy-
namic user exploration and statistical comparisons. These elements
combine to support the workflow illustrated in Figure 2. This section
describes these elements in detail, beginning with some key defini-
tions.

4.1 Temporal Constructs

A number of key temporal constructs, summarized in Table 1, are used
throughout this paper. These terms are defined as follows.
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Fig. 3. Users specify a query by defining (a) preconditions, (b) mile-
stones describing the episode of interest, and (c) an outcome measure.
These are defined interactively through (d) dialog boxes and drag-and-
drop interaction. Query execution (e) searches through C to find match-
ing event sequences and, for each match, returns (f) the sequence
ID, the outcome - if present - and all events that take place within the
episode period.

Event Sequences. We define a temporal event sequence 5§ =
(id,[eg,ey,...,e,]) as a unique identifier (id) and an ordered list of
n distinct events e = (7,t), where 7 is the event’s fype and 7 is the time
at which the event occurred. The events in s; are ordered by time, such
thatz.; <t . For events in the same sequence that occur at the same
time, we further sort by their types (i.e. Te; < Te; .1)- This provides
a total ordering for all events within 5. For example, one can treat a
patient’s electronic medical record as a temporal event sequence con-
taining a unique time-sorted list of events from the patient’s medical
history (e.g., diagnoses, lab tests, medications, and treatments). Med-
ical events occurring on the same day would be sorted by the type of
event they represent (e.g., lab results first, followed by alphabetically
sorted medications). Events are always represented as point events oc-
curring at a single moment of time. Thus, interval events (i.e. those
with a duration) are not represented. !

Episode. An episode € represents a specific portion of an overall
event sequence (i.e., € C 5). This construct is used to focus on a specific
range of events (e.g., an episode in the medical record domain could
be defined to include only events between a patient’s initial admission
to a hospital for surgery and her subsequent discharge).

Collection. A large number of individual temporal event sequences
can be grouped to form a collection, C = {50,51,...,5n}. The event
sequences s; can vary widely in both length (number of events) and
content (the type and time for each individual event). For example, a
hospital might maintain a collection of event sequences representing
patient medical records. Within that collection, the number and types
of diagnoses will likely vary widely from patient to patient.

4.2 Milestone-based Query, Aggregation, and Analysis

As illustrated in Figure 2, users begin by an analysis by querying the
event sequence database to retrieve a set of episodes relevant to a given
question. This is supported through a visual, milestone-base query
capability. The episodes returned by the query are then transformed to
build a data structure designed for interactive visualization.

4.2.1 Query

DecisionFlow employs a milestone-based query mechanism as illus-
trated in Figure 3. There are two parts in this component: (a) an in-
terface widget allowing users to define the constraints of a query, and
(b) a query engine that processes the query specification and retrieves
matching event episodes from the overall event sequence collection.
The query widget allows the definition of three elements: the
episode definition, its preconditions, and an outcome. Most significant

"For some applications, however, it is possible to transform interval events
into pairs of independent ‘start’ and ‘end’ point events.
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Fig. 4. (a) The initial aggregation process creates a graph G that in-
cludes a linear sequence of nodes (representing milestones) connected
by directed edges that encode the order of occurrence. (b) Anchored to
each edge are details describing the intermediate episodes that occur
between the milestones.

is the episode definition. It is specified as an ordered list of milestones,
each of which is associated with an event type and an ordinal (1st, 2nd,
3rd, etc.). The ordinal is used to allow users to specify which occur-
rence of an event type is associated with a milestone. In addition, time
gap constraints can be added between milestones, or at the start of the
episode definition, or at the end. When appearing at the start (or end),
these gaps define implicit milestones corresponding to the start/end of
the time window. Together, these elements define the query constraints
that are used to specify which data is returned.

Figure 3(b) shows an example episode definition from a medical
record use case. The user has created an episode definition that will
match patients who have had a diagnosis of Angina Pectoris, followed
by a Heart Valve Replacement within 18 months. The time gap of
365 days at the start of the episode definition (before Angina Pectoris)
indicates that the user is interested in events happening up to one year
in advance of the first Angina Pectoris diagnosis.

The query widget also allows for the specification of one or more
preconditions. Like milestones, preconditions are defined by a type
and an ordinal; they represent events that must occur within 5 prior to
the start of the episode in order for the sequence to match the query.
For example, Figure 3(a) indicates that only patients who have at least
three diagnoses of Dyslipidemia should be returned by the query.

Finally, users are asked to define an outcome measure which is de-
fined in the same ways as a milestone: an event type and an ordi-
nal. Event sequences that have the outcome event after the end of the
episode are so labeled. Otherwise, episodes are assigned an outcome
of “not present.” An example is shown in Figure 3(c).

Users can add new events or time gaps to these definitions via the
controls located at the bottom of panel (see Figure 3d). Drag-and-
drop capabilities let users quickly re-order milestones and time gaps,
or move them between portions of the query panel.

Once the query has been specified, a query engine executes the con-
straints against C to retrieve a set of matching episodes. This is illus-
trated in Figure 3(e). As the figure shows, several § € C are excluded
because they don’t match the precondition or episode definitions. For
those § that match the query constraints, the query engine determines
the episode ¢ C § that contains all events between - and including -
the first and last milestones in the episode definition. This is indicated
by the gray bars in the figure, which begin at the first implicit “start
of time window” milestone (the blue rectangle) and end at the last
Heart Valve Replacement milestone. The query engine returns a set of
matching episodes, each of which is associated with both a sequence
ID and an outcome (see Figure 3(f)).

4.2.2 Aggregation

After the query engine returns a set of episodes that match the user’s
constraints, an aggregation process transforms the individual lists of
events into a data structure designed for scalable, interactive visual-
ization. This aggregate structure is called the DecisionFlow Graph,
which we note as G.

By definition, every episode returned by a given query contains the
same set of milestones. The aggregation process begins by creating a
simple directed graph with one node per milestone (which we note as
m; € M). The milestones are linked with directed edges (noted as d; €
D) which capture the order in which they occur. An example initial
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graph G = (M, D), using blue milestone markers and gray arrows, is
illustrated in Figure 4(a).

Next, each of the individual episodes returned is split into a set of
intermediate episodes (see Figure 3(f)). Each intermediate episode
contains the events occurring between a pair of milestones (exclusive
of the milestones themselves). These intermediate episodes are then
stored within the corresponding edge d; ( Figure 4(b)). The final step
in the initial construction of G, performed after all episodes have been
segmented and indexed within G, is the execution of edge analytics,
described below.

4.2.3 Edge Analytics

Following the construction of G, two groups of statistics are computed
for each d; € D. First, edge summary statistics are calculated, includ-
ing average intermediate episode duration and the outcome rate (the
fraction of intermediate episodes for which the outcome measure is
present). Other statistics include age and gender distributions. Many
of these statistics (e.g., age/gender distributions, outcome rate) are
identical for all edges in G at the time of initial construction, as they
are not time dependent. However, these measures can vary dramati-
cally between edges once G is transformed by the operators described
in Section 4.3.

Second, and most critical for DecisionFlow’s approach to high-
dimensional data, are edge event statistics. These are computed inde-
pendently for each edge in G as a function of the intermediate episode
data anchored to that edge (see Figure 4b). We separate the intermedi-
ate episodes for each edge into two groups: a positive outcome group
and a negative outcome group. Then, for every event type observed at
least once in the intermediate episode data for a given edge, we com-
pute the following:

o Event frequency: the total number of times the event occurs
across all intermediate episodes associated with the edge.

e Positive support: the fraction of intermediate episodes in the
positive outcome group containing one or more occurrences of
the event type.

e Negative support: the fraction of intermediate episodes in the
negative outcome group containing one or more occurrences of
the event type.

e Correlation and odds ratio: computed by comparing the pos-
itive and negative outcome groups, these measure the associa-
tion between individual event types and the outcome measure;
p-values are also computed.

As illustrated in Figure 2(d), the edge analysis process is first per-
formed after the initial construction of G, and is repeated every time G
is modified by one of the operations defined below.

4.3 Dynamic Manipulation of the DecisionFlow Graph

Upon initial construction, G exhibits a linear structure, as illustrated
in Figure 4. This reflects the fact that, by definition, every episode
retrieved from C contains each and every milestone used to specify the
query. However, this is only the starting point; to enable exploratory
analysis, DecisionFlow provides a small but powerful set of operators
that dynamically manipulate G in response to user interactions. These
operators can be chained together during user interaction to support a
wide range of event sequence analysis tasks.

4.3.1

As previously described, G is represented with a two-level data struc-
ture. The top level is defined by a relatively small number of mile-
stones, connected by directed edges. The second level is the raw in-
termediate event data (and corresponding event statistics) that are an-
chored to each top-level edge. This structure is key to DecisionFlow’s
ability to scale to very large numbers of event types. However, to sup-
port exploratory analysis over the full scope of available data, users
must be able to access the low level event data stored within the sec-
ond level of our data model.

Milestone Promotion
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Fig. 5. The milestone promotion operator requires (a) an event type
(shown in green) and an edge as inputs. (b) Intermediate episodes are
checked for the target event type and, where found, split into “before”
and “after” sub-episodes. The original edge is then replaced by a new
milestone and three new edges corresponding to events (c) before, (d)
after, and (e) without the new milestone.

Milestone promotion is the first operator designed to support this
process. It converts an intermediate event type (selected via the Event
Statistics Panel, Section 4.4.3) to a formal milestone, thereby inserting
anew node m; into G. This results in a new graph with a more complex
structure. More formally, promotion is an operation performed on a
specific edge d; in a given graph G for a specific event type 7;:

G' = Promote(7;,d;,G) e))

This process, illustrated in Figure 5, begins by searching each inter-
mediate episode ¢; in d; for an occurrence of event type 7; and divid-
ing the episodes into two groups: those with 7; and those without. The
episodes within the 7; group are then split into two derivative episodes:
one for events taking place before 7; and another for events occurring
after 7;. The result is that the original intermediate episodes for d;
are reorganized into three distinct collections: a “before milestone”
collection, an “after milestone” one, and a “no milestone” one.

Once the episode event data has been processed, G is modified to
reflect the new structure. Edge d; is replaced by three new edges that
connect the rest of the graph to a new milestone node representing the
newly promoted 7;. The three edges, shown in Figure 5(c-e), corre-
spond to the “before milestone,” “after milestone,” and “no milestone”
groups described above. In some cases, every intermediate episode
in d; contains an occurrence of the milestone event ¢;. In this case,
the “no milestone” group is empty and the corresponding edge is not
added to G.

Finally, once G has been updated, edge analytics (see Section 4.2.3)
are automatically computed on each of the three new edges to generate
updated statistics.

One important property of our data model is that the list of edges
departing a milestone node is ordered. To accurately reflect the pro-
cess of how event sequences are grouped during promotion, the “no
milestone” edge is always inserted into G after the “before milestone”
edge. This ordering is critical for correct interpretation of the data
structure. Consider, for example, the DecisionFlow graph in Figure 6
which was created by a series of two promotions (first m3, then my).
The first milestone, my, has three departing edges in the following or-
der: dj, ds, and d7. These can be interpreted using “if, then, else”
logic. If an episode contains m3 after mg but before m, it will be in-
cluded in d; regardless of whether it contains my4. This is true because
m3 was promoted first. Otherwise, if an episode contains my after my,
it will be included in d5. Only episodes that contain neither m3 nor my
are included in d7. Figure 1 shows an example produced via multiple
promotions.

4.3.2 Milestone Demotion

Milestone demotion is the inverse of promotion: it converts a mile-
stone m; into an intermediate event and modifies G by merging the
impacted edges. Demotion operations are used to simplify the data
structure, and are typically employed together with promotions during
exploratory analysis. More formally, a demotion is defined as:

G' = Demote(m;,G) 2
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Fig. 6. (a) The original graph is first modified by (b) the promotion of m5.
Therefore, none of the intermediate episodes in d4 contain mj3. (c) Next,
the promotion of my further modifies the graph. The edge ds contains
intermediate episodes that have my4 but not m3. If they contained ms,
they would be in edge d». Edge d; only contains intermediate episodes
that have neither m3 nor m4. This is represented by the order of edges
leaving my at the end of the progression: [d»,ds,d7].

In the most basic case, demotion is straightforward. Consider the
graph shown in Figure 5(c-e). To remove the newly inserted node
(shown in green), the inverse of the promotion process is performed.
The “before” and “after” intermediate episodes are spliced together
and merged with the set of “no milestone” episodes. The three edges
and the demoted node are then replaced by a single edge (containing
the combined set of intermediate episode data). Finally, the edge ana-
lytics from Section 4.2.3 are re-computed for the new edge.

While the above process works for simple cases, a demotion can be
complicated when performed on more complex graphs such as the one
illustrated in Figure 6. The fully generalized demotion algorithm is
given in Section 5.1.

4.3.3 Episode Filters

The final operator is the episode filter, which can be used in various
ways to modify the set of episodes stored in the data representation,
thereby potentially changing the structure of G indirectly. First, the
filter operator can be used to exclude a specific milestone m;. This
results in the removal of all episodes that include m;. Alternatively, the
filter operator can be used to include only a specific milestone, which
results in the removal of all episodes not passing through m;. Similarly,
the filter operator can be used to exclude (or include) individual event
types. The filtering of event types can either be applied to episodes
associated with a specific edge, or with the overall graph G. In either
case, the episodes that match the filter constraints are removed entirely
from G.

In some cases, filters can end up removing all intermediate episodes
from a given edge. For these cases, the filtering process prunes G of
all empty edges. Finally, edge analytics (see Section 4.2.3) are re-
computed for all edges whose intermediate episodes were modified
during the filter.

4.3.4 Discussion

While the operators described above can be used to construct arbi-
trarily complex graphs during an unfolding analysis, there are certain
invariants for the DecisionFlow Graph data structure.

Planar Invariant. The initial construction of G results in a linear
chain of milestone nodes, which is by definition planar. Promotions,
meanwhile, are performed by replacing a single edge with a group of
three edges as shown in Figure 5. This process always results in a
planar graph. Demotion, being the inverse operation, also maintains
planarity. Finally, the removal of an edge is the only structural change
to G that can be introduced by a filter operator. Therefore G will al-
ways be planar.

Acyclic Invariant. The initial construction of G creates a linear
chain of milestone nodes with no cycles. Promotion, which replaces
a single edge with an acyclic group of three edges which flow in the
same direction, cannot introduce a cycle. Similarly, demotion, which
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Fig. 7. The temporal flow panel uses gray rectangles to represent mile-
stone nodes (m;) which are arranged from left to right in temporal order.
Edges d; are represented using two different marks: time edges and link
edges; they are color-coded to represent average outcome.

performs the inverse operation, cannot create a cycle. Finally, the re-
moval of an edge in response to a filter will never result in the creation
of a cycle. Therefore G will always be acyclic.

Singular Head and Tail Invariant. The initial construction of G
produces a linear chain of milestones in which there is one head node
and one tail node. Promotion can only insert new milestones between
existing milestones. Similarly, demotion can only remove a milestone
from the interior of G. Finally, because the head and tail milestones
are created in the initial construction of G, all episodes pass through
these milestones. Therefore, they cannot be removed by a filter unless
all data is filtered out, resulting in an empty graph.

4.4

In addition to the visual query interface described previously, Deci-
sionFlow includes three coordinated visualization panels. First, a tem-
poral flow panel is used to visualize the top-level structure of G. User
selection within the temporal flow view is linked to two additional
panels: an edge overview panel and an event statistics panel.

Interface Design and Visual Encoding

4.41

The primary view in DecisionFlow is rendered in the temporal flow
panel. This panel visualizes the top-level structure of G: the directed
graph of milestone nodes M connected by edges D. DecisionFlow em-
ploys a flow-based visual design that conveys a number of aggregate
data properties.

Each milestone node m; is represented as a fixed-width gray rectan-
gle. Nodes that correspond to a query milestone (by definition includ-
ing all episodes visualized), are rendered with a height of 100% (e.g.,
mg and m in Figure 7). Because of the Singular Head and Tail Invari-
ant (Section 4.3.4), the temporal flow visualization always begins and
ends with full-height milestone rectangles.

Milestones introduced by promotion, such as m, in Figure 7, are
represented with rectangles whose heights map to the fraction of the
episodes that pass through the corresponding milestone. Because G is
acyclic, milestone rectangles can be arranged along the horizontal axis
from left to right based on the order in which they occur.

Edges, such as d, in Figure 7, are encoded using a pair of con-
nected graphical marks: a link edge and a time edge. A time edge is
encoded as a rectangle whose height (like that of a milestone rectangle)
is proportional to the fraction of episodes that pass through the corre-
sponding edge. The rectangle’s width encodes the average duration of
the intermediate episodes stored in the edge. Finally, time edges are
color-coded based on the average outcome. A red-to-yellow-to-green
color gradient is used by default as shown in the flow panel legend in
Figure 1. Alternative color schemes can be used to support color-blind
users. Link edges, meanwhile, are included in our visual encoding to
convey connectivity between milestones and time edges. They are ren-
dered as color-coded rectangles with reduced saturation and height, to
set them apart from the corresponding time edge.

Temporal Flow Panel
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Outcome: 0% [N S 10c

Selected Time Edge

Fig. 8. A time edge is highlighted with a black outline after selection.
Overlap edges are overlaid on top of the existing visualization to show
how the episodes associated with the selected edge travel through the
rest of the graph. Overlap edges are sized in proportion to the number of
selected episodes and color-coded by outcome. Hovering over an over-
lap edge displays a tool-tip showing statistical comparisons between the
selected and unselected episodes.

The above visual encoding draws upon a number of design elements
from our previous work on Outflow [31]. However, in contrast to Out-
flow, DecisionFlow graphs are planar and encode logical information
in the order of edges. These differences require a unique layout algo-
rithm, described in detail in Section 5.2.

Interaction. Users can interact with the flow panel in several ways.
First, they can hover over various graphical marks with a mouse to get
precise metadata (such as average duration for edges, and event type
information for milestones).

Second, they can click on time edges to perform edge selection.
When an edge d; is clicked (a) the corresponding rectangular mark is
outlined in heavy black to visually convey the selection, (b) the edge
overview and edge statistics panels are dynamically updated to display
information about d;, and (c) a set of overlap edges are overlaid on top
of the visualization.

The overlap edge feature supports a number of additional analysis
capabilities, including information about how episodes associated with
d; flow through the other edges in G. This helps convey how episodes
“arrive at,” and “depart from,” a given point in G. The overlap edges,
highlighted in Figure 8 and visible in Figure 1, are sized proportionally
by height to show the fraction of episodes in a given edge that are
selected. Color-coding is used to show differences in outcome for the
selected subgroup, and a tool-tip can be activated by hovering over an
overlap edge to see quantitative data (including p-values) comparing
the selected subgroup with others in a given edge.

Finally, right clicking on either edges or milestones activates a pop-
up context menu, which gets automatically populated with a context-
specific list of operations (including milestone demotion and filtering
commands). As previously discussed, these operators cause structural
and content changes to G. When such changes occur, the flow visu-
alization smoothly animates between G and G, to avoid disruptions
to users’ mental maps. This is made easier by the generally local na-
ture of changes to G in response to any of the operators, as well as the
stability of our layout algorithm.

4.4.2 Edge Overview Panel

The edge overview panel is the simplest component of the user inter-
face. When there is no selection in the flow panel, it summarizes the
full set of episodes returned by the active query. When an edge is
selected, it displays the same categories of information, but includes
only intermediate episodes associated with the selected edge.

As seen in Figure 1(d), this panel displays a number of aggregate
statistics. First, basic information such as the number of episodes and
the average outcome are presented. Summaries of application-specific
metadata (such as gender and age distribution for the medical exam-
ple in Figure 1) can also be included. Finally, a histogram is used to
show the frequency of each event type in the selected portion of the
dataset. Event types are sorted with the most frequent first, and by
default the list includes all observed event types. A filtering text box
is also provided through which users can explicitly restrict the event
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type spectrum. This is done by performing a sub-string match against
the event type names. Users can also click on an individual event type
to select it. The event type filtering and selection commands entered
here are coordinated with the event statistics panel described below.

4.4.3 Event Statistics Panel

The event statistics panel is a critical element in the DecisionFlow
design because it provides the place where users can explore the larger
event space hidden from view in the flow panel, make comparisons
between events over time, and select specific events for promotion to
define new milestones. It displays statistics about whichever edge is
selected in the flow panel, or, when no edge is selected, for the overall
set of episodes returned by the query.

The panel design, seen in Figure 1(c), consists primarily of a color-
coded bubble chart that encodes many of the statistics calculated by
the edge analytics (see Section 4.2.3). Individual event types are rep-
resented with circles whose radius and color reflect correlation and
odds ratio, respectively. The same red-to-yellow-to-green color cod-
ing scheme used in the flow diagram is adopted here. Each event type
circle is positioned within a two-dimensional space defined by positive
support on the X axis and negative support on the Y axis. Therefore,
circles for event types that appear only in episodes with a positive out-
come appear along the X axis, those that appear only in episodes with
negative outcomes appear along the Y axis, and those that have equal
support are positioned along the plot’s diagonal. To aide interpretation
of the chart, the X axis is displayed in green, the Y axis in red, and
the diagonal in yellow. Given the nature of the odds ratio and correla-
tion statistics, event type circles grow larger and more polarized (red
or green) as they move away from the diagonal. Because many events
appear with exceptionally low frequency, circles are omitted from the
chart if both support levels fall below a threshold (e.g., both support
levels below 0.05). We also sort the circles prior to rendering to place
smaller circles on top. This helps limit problems due to over-plotting
(which in practice was not found to be problematic).

This design makes finding an event type with strong correlation or
odds ratio easy, but the statistical power of such measures depends
upon factors such as sample size, which are less intuitive and less
readily visible. Therefore, circles for event types with a statistically
significant p-value (e.g., p < 0.05) are distinguished from the others
with a thin black outline.

Coordination. The event statistics panel is closely linked to the
temporal flow panel. In particular, selection of an edge in the temporal
flow panel is used to determine which intermediate episode data is
shown via the event statistics panel. Transitions in response to changes
of selection in the flow panel are animated using a three-step, staged
animation process. First, circles for event types that were only in the
old selection are removed from the bubble chart. Second, event types
that are in common between the old and new selections are animated
to new positions, sizes, and colors to reflect the edge statistics for the
new selection. Third, the process concludes by introducing new circles
for all event types that are only present in the new selection.

The event statistics panel is also linked to the edge overview panel.
The filtering text box used to limit the event types shown in the
overview panel’s histogram also restricts which circles are displayed
on the event statistics panel. This allows users to quickly search for
specific event types or categories. Moreover, selection in the overview
panel’s histogram is linked to selection in the bubble chart. This makes
it possible to search for and select a specific individual event type by
name.

Interaction. A user can interact with the event statistics panel in
multiple ways. First, one can hover over individual event circles to
see a tool-top that displays the event type name and more detailed
statistical information in the sidebar located to the right of the bubble
chart.

Second, one can select individual event types by clicking on the
corresponding circle. Selected circles are highlighted with a heavy
black outline, and the event type selection is maintained across selec-
tion changes in the flow diagram. Together with the animated transi-
tions described earlier, this allows users to navigate from one edge to
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Algorithm 1 Base case milestone demotion algorithm

procedure BASEMILESTONEDEMOTION(m;, G)
DemotedArrEdge = Edge arriving at m;
DemotedDepEdge = Edge departing m;

G = G.remove(DemotedArrEdge, m;, DemotedDepEdge)
e = splice(DemotedArrEdge, m;, DemotedDepEdge)
PrecedingMilestone = Origin of DemotedArrEdge
BypassEdge = Last departing edge for PrecedingMilestone
if BypassEdge '= DemotedArrEdge then

G = G.remove(BypassEdge)

e = merge(e, BypassEdge)
end if
G = G.insert(e)
return G

end procedure

another in G to see how the significance of a given event type evolves
across different milestones.

Finally, one can right-click on an event type to activate a pop-up
context menu. This is automatically populated with a context-specific
list of operations, including milestone promotion and filtering com-
mands. Of particular importance is the promotion operation, as this is
how users perform exploratory analysis. After selecting an edge d; in
the flow diagram and an event type 7; in the event statistics view, a user
can issue the Promote(7;,d;,G) operator to dynamically insert a new
milestone. In response, the graph is modified to G, the edge analytics
are re-computed as needed, and the visualization panels are animated
to reflect the changes between G and G'.

5 METHODS

This section provides greater detail on both the milestone demotion
algorithm and the flow visualization layout algorithm.

5.1 Milestone Demotion Algorithm

As described in Section 4.3.2, the milestone demotion algorithm is
straightforward when applied to the base case illustrated in Figure 7.
The base case is formally defined with the following criteria: First, the
milestone to be demoted (e.g., my in the figure) must have exactly one
arriving edge and one departing edge (dg and dy, correspondingly). We
refer to these as the demoted arriving edge and the demoted departing
edge, respectively. Second, the milestone at the origin of the demoted
arriving edge (e.g., mg) can have at most one additional departing edge
(e.g., do) that appears after the demoted arriving edge (e.g., dp) (the
reader is reminded that edges at a milestone are ordered - see Section
4.3.1). Finally, the aforementioned additional edge must arrive at the
destination milestone for the demoted departing edge (). We refer
to these last two constraints as the single bypassing edge requirement.
Only when all of these conditions are satisfied, can we apply Algo-
rithm 1.

For cases that do not satisfy the above conditions, we apply recur-
sion to trigger a wave of demotions to first enforce the base case con-
straints. This is done by first demoting milestones preceding m; until
a single demoted arriving edge is obtained. This repeats for subse-
quent milestones to obtain a single demoted departing edge. Finally,
bypassing milestones are demoted until the single bypassing edge re-
quirement is satisfied. Once complete, the base algorithm is performed
and recursion completes. This is outlined in Algorithm 2, where we
define a bypass edge as any edge that departs the preceding milestone
after the demoted arriving edge, regardless of destination.

5.2 Layout Algorithm

The horizontal layout of milestone nodes in the temporal flow panel is
a critical element of the DecisionFlow design. This is due to the logi-
cal dependencies that exist between milestones as described in Section
4.3.1. However, these logical relationships cannot always be deter-
mined solely based on the structure of G. For example, consider the
graph in Figure 9. Based on the structure of G alone, it is not possible
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Algorithm 2 Milestone demotion algorithm

procedure MILESTONEDEMOTION(m;, G)
while m; has multiple arriving edges do
G = MilestoneDemotion(Origin of first arriving edge, G)
end while
while m; has multiple departing edges do
G = MilestoneDemotion(Origin of first departing edge, G)
end while
while m; has multiple bypass edges do
G = MilestoneDemotion(Origin of first bypass edge, G)
end while
return BaseMilestoneDemotion(m;, G)
end procedure
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Fig. 9. The logical relationship between milestones can be ambiguous
when considering only the structure of G. For example, does my align
with m; or my? Knowledge of the order of promotion is required to cor-
rectly answer this question. DecisionFlow uses offset values assigned
at the time of promotion for this alignment task.

to know if my should align with m; or m;. However, this relationship
is essential for the correct interpretation of the graph.

To enable the proper horizontal layout of milestone nodes, we as-
sign an offset value to each milestone at the time it is inserted into G.
By convention, we begin by assigning an offset of zero to the head
node and an offset of one to the tail node. All other nodes are inserted
into G using the Promote operator and assigned an offset that is the av-
erage of the “before” and “after” milestones’ offsets. In Figure 9, we
see that m; and my4 share the same offset value and should therefore be
aligned when visualized.

Given these offset values, the layout algorithm for the flow visual-
ization of G is as follows. First, G is traversed to obtain a sorted list
of all unique offset values in the data structure. (It is also possible to
maintain a list of offsets as G evolves over time to avoid the time spent
on this traversal. However, the relatively small size of G makes the
cost negligible.) The total number of unique offset values (e.g., there
are 4 unique offset values in Figure 9: 0, 0.5, 0.75, and 1) determines
the number of milestone layers to use when rendering the temporal
flow visualization. Second, we map the index of the offset value in
the sorted list of unique offsets to a horizontal position using a linear
scale. This produces an evenly spaced set of layers, one layer for each
unique offset value in G. The end result is a neatly aligned visualiza-
tion display as seen in the six layer example shown in Figure 1.

6 EVALUATION

We performed a user study to evaluate DecisionFlow’s ability to sup-
port a range of event sequence analysis tasks in the presence of large
numbers of event types. This section presents the study’s design and
reports its results.

6.1 Design

We asked 12 users (9 males and 3 females) to participate in a study of
DecisionFlow using a dataset of electronic medical records. None of
the subjects had prior experience with DecisionFlow, though all users
were adult professionals who were comfortable with technology. The
medical background of the users varied broadly, but study tasks were
designed to require no medical knowledge. Study tasks focused on
the use and interpretation of the visualization rather than on clinical
significance. One limitation of this study design is that it does not
evaluate DecisionFlow’s capabilities for long-term exploratory analy-
ses of the type that domain experts might undertake. We therefore plan
long-term case studies as future work [24].
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Each subject participated in one 60 minute study session. Each ses-
sion began with a brief orientation in which a moderator reviewed the
concept of temporal event analysis, introduced the medical domain of
the dataset, and provided a short tutorial covering DecisionFlow’s de-
sign and interactions. Participants were then given time to experiment
hands-on with the prototype system.

Once familiar with the basic operation of the system, users were
asked to perform a series of practice tasks using data from a practice
query. This helped users further acclimatize to the system and gain ex-
perience with the specific types of questions that would be asked dur-
ing the formal study period. Following the practice tasks, users were
given a new temporal query to enter and asked to answer 12 study
tasks. The moderator recorded both accuracy and time to completion
for each of these tasks. Finally, users were given time for free explo-
ration and asked to complete a post-study questionnaire/debriefing.

The dataset used for this study included de-identified medical event
data for over 32,000 individual patients from a US-based care provider.
There were over 8,000 unique event types in the overall database, in-
cluding diagnoses, lab tests, and medications. The specific queries
used for training and experimental tasks during the study returned
between 514 and 2,899 patients. Those cohorts contained between
113,189 and 1,074,435 individual point events. Most important for our
evaluation, the query result sets contained between 1,656 and 3,531
unique event types. This represents a two orders of magnitude increase
in the number of event types compared to previous methods.

6.1.1 Tasks and Questionnaire

Each user was asked to perform 12 formal tasks designed to test users’
abilities to interpret and interact with the DecisionFlow design. Five of
the tasks focused on interpretation of the temporal flow visualization
(T1-T4, T6). Another three focused on the use of the event statistics
panel, in conjunction with the flow visualization, to analyze properties
of intermediate events (TS, T7-T8). The final four tasks focused on
the use of milestone operators and user interpretation of the resulting
changes (T9-T12). The specific goals of the 12 tasks were as follows:

T1. Identify a specified intermediate episode in the flow view, given
a set of temporal clinical constraints

T2. Compare proportion of population across flows

T3. Compare outcomes across flows

T4. Compare speed of progression across flows

TS. Understand the association between events and outcomes

T6. Understand temporal flow relationships (e.g., A before B)

T7. Identify intermediate events with the strongest associations to
outcome

T8. Compare changes in event statistics over time

T9. Milestone promotion and time comparison
T10. Milestone demotion (base case)
T11. Milestone demotion (complex case)
T12. Logical interpretation of flow graph

At the end of the study session, users were given the opportunity

to explore the data set without specific instructions. They were then
asked to complete a post-study questionnaire with 13 questions an-
swered on a 7-point Likert scale (1=very easy, 7=very hard). The ques-
tionnaire also included three free-response questions to gather more
subjective feedback. The Likert-scale questions asked if it was easy or
hard to:

QI1. Learn how to use DecisionFlow

Q2. Use once you’ve been trained

Q3. Specify a query

Q4. Interpret the proportion of patients exhibiting a specific set of

events
Q5. Compare the average outcome between to pathways

Q6. Know which events have happened to a group of patients in the
flow visualization

Q7. Remove a milestone
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Fig. 10. In task T9, two users incorrectly reported that ¢, was the slower
path through this portion of the flow graph after seeing that d, was longer
than d;. In fact, d; is the faster path because its length is smaller than
the combined lengths of edges dy and d;.
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Q8. Understand the changes that take place when removing a mile-
stone

Q9. Get an overall understanding of the intermediate events
Q10.
Q11.
Ql2.
Q13.
6.2 Results

We report two results sets from our evaluation. First, we describe accu-
racy and time-to-completion measurements for the 12 tasks. We then
summarize the feedback obtained via our post-study questionnaire.

Find a specific event in the event statistics panel
Promote an event to form a new milestone
Compare individual event statistics over time

Compare overall event set trends over time

6.2.1

Overall, participants were able to complete the study tasks with a high
degree of accuracy. Of the 144 individual tasks observed during our
evaluation, 141 were answered correctly - an accuracy rate of 98%.

Of the three recorded errors, two occurred during task T9. This task
required participants to (a) promote a new milestone, and (b) iden-
tify which path through the modified flow visualization occurred most
quickly on average (see Figure 10). While most people answered cor-
rectly, two made mistakes after quickly comparing the lengths of d;
and dp. However, because d, bypasses the middle milestone, users
needed to compare d’s length against the total combined lengths of
edges dy and d; to obtain the correct answer. Both users recognized
the mistake during their debriefing and attributed it to inexperience
and answering too quickly.

The one other error was made on task T12. This question asked
about patients having a NDC Loop Diuretics event. The user, however,
reported looking simply for "Loop Diuretics” and therefore skipped
over the milestone that should have been the focus of the question
because its label started with “NDC.”

Accuracy and Speed

6.2.2 Speed

Study participants generally performed the tasks very quickly, with
completion times averaging between 1.7 for T2 (¢ = 0.7) and 23.6
seconds for T8 (o = 18.5). The variation in times reflects, in part,
the differences in complexity between tasks. We also observed that
for some of the more challenging tasks, certain users answered very
quickly while others felt the need to double or triple check their an-
swers. This led to longer averages and higher standard deviations (o)
in task completion time for tasks T8 and T12 (mean = 13.7, c = 13.5),
in particular. While it is difficult to draw too many conclusions from
task completion time alone, these results show that DecisionFlow al-
lows users to quickly navigate high-dimensional event data to answer
rather subtle questions about event timing, outcomes, and population
proportions.

6.2.3 Questionnaires

The results of the post-study questionnaire are shown in Figure 11.
As the responses show, users generally found the system easy to use.
The most difficult rating was given to QI, which asked about ease
of learning the DecisionFlow system. However, participants still per-
formed strongly in both accuracy and speed measurements despite lim-
ited training time. Meanwhile, Q2 shows strong agreement that after
training, DecisionFlow was easy to use.
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Fig. 11. Post-study questionnaire results for the 13 ease-of-use ques-
tions answered by study participants on a 7-point scale. The chart
shows the average, minimum, and maximum responses.

Questions Q4-Q8 focused primarily on the flow visualization tech-
nique. Results show that users found this easy for both interpretation
and interaction. Questions Q9-Q13, meanwhile, focused on analyzing
intermediate events. The responses showed still low, but somewhat
higher scores. This reflects, we believe, the more challenging cog-
nitive task of sifting though large numbers (sometimes thousands) of
event types. Yet, we consider these scores a sign of success given the
inability of previous methods to handle such high-dimensional data
sets.

The free response questions and our debriefing conversations
yielded additional insights about what users perceived as the strongest
and weakest aspects of our approach. Most commonly reported as
confusing was the two-part edge design, with users often looking for
meaning in the length of the link edge instead of the time edge. One
user even stated that the link edge was “quite disturbing.” In response
to this feedback, we added a mode that omitted the time edge in favor
of a simple one-piece link edge. This simplifies the visualization, but
fails to convey the duration information, which may be important in
some contexts.

The most frequent positive comments focused on the ease of find-
ing strongly correlated events or milestone pathways. “I can easily
compare the outcome of different groups of patients with vs. without
a specific event.” Users also found it “intuitive,” “easy to use,” and
“very nice visually.” They also reported that that the system was “very
responsive” and provided immediate analytic results in response to in-
teractive exploration.

7 CONCLUSION AND FUTURE WORK

This paper presented DecisionFlow, a technique designed to support
the visual analysis of high-dimensional temporal event sequence data.
We described the key elements of the DecisionFlow technique, includ-
ing: (a) the DecisionFlow graph, a two-level milestone-based data
structure used for temporal query, aggregation, analysis, and visual-
ization; (b) a set of operators that support dynamic manipulation of
the graph in response to user interaction; and (c) the interactive inter-
faces and visual encodings adopted in our design. We also presented
details on key algorithms and the results from a 12-participant user
study. Speed and accuracy measurements recorded during the study
demonstrate that DecisionFlow effectively supports the interactive ad
hoc analysis of high-dimensional event sequence data. Qualitative
feedback shows that users were generally happy with the design and
felt that it was easy to use - despite the large number of event types in
the study dataset.

While these initial results are promising, there are many possible
topics to explore in future work. First, the DecisionFlow technique is
limited to events which occur at a specific moment in time. Developing
methods that also support interval events would significantly expand
the space of possible applications for this technology. We also plan
to conduct more comprehensive evaluations which go beyond learn-
ability and usability. In particular, we plan to conduct longitudinal
evaluations, observing experts working with our techniques in specific
applied domains (e.g., healthcare and the life sciences) to better un-
derstand the benefits and limitations of our approach.
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