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Axis Calibration for Improving Data Attribute Estimation
in Star Coordinates Plots

Manuel Rubio-Sánchez and Alberto Sanchez

Abstract—Star coordinates is a well-known multivariate visualization method that produces linear dimensionality reduction mappings
through a set of radial axes defined by vectors in an observable space. One of its main drawbacks concerns the difficulty to recover
attributes of data samples accurately, which typically lie in the [0,1] interval, given the locations of the low-dimensional embeddings
and the vectors. In this paper we show that centering the data can considerably increase attribute estimation accuracy, where data
values can be read off approximately by projecting embedded points onto calibrated (i.e., labeled) axes, similarly to classical statistical
biplots. In addition, this idea can be coupled with a recently developed orthonormalization process on the axis vectors that prevents
unnecessary distortions. We demonstrate that the combination of both approaches not only enhances the estimates, but also provides
more faithful representations of the data.

Index Terms—Star Coordinates, RadViz, Biplots, Axis calibration, Attribute value estimation, Data centering, Orthographic projection

Exploratory data analysis is an approach aimed at obtaining
overviews of data sets, and consists of an integral component of a data
mining process. Many of the techniques generate visual representa-
tions of data sets, where users are integrated into the analysis process
with the goal of combining their perceptual capabilities, flexibility, or
domain knowledge with the computational power of today’s comput-
ers.

Multivariate visualization techniques can be categorized according
to different criteria, including data type, the graphical objects and lay-
outs that compose the plots, or forms of interaction [16]. Some are
capable of displaying high-dimensional data without any loss of infor-
mation (e.g., scatterplot matrices, parallel coordinates [12, 22, 11], or
the table lens [19]), which show exact attribute values of data samples
directly on the plots. In contrast, in this paper we focus on methods
based on radial axes (see [5, 4]) that generate transformations of data
onto an observable display, where information is inevitably lost in the
dimensionality reduction process. For these methods users generally
cannot determine precise values of data samples by just observing their
low-dimensional representations. Thus, users can only recover origi-
nal data values visually to a certain extent. In this paper we refer to this
process as attribute (or data value) estimation. Although these meth-
ods are useful for exploratory purposes in the overview phase of the
well-known information seeking mantra [21], the differences between
the true and estimated data values may cause misinterpretations.

In this paper we study attribute estimation accuracy in Star Coordi-
nates (SC) [14, 15, 20, 25, 23, 18], which is acknowledged to be one
of the method’s major drawbacks [5]. Our goal is to provide an in-
depth analysis of several operations that allow to obtain more accurate
estimates, and help users compare, group, examine, and understand
the data quickly, without the need to inspect numerical values directly.
In particular, we show that the accuracy of the estimates can be en-
hanced by reading off data values through projections of embedded
points onto “calibrated” (i.e., labeled) axes, similarly to classical sta-
tistical biplots. When using this approach we prove that estimation
accuracy can be increased considerably by centering the data. Thus,
the usual preprocessing operation that normalizes the data to lie in the
[0,1] interval is not appropriate for estimating attribute values through
projections onto calibrated axes. Additionally, it has been shown re-
cently that the axis vectors can be modified or restricted in order to
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generate orthographic projections in SC plots [17], which also helps
to reduce estimation errors, although at a lesser extent than the cen-
tering approach. We demonstrate the accuracy improvement through a
comparative study that includes models of how users estimate data val-
ues in SC and RadViz [10, 3], which is another popular method based
on radial axes. Finally, we show that the combination of the centering
and the orthographic projections not only enhances the estimates in
SC, but also provides more faithful representations of the data.

The rest of the paper is organized as follows. Section 1 reviews the
related work. Section 2 describes the theory underlying the proposed
approach, while Sec. 3 presents experimental results. Finally, Sec. 4
provides a discussion.

1 RELATED WORK

Star coordinates (see Fig. 1) is a simple, efficient, and well known in-
teractive method for multivariate data visualization that can be used
for exploratory purposes including cluster analysis, outlier and trend
detection, or decision making tasks. The method generates linear di-
mensionality reduction mappings from an n-dimensional data space
to a lower m-dimensional observable space (m ≤ 3) in order to repre-
sent the data graphically. In particular, it constructs plots through a
set of m-dimensional vectors vi, for i = 1, . . . ,n, with a common ori-
gin point that represent radial axes, where vi is associated with the i-th
data variable. The low-dimensional embedding p ∈Rm of a data sam-
ple x ∈ Rn is simply a linear combination of the vectors vi, where the
linear coefficients correspond to the variable attributes of x. Formally:

p = x1v1 + x2v2 + · · · + xnvn = VTx, (1)

where V is the n×m matrix whose rows are the vectors vi. The in-
terpretation of the axis vectors is straightforward: the orientation de-
termines the direction in which a variable increases, and the length
specifies the amount of contribution of a particular variable in the re-
sulting visualization, given that all variables have a similar scaling.

Any dimensionality reduction process naturally entails a loss of in-
formation. Thus, in SC users will not be able to recover attributes of
data samples perfectly, given their embedded points and the axis vec-
tors. In addition, estimating attribute values is particularly difficult in
SC [5]. When thinking of the linear combination, the estimates of at-
tribute values are not independent of each other, since assigning some
particular value to a variable affects the possible values of the esti-
mates for the rest of the variables. In this regard, the estimation pro-
cess can be understood graphically as building a “path” from the origin
to a known p, by concatenating scaled axis vectors of length x̂i · ‖vi‖,
where x̂i is the estimate of xi, similarly to the SC mapping procedure,
as shown in Fig. 1. Thus, fixing a particular estimate (which defines
the length of a segment) affects the values of the rest. When estimating
attributes through this approach users must therefore consider all of the
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Fig. 1. Diagram of Star Coordinates’ linear mapping. A 4-dimensional
data sample x = (0.25, 0.5, 0.75, 1) gets mapped onto the 2-dimensional
point p by adding scaled versions of the vectors vi, where the scaling
factors are the values of x associated with each variable. The process
can be understood graphically as building a “path” from the origin to p.

possible estimates simultaneously, which is complicated, especially as
the number of variables increases.

In order to mitigate this issue, we focus on optimizing the estimates
when they correspond to orthogonal projections of embedded points
onto axes, similarly to biplots [7, 9, 8]. These classical statistical visu-
alizations essentially form scaled versions of the principal component
analysis (PCA) plot, representing the best rank m approximation of
the data in a least squares sense (see [13]). One of the most inter-
esting properties of biplots is the ability to read off estimates of data
attributes by projecting embedded points orthogonally onto adequately
calibrated axes, as shown in Fig. 2. In biplots, the estimate x̂i for the
i-th attribute is defined as a dot product:

x̂i = vT
i p =

vT
i p

‖vi‖
‖vi‖.

Thus, the (orthogonal) scalar projections must be multiplied by the
lengths of the axis vectors, where the distance between consecutive
integers on the i-th axis is 1/‖vi‖. Finally, the estimate x̂ of a data
sample is therefore:

x̂ = Vp. (2)

In Section 3.1 we describe a model of how users typically estimate
values in SC.

Another well known technique related to SC is RadViz, where the
vectors vi define anchor points of springs in a physical model rather
than axes (see [10, 3]). In particular, it generates nonlinear projections
according to:

p =
∑n

i=1 xivi

∑n
i=1 xi

= VT
( x

1Tx

)

, (3)

where the data is normalized so that the range of each variable is the
[0,1] interval. Nevertheless, (3) shows that RadViz is equivalent to SC
if each data sample is also processed so that the sum of its elements is
equal to 1. Note that this last normalization step produces nonlinear
mappings of the data onto an observable display, since it applies a
linear mapping (SC) to points projected nonlinearly onto the unit (n−
1)-simplex (1Tx = 1).
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Fig. 2. Estimation of data values through projections in biplots. The
estimate x̂ ∈ R4 of a data sample x ∈ R4 that has been embedded onto
p ∈ R2, is found by projecting p onto adequately calibrated axes associ-
ated with the variables, and defined by the axis vectors vi.

In RadViz the anchor points are usually arranged in a regular pat-
tern, although it is possible to update their location interactively. The
embedded points p will lie inside the convex hull defined by the anchor
points, since the former are convex combinations of the latter. In regu-
lar patterns the method has the following properties: (1) the larger xi is
in comparison with the rest of values, the closer p will be to the anchor
point vi, (2) samples whose i-th element is the only nonzero one are
mapped to vi, (3) samples whose data attributes are all the same get
mapped to the origin, and (4) when the embedding p is located on an
edge of the convex hull between vi and v j , then the attributes for the
remaining variables will be 0. In Section 3.2 we describe a model of
how users can estimate values in RadViz that is consistent with these
properties.

2 CALIBRATION AND OPTIMAL ESTIMATES

The estimation error associated with approximating data attributes
through projections onto calibrated axes as in biplots, through (2), can
be defined as:

ε = ‖x̂−x‖= ‖Vp−x‖,
where ‖ · ‖ is some vector norm (in this paper we use the Euclidean
norm or its square). For SC, the estimation error is therefore:

ε = ‖VVTx−x‖, (4)

due to (1). The following subsections describe approaches that mini-
mize this error.

2.1 Data centering
When using (4) the data preprocessing approach turns out to be funda-
mental in order to estimate values accurately across an entire data set.
Firstly, note that, due to (2), the estimate x̂ of a data sample is a linear
combination of the columns of V. Therefore, it lies on the range or
“column space” of V, which is the subspace spanned by the columns
of V. In this paper it is a plane embedded in Rn since we only consider
the case when m = 2. In the remainder of the paper we refer to this
subspace as R(V), where R denotes range. Additionally, the distance
between x and its estimate x̂ is precisely the estimation error. Thus,
it is also related to the distance from x to R(V), where it is apparent
that the data should lie close to that subspace in order to obtain accu-
rate estimates (see Fig. 3). The following results show that, in order to
minimize the sum of squared estimation errors for an entire data set,
the data can be shifted so that its new mean lies in R(V), which may
as well be the origin. Thus, centering the data will allow to obtain
more accurate estimates in general.

Proposition 1. Let V be a full column rank matrix whose rows contain
the axis vectors in the SC model. Also, consider a data set of cardinal-
ity N, where xi is the i-th data sample, and pi its embedded point. In
that case, the sum of squared estimation errors for all of the points in
a new data set that has been shifted by some vector t:

N

∑
i=1

‖Vpi − (xi − t)‖2, (5)
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Fig. 3. Consider a particular configuration of axis vectors determined
by V. In that case the original data (with mean x̄o) should be shifted
so that its new mean (x̄s) lies on R(V) in order to obtain more accu-
rate estimates through projections, since estimation errors are related
to distances from points to R(V). The shifting operation reduces these
distances on average, and therefore the estimation errors.
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Fig. 4. Two-step interpretation of the linear mapping defined by SC. Data samples are first projected onto R(V) through VVT, and afterwards
mapped onto the observable space (R2), through V†. Roughly speaking, this last operation performs rotations and scalings in order to align ṽi
with ei. If ṽ1 and ṽ2 (the columns of V) do not form an orthonormal set, as shown in (a), the first projection is oblique leading to larger estimation
errors (ε = ‖x̂−x‖), while distances and angles in R(V) are not preserved in R2. In (b), ṽ⊥1 and ṽ⊥2 form an orthonormal set, where not only is the
estimate x̂ optimal (since it is the orthogonal projection of x onto R(V)), but distances and angles in R(V) are preserved in R2 due to the isometries
between both spaces.

is minimized if t = x̄+ z, where x̄ is the sample mean of the data, and
z is any vector in the range of V.

Proof. The optimal shift t of the data is found by minimizing (5).
Since p = VTx in SC, it follows that pi = VT(xi − t) for the i-th data
point. Thus, the function to be minimized is:

f (t) =
N

∑
i=1

‖VVT(xi − t)− (xi − t)‖2

=
N

∑
i=1

‖(I−VVT)t− (I−VVT)xi‖2

=
N

∑
i=1

‖Bt− ci‖2 =
N

∑
i=1

(

tTBTBt−2tTBTci + cT
i ci

)

= NtTBTBt−2tTBT
N

∑
i=1

ci +
N

∑
i=1

cT
i ci,

where I is the identity matrix, B = (I−VVT), and ci = Bxi. Taking
derivatives with respect to t and setting them to 0:

∂ f
∂ t

= 2NBTBt−2BT
N

∑
i=1

ci = 0,

2NBTBt−2BTB
N

∑
i=1

xi = 0,

BTBt− 1
N

BTB
N

∑
i=1

xi = BTB(t− x̄) = 0.

Thus, t = x̄+ z, where z ∈ R(V), since R(V) = R(VVT) = R(I−
VVT)⊥ = N (I−VVT) = N (B), where N denotes nullspace.

Corollary 1. In SC the data can be centered in order to minimize the
sum of squared estimation errors for all of the points in a data set when
V has full column rank.

Proof. From Prop. 1 it follows that t can be x̄, since we can choose
z = 0.

2.2 Orthonormalization of the columns of V
Recently, Lehmann and Theisel [17] proposed to restrict SC to ortho-
graphic projections in the context of interaction in order to improve
the quality of the visualizations. The idea consists of replacing the
columns of V by an orthonormal set of vectors that span the same sub-
space as the original ones. This generates a new set of axis vectors that
produces a similar plot, where the estimates for each data sample are
optimal, and which leads to more faithful representations of the data.
In this section we review the approach but focusing on enhancing at-
tribute estimation accuracy.

Firstly, note that the SC mapping (see (1)) can be decomposed into
two separate linear transformations:

p = VTx = [V†][VVT]x = V†x̂,

where † denotes the Moore-Penrose pseudoinverse (we assume that
V has full column rank, where V† = (VTV)−1VT). Geometrically,
the idea is illustrated in Fig. 4a. Thus, we can interpret that SC first
projects data samples onto R(V), through VVT, where the resulting
points constitute the n-dimensional estimates. In order to complete the
process, the second mapping defined by V† simply rotates and scales
the estimates in R(V) in order to represent them in the observable
space (Rm). In particular, the column vectors of V, denoted as ṽi, for
i = 1, . . . ,m, are transformed into the vectors of the standard basis (ei)
of the observable space.

Since the final plot can be interpreted as a simple linear transforma-
tion of the information on R(V), we can substitute the column vectors
of V by an orthonormal set that spans the same subspace, as shown in
Fig. 4b, where V⊥ denotes this new orthogonal matrix of axis vectors
(thus, VT

⊥V⊥ = I), and where ṽ⊥i, for i = 1, . . . ,m, are the correspond-
ing column vectors. It is straightforward to compute V⊥, for example,



2015RUBIO-SÁNCHEZ AND SANCHEZ: AXIS CALIBRATION FOR IMPROVING DATA ATTRIBUTE ESTIMATION IN STAR COORDINATES PLOTS

PSfrag replacements v1 v2

v3

v4 p = 0.25v1 +0.5v2 +0.75v3 +v4

x = (0.25, 0.5, 0.75, 1)

Fig. 1. Diagram of Star Coordinates’ linear mapping. A 4-dimensional
data sample x = (0.25, 0.5, 0.75, 1) gets mapped onto the 2-dimensional
point p by adding scaled versions of the vectors vi, where the scaling
factors are the values of x associated with each variable. The process
can be understood graphically as building a “path” from the origin to p.

possible estimates simultaneously, which is complicated, especially as
the number of variables increases.

In order to mitigate this issue, we focus on optimizing the estimates
when they correspond to orthogonal projections of embedded points
onto axes, similarly to biplots [7, 9, 8]. These classical statistical visu-
alizations essentially form scaled versions of the principal component
analysis (PCA) plot, representing the best rank m approximation of
the data in a least squares sense (see [13]). One of the most inter-
esting properties of biplots is the ability to read off estimates of data
attributes by projecting embedded points orthogonally onto adequately
calibrated axes, as shown in Fig. 2. In biplots, the estimate x̂i for the
i-th attribute is defined as a dot product:

x̂i = vT
i p =

vT
i p

‖vi‖
‖vi‖.

Thus, the (orthogonal) scalar projections must be multiplied by the
lengths of the axis vectors, where the distance between consecutive
integers on the i-th axis is 1/‖vi‖. Finally, the estimate x̂ of a data
sample is therefore:

x̂ = Vp. (2)

In Section 3.1 we describe a model of how users typically estimate
values in SC.

Another well known technique related to SC is RadViz, where the
vectors vi define anchor points of springs in a physical model rather
than axes (see [10, 3]). In particular, it generates nonlinear projections
according to:

p =
∑n

i=1 xivi

∑n
i=1 xi

= VT
( x

1Tx

)

, (3)

where the data is normalized so that the range of each variable is the
[0,1] interval. Nevertheless, (3) shows that RadViz is equivalent to SC
if each data sample is also processed so that the sum of its elements is
equal to 1. Note that this last normalization step produces nonlinear
mappings of the data onto an observable display, since it applies a
linear mapping (SC) to points projected nonlinearly onto the unit (n−
1)-simplex (1Tx = 1).
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Fig. 2. Estimation of data values through projections in biplots. The
estimate x̂ ∈ R4 of a data sample x ∈ R4 that has been embedded onto
p ∈ R2, is found by projecting p onto adequately calibrated axes associ-
ated with the variables, and defined by the axis vectors vi.

In RadViz the anchor points are usually arranged in a regular pat-
tern, although it is possible to update their location interactively. The
embedded points p will lie inside the convex hull defined by the anchor
points, since the former are convex combinations of the latter. In regu-
lar patterns the method has the following properties: (1) the larger xi is
in comparison with the rest of values, the closer p will be to the anchor
point vi, (2) samples whose i-th element is the only nonzero one are
mapped to vi, (3) samples whose data attributes are all the same get
mapped to the origin, and (4) when the embedding p is located on an
edge of the convex hull between vi and v j , then the attributes for the
remaining variables will be 0. In Section 3.2 we describe a model of
how users can estimate values in RadViz that is consistent with these
properties.

2 CALIBRATION AND OPTIMAL ESTIMATES

The estimation error associated with approximating data attributes
through projections onto calibrated axes as in biplots, through (2), can
be defined as:

ε = ‖x̂−x‖= ‖Vp−x‖,
where ‖ · ‖ is some vector norm (in this paper we use the Euclidean
norm or its square). For SC, the estimation error is therefore:

ε = ‖VVTx−x‖, (4)

due to (1). The following subsections describe approaches that mini-
mize this error.

2.1 Data centering
When using (4) the data preprocessing approach turns out to be funda-
mental in order to estimate values accurately across an entire data set.
Firstly, note that, due to (2), the estimate x̂ of a data sample is a linear
combination of the columns of V. Therefore, it lies on the range or
“column space” of V, which is the subspace spanned by the columns
of V. In this paper it is a plane embedded in Rn since we only consider
the case when m = 2. In the remainder of the paper we refer to this
subspace as R(V), where R denotes range. Additionally, the distance
between x and its estimate x̂ is precisely the estimation error. Thus,
it is also related to the distance from x to R(V), where it is apparent
that the data should lie close to that subspace in order to obtain accu-
rate estimates (see Fig. 3). The following results show that, in order to
minimize the sum of squared estimation errors for an entire data set,
the data can be shifted so that its new mean lies in R(V), which may
as well be the origin. Thus, centering the data will allow to obtain
more accurate estimates in general.

Proposition 1. Let V be a full column rank matrix whose rows contain
the axis vectors in the SC model. Also, consider a data set of cardinal-
ity N, where xi is the i-th data sample, and pi its embedded point. In
that case, the sum of squared estimation errors for all of the points in
a new data set that has been shifted by some vector t:

N

∑
i=1

‖Vpi − (xi − t)‖2, (5)
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with ei. If ṽ1 and ṽ2 (the columns of V) do not form an orthonormal set, as shown in (a), the first projection is oblique leading to larger estimation
errors (ε = ‖x̂−x‖), while distances and angles in R(V) are not preserved in R2. In (b), ṽ⊥1 and ṽ⊥2 form an orthonormal set, where not only is the
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is minimized if t = x̄+ z, where x̄ is the sample mean of the data, and
z is any vector in the range of V.

Proof. The optimal shift t of the data is found by minimizing (5).
Since p = VTx in SC, it follows that pi = VT(xi − t) for the i-th data
point. Thus, the function to be minimized is:

f (t) =
N

∑
i=1

‖VVT(xi − t)− (xi − t)‖2

=
N

∑
i=1

‖(I−VVT)t− (I−VVT)xi‖2

=
N

∑
i=1

‖Bt− ci‖2 =
N

∑
i=1

(

tTBTBt−2tTBTci + cT
i ci

)

= NtTBTBt−2tTBT
N

∑
i=1

ci +
N

∑
i=1

cT
i ci,

where I is the identity matrix, B = (I−VVT), and ci = Bxi. Taking
derivatives with respect to t and setting them to 0:

∂ f
∂ t

= 2NBTBt−2BT
N

∑
i=1

ci = 0,

2NBTBt−2BTB
N

∑
i=1

xi = 0,

BTBt− 1
N

BTB
N

∑
i=1

xi = BTB(t− x̄) = 0.

Thus, t = x̄+ z, where z ∈ R(V), since R(V) = R(VVT) = R(I−
VVT)⊥ = N (I−VVT) = N (B), where N denotes nullspace.

Corollary 1. In SC the data can be centered in order to minimize the
sum of squared estimation errors for all of the points in a data set when
V has full column rank.

Proof. From Prop. 1 it follows that t can be x̄, since we can choose
z = 0.

2.2 Orthonormalization of the columns of V
Recently, Lehmann and Theisel [17] proposed to restrict SC to ortho-
graphic projections in the context of interaction in order to improve
the quality of the visualizations. The idea consists of replacing the
columns of V by an orthonormal set of vectors that span the same sub-
space as the original ones. This generates a new set of axis vectors that
produces a similar plot, where the estimates for each data sample are
optimal, and which leads to more faithful representations of the data.
In this section we review the approach but focusing on enhancing at-
tribute estimation accuracy.

Firstly, note that the SC mapping (see (1)) can be decomposed into
two separate linear transformations:

p = VTx = [V†][VVT]x = V†x̂,

where † denotes the Moore-Penrose pseudoinverse (we assume that
V has full column rank, where V† = (VTV)−1VT). Geometrically,
the idea is illustrated in Fig. 4a. Thus, we can interpret that SC first
projects data samples onto R(V), through VVT, where the resulting
points constitute the n-dimensional estimates. In order to complete the
process, the second mapping defined by V† simply rotates and scales
the estimates in R(V) in order to represent them in the observable
space (Rm). In particular, the column vectors of V, denoted as ṽi, for
i = 1, . . . ,m, are transformed into the vectors of the standard basis (ei)
of the observable space.

Since the final plot can be interpreted as a simple linear transforma-
tion of the information on R(V), we can substitute the column vectors
of V by an orthonormal set that spans the same subspace, as shown in
Fig. 4b, where V⊥ denotes this new orthogonal matrix of axis vectors
(thus, VT

⊥V⊥ = I), and where ṽ⊥i, for i = 1, . . . ,m, are the correspond-
ing column vectors. It is straightforward to compute V⊥, for example,
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Fig. 5. Comparison of methods. The graphics show SC plots of a breakfast cereal data set containing five variables, where the axis associated with
protein content has been labeled with original values that lie in the interval [1,6], shown as a gray area. The points have been colored according
to protein content, where the color bar indicates the particular coding. Note that lighter points, with higher values, are located towards the right,
in the direction of the axis vector. Additionally, since the estimates for protein are the (orthogonal) projections of the points onto its labeled axis,
ideally they should be located inside the gray area. In (a) the plot uses data in [0,1] (not centered) and a configuration of axis vectors that does not
generate orthographic projections, where the estimates are highly inaccurate. In (b) the columns of V form an orthonormal set, which has a positive
effect on the accuracy. In (c) the vectors do not produce orthographic projections but the [0,1] data has been centered, which allows to reduce the
squared estimation errors considerably. Finally, in (d) both approaches are combined to reduce the attribute estimation error even further, where
almost every point lies in the [1,6] interval.

through the Gram-Schmidt orthonormalization procedure ([17] also
proposes a gradient descent based algorithm which essentially mini-
mizes ‖VTV− I‖2

Fro, where Fro denotes the Frobenius norm). This
defines an alternative configuration of axis vectors, but has several
benefits that we describe below.

On the one hand, recall that the estimation errors are the distances
from x to x̂. Thus, these are minimized for individual points if x̂ is the
orthogonal projection of x onto R(V). In SC the optimal estimates are
achieved if and only if VVT is an orthogonal projection matrix, and this
occurs if and only if the columns of R(V) form an orthonormal set of
vectors (i.e., if and only if VTV = I). If the column vectors of V do
not form an orthonormal set the projections are oblique and can lead
to large estimation errors.

On the other hand, when using V⊥ dot products, and therefore dis-
tances and angles, between points that lie on R(V) are preserved ex-
actly on the low dimensional display, due to the following result.

Proposition 2. The linear mapping from the observable inner prod-
uct space Rm to R(V), defined by V, as well as the transformation
from R(V) to Rm, defined by V†, will be isometries if and only if the
columns of V form a orthonormal set of vectors (i.e., if and only if
VTV = I).

Proof. Consider two points p,q ∈ Rm, and their images Vp,Vq ∈

R(V), then:

〈p,q〉= pTq = pTVTVq = 〈Vp,Vq〉 ⇔ VTV = I,

where 〈·, ·〉 denotes dot product. Similarly, the linear mapping from
R(V) to Rm defined by V† will also be an isometry:

〈Vp,Vq〉= 〈p,q〉= 〈V†Vp,V†Vq〉,
if and only if V defines an isometry from Rm to R(V), which happens
if and only if VTV = I, as proved above.

Finally, we provide a result that shows that the lengths of the axis
vectors are at most 1 when the columns of V form an orthonormal set
of vectors:

Proposition 3. Let V be an n×m matrix, where n≥m, whose columