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Abstract— In this paper, we present a visual analytics approach that provides decision makers with a proactive and predictive
environment in order to assist them in making effective resource allocation and deployment decisions. The challenges involved with
such predictive analytics processes include end-users’ understanding, and the application of the underlying statistical algorithms at
the right spatiotemporal granularity levels so that good prediction estimates can be established. In our approach, we provide analysts
with a suite of natural scale templates and methods that enable them to focus and drill down to appropriate geospatial and temporal
resolution levels. Our forecasting technique is based on the Seasonal Trend decomposition based on Loess (STL) method, which
we apply in a spatiotemporal visual analytics context to provide analysts with predicted levels of future activity. We also present a
novel kernel density estimation technique we have developed, in which the prediction process is influenced by the spatial correlation
of recent incidents at nearby locations. We demonstrate our techniques by applying our methodology to Criminal, Traffic and Civil
(CTC) incident datasets.
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1 INTRODUCTION

The increasing availability of digital data provides both opportunities
and challenges. The potential of utilizing these data for increasing ef-
fectiveness and efficiency of operations and decision making is vast.
Harnessing this data with effective tools can transform decision mak-
ing from reactive to proactive and predictive. However, the volume,
variety, and velocity of these data can actually decrease the effective-
ness of analysts and decision makers by creating cognitive overload
and paralysis by analysis, especially in fast-paced decision making en-
vironments.

Many researchers in data visualization and visual analytics [37]
have proposed interactive visual analytical techniques to aid analysts
in these tasks. Unfortunately, most work in this area has required
these casual experts (experts in domains, but not necessarily statis-
tics experts) to carefully choose appropriate parameters from a vast
parameter space, select the proper resolution over which to perform
their analysis, apply appropriate statistical or machine learning analy-
sis techniques, and/or understand advanced statistical significance test-
ing, while accounting for the different uncertainties in the data and
processes.

Moreover, the casual experts are required to adapt their decision
making process to the statistical analysis space where they need to
choose the appropriate time and space scales that give them meaning-
ful analytical and predictive results. They need to understand the role
that data sparsity, different distribution characteristics, data variable
co-dependencies, and data variance play in the accuracy and reliabil-
ity of the analytical and prediction results. In moving to this proactive
and predictive environment, scale issues become even more important.
Not only does the choice of appropriate scales help guide the users’
perception and interpretation of the data attributes, it also facilitates
gaining new insight into the dynamics of the analytical tasks [42] and
the validity of the analytical product: a spatial resolution level that is
too fine may lead to zero data input values with no predictive statistical
value; whereas, a scale that is too coarse can overgeneralize the data
and introduce variation and noise, reducing the value and specificity of
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the results. Therefore, it becomes critical for forecasting and analysis
to choose statistically meaningful resolution and aggregation scales.
Utilizing basic principles from scaling theory [42], and Norman’s nat-
uralness and appropriateness principles [26], we can both balance and
harness these cognitively meaningful natural human-centered domain
scales with meaningful statistical scales.

Therefore, in this paper, we present a visual analytics approach
that provides casual experts with a proactive and predictive environ-
ment that enables them to utilize their domain expertise while ex-
ploring their problem and making decisions and predictions at nat-
ural problem scales to increase their effectiveness and efficiency in
planning, resource allocation, and deployment. Our visual analytics
framework [21, 22] provides interactive exploration of multisource,
multivariate spatiotemporal datasets using linked views. The system
enables the exploration of historic datasets and examination of trends,
behaviors and interactions between the different spatiotemporal data
elements. The focus of this paper, however, is to provide a proactive
decision making environment where historic datasets are utilized at
natural geospatial and temporal scales in order to guide future deci-
sions and resource allocation strategies.

In our predictive visual analytics process, we allow users to interac-
tively select and refine the data categories over which to perform their
analyses, explore and apply meaningful geospatial (Sections 4.1-4.3)
and temporal (Section 4.4) scales and aggregations, apply the forecast-
ing process over geospace (Section 5), and visualize the forecasting re-
sults over their chosen geospatial domain. We utilize a Seasonal Trend
decomposition based on Loess (STL) [9] approach (Section 3) that uti-
lizes patterns of historical data and apply it in the geospatial domain
to predict future geospatial incidence levels. Moreover, this approach
provides domain-driven refinement of analysis and exploration to ar-
eas and time of significance (e.g., high crime areas or times).

The contributions of our work include these novel natural spatial
and temporal analytical techniques, as well as a novel Dynamic Co-
variance Kernel Density Estimation method (DCKDE) (Section 4.2.2).
These contributions can be applied to a variety of spatiotemporal
datasets including distribution and logistics, public safety, public
health, and law enforcement. We will utilize data from Criminal, Traf-
fic, and Civil (CTC) incident law enforcement datasets in the exam-
ples throughout this paper. However, it should be noted that our tech-
nique is versatile and can be adapted for other relevant spatiotemporal
datasets that exhibit seasonality.Digital Object Identifier 10.1109/TVCG.2014.2346926
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2 RELATED WORK

In recent years, there has been much work done in utilizing historic
datasets for informing future actions and decisions of decision makers.
Below, we discuss previous work in the field of visual analytics, and,
since our chosen example domain and implementation is focused on
crime data, we also explore previous work in criminology to provide a
breadth of the related research areas.

2.1 Predictive Visual Analytics
There have been several visual analytics systems developed in re-
cent years that support data analysis and exploration processes, and
provide extensive data modeling and hypothesis generation tools
(e.g., [28, 35]). More recently however, researchers have also started
progressing toward creating visual analytics systems that incorporate
predictive analytics in them. For example, Wong et al. [43] provide a
visual interface and an environment that brings together research from
several different domains to predict and assess the impact of climate
change on U.S. power-grids. Muhlbacher and Piringer [25] provide a
visual analytics framework for building regression models. Monroe et
al. [23] utilize user-driven data visualizations that enable researchers
to gain insights into large healthcare datasets.

Yue et al. [45] created an artificial intelligence based tool that lever-
ages interactive visualization techniques to leverage data in a predic-
tive analytics processes. Their time series modeling technique in-
cludes the use of the Box-Jenkins procedure [27]. Other time se-
ries modeling techniques extensively used include the ARMA (Auto
Regressive Moving Average) [1] and ARIMA (Auto Regressive Inte-
grated Moving Average) models. A summary of some other meth-
ods that involve geospatial modeling can be found in [11, 12]. Ma-
ciejewski et al. [20] utilize the seasonal trend decomposition by
loess smoothing for generating temporal predictions for modeling spa-
tiotemporal healthcare events. They also use the kernel density esti-
mation technique for creating probability distributions of patient loca-
tions for use in healthcare data. Our work builds on these ideas where
we utilize historic datasets to provide spatiotemporal forecasts into the
future. The focus of our work is to explore the issues of geospatial and
temporal scales so that casual experts can adapt their decision mak-
ing process to the statistical analysis space. As such, we apply a user
assisted data analysis approach to drive future decisions that helps pre-
vent decision makers from getting over-burdened, while, at the same
time, maximizes the utilization of their domain knowledge and per-
ceptual capabilities.

2.2 Crime Hotspot Policing and Intervention
In recent years, there has been much research done that suggest the
benefits of hot spot policing in preventing crime and disorder at these
crime hotspots (e.g., [2, 3, 4]). Weisburd et al. [41] examine the ef-
fect and impact of crime hot spots policing and their findings suggest
little negative effects and backlash among the residents of targeted ar-
eas of such policing efforts. Sherman [30] also explores the effects
of police crackdowns (sudden increase in police presence in specific
regions) among several case studies. He notes that while most of the
crackdowns appeared to demonstrate initial deterrent effects, the ef-
fects decayed after short periods of time. Our work also enables law
enforcement decision makers to identify and target crime hotspots by
forecasting high probability crime regions based on historic spatiotem-
poral trends. Our work also factors in the temporal variations within
the signals and, as such, provides dynamic hotspot locations for each
predicted day.

Goldkamp and Vîlcicã [15] provide insights into unanticipated neg-
ative effects of place-oriented enforcement intervention schemes on
other societal aspects. They explored an intensive targeted enforce-
ment strategy that was focused on drug crime and its related com-
munity effects and examined the overall side effects on the society.
Sherman et al. [31] examine and provide an overview of the different
aspects of predatory criminal activity at different spatial granularities
and how these factors correlate with different aspects of the society.
Bruin et al. [7] provide a toolkit that extracts the different factors
from police datasets and creates digital profiles for all offenders. The

tool then clusters the individuals against the created profiles by using
a distance matrix that is built around different attributes (e.g., crime
frequency, criminal history of the offenders).

2.3 Predictive Policing
There has been much work done in criminology to study criminal be-
haviors in order to develop models that predict various offense inci-
dence levels at different spatial aggregation levels. Brown and Ox-
ford [6] study methods that pertain to predicting the number of break-
ing and enterings in sub-cities and correlate breaking and enterings
with different factors including unemployment rates, alcohol sales and
previous incidents of crime. Yu et al. [44] also develop a crime
forecasting model by employing different data mining classification
techniques. They employ several classification techniques including
Nearest Neighbor, Decision Tree and Support Vector Machines. Their
experiments are run on two different data grid sizes, the 24-by-20 (ap-
prox. one-half mile square) and the 41-by-40 square grid cells (ap-
prox. one-quarter mile square). They note that the 24-by-20 grids
consistently gave them better results than the 41-by-40 grids, which
they attribute to the lack of sufficient information at the coarser reso-
lution. Our technique also allows analysts to conduct their predictive
forecasting at different spatial resolutions (e.g., over uniform spatial
grids and natural underlying spatial boundaries) and temporal granu-
larity levels (e.g., by day, week, month). Furthermore, our system also
allows users to create spatial and temporal templates for use in the
prediction process.

Monthly and seasonal cycles and periodic properties of crime are
well known among criminologists [17]. Felson and Poulson [14] fac-
tor in the time of the day variation in the analysis of crime and provide
summary indicators that summarize the hour-of-day variations. They
provide guidelines for breaking the day into quartiles based on the
median hour of crime. We use their guidelines in our work and pro-
vide default data driven time-of-day templates over which to forecast
crime. We also utilize these techniques and incorporate the seasonality
and periodicity properties of crime in order to provide spatiotemporal
forecasts of future crime incidence levels.

3 TIME SERIES PREDICTION USING SEASONAL-TREND DE-
COMPOSITION BASED ON LOESS (STL)

In order to model time series data, we employ the seasonal-trend de-
composition technique based on a locally weighted regression (loess)
methodology (STL), where a time series signal is considered to con-
sist of the sum of multiple components of variation. To accomplish
this, we first utilize the STL method [9, 16] to desynthesize the time
series signal into its various components. An analysis of the underly-
ing time series signal Y for CTC data reveals that a square root power
transform stabilizes the variability and yields a more Normal distri-
bution of time series residuals, which is a requirement to appropri-
ately model the time series using STL. We consider the time series
signal

√
Y to consist of the sum of its individual components given

by
√

Yv = Tv + Sv +Dv +Rv, where, for the v-th time step, Tv is the
inter-annual component, Sv is the yearly-seasonal component, Dv is
the day-of-the-week effect, and Rv is the remainder variation compo-
nent.

To predict using the STL method, we apply the methodology de-
scribed in [20], where the fitted values Ŷ = (ŷ1, ..., ŷn) generated using
the loess operator in the STL decomposition step are considered to be
a linear transformation of the input time series Y = (y1, ...,yn). This is
given by ŷi = ∑n

i=1 hi jy j ⇒ Ŷ = HY , where H is the operator matrix
whose (i, j)-th diagonal elements are given by hi, j. In order to predict
ahead by n days, we append the operator matrix H obtained from pre-
dicting ahead within each linear filter in the STL process with n new
rows, and use this to obtain the predicted value. The predicted value
for day n+1 is thereby given by ŷn+1 = ∑n

i=1 Hn+1,i Yi.
We use this concept of time series modeling and prediction and ex-

tend it into the spatiotemporal domain (see Section 5 for details). We
further factor in for the sparcity of data in certain geographical regions,
and devise strategies to alleviate problems resulting in prediction in
these sparse regions (Section 4).

Fig. 1. Our geospatial natural scale template signal generation process. For each geospatial sub-division, the system generates a time series of the
number of incidents, converts it into a binary signal, and processes the binary signal to generate the signal used to form the geospatial template.

4 NATURAL SCALE TEMPLATES

In order to assist with the analysis process, we provide decision mak-
ers with natural scale templates that enable them to focus on appropri-
ate geospatial and temporal resolution levels. These templates enable
users to analyze their data at appropriate spatiotemporal granularity
levels that help align the scale and frame of reference of the data anal-
ysis process with that of the decision making process. These tem-
plates also assist users in alleviating the impedance mismatch between
data size/complexity and the decision makers’ ability to understand
and interact with data [29]. We support the creation of both geospa-
tial and temporal templates in our system that facilitate the decision
making process. A combination of the generated geospatial and tem-
poral templates provide analysts with an appropriate starting point in
the analysis process; thereby, eliminating the need to examine and ana-
lyze the entire spatiotemporal parameter space and reducing it to more
manageable, appropriate scale levels. To be effective, the design of
these scale templates must follow the appropriateness, naturalness, and
matching cognitive principles [26]. As Wilkinson and Stevenson both
point out [36, 40, 42], simple scaling theory techniques are not suffi-
cient (e.g., axometric scaling theory), but provide useful guidance to
primitive scales of reference. The combinations of these design prin-
ciples and the guidance from these statistical scale papers, provide the
motivation and basis for our natural scale templates described below.

4.1 Geospatial Templates
An underlying assumption with using STL to decompose time series
is that the data are Normally distributed. The model predictions can
get severely biased if this assumption is violated or if data are sparse.
To remedy this, we provide methods that help guide users in creating
geospatial scales that allow them to drill down to higher incidence
regions that may provide better prediction estimates.

4.1.1 Geospatial Natural Scale Templates based on Spa-
tiotemporal Incident Distribution

Our system allows users to narrow down the geographic space for the
scope of analysis to regions with higher incidence counts and higher
statistical significance for user-selected incident types. Our geospa-
tial natural scale template methodology is shown in Figure 1. In order
to generate geospatial templates, the system first fragments the geo-
graphic space into either uniform rectangular grids [6] or man-made
spatial demarcations (e.g., census blocks). Then, for each subregion,
the system generates a time series of the number of incidents that oc-
curred within the subregion over time (e.g., by day, week, month).
This signal is further cached for use later in the forecasting process.
Next, we convert this time series signal into a binary signal across
time, where a 1 represents that an incident occurred on a particular
day and a 0 that no incident occurred. We then count the number
of 0’s between the 1’s and progressively sum the number of 0’s, out-
putting the result as another time series signal. As such, this signal is
a representation of the number of time steps over which no incidents
occurred for the given subregion.

This new time series signal is now utilized in the STL forecasting
method (Section 3) and a predicted value is computed for the next day.
It should be noted that the resulting time series for regions of lower
incidence counts will not be sparse, and consequently, will generate
higher predicted values. This process is repeated for all geospatial
subregions and a unified picture is obtained for the next day. Finally,

we filter out the regions with higher predicted values (low activity)
by thresholding for the maximum value. The resulting filtered region
forms the initial geospatial template. An example of a created geospa-
tial template using this technique is shown in Figure 4 (Left).

4.1.2 User Refinement of Geospatial Template using Domain
Knowledge

The geospatial template provides regions with relatively higher inci-
dent rates. The system further allows users to use their domain knowl-
edge and interactively refine these template regions into sub-divisions.
For example, users may choose to sub-divide the formed template re-
gions by natural or man-made boundaries (e.g., state roads, rivers,
police beats), or by underlying features (e.g., known drug hotspots).
The system also allows users to explore the predicted future counts
of the created sub-regions by generating an incidence count vs. time
signal for each disjoint region and applying our forecasting methodol-
ogy (Section 3) to find a predicted value for the next day. The results
are then shown as a choropleth map to users (e.g., Figure 4 (Right)).
These macro-level prediction estimates further assist decision makers
in formulating high-level resource allocation strategies.

4.2 Kernel Density Estimation

One of the challenges with using the spatial distribution of incidents
in a geospatial predictive analytics process is that it can exacerbate the
problem of generating signals with low or no data values. To further
refine our prediction model in geospace, we utilize a Kernel Density
Estimation (KDE) technique to spread the probability of the occur-
rence of incidents to its neighboring regions. The rationale behind
this is that criminology research has shown evidence that occurrence
of certain types of crimes (e.g., residential burglary) at a particular
region puts neighboring regions at an elevated risk [13, 18, 32].

Furthermore, crime also tends to be clustered in certain neighbor-
hoods, and the probability of a crime occurring at a particular location
can be highly correlated with the number of recent crimes at nearby
locations. We incorporate this concept in a novel kernel density esti-
mation method described in Section 4.2.2, where the kernel value at
a given location depends on the locations of its k-nearest incidents.
In addition, kernel density estimation methods take into account that
crimes in low-crime or sparsely populated areas have low incidence,
but non-zero probability. We utilize two interchangeable density esti-
mation techniques in our implementation.

4.2.1 Kernel Scale based on Distance to the k -th Nearest
Neighbor

To account for regions with variable data counts, we utilize a ker-
nel density estimation technique and use a dynamic kernel band-
width [33]. We scale the parameter of estimation by the distance from
the point x to its kth nearest neighbor Xi. This is shown in Equation 1.

f̂ (x) =
1
N

N

∑
i=1

1
max(h,di,k)

K
(

x−Xi

max(h,di,k)

)
(1)

Here, N is the total number of samples, di,k the distance from the
i-th sample to the k-th nearest neighbor and h is the minimum allowed
kernel width. We use the Epanechnikov kernel [33] to reduce calcu-
lation time, which is given by K(u) = 3

4 (1− u2)1(||u||≤1). Here, the
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2 RELATED WORK

In recent years, there has been much work done in utilizing historic
datasets for informing future actions and decisions of decision makers.
Below, we discuss previous work in the field of visual analytics, and,
since our chosen example domain and implementation is focused on
crime data, we also explore previous work in criminology to provide a
breadth of the related research areas.

2.1 Predictive Visual Analytics
There have been several visual analytics systems developed in re-
cent years that support data analysis and exploration processes, and
provide extensive data modeling and hypothesis generation tools
(e.g., [28, 35]). More recently however, researchers have also started
progressing toward creating visual analytics systems that incorporate
predictive analytics in them. For example, Wong et al. [43] provide a
visual interface and an environment that brings together research from
several different domains to predict and assess the impact of climate
change on U.S. power-grids. Muhlbacher and Piringer [25] provide a
visual analytics framework for building regression models. Monroe et
al. [23] utilize user-driven data visualizations that enable researchers
to gain insights into large healthcare datasets.

Yue et al. [45] created an artificial intelligence based tool that lever-
ages interactive visualization techniques to leverage data in a predic-
tive analytics processes. Their time series modeling technique in-
cludes the use of the Box-Jenkins procedure [27]. Other time se-
ries modeling techniques extensively used include the ARMA (Auto
Regressive Moving Average) [1] and ARIMA (Auto Regressive Inte-
grated Moving Average) models. A summary of some other meth-
ods that involve geospatial modeling can be found in [11, 12]. Ma-
ciejewski et al. [20] utilize the seasonal trend decomposition by
loess smoothing for generating temporal predictions for modeling spa-
tiotemporal healthcare events. They also use the kernel density esti-
mation technique for creating probability distributions of patient loca-
tions for use in healthcare data. Our work builds on these ideas where
we utilize historic datasets to provide spatiotemporal forecasts into the
future. The focus of our work is to explore the issues of geospatial and
temporal scales so that casual experts can adapt their decision mak-
ing process to the statistical analysis space. As such, we apply a user
assisted data analysis approach to drive future decisions that helps pre-
vent decision makers from getting over-burdened, while, at the same
time, maximizes the utilization of their domain knowledge and per-
ceptual capabilities.

2.2 Crime Hotspot Policing and Intervention
In recent years, there has been much research done that suggest the
benefits of hot spot policing in preventing crime and disorder at these
crime hotspots (e.g., [2, 3, 4]). Weisburd et al. [41] examine the ef-
fect and impact of crime hot spots policing and their findings suggest
little negative effects and backlash among the residents of targeted ar-
eas of such policing efforts. Sherman [30] also explores the effects
of police crackdowns (sudden increase in police presence in specific
regions) among several case studies. He notes that while most of the
crackdowns appeared to demonstrate initial deterrent effects, the ef-
fects decayed after short periods of time. Our work also enables law
enforcement decision makers to identify and target crime hotspots by
forecasting high probability crime regions based on historic spatiotem-
poral trends. Our work also factors in the temporal variations within
the signals and, as such, provides dynamic hotspot locations for each
predicted day.

Goldkamp and Vîlcicã [15] provide insights into unanticipated neg-
ative effects of place-oriented enforcement intervention schemes on
other societal aspects. They explored an intensive targeted enforce-
ment strategy that was focused on drug crime and its related com-
munity effects and examined the overall side effects on the society.
Sherman et al. [31] examine and provide an overview of the different
aspects of predatory criminal activity at different spatial granularities
and how these factors correlate with different aspects of the society.
Bruin et al. [7] provide a toolkit that extracts the different factors
from police datasets and creates digital profiles for all offenders. The

tool then clusters the individuals against the created profiles by using
a distance matrix that is built around different attributes (e.g., crime
frequency, criminal history of the offenders).

2.3 Predictive Policing
There has been much work done in criminology to study criminal be-
haviors in order to develop models that predict various offense inci-
dence levels at different spatial aggregation levels. Brown and Ox-
ford [6] study methods that pertain to predicting the number of break-
ing and enterings in sub-cities and correlate breaking and enterings
with different factors including unemployment rates, alcohol sales and
previous incidents of crime. Yu et al. [44] also develop a crime
forecasting model by employing different data mining classification
techniques. They employ several classification techniques including
Nearest Neighbor, Decision Tree and Support Vector Machines. Their
experiments are run on two different data grid sizes, the 24-by-20 (ap-
prox. one-half mile square) and the 41-by-40 square grid cells (ap-
prox. one-quarter mile square). They note that the 24-by-20 grids
consistently gave them better results than the 41-by-40 grids, which
they attribute to the lack of sufficient information at the coarser reso-
lution. Our technique also allows analysts to conduct their predictive
forecasting at different spatial resolutions (e.g., over uniform spatial
grids and natural underlying spatial boundaries) and temporal granu-
larity levels (e.g., by day, week, month). Furthermore, our system also
allows users to create spatial and temporal templates for use in the
prediction process.

Monthly and seasonal cycles and periodic properties of crime are
well known among criminologists [17]. Felson and Poulson [14] fac-
tor in the time of the day variation in the analysis of crime and provide
summary indicators that summarize the hour-of-day variations. They
provide guidelines for breaking the day into quartiles based on the
median hour of crime. We use their guidelines in our work and pro-
vide default data driven time-of-day templates over which to forecast
crime. We also utilize these techniques and incorporate the seasonality
and periodicity properties of crime in order to provide spatiotemporal
forecasts of future crime incidence levels.

3 TIME SERIES PREDICTION USING SEASONAL-TREND DE-
COMPOSITION BASED ON LOESS (STL)

In order to model time series data, we employ the seasonal-trend de-
composition technique based on a locally weighted regression (loess)
methodology (STL), where a time series signal is considered to con-
sist of the sum of multiple components of variation. To accomplish
this, we first utilize the STL method [9, 16] to desynthesize the time
series signal into its various components. An analysis of the underly-
ing time series signal Y for CTC data reveals that a square root power
transform stabilizes the variability and yields a more Normal distri-
bution of time series residuals, which is a requirement to appropri-
ately model the time series using STL. We consider the time series
signal

√
Y to consist of the sum of its individual components given

by
√

Yv = Tv + Sv +Dv +Rv, where, for the v-th time step, Tv is the
inter-annual component, Sv is the yearly-seasonal component, Dv is
the day-of-the-week effect, and Rv is the remainder variation compo-
nent.

To predict using the STL method, we apply the methodology de-
scribed in [20], where the fitted values Ŷ = (ŷ1, ..., ŷn) generated using
the loess operator in the STL decomposition step are considered to be
a linear transformation of the input time series Y = (y1, ...,yn). This is
given by ŷi = ∑n

i=1 hi jy j ⇒ Ŷ = HY , where H is the operator matrix
whose (i, j)-th diagonal elements are given by hi, j. In order to predict
ahead by n days, we append the operator matrix H obtained from pre-
dicting ahead within each linear filter in the STL process with n new
rows, and use this to obtain the predicted value. The predicted value
for day n+1 is thereby given by ŷn+1 = ∑n

i=1 Hn+1,i Yi.
We use this concept of time series modeling and prediction and ex-

tend it into the spatiotemporal domain (see Section 5 for details). We
further factor in for the sparcity of data in certain geographical regions,
and devise strategies to alleviate problems resulting in prediction in
these sparse regions (Section 4).

Fig. 1. Our geospatial natural scale template signal generation process. For each geospatial sub-division, the system generates a time series of the
number of incidents, converts it into a binary signal, and processes the binary signal to generate the signal used to form the geospatial template.

4 NATURAL SCALE TEMPLATES

In order to assist with the analysis process, we provide decision mak-
ers with natural scale templates that enable them to focus on appropri-
ate geospatial and temporal resolution levels. These templates enable
users to analyze their data at appropriate spatiotemporal granularity
levels that help align the scale and frame of reference of the data anal-
ysis process with that of the decision making process. These tem-
plates also assist users in alleviating the impedance mismatch between
data size/complexity and the decision makers’ ability to understand
and interact with data [29]. We support the creation of both geospa-
tial and temporal templates in our system that facilitate the decision
making process. A combination of the generated geospatial and tem-
poral templates provide analysts with an appropriate starting point in
the analysis process; thereby, eliminating the need to examine and ana-
lyze the entire spatiotemporal parameter space and reducing it to more
manageable, appropriate scale levels. To be effective, the design of
these scale templates must follow the appropriateness, naturalness, and
matching cognitive principles [26]. As Wilkinson and Stevenson both
point out [36, 40, 42], simple scaling theory techniques are not suffi-
cient (e.g., axometric scaling theory), but provide useful guidance to
primitive scales of reference. The combinations of these design prin-
ciples and the guidance from these statistical scale papers, provide the
motivation and basis for our natural scale templates described below.

4.1 Geospatial Templates
An underlying assumption with using STL to decompose time series
is that the data are Normally distributed. The model predictions can
get severely biased if this assumption is violated or if data are sparse.
To remedy this, we provide methods that help guide users in creating
geospatial scales that allow them to drill down to higher incidence
regions that may provide better prediction estimates.

4.1.1 Geospatial Natural Scale Templates based on Spa-
tiotemporal Incident Distribution

Our system allows users to narrow down the geographic space for the
scope of analysis to regions with higher incidence counts and higher
statistical significance for user-selected incident types. Our geospa-
tial natural scale template methodology is shown in Figure 1. In order
to generate geospatial templates, the system first fragments the geo-
graphic space into either uniform rectangular grids [6] or man-made
spatial demarcations (e.g., census blocks). Then, for each subregion,
the system generates a time series of the number of incidents that oc-
curred within the subregion over time (e.g., by day, week, month).
This signal is further cached for use later in the forecasting process.
Next, we convert this time series signal into a binary signal across
time, where a 1 represents that an incident occurred on a particular
day and a 0 that no incident occurred. We then count the number
of 0’s between the 1’s and progressively sum the number of 0’s, out-
putting the result as another time series signal. As such, this signal is
a representation of the number of time steps over which no incidents
occurred for the given subregion.

This new time series signal is now utilized in the STL forecasting
method (Section 3) and a predicted value is computed for the next day.
It should be noted that the resulting time series for regions of lower
incidence counts will not be sparse, and consequently, will generate
higher predicted values. This process is repeated for all geospatial
subregions and a unified picture is obtained for the next day. Finally,

we filter out the regions with higher predicted values (low activity)
by thresholding for the maximum value. The resulting filtered region
forms the initial geospatial template. An example of a created geospa-
tial template using this technique is shown in Figure 4 (Left).

4.1.2 User Refinement of Geospatial Template using Domain
Knowledge

The geospatial template provides regions with relatively higher inci-
dent rates. The system further allows users to use their domain knowl-
edge and interactively refine these template regions into sub-divisions.
For example, users may choose to sub-divide the formed template re-
gions by natural or man-made boundaries (e.g., state roads, rivers,
police beats), or by underlying features (e.g., known drug hotspots).
The system also allows users to explore the predicted future counts
of the created sub-regions by generating an incidence count vs. time
signal for each disjoint region and applying our forecasting methodol-
ogy (Section 3) to find a predicted value for the next day. The results
are then shown as a choropleth map to users (e.g., Figure 4 (Right)).
These macro-level prediction estimates further assist decision makers
in formulating high-level resource allocation strategies.

4.2 Kernel Density Estimation

One of the challenges with using the spatial distribution of incidents
in a geospatial predictive analytics process is that it can exacerbate the
problem of generating signals with low or no data values. To further
refine our prediction model in geospace, we utilize a Kernel Density
Estimation (KDE) technique to spread the probability of the occur-
rence of incidents to its neighboring regions. The rationale behind
this is that criminology research has shown evidence that occurrence
of certain types of crimes (e.g., residential burglary) at a particular
region puts neighboring regions at an elevated risk [13, 18, 32].

Furthermore, crime also tends to be clustered in certain neighbor-
hoods, and the probability of a crime occurring at a particular location
can be highly correlated with the number of recent crimes at nearby
locations. We incorporate this concept in a novel kernel density esti-
mation method described in Section 4.2.2, where the kernel value at
a given location depends on the locations of its k-nearest incidents.
In addition, kernel density estimation methods take into account that
crimes in low-crime or sparsely populated areas have low incidence,
but non-zero probability. We utilize two interchangeable density esti-
mation techniques in our implementation.

4.2.1 Kernel Scale based on Distance to the k -th Nearest
Neighbor

To account for regions with variable data counts, we utilize a ker-
nel density estimation technique and use a dynamic kernel band-
width [33]. We scale the parameter of estimation by the distance from
the point x to its kth nearest neighbor Xi. This is shown in Equation 1.

f̂ (x) =
1
N

N

∑
i=1

1
max(h,di,k)

K
(

x−Xi

max(h,di,k)

)
(1)

Here, N is the total number of samples, di,k the distance from the
i-th sample to the k-th nearest neighbor and h is the minimum allowed
kernel width. We use the Epanechnikov kernel [33] to reduce calcu-
lation time, which is given by K(u) = 3

4 (1− u2)1(||u||≤1). Here, the
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Fig. 2. Spatiotemporal distribution of historical CTC incidents for Tippecanoe County for (Left) 3/11/2012 through 3/10/2014, and (Right) for all
Tuesdays in March in the past 10 years.

function 1(||u||≤1) evaluates to 1 if the inequality is true and to 0 oth-
erwise. In cases where the distance from the i-th sample to the k-th
nearest neighbor is 0 (e.g., multiple calls from the same address), we
force the variable kernel estimation to a minimum fixed bandwidth h.
Making the kernel width placed at the point Xi proportional to di,k
gives regions with sparse data a flatter kernel, and vice-versa.

4.2.2 Dynamic Covariance Kernel Density Estimation Tech-
nique (DCKDE)

The kernel in the previous method is based on the distance from an in-
cident location to its k-th nearest neighbor, which provides a flatter ker-
nel for sparse regions. In a new kernel method, we use the information
from all k-nearest neighbors to calculate the width of the kernel (rather
than the most distant neighbor), thus reducing stochastic variation on
the width of the kernel. As such, we fragment the geospatial region
into rectangular grids and then utilize a Gaussian kernel at every grid
node that is based on the covariance matrix of the location of the cen-
ter of each node X = {x,y} and its k-nearest neighbor incidents [39].
Therefore, the kernel value is influenced by the k-nearest neighbors
and provides a wider kernel in sparsely populated regions that enables
the model prediction to be small but non-zero and also takes into ac-
count correlations between latitude and longitude; thus, improving the
accuracy of the estimates. The value stored at each node location is
given by δ (X) = 1

2π|V | e
− 1

2 (X−µµµ)T V−1(X−µµµ))), where µµµ = {µx,µy} is the
mean along the x and y directions of the k nearest neighbors and their
covariance matrix V is defined as:

V =

[
σ2

x covx,y
covx,y σ2

y

]
(2)

Here, σ2
x and σ2

y is the variance along the x and y dimension respec-

tively, and covx,y = ∑k
i=1

(xi−µx)(yi−µy)
k−1 is the sample covariance be-

tween x and y.

4.3 Neighbors with Similar Spatio-Demographics
For regions that generate a signal of lower statistical significance for
the user selected categories, we provide the option to explore data
in similar neighborhoods. For each census block, we utilize spatio-
demographic census data to find those census blocks that exhibit sim-
ilar spatial demographics. The rationale behind finding similar neigh-
borhoods lies in the fact that regions with similar demographics tend
to exhibit similar trends for certain types of crime [24, 34].

The process of finding similar census blocks for a given census
block X includes computing the similarity distance from X to all neigh-
boring census blocks that lie within a d mile radius from the centroid
of X. The d mile radius constraint is imposed to factor in for Tobler’s
first law of geography [38] that suggests that near regions are more
related to one another than distant regions. We use d = 3.0 miles
in our implementation [8]. As such, the similarity distance between
two census blocks A and B given k census data variables is given by

SA,B =
√

∑k
i=1(A(Vi)−B(Vi))2, where A(Vi) and B(Vi) are the cor-

responding census data variable values (e.g., race, income, and age
demographic data) for census blocks A and B respectively. Finally, the
top N census blocks with the smallest similarity distance values are
chosen as the similar census blocks for the given census block X. We
use N = 5 as a default value in our implementation, but provide users
with options to change this value on demand. We note that our future
work includes extending this concept of finding similar neighborhoods
to determining similar data categories for predictive purposes.

The system now provides users with the ability to generate similar
neighborhood prediction maps where the prediction for a given census
block X depends on the historic time series data of its N similar census
blocks in addition to the past data of the census block X itself. Here,
the input time series for the census block X used in the prediction
algorithm is the per time step average of the N similar census block
signals combined with the original signal from census block X. The
resulting prediction maps incorporates the influence of incidence rates
in neighborhoods that share similar spatio-demographic data.

4.4 Temporal Natural Scale Templates
As noted previously in Section 2.3, crime trends exhibit not only
monthly and seasonal trends, but also shows day-of-the-week and
hour-of-day variations. The prediction maps produced by the meth-
ods described so far provide prediction estimates over 24-hour periods.
This information, albeit valuable to the law enforcement community in
developing resource allocation strategies for their precincts, provides
little detail of the 24-hour distribution of crime. In this section, we
describe our approach to assist users in creating temporal scales.

4.4.1 Interactive Clock Display
Figure 2 (Top-Right) shows our interactive clock view that enables a
radial display of temporal hourly data. The clock view provides a way
for users to filter the data by the hour by interactively clicking on the
desired hours, thereby filtering down the data for use in the predic-
tion process. Users may use the clock view display to obtain a visual
summary of the hourly distribution of the incidents and consequently
make informed decisions on creating temporal templates over which
good prediction estimates may be established.

4.4.2 Factoring in for Monthly and Day-of-the-Week Variations
In addition to utilizing the seasonal trend decomposition technique de-
scribed in Section 3 to decompose the time series signals into its var-
ious components, we also utilize a direct approach where we allow
users to create their own custom monthly and/or daily templates. Cer-
tain crimes tend to peak on certain days of the week (e.g., alcohol
related violations tend to be higher over the weekend), whereas other
crimes tend to be lower on other days (e.g., reported burglaries drop
over the weekend). As such, we factor for these effects directly in the
system and allow users to filter data specifically by month and/or by
day-of-the-week. This further assists decision makers in developing
and refining their resource allocation strategies.

Fig. 3. Geospatial prediction results for 3/11/2014 for Tippecanoe County obtained using our STL forecasting methodology. (a) Predicted choropleth
map for rectangular grids of dimension 64×64 using incidence count time series by day. (b) Refined predicted map after removing TCPD location
from (a). (c) Predicted map using KDE based on the distance to the k -th nearest neighbor approach (Section 4.2.1). (d) Forecast map using
DCKDE method (Section 4.2.2).

4.4.3 Refinement using Summary Indicators
We extend the method described in [14] to further assist users with
refining and choosing appropriate hourly templates in the prediction
process. In this method, the system computes the median minute of
CTC incident for the selected 24-hour binning period that provides
information about when exactly half of the incidents for the selected
date range and offense types have occurred. Next, to get an indica-
tion of the dispersion of crime within the 24-hour period, the system
computes the first quartile minute and third quartile minute for the se-
lected data, which are the median times of the first and second halves
of the 24-hour period from the median minute respectively. Finally, as
temporal data can be inaccurate with many incidents that have missing
time stamps, we provide users with an accuracy indicator to show the
percentage of cases with valid time stamps. These summary indica-
tors, along with the temporal templates described above, enable users
to further refine their selected temporal templates for use in the predic-
tion process. Example scenarios where these indicators are used are
provided in Section 6.

5 GEOSPATIAL PREDICTION

The described visual analytics process involves a domain expert se-
lecting appropriate data parameters, applying desired data filters and
generating spatial and temporal natural scale templates using the meth-
ods described in Section 4. Next, the system incorporates the STL
forecasting method (Section 3) and extends it to the geospatial domain
to provide prediction estimates for the next N time steps (e.g., days,
weeks, months). We now list the steps involved in our geospatial pre-
diction methodology:

1. Dividing geospace into sub-regions: The first step in our
methodology, just like in Section 4.1.1, involves subdividing
geospace into either uniform rectangular grids of user specified
resolutions or man-made geospatial boundaries.

2. Generating the time series signal: The system then extracts
a time series signal for each sub-division. We allow two types
of signals to be extracted for each sub-division: (a) incidence
count vs. time step, and (b) kernel value vs. time step. Note
that the signal generated in (a) is the same as that produced in
Section 4.1.1 (Figure 1 (Distribution of Incidents)). The kernel
values used in (b) are generated using any one of the methods
described in Section 4.2.

3. Forecasting: The time series signal generated for each spatial
unit is then fed through the STL process described in Section 3
where a forecast is generated for the next N time steps (e.g., days,
weeks). This process is repeated for all region sub-divisions and
prediction maps are finally obtained for the next N time steps.

4. Visualizing results: Finally, the results of our forecasting
method are provided to the user either in the form of a choro-
pleth map or a heatmap.

When users choose to fragment the geospace into uniform rectan-
gular grids, we provide them with the ability to select the resolution
level, or, in other words, the grid size of each grid. An incidence count

vs. time step signal is then generated for each sub-region. It is impor-
tant to note here that a grid resolution that is too fine may result in a
zero count vs. time step signal that has no predictive statistical value.
On the other hand, a grid resolution that is too coarse may introduce
variance and noise in the input signal, thereby over-generalizing the
data. An evaluation of our forecasting approach (Section 7) indicates
that an average input size of 10 samples per time step provide enough
samples for which our method behaves within the constraints and as-
sumptions of our STL forecasting approach. We utilize this metric in
our system in order to determine the applicability of our forecasting
method for a particular sub-region.

Figure 3 shows a series of examples that demonstrate our geospatial
prediction results using the methods described in this section. Here,
the user has selected all CTC incidents for Tippecanoe County, IN,
and is using 10 years’ worth of historical data (3/11/2004 through
3/10/2014) to generate forecast maps for the next day (i.e., for
3/11/2014). Figure 3 (a) shows the prediction results when Tippecanoe
County, IN is fragmented into rectangular grids of dimension 64×64.
The input data for each sub-region consists of daily incidence count
data over the last 10 years. This method, unlike the KDE methods,
does not spread the probability to surrounding neighborhood regions
when an incident occurs at a particular place. As a result, this method
treats each region independently, and can be used when there are
no correlations between geospatial regions (e.g., commercial vs. res-
idential neighborhoods). This method can also be useful in detecting
anomalous regions and regions of high predicted levels of activity. For
example, the user notices something peculiar from the results in Fig-
ure 3 (a): a predicted hotspot occurs prominently over the Sheriff’s
office and county jail location (labeled as TCPD in Figure 3 (a)). This
occurs because the default geospatial location of many incidents are
logged in as the county jail, especially when arrests are associated
with cases. To remedy for this, the user can refine the underlying
geospatial template (Section 4.1.2) and dynamically remove this loca-
tion from the geospatial template. The refined prediction map gener-
ated is shown in Figure 3 (b).

Figures 3 (c and d) show the predicted results of using the kernel
density estimation based on the distance to the k-nearest neighbor ap-
proach (Section 4.2.1) and the DCKDE technique (Section 4.2.2), re-
spectively. The KDE method applied to generate the prediction map in
Figure 3 (c) provides a flatter kernel for relatively low-crime regions.
As a result, the prediction map provides lower, but non-zero, predic-
tions for these regions. The kernel width computed using this method
is based on the distance from a point x to its kth nearest neighbor only.
The DCKDE method, on the other hand, assumes that the probability
of the occurrence of an incident at a particular location is correlated
with the number of recent incidents at nearby locations. Accordingly,
this method utilizes information from all k-nearest neighbors in cal-
culating the kernel value. Thus, the regions with persistently higher
incident concentrations generate focused hotspots when forecasting is
performed using the DCKDE method. Finally, it should be noted that
each method provides users with different insights into the dynamics
of the underlying processes, and users can use their domain knowledge
to further refine the results to make informed decisions.
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Fig. 2. Spatiotemporal distribution of historical CTC incidents for Tippecanoe County for (Left) 3/11/2012 through 3/10/2014, and (Right) for all
Tuesdays in March in the past 10 years.

function 1(||u||≤1) evaluates to 1 if the inequality is true and to 0 oth-
erwise. In cases where the distance from the i-th sample to the k-th
nearest neighbor is 0 (e.g., multiple calls from the same address), we
force the variable kernel estimation to a minimum fixed bandwidth h.
Making the kernel width placed at the point Xi proportional to di,k
gives regions with sparse data a flatter kernel, and vice-versa.

4.2.2 Dynamic Covariance Kernel Density Estimation Tech-
nique (DCKDE)

The kernel in the previous method is based on the distance from an in-
cident location to its k-th nearest neighbor, which provides a flatter ker-
nel for sparse regions. In a new kernel method, we use the information
from all k-nearest neighbors to calculate the width of the kernel (rather
than the most distant neighbor), thus reducing stochastic variation on
the width of the kernel. As such, we fragment the geospatial region
into rectangular grids and then utilize a Gaussian kernel at every grid
node that is based on the covariance matrix of the location of the cen-
ter of each node X = {x,y} and its k-nearest neighbor incidents [39].
Therefore, the kernel value is influenced by the k-nearest neighbors
and provides a wider kernel in sparsely populated regions that enables
the model prediction to be small but non-zero and also takes into ac-
count correlations between latitude and longitude; thus, improving the
accuracy of the estimates. The value stored at each node location is
given by δ (X) = 1

2π|V | e
− 1

2 (X−µµµ)T V−1(X−µµµ))), where µµµ = {µx,µy} is the
mean along the x and y directions of the k nearest neighbors and their
covariance matrix V is defined as:

V =

[
σ2

x covx,y
covx,y σ2

y

]
(2)

Here, σ2
x and σ2

y is the variance along the x and y dimension respec-

tively, and covx,y = ∑k
i=1

(xi−µx)(yi−µy)
k−1 is the sample covariance be-

tween x and y.

4.3 Neighbors with Similar Spatio-Demographics
For regions that generate a signal of lower statistical significance for
the user selected categories, we provide the option to explore data
in similar neighborhoods. For each census block, we utilize spatio-
demographic census data to find those census blocks that exhibit sim-
ilar spatial demographics. The rationale behind finding similar neigh-
borhoods lies in the fact that regions with similar demographics tend
to exhibit similar trends for certain types of crime [24, 34].

The process of finding similar census blocks for a given census
block X includes computing the similarity distance from X to all neigh-
boring census blocks that lie within a d mile radius from the centroid
of X. The d mile radius constraint is imposed to factor in for Tobler’s
first law of geography [38] that suggests that near regions are more
related to one another than distant regions. We use d = 3.0 miles
in our implementation [8]. As such, the similarity distance between
two census blocks A and B given k census data variables is given by

SA,B =
√

∑k
i=1(A(Vi)−B(Vi))2, where A(Vi) and B(Vi) are the cor-

responding census data variable values (e.g., race, income, and age
demographic data) for census blocks A and B respectively. Finally, the
top N census blocks with the smallest similarity distance values are
chosen as the similar census blocks for the given census block X. We
use N = 5 as a default value in our implementation, but provide users
with options to change this value on demand. We note that our future
work includes extending this concept of finding similar neighborhoods
to determining similar data categories for predictive purposes.

The system now provides users with the ability to generate similar
neighborhood prediction maps where the prediction for a given census
block X depends on the historic time series data of its N similar census
blocks in addition to the past data of the census block X itself. Here,
the input time series for the census block X used in the prediction
algorithm is the per time step average of the N similar census block
signals combined with the original signal from census block X. The
resulting prediction maps incorporates the influence of incidence rates
in neighborhoods that share similar spatio-demographic data.

4.4 Temporal Natural Scale Templates
As noted previously in Section 2.3, crime trends exhibit not only
monthly and seasonal trends, but also shows day-of-the-week and
hour-of-day variations. The prediction maps produced by the meth-
ods described so far provide prediction estimates over 24-hour periods.
This information, albeit valuable to the law enforcement community in
developing resource allocation strategies for their precincts, provides
little detail of the 24-hour distribution of crime. In this section, we
describe our approach to assist users in creating temporal scales.

4.4.1 Interactive Clock Display
Figure 2 (Top-Right) shows our interactive clock view that enables a
radial display of temporal hourly data. The clock view provides a way
for users to filter the data by the hour by interactively clicking on the
desired hours, thereby filtering down the data for use in the predic-
tion process. Users may use the clock view display to obtain a visual
summary of the hourly distribution of the incidents and consequently
make informed decisions on creating temporal templates over which
good prediction estimates may be established.

4.4.2 Factoring in for Monthly and Day-of-the-Week Variations
In addition to utilizing the seasonal trend decomposition technique de-
scribed in Section 3 to decompose the time series signals into its var-
ious components, we also utilize a direct approach where we allow
users to create their own custom monthly and/or daily templates. Cer-
tain crimes tend to peak on certain days of the week (e.g., alcohol
related violations tend to be higher over the weekend), whereas other
crimes tend to be lower on other days (e.g., reported burglaries drop
over the weekend). As such, we factor for these effects directly in the
system and allow users to filter data specifically by month and/or by
day-of-the-week. This further assists decision makers in developing
and refining their resource allocation strategies.

Fig. 3. Geospatial prediction results for 3/11/2014 for Tippecanoe County obtained using our STL forecasting methodology. (a) Predicted choropleth
map for rectangular grids of dimension 64×64 using incidence count time series by day. (b) Refined predicted map after removing TCPD location
from (a). (c) Predicted map using KDE based on the distance to the k -th nearest neighbor approach (Section 4.2.1). (d) Forecast map using
DCKDE method (Section 4.2.2).

4.4.3 Refinement using Summary Indicators
We extend the method described in [14] to further assist users with
refining and choosing appropriate hourly templates in the prediction
process. In this method, the system computes the median minute of
CTC incident for the selected 24-hour binning period that provides
information about when exactly half of the incidents for the selected
date range and offense types have occurred. Next, to get an indica-
tion of the dispersion of crime within the 24-hour period, the system
computes the first quartile minute and third quartile minute for the se-
lected data, which are the median times of the first and second halves
of the 24-hour period from the median minute respectively. Finally, as
temporal data can be inaccurate with many incidents that have missing
time stamps, we provide users with an accuracy indicator to show the
percentage of cases with valid time stamps. These summary indica-
tors, along with the temporal templates described above, enable users
to further refine their selected temporal templates for use in the predic-
tion process. Example scenarios where these indicators are used are
provided in Section 6.

5 GEOSPATIAL PREDICTION

The described visual analytics process involves a domain expert se-
lecting appropriate data parameters, applying desired data filters and
generating spatial and temporal natural scale templates using the meth-
ods described in Section 4. Next, the system incorporates the STL
forecasting method (Section 3) and extends it to the geospatial domain
to provide prediction estimates for the next N time steps (e.g., days,
weeks, months). We now list the steps involved in our geospatial pre-
diction methodology:

1. Dividing geospace into sub-regions: The first step in our
methodology, just like in Section 4.1.1, involves subdividing
geospace into either uniform rectangular grids of user specified
resolutions or man-made geospatial boundaries.

2. Generating the time series signal: The system then extracts
a time series signal for each sub-division. We allow two types
of signals to be extracted for each sub-division: (a) incidence
count vs. time step, and (b) kernel value vs. time step. Note
that the signal generated in (a) is the same as that produced in
Section 4.1.1 (Figure 1 (Distribution of Incidents)). The kernel
values used in (b) are generated using any one of the methods
described in Section 4.2.

3. Forecasting: The time series signal generated for each spatial
unit is then fed through the STL process described in Section 3
where a forecast is generated for the next N time steps (e.g., days,
weeks). This process is repeated for all region sub-divisions and
prediction maps are finally obtained for the next N time steps.

4. Visualizing results: Finally, the results of our forecasting
method are provided to the user either in the form of a choro-
pleth map or a heatmap.

When users choose to fragment the geospace into uniform rectan-
gular grids, we provide them with the ability to select the resolution
level, or, in other words, the grid size of each grid. An incidence count

vs. time step signal is then generated for each sub-region. It is impor-
tant to note here that a grid resolution that is too fine may result in a
zero count vs. time step signal that has no predictive statistical value.
On the other hand, a grid resolution that is too coarse may introduce
variance and noise in the input signal, thereby over-generalizing the
data. An evaluation of our forecasting approach (Section 7) indicates
that an average input size of 10 samples per time step provide enough
samples for which our method behaves within the constraints and as-
sumptions of our STL forecasting approach. We utilize this metric in
our system in order to determine the applicability of our forecasting
method for a particular sub-region.

Figure 3 shows a series of examples that demonstrate our geospatial
prediction results using the methods described in this section. Here,
the user has selected all CTC incidents for Tippecanoe County, IN,
and is using 10 years’ worth of historical data (3/11/2004 through
3/10/2014) to generate forecast maps for the next day (i.e., for
3/11/2014). Figure 3 (a) shows the prediction results when Tippecanoe
County, IN is fragmented into rectangular grids of dimension 64×64.
The input data for each sub-region consists of daily incidence count
data over the last 10 years. This method, unlike the KDE methods,
does not spread the probability to surrounding neighborhood regions
when an incident occurs at a particular place. As a result, this method
treats each region independently, and can be used when there are
no correlations between geospatial regions (e.g., commercial vs. res-
idential neighborhoods). This method can also be useful in detecting
anomalous regions and regions of high predicted levels of activity. For
example, the user notices something peculiar from the results in Fig-
ure 3 (a): a predicted hotspot occurs prominently over the Sheriff’s
office and county jail location (labeled as TCPD in Figure 3 (a)). This
occurs because the default geospatial location of many incidents are
logged in as the county jail, especially when arrests are associated
with cases. To remedy for this, the user can refine the underlying
geospatial template (Section 4.1.2) and dynamically remove this loca-
tion from the geospatial template. The refined prediction map gener-
ated is shown in Figure 3 (b).

Figures 3 (c and d) show the predicted results of using the kernel
density estimation based on the distance to the k-nearest neighbor ap-
proach (Section 4.2.1) and the DCKDE technique (Section 4.2.2), re-
spectively. The KDE method applied to generate the prediction map in
Figure 3 (c) provides a flatter kernel for relatively low-crime regions.
As a result, the prediction map provides lower, but non-zero, predic-
tions for these regions. The kernel width computed using this method
is based on the distance from a point x to its kth nearest neighbor only.
The DCKDE method, on the other hand, assumes that the probability
of the occurrence of an incident at a particular location is correlated
with the number of recent incidents at nearby locations. Accordingly,
this method utilizes information from all k-nearest neighbors in cal-
culating the kernel value. Thus, the regions with persistently higher
incident concentrations generate focused hotspots when forecasting is
performed using the DCKDE method. Finally, it should be noted that
each method provides users with different insights into the dynamics
of the underlying processes, and users can use their domain knowledge
to further refine the results to make informed decisions.
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Fig. 4. (Left) Geospatial template generated for Tippecanoe County using 10 years’ worth of historical data. (Right) Choropleth map showing the
distribution of predicted incidents for 3/11/2014 by police beats for Tippecanoe County. Users may further select regions on the map (e.g., Reg. 1-4)
to generate detailed predictions for the selected regions (Figure 5).

6 CASE STUDY: FORECASTING FUTURE CRIMINAL, TRAFFIC
AND CIVIL (CTC) INCIDENCE LEVELS

In this section, we demonstrate our work by applying our spatiotempo-
ral natural scale template methodology to forecast for CTC incidence
levels in Tippecanoe County, IN, U.S.A. This dataset consists of his-
torical reports and provides several different attributes, including the
geographic location, offense type, agency, date, and time of the inci-
dent. This dataset contains an average of 31,000 incidents per year for
Tippecanoe County, and includes incidence reports for different cat-
egories of CTC incidents (e.g., crimes against person, crimes against
property, traffic accidents). We use 10 years worth of historical data
for this analysis. We provide a workflow when using our system in the
analysis process.

Forecasting for all geospatial CTC incidents

Here, we describe a hypothetical scenario in which a law enforce-
ment shift supervisor is using our system to develop resource allo-
cation strategies for Tippecanoe County over the next 24 hour period
for Tuesday, March 11, 2014. The supervisor is interested in devel-
oping a high-level resource allocation strategy, in particular, by police
beats for the next 24 hour period. Law enforcement officers are gener-
ally assigned to a particular law beat and patrol their beat during their
shift hours when not responding to a call for service. The supervi-
sor is also interested in determining which hotspot locations to focus
on for larger police beats. Finally, he also wants to refine the devel-
oped resource allocation strategy to factor in for the hourly variation
of crime. To develop an appropriate resource allocation strategy, the
shift supervisor performs several different analyses that are described
in the following subsections. Although our example uses data for all
CTC categories as inputs, users may filter their data using any com-
binations of CTC categories (e.g., crimes against property, person) to
further refine their resource allocation strategy.

Overall daily resource allocation

The shift supervisor begins his process by visually exploring the spa-
tiotemporal distribution of historical incidents using our system. When
working through the system, the supervisor then visualizes the geospa-
tial and hourly distribution of the incidents that occurred over the
past 2 years, as shown in Figure 2 (Left). The supervisor notes sev-
eral hotspots emerge for the selected period. The locations of these
hotspots match with his domain knowledge of the area (e.g., city
downtown regions, shopping center locations across town). The static

image of the aggregate data, however, does not factor in the inherent
spatiotemporal data variations, and basing a resource allocation deci-
sion on this image alone would be insufficient. The supervisor is also
aware of the fact that police presence can act as a deterrent for certain
types of crimes, and, therefore, wants to diversify and maximize police
presence in these hotspot areas.

Next, the supervisor wants to factor for monthly and day-of-the-
week patterns in his analysis. As such, he visualizes the geospatial and
hourly distribution of all CTC incidents that occurred on any Tuesday
in the month of March over the past 10 years (Section 4.4.2). The
result is shown in Figure 2 (Right). The supervisor notes a slightly
different geospatial distribution emerges as a result, with the intensity
of hotspots shifting towards the east downtown Lafayette region. In
this case, it also becomes apparent that for the 24-hour distribution,
10 AM, 1 PM and 3 PM-6 PM emerge as high activity hours.

Allocating resources by police beats

In order to narrow down the geospace and focus on relevant geo-
graphic locations, the supervisor decides to apply our geospatial tem-
plate generation technique (Section 4.1) with all CTC incidents se-
lected using 10 years’ worth of historical data (i.e., from 3/11/2004
through 3/10/2014). The resulting geospace generated is shown in
white in Figure 4 (Left). The supervisor notes that the resulting regions
correspond to highly populated areas, and exclude areas of infrequent
occurrences. Next, the system provides a total predicted number of in-
cidents, N, for March 11, 2014 for the filtered geospatial region. This
is done by generating a total incidence count vs. day time series signal
using the past 10 years’ worth of data and applying the STL forecast-
ing method described in Section 3. Here, N is 59 incidents.

Next, the supervisor is interested in obtaining a high level overview
of the distribution of the predicted incidents over geospace, and, in par-
ticular, by police patrol routes. As such, the supervisor uses our sys-
tem and fragments the generated geospatial template using the city law
beats shapefile. The resulting geospace is shown in Figure 4 (Right).
In order to distribute the total predicted 59 incidents across police
beats, the system computes an incidence count vs. day time series
signal for each disjoint geospatial region and computes the predicted
number of incidents ni for each region (Section 3). Next, the proba-
bility of an incident within each disjoint region is calculated using the
formula pi = ni/N ∗100. The results of this operation are then shown
to the user as a choropleth map, where each disjoint region is colored
according to its value on a sequential color scale [5] (Figure 4 (Right)).

Fig. 5. User refinement of geospatial resource allocation strategy. The user has chosen to visualize predicted hotspots for regions labeled in
Figure 4 (Regions 1 through 4), and for Tippecanoe County over hourly temporal templates.

Geospatial resource allocation strategy refinement using do-
main knowledge

While the high level police beat prediction map (Figure 4 (Right)) sug-
gests putting a heavier emphasis on the eastern police beats of the city,
the prediction results in Figure 3 indicate a more localized concentra-
tion of incidents at the city downtown locations. The shift supervisor
may use these results and allocate higher resources to the eastern po-
lice beat of the city (Reg. 4 in Figure 4), and allocate a smaller num-
ber of resources, but at more concentrated locations in the downtown
(Reg. 1 in Figure 4).

Now, the supervisor is interested in further refining her geospatial
resource allocation strategy. First, she turns to the predicted hotspot
regions in the city downtown regions (Reg. 1 in Figure 4). She de-
cides to utilize the census blocks spatial boundary information and
divides the geospace into census blocks. Next, she uses the method
described in Section 5 to create a predicted choropleth map based on
census blocks for the region. The result of this operation is shown in
Figure 5 (Reg. 1). Here, the supervisor has chosen to use the kernel
values obtained from the method described in Section 4.2.1 and spread
them across the underlying census blocks for generating these results.

To obtain detailed predictions for the eastern city police beat region
(Reg. 4 in Figure 4), the shift supervisor uses a different approach
where she draws a region around the selected beat using the mouse
and restricts the forecast to the selected region. The result of this op-
eration is shown in Figure 5 (Reg. 4). From domain knowledge, she
knows that this area has a high concentration of shopping centers. The
hotspots obtained in Figure 5 (Reg. 4) align with these locations. Fi-
nally, the supervisor generates similar heatmaps for regions labeled
as Reg. 2 and 3 in Figure 4, the results of which are shown in Fig-
ures 5 (Reg. 2 and 3), respectively. Note that the county jail location
is once again a hotspot in Figure 5 (Reg. 3). With these detailed re-
sults in hand, the shift supervisor is able to devise an optimal resource
allocation strategy for the next 24 hour period in Tippecanoe County.

Applying temporal templates

Finally, in order to refine her resource allocation strategy to different
portions of the day, the shift supervisor chooses to apply the summary
indicators method (Section 4.4.3). She finds that the first, median,
and third quartile minutes for CTC incidents that occurred in the past
10 years were 9:25 AM, 3:11 PM and 7:28 PM respectively. She also
notes that these indicators correspond with the hourly distribution of
incidents using the clock view display in Figure 2. Therefore, the su-
pervisor chooses two hourly templates using these summary indica-
tors: (a) 9 AM through 3 PM, and (b) 3 PM through 7 PM. The super-
visor also creates two other hourly templates: 9 PM through 3 AM to
capture night time activity, and 9 AM through 5 PM to capture working
hours of the day. She then uses the kernel density estimation method
(Section 4.2.1) and re-generates prediction maps for March 11, 2014.

These results are shown in Figure 5. As expected, the supervisor notes
the shift in hotspot locations through the 24 hour period, which fur-
ther enables the refinement of the resource allocation strategy for the
different portions of the 24 hour period.

7 MODEL EVALUATION AND VALIDATION

In order to evaluate our methodology, we conducted a series of statis-
tical tests to understand the behavior and applicability of our approach
in the spatiotemporal domain. Our validation strategy involved test-
ing for the empirical rule of statistics, which describes a characteristic
property of a Normal distribution: 95% of the data points are within
the range ±1.96 σ of µ , where µ and σ are the mean and standard de-
viation of the distribution, respectively [10]. In order to help alleviate
the challenges resulting due to the sparseness of the underlying data,
we performed our analyses over a weekly data aggregation level. Our
approach involved testing whether the 95% prediction confidence in-
terval bound acquired for the geospatial predictions using our forecast-
ing approach holds when compared against observed data [19]. This
confidence bound would be violated if the variance of the observed
data is higher (i.e., overdispersed data) or lower (i.e., underdispersed
data) than that dictated by the prediction confidence bound. When the
95% prediction bounds are met as expected, and the data conforms to
the Normal regime, the applicability of our spatiotemporal STL fore-
casting method is established.

Building on our STL based time series prediction discussion from
Section 3, the variance of the fitted values Ŷ = (ŷ1, ..., ŷn) using the
loess operator in the STL decomposition step is given by Var(Ŷi) =
σ̂2 ∑n

j=1 H2
i j [20]. Here, σ̂2 is the variance of the input time series

signal Y , and is estimated from the remainder term Rv. Subsequently,
the variance for the predicted value Ŷn+1 for time step n+1 is given by
Var(Ŷn+1) = σ̂2(1+∑n

j=1 H2
n+1, j). This provides the 95% prediction

interval as CIn+1 = Ŷn+1 ±1.96
√

Var(Ŷn+1).
Next, we performed a series of analyses at varied geospatial and

temporal scales, and for different data categories. The geospace was
first fragmented into sub-regions (either rectangular grids or using
man-made boundaries), and time series signals were generated for
each geospatial sub-region. In our analyses, we utilized a sliding
time window of size 3 years (i.e., 3×52 weeks) that provided enough
samples above the Nyquist frequency for the STL forecasting tech-
nique. Forecasting was performed using the methods described in Sec-
tions 5 and 7.1. We provide our evaluation methodology and results in
the subsequent sub-sections.

7.1 Modified STL forecasting method to factor in for
weekly data aggregation

As described earlier in Section 3, a time series signal
√

Y can be
considered to consist of the sum of its inter-annual (Tv), yearly-
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Fig. 4. (Left) Geospatial template generated for Tippecanoe County using 10 years’ worth of historical data. (Right) Choropleth map showing the
distribution of predicted incidents for 3/11/2014 by police beats for Tippecanoe County. Users may further select regions on the map (e.g., Reg. 1-4)
to generate detailed predictions for the selected regions (Figure 5).

6 CASE STUDY: FORECASTING FUTURE CRIMINAL, TRAFFIC
AND CIVIL (CTC) INCIDENCE LEVELS

In this section, we demonstrate our work by applying our spatiotempo-
ral natural scale template methodology to forecast for CTC incidence
levels in Tippecanoe County, IN, U.S.A. This dataset consists of his-
torical reports and provides several different attributes, including the
geographic location, offense type, agency, date, and time of the inci-
dent. This dataset contains an average of 31,000 incidents per year for
Tippecanoe County, and includes incidence reports for different cat-
egories of CTC incidents (e.g., crimes against person, crimes against
property, traffic accidents). We use 10 years worth of historical data
for this analysis. We provide a workflow when using our system in the
analysis process.

Forecasting for all geospatial CTC incidents

Here, we describe a hypothetical scenario in which a law enforce-
ment shift supervisor is using our system to develop resource allo-
cation strategies for Tippecanoe County over the next 24 hour period
for Tuesday, March 11, 2014. The supervisor is interested in devel-
oping a high-level resource allocation strategy, in particular, by police
beats for the next 24 hour period. Law enforcement officers are gener-
ally assigned to a particular law beat and patrol their beat during their
shift hours when not responding to a call for service. The supervi-
sor is also interested in determining which hotspot locations to focus
on for larger police beats. Finally, he also wants to refine the devel-
oped resource allocation strategy to factor in for the hourly variation
of crime. To develop an appropriate resource allocation strategy, the
shift supervisor performs several different analyses that are described
in the following subsections. Although our example uses data for all
CTC categories as inputs, users may filter their data using any com-
binations of CTC categories (e.g., crimes against property, person) to
further refine their resource allocation strategy.

Overall daily resource allocation

The shift supervisor begins his process by visually exploring the spa-
tiotemporal distribution of historical incidents using our system. When
working through the system, the supervisor then visualizes the geospa-
tial and hourly distribution of the incidents that occurred over the
past 2 years, as shown in Figure 2 (Left). The supervisor notes sev-
eral hotspots emerge for the selected period. The locations of these
hotspots match with his domain knowledge of the area (e.g., city
downtown regions, shopping center locations across town). The static

image of the aggregate data, however, does not factor in the inherent
spatiotemporal data variations, and basing a resource allocation deci-
sion on this image alone would be insufficient. The supervisor is also
aware of the fact that police presence can act as a deterrent for certain
types of crimes, and, therefore, wants to diversify and maximize police
presence in these hotspot areas.

Next, the supervisor wants to factor for monthly and day-of-the-
week patterns in his analysis. As such, he visualizes the geospatial and
hourly distribution of all CTC incidents that occurred on any Tuesday
in the month of March over the past 10 years (Section 4.4.2). The
result is shown in Figure 2 (Right). The supervisor notes a slightly
different geospatial distribution emerges as a result, with the intensity
of hotspots shifting towards the east downtown Lafayette region. In
this case, it also becomes apparent that for the 24-hour distribution,
10 AM, 1 PM and 3 PM-6 PM emerge as high activity hours.

Allocating resources by police beats

In order to narrow down the geospace and focus on relevant geo-
graphic locations, the supervisor decides to apply our geospatial tem-
plate generation technique (Section 4.1) with all CTC incidents se-
lected using 10 years’ worth of historical data (i.e., from 3/11/2004
through 3/10/2014). The resulting geospace generated is shown in
white in Figure 4 (Left). The supervisor notes that the resulting regions
correspond to highly populated areas, and exclude areas of infrequent
occurrences. Next, the system provides a total predicted number of in-
cidents, N, for March 11, 2014 for the filtered geospatial region. This
is done by generating a total incidence count vs. day time series signal
using the past 10 years’ worth of data and applying the STL forecast-
ing method described in Section 3. Here, N is 59 incidents.

Next, the supervisor is interested in obtaining a high level overview
of the distribution of the predicted incidents over geospace, and, in par-
ticular, by police patrol routes. As such, the supervisor uses our sys-
tem and fragments the generated geospatial template using the city law
beats shapefile. The resulting geospace is shown in Figure 4 (Right).
In order to distribute the total predicted 59 incidents across police
beats, the system computes an incidence count vs. day time series
signal for each disjoint geospatial region and computes the predicted
number of incidents ni for each region (Section 3). Next, the proba-
bility of an incident within each disjoint region is calculated using the
formula pi = ni/N ∗100. The results of this operation are then shown
to the user as a choropleth map, where each disjoint region is colored
according to its value on a sequential color scale [5] (Figure 4 (Right)).

Fig. 5. User refinement of geospatial resource allocation strategy. The user has chosen to visualize predicted hotspots for regions labeled in
Figure 4 (Regions 1 through 4), and for Tippecanoe County over hourly temporal templates.

Geospatial resource allocation strategy refinement using do-
main knowledge

While the high level police beat prediction map (Figure 4 (Right)) sug-
gests putting a heavier emphasis on the eastern police beats of the city,
the prediction results in Figure 3 indicate a more localized concentra-
tion of incidents at the city downtown locations. The shift supervisor
may use these results and allocate higher resources to the eastern po-
lice beat of the city (Reg. 4 in Figure 4), and allocate a smaller num-
ber of resources, but at more concentrated locations in the downtown
(Reg. 1 in Figure 4).

Now, the supervisor is interested in further refining her geospatial
resource allocation strategy. First, she turns to the predicted hotspot
regions in the city downtown regions (Reg. 1 in Figure 4). She de-
cides to utilize the census blocks spatial boundary information and
divides the geospace into census blocks. Next, she uses the method
described in Section 5 to create a predicted choropleth map based on
census blocks for the region. The result of this operation is shown in
Figure 5 (Reg. 1). Here, the supervisor has chosen to use the kernel
values obtained from the method described in Section 4.2.1 and spread
them across the underlying census blocks for generating these results.

To obtain detailed predictions for the eastern city police beat region
(Reg. 4 in Figure 4), the shift supervisor uses a different approach
where she draws a region around the selected beat using the mouse
and restricts the forecast to the selected region. The result of this op-
eration is shown in Figure 5 (Reg. 4). From domain knowledge, she
knows that this area has a high concentration of shopping centers. The
hotspots obtained in Figure 5 (Reg. 4) align with these locations. Fi-
nally, the supervisor generates similar heatmaps for regions labeled
as Reg. 2 and 3 in Figure 4, the results of which are shown in Fig-
ures 5 (Reg. 2 and 3), respectively. Note that the county jail location
is once again a hotspot in Figure 5 (Reg. 3). With these detailed re-
sults in hand, the shift supervisor is able to devise an optimal resource
allocation strategy for the next 24 hour period in Tippecanoe County.

Applying temporal templates

Finally, in order to refine her resource allocation strategy to different
portions of the day, the shift supervisor chooses to apply the summary
indicators method (Section 4.4.3). She finds that the first, median,
and third quartile minutes for CTC incidents that occurred in the past
10 years were 9:25 AM, 3:11 PM and 7:28 PM respectively. She also
notes that these indicators correspond with the hourly distribution of
incidents using the clock view display in Figure 2. Therefore, the su-
pervisor chooses two hourly templates using these summary indica-
tors: (a) 9 AM through 3 PM, and (b) 3 PM through 7 PM. The super-
visor also creates two other hourly templates: 9 PM through 3 AM to
capture night time activity, and 9 AM through 5 PM to capture working
hours of the day. She then uses the kernel density estimation method
(Section 4.2.1) and re-generates prediction maps for March 11, 2014.

These results are shown in Figure 5. As expected, the supervisor notes
the shift in hotspot locations through the 24 hour period, which fur-
ther enables the refinement of the resource allocation strategy for the
different portions of the 24 hour period.

7 MODEL EVALUATION AND VALIDATION

In order to evaluate our methodology, we conducted a series of statis-
tical tests to understand the behavior and applicability of our approach
in the spatiotemporal domain. Our validation strategy involved test-
ing for the empirical rule of statistics, which describes a characteristic
property of a Normal distribution: 95% of the data points are within
the range ±1.96 σ of µ , where µ and σ are the mean and standard de-
viation of the distribution, respectively [10]. In order to help alleviate
the challenges resulting due to the sparseness of the underlying data,
we performed our analyses over a weekly data aggregation level. Our
approach involved testing whether the 95% prediction confidence in-
terval bound acquired for the geospatial predictions using our forecast-
ing approach holds when compared against observed data [19]. This
confidence bound would be violated if the variance of the observed
data is higher (i.e., overdispersed data) or lower (i.e., underdispersed
data) than that dictated by the prediction confidence bound. When the
95% prediction bounds are met as expected, and the data conforms to
the Normal regime, the applicability of our spatiotemporal STL fore-
casting method is established.

Building on our STL based time series prediction discussion from
Section 3, the variance of the fitted values Ŷ = (ŷ1, ..., ŷn) using the
loess operator in the STL decomposition step is given by Var(Ŷi) =
σ̂2 ∑n

j=1 H2
i j [20]. Here, σ̂2 is the variance of the input time series

signal Y , and is estimated from the remainder term Rv. Subsequently,
the variance for the predicted value Ŷn+1 for time step n+1 is given by
Var(Ŷn+1) = σ̂2(1+∑n

j=1 H2
n+1, j). This provides the 95% prediction

interval as CIn+1 = Ŷn+1 ±1.96
√

Var(Ŷn+1).
Next, we performed a series of analyses at varied geospatial and

temporal scales, and for different data categories. The geospace was
first fragmented into sub-regions (either rectangular grids or using
man-made boundaries), and time series signals were generated for
each geospatial sub-region. In our analyses, we utilized a sliding
time window of size 3 years (i.e., 3×52 weeks) that provided enough
samples above the Nyquist frequency for the STL forecasting tech-
nique. Forecasting was performed using the methods described in Sec-
tions 5 and 7.1. We provide our evaluation methodology and results in
the subsequent sub-sections.

7.1 Modified STL forecasting method to factor in for
weekly data aggregation

As described earlier in Section 3, a time series signal
√

Y can be
considered to consist of the sum of its inter-annual (Tv), yearly-
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Fig. 6. 95% prediction interval accuracy vs. Avg(Y ) for different CTC offenses for Tippecanoe County, IN. Here, geospace has been fragmented
into rectangular grids of dimension k× k (∀ k ∈ [1,128]), and by law beats and census blocks.

seasonal (Sv), day-of-the-week (Dv), and remainder variation (Rv)
components. However, since we used a weekly aggregation of data,
the day-of-the-week component (Dv) must be excluded. Therefore, the
time series signal gets modified to

√
Yv = Tv +Sv +Rv. The prediction

step, which involves predicting the value for week n+ 1, remains the
same as given in Section 3.

7.2 95% prediction interval accuracy vs. input data aver-
age (Avg(Y ))

In this method, the geospace was first fragmented into either: (a) rect-
angular grid regions of dimension k× k (∀ k ∈ [1,128], with 128 cho-
sen as upper threshold to provide a fine enough geospatial resolution),
or (b) man-made geospatial regions (e.g., census blocks, census tracts,
law beats, user-specified regions). For each geospatial region, we first
generated the incidence count vs. week signal (denote this signal as
Y ) for a time window of n weeks beginning from the week of, e.g.,
1/1/2009. We then used the modified STL forecasting method (Sec-
tion 7.1) to calculate the 95% prediction interval CI for the predicted
week n+ 1, and tested whether the observed data for week n+ 1 fell
within the calculated 95% prediction interval for that geospatial re-
gion. The average of the input signal Y , Avg(Y ), was also calculated.

Next, the input time window was shifted by one week to gener-
ate the corresponding incidence count vs. week signal (so, this signal
would begin from the week of 1/7/2009). We again computed Avg(Y ),
and CI for the predicted week n+1. As before, we tested whether the
observed data for the predicted week n+ 1 fell within the calculated
95% prediction interval. We repeated the process by sliding the time
window till it reached the end of available data. For each Avg(Y ) value,
we maintained two counters that kept track of the number of instances
the observed data was within the 95% prediction interval (CCorrect ),
and the total instances encountered thus far (CTotal). Finally, Avg(Y )
values were binned, and CCorrect and CTotal were summed for each
bin. The 95% prediction interval accuracy for each Avg(Y ) bin is then
given as ∑bin CCorrect

∑bin CTotal
×100%.

7.3 Results and discussion

Figure 6 shows the 95% prediction interval accuracy results for dif-
ferent CTC offenses for Tippecanoe County, IN using the method de-
scribed in Section 7.2. As can be observed from these results, when
the average bin values are low (e.g., less than 10 input samples), the
accuracy levels are higher than the expected 95% confidence bound.
This indicates that the data are underdispersed for lower input values.
In other words, the variance of the observed data is lower than that of
the 95% prediction bound when the underlying data are sparse. This
conforms to the expected behavior for predicting using our STL fore-
casting technique: the model predictions get biased if the underlying
data are too sparse.

As the input signal average (Avg(Y )) values get larger (i.e., more
than 10 samples per time step), the prediction accuracy starts to con-
verge at around the expected 95% accuracy level. For example, the
prediction interval accuracy for all offenses converges at around 93%.
Also, note that the prediction accuracy using the DCKDE method

(Section 4.2.2) converges close to the 95% accuracy level; thereby, in-
dicating the efficacy of the technique. It should be noted that since the
underlying processes being modeled here (e.g., CTC incidents) are in-
herently stochastic in nature, perfect 95% confidence bounds will not
be achieved (as can be seen from the results in Figure 6). Furthermore,
with an uncertain probability distribution of the underlying data, our
application of the square root power transform may not guarantee ho-
moscedasticity (i.e., stabilization of variability). This also contributes
to our system not achieving perfect 95% confidence bounds. How-
ever, even though perfect confidence bounds are not achieved (as can
be observed from Figure 6), the accuracy converges close to the 95%
bounds. These results show that the underlying data are Normally dis-
tributed for higher values of Avg(Y ); thereby, satisfying the underlying
assumptions of our method used to estimate the 95% confidence inter-
val. This establishes the validity of the claims of our STL prediction
methodology in the geospatial domain that the prediction modeling
method works as expected as long as the underlying assumptions of
the method are satisfied by the data.

Figure 6 shows the 95% prediction interval accuracy vs. input data
average results (Section 7.2) for man-made geospatial regions (cen-
sus blocks and law beats). These results show that the confidence
bounds using census blocks are invariably higher than the expected
95% bound, which indicates that the underlying data are underdis-
persed. Census blocks are small geospatial units, typically bounded
by streets or roads (e.g., city block in a city). The smaller Avg(Y ) val-
ues for census blocks in Tippecanoe County in Figure 6 (less than 10
input samples) further highlight the sparsity of input data. The combi-
nation of higher prediction interval accuracy levels and lower Avg(Y )
values are telltale for the data sparseness issues we have described, and
suggest that the signals generated using census blocks have low predic-
tive statistical power. This further underlines the need to intelligently
combine geospatial regions of lower statistical values to obtain a sig-
nal of higher predictive power (e.g., as was done in Section 4.3). The
95% prediction interval accuracy results obtained using law beats in
Figure 6, on the other hand, shows the accuracy converging at around
the expected 95% confidence interval for higher Avg(Y ) values (more
than 10 input samples). These results provide further evidence that
as the underlying data values become larger and begin to conform to
the Normal regime, our geospatial prediction methodology provides
prediction estimates that are within the expected 95% prediction con-
fidence interval. This further bolsters the applicability and validity of
our STL prediction methodology in the geospatial domain.

We also applied the method described in Section 7.2 to all CTC in-
cident category data and generated 95% prediction interval accuracy
vs. the input signal average value (Avg(Y )) plots for different grid res-
olutions k. These results are shown in Figure 7. The results indicate
that 95% prediction interval accuracy converges at or around the 95%
confidence level for large enough Avg(Y ) values (i.e., for Avg(Y ) big-
ger than 10). The results indicate that our methodology behaves within
the constraints of the Normal regime at higher Avg(Y ) values for the
different grid dimensions. Also, note that smaller grid dimensions (k)
correspond to larger geospatial sub-divisions; and accordingly, smaller
k values generate signals of larger counts per bin (i.e., larger Avg(Y )

Fig. 7. 95% prediction interval accuracy vs. Avg(Y ) for all CTC offenses for Tippecanoe County, IN. Here, geospace has been fragmented into
rectangular grids of dimension k× k for various k values.

values), especially for regions with higher incidence rates. As can
be seen from the results in Figures 6 and 7, the accuracy for higher
Avg(Y ) values tend to be lower than the 95% prediction accuracy;
thereby, indicating that the underlying data are slightly overdispersed.
These results indicate that coarse scales can generate signals with too
much variance, or combinations of multiple signals that overgeneral-
ize the data. Furthermore, the signals generated at coarse scales can
be affected by anomalies in underlying data (e.g., crime spikes during
unusually high weathers, holidays). These can contribute to the non-
Normality of the residuals, and produce an overdispersion of underly-
ing data as compared to the assumptions of our model. It should be
noted that although a slight data overdispersion is noticeable at coarse
scales, they are deemed to be small enough to currently not warrant
any correction. Finally, we note that further research is needed in or-
der to determine the effects of these data overgeneralization issues at
coarse scales and to devise strategies to mitigate for their effects.

7.4 Summary

Our model evaluation and validation strategy involved testing for the
empirical rule of a Normal distribution where we tested whether the
observed data conformed with the 95% prediction interval from our
STL forecasting method at various geospatial scales. In order to cope
with data sparseness issues, we performed our analysis at a weekly ag-
gregation of data. Our results demonstrate the validity of our approach
as long as the underlying assumptions of the underlying models are
satisfied by the data. The results obtained using our DCKDE method
are also promising. Our results also highlight the importance of per-
forming analysis at appropriate scales, and demonstrate that the model
predictions get severely biased when the underlying assumptions are
violated by the data. We also explored the effects of data sparseness
issues on our model predictions at fine geospatial scales. Our eval-
uation results show that the model predictions generated using input
signals of 10 or more counts per time step on average tend to conform
with the 95% prediction confidence intervals. We also highlight the
effects of analysis performed at coarse scales, and show the data over-
generalization issues that occur at such scales. Although the results
indicate a slight data overdispersion at coarse scales, the results show
that the prediction accuracies from the model estimates still tend to
converge at around the 95% confidence bounds. This further shows
the effectiveness of our forecasting methodology in the geospatial do-
main. We also note that although our work enables hot spot policing
and resource allocation strategy development, further evaluation is re-
quired to ascertain the efficacy of our predictive analytics framework
when deployed in field. We leave this as future work.

8 DOMAIN EXPERT FEEDBACK

Our system was assessed by a police captain who oversees the opera-
tions and resource allocation of several precincts in a mid-sized police
agency (of about 130 sworn officers) in the United States. In this sec-
tion, we summarize the initial feedback received after conducting sev-
eral informal interviews with him. The captain emphasized the need
for a system that applies a data-driven approach to assist law enforce-
ment decision makers in developing resource allocation strategies. He
was impressed by the ability of the system to interactively generate
various geospatial and temporal visualizations of historical datasets

and forecast maps in real-time. Additionally, he also appreciated hav-
ing the ability to dynamically apply any desired geospatial, temporal,
and/or categorical filters on the data.

The captain stressed the need to carefully combine and aggregate
different data categories for which reliable forecast maps could be
generated. For example, he noted that a signal generated by combin-
ing two crime categories with different attributes (e.g., crimes against
property and person) might introduce variability in the forecasting pro-
cess and produce unreliable results. He further suggested that crimes
of opportunity must be filtered out as these exhibit no discernable pat-
terns. He asserted that different regions within the same city can ex-
hibit different crime patterns due to the different underlying region
dynamics. He expressed the importance for domain experts to create
data category and spatiotemporal templates so viable prediction esti-
mates can be computed using our methodology. Finally, the captain
remarked that the predicted hotspot locations using aggregated CTC
data occur at the known problem areas in the city.

9 CONCLUSIONS AND FUTURE WORK

In this work, we have presented our visual analytics framework that
provides a proactive decision making environment to decision makers
and assists them in making informed future decisions using historical
datasets. Our approach provides users with a suite of natural scale tem-
plates that support analysis at multiple spatiotemporal granularity lev-
els. Our methods are built at the confluence of automated algorithms
and interactive visual design spaces that support user guided analytical
processes. We enable users to conduct their analyses over appropriate
spatiotemporal granularity levels where the scale and frame of refer-
ence of the data analysis process and forecasting matches with that of
the user’s decision making frame of reference. It should be noted that
while adjusting for the size of the geospatial and temporal scales is
necessary, it is also important to adjust for the scale of the size of the
dataset. A forecasting or analysis method that works well for one re-
gion with certain demographics and population densities may not have
the same efficacy when applied to a different region. As such, our work
explores the potential of visual analytics in providing a bridge so that
different statistical and machine learning processes occur on the same
scale and frame of reference as that of the decision making process.

Our future work includes developing new kernel density estimation
techniques designed specifically for improving prediction forecasts.
We further plan on improving our designed dynamic covariance kernel
density estimation technique (DCKDE) to factor in for temporal dis-
tances to further enhance our STL based prediction algorithm. We also
plan to incorporate data-driven methods that guide users in selecting
between different choices provided by the system based on the under-
lying features of the data. We also plan on factoring in the influences
and correlations among different variables to further refine our natural
scale template generation methodology. Finally, we plan on conduct-
ing a formal user evaluation in order to understand the efficacy of our
system in aiding domain experts to understand the properties of under-
lying data and their effects on the workings of the different underlying
statistical processes.
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Fig. 6. 95% prediction interval accuracy vs. Avg(Y ) for different CTC offenses for Tippecanoe County, IN. Here, geospace has been fragmented
into rectangular grids of dimension k× k (∀ k ∈ [1,128]), and by law beats and census blocks.

seasonal (Sv), day-of-the-week (Dv), and remainder variation (Rv)
components. However, since we used a weekly aggregation of data,
the day-of-the-week component (Dv) must be excluded. Therefore, the
time series signal gets modified to

√
Yv = Tv +Sv +Rv. The prediction

step, which involves predicting the value for week n+ 1, remains the
same as given in Section 3.

7.2 95% prediction interval accuracy vs. input data aver-
age (Avg(Y ))

In this method, the geospace was first fragmented into either: (a) rect-
angular grid regions of dimension k× k (∀ k ∈ [1,128], with 128 cho-
sen as upper threshold to provide a fine enough geospatial resolution),
or (b) man-made geospatial regions (e.g., census blocks, census tracts,
law beats, user-specified regions). For each geospatial region, we first
generated the incidence count vs. week signal (denote this signal as
Y ) for a time window of n weeks beginning from the week of, e.g.,
1/1/2009. We then used the modified STL forecasting method (Sec-
tion 7.1) to calculate the 95% prediction interval CI for the predicted
week n+ 1, and tested whether the observed data for week n+ 1 fell
within the calculated 95% prediction interval for that geospatial re-
gion. The average of the input signal Y , Avg(Y ), was also calculated.

Next, the input time window was shifted by one week to gener-
ate the corresponding incidence count vs. week signal (so, this signal
would begin from the week of 1/7/2009). We again computed Avg(Y ),
and CI for the predicted week n+1. As before, we tested whether the
observed data for the predicted week n+ 1 fell within the calculated
95% prediction interval. We repeated the process by sliding the time
window till it reached the end of available data. For each Avg(Y ) value,
we maintained two counters that kept track of the number of instances
the observed data was within the 95% prediction interval (CCorrect ),
and the total instances encountered thus far (CTotal). Finally, Avg(Y )
values were binned, and CCorrect and CTotal were summed for each
bin. The 95% prediction interval accuracy for each Avg(Y ) bin is then
given as ∑bin CCorrect

∑bin CTotal
×100%.

7.3 Results and discussion

Figure 6 shows the 95% prediction interval accuracy results for dif-
ferent CTC offenses for Tippecanoe County, IN using the method de-
scribed in Section 7.2. As can be observed from these results, when
the average bin values are low (e.g., less than 10 input samples), the
accuracy levels are higher than the expected 95% confidence bound.
This indicates that the data are underdispersed for lower input values.
In other words, the variance of the observed data is lower than that of
the 95% prediction bound when the underlying data are sparse. This
conforms to the expected behavior for predicting using our STL fore-
casting technique: the model predictions get biased if the underlying
data are too sparse.

As the input signal average (Avg(Y )) values get larger (i.e., more
than 10 samples per time step), the prediction accuracy starts to con-
verge at around the expected 95% accuracy level. For example, the
prediction interval accuracy for all offenses converges at around 93%.
Also, note that the prediction accuracy using the DCKDE method

(Section 4.2.2) converges close to the 95% accuracy level; thereby, in-
dicating the efficacy of the technique. It should be noted that since the
underlying processes being modeled here (e.g., CTC incidents) are in-
herently stochastic in nature, perfect 95% confidence bounds will not
be achieved (as can be seen from the results in Figure 6). Furthermore,
with an uncertain probability distribution of the underlying data, our
application of the square root power transform may not guarantee ho-
moscedasticity (i.e., stabilization of variability). This also contributes
to our system not achieving perfect 95% confidence bounds. How-
ever, even though perfect confidence bounds are not achieved (as can
be observed from Figure 6), the accuracy converges close to the 95%
bounds. These results show that the underlying data are Normally dis-
tributed for higher values of Avg(Y ); thereby, satisfying the underlying
assumptions of our method used to estimate the 95% confidence inter-
val. This establishes the validity of the claims of our STL prediction
methodology in the geospatial domain that the prediction modeling
method works as expected as long as the underlying assumptions of
the method are satisfied by the data.

Figure 6 shows the 95% prediction interval accuracy vs. input data
average results (Section 7.2) for man-made geospatial regions (cen-
sus blocks and law beats). These results show that the confidence
bounds using census blocks are invariably higher than the expected
95% bound, which indicates that the underlying data are underdis-
persed. Census blocks are small geospatial units, typically bounded
by streets or roads (e.g., city block in a city). The smaller Avg(Y ) val-
ues for census blocks in Tippecanoe County in Figure 6 (less than 10
input samples) further highlight the sparsity of input data. The combi-
nation of higher prediction interval accuracy levels and lower Avg(Y )
values are telltale for the data sparseness issues we have described, and
suggest that the signals generated using census blocks have low predic-
tive statistical power. This further underlines the need to intelligently
combine geospatial regions of lower statistical values to obtain a sig-
nal of higher predictive power (e.g., as was done in Section 4.3). The
95% prediction interval accuracy results obtained using law beats in
Figure 6, on the other hand, shows the accuracy converging at around
the expected 95% confidence interval for higher Avg(Y ) values (more
than 10 input samples). These results provide further evidence that
as the underlying data values become larger and begin to conform to
the Normal regime, our geospatial prediction methodology provides
prediction estimates that are within the expected 95% prediction con-
fidence interval. This further bolsters the applicability and validity of
our STL prediction methodology in the geospatial domain.

We also applied the method described in Section 7.2 to all CTC in-
cident category data and generated 95% prediction interval accuracy
vs. the input signal average value (Avg(Y )) plots for different grid res-
olutions k. These results are shown in Figure 7. The results indicate
that 95% prediction interval accuracy converges at or around the 95%
confidence level for large enough Avg(Y ) values (i.e., for Avg(Y ) big-
ger than 10). The results indicate that our methodology behaves within
the constraints of the Normal regime at higher Avg(Y ) values for the
different grid dimensions. Also, note that smaller grid dimensions (k)
correspond to larger geospatial sub-divisions; and accordingly, smaller
k values generate signals of larger counts per bin (i.e., larger Avg(Y )

Fig. 7. 95% prediction interval accuracy vs. Avg(Y ) for all CTC offenses for Tippecanoe County, IN. Here, geospace has been fragmented into
rectangular grids of dimension k× k for various k values.

values), especially for regions with higher incidence rates. As can
be seen from the results in Figures 6 and 7, the accuracy for higher
Avg(Y ) values tend to be lower than the 95% prediction accuracy;
thereby, indicating that the underlying data are slightly overdispersed.
These results indicate that coarse scales can generate signals with too
much variance, or combinations of multiple signals that overgeneral-
ize the data. Furthermore, the signals generated at coarse scales can
be affected by anomalies in underlying data (e.g., crime spikes during
unusually high weathers, holidays). These can contribute to the non-
Normality of the residuals, and produce an overdispersion of underly-
ing data as compared to the assumptions of our model. It should be
noted that although a slight data overdispersion is noticeable at coarse
scales, they are deemed to be small enough to currently not warrant
any correction. Finally, we note that further research is needed in or-
der to determine the effects of these data overgeneralization issues at
coarse scales and to devise strategies to mitigate for their effects.

7.4 Summary

Our model evaluation and validation strategy involved testing for the
empirical rule of a Normal distribution where we tested whether the
observed data conformed with the 95% prediction interval from our
STL forecasting method at various geospatial scales. In order to cope
with data sparseness issues, we performed our analysis at a weekly ag-
gregation of data. Our results demonstrate the validity of our approach
as long as the underlying assumptions of the underlying models are
satisfied by the data. The results obtained using our DCKDE method
are also promising. Our results also highlight the importance of per-
forming analysis at appropriate scales, and demonstrate that the model
predictions get severely biased when the underlying assumptions are
violated by the data. We also explored the effects of data sparseness
issues on our model predictions at fine geospatial scales. Our eval-
uation results show that the model predictions generated using input
signals of 10 or more counts per time step on average tend to conform
with the 95% prediction confidence intervals. We also highlight the
effects of analysis performed at coarse scales, and show the data over-
generalization issues that occur at such scales. Although the results
indicate a slight data overdispersion at coarse scales, the results show
that the prediction accuracies from the model estimates still tend to
converge at around the 95% confidence bounds. This further shows
the effectiveness of our forecasting methodology in the geospatial do-
main. We also note that although our work enables hot spot policing
and resource allocation strategy development, further evaluation is re-
quired to ascertain the efficacy of our predictive analytics framework
when deployed in field. We leave this as future work.

8 DOMAIN EXPERT FEEDBACK

Our system was assessed by a police captain who oversees the opera-
tions and resource allocation of several precincts in a mid-sized police
agency (of about 130 sworn officers) in the United States. In this sec-
tion, we summarize the initial feedback received after conducting sev-
eral informal interviews with him. The captain emphasized the need
for a system that applies a data-driven approach to assist law enforce-
ment decision makers in developing resource allocation strategies. He
was impressed by the ability of the system to interactively generate
various geospatial and temporal visualizations of historical datasets

and forecast maps in real-time. Additionally, he also appreciated hav-
ing the ability to dynamically apply any desired geospatial, temporal,
and/or categorical filters on the data.

The captain stressed the need to carefully combine and aggregate
different data categories for which reliable forecast maps could be
generated. For example, he noted that a signal generated by combin-
ing two crime categories with different attributes (e.g., crimes against
property and person) might introduce variability in the forecasting pro-
cess and produce unreliable results. He further suggested that crimes
of opportunity must be filtered out as these exhibit no discernable pat-
terns. He asserted that different regions within the same city can ex-
hibit different crime patterns due to the different underlying region
dynamics. He expressed the importance for domain experts to create
data category and spatiotemporal templates so viable prediction esti-
mates can be computed using our methodology. Finally, the captain
remarked that the predicted hotspot locations using aggregated CTC
data occur at the known problem areas in the city.

9 CONCLUSIONS AND FUTURE WORK

In this work, we have presented our visual analytics framework that
provides a proactive decision making environment to decision makers
and assists them in making informed future decisions using historical
datasets. Our approach provides users with a suite of natural scale tem-
plates that support analysis at multiple spatiotemporal granularity lev-
els. Our methods are built at the confluence of automated algorithms
and interactive visual design spaces that support user guided analytical
processes. We enable users to conduct their analyses over appropriate
spatiotemporal granularity levels where the scale and frame of refer-
ence of the data analysis process and forecasting matches with that of
the user’s decision making frame of reference. It should be noted that
while adjusting for the size of the geospatial and temporal scales is
necessary, it is also important to adjust for the scale of the size of the
dataset. A forecasting or analysis method that works well for one re-
gion with certain demographics and population densities may not have
the same efficacy when applied to a different region. As such, our work
explores the potential of visual analytics in providing a bridge so that
different statistical and machine learning processes occur on the same
scale and frame of reference as that of the decision making process.

Our future work includes developing new kernel density estimation
techniques designed specifically for improving prediction forecasts.
We further plan on improving our designed dynamic covariance kernel
density estimation technique (DCKDE) to factor in for temporal dis-
tances to further enhance our STL based prediction algorithm. We also
plan to incorporate data-driven methods that guide users in selecting
between different choices provided by the system based on the under-
lying features of the data. We also plan on factoring in the influences
and correlations among different variables to further refine our natural
scale template generation methodology. Finally, we plan on conduct-
ing a formal user evaluation in order to understand the efficacy of our
system in aiding domain experts to understand the properties of under-
lying data and their effects on the workings of the different underlying
statistical processes.
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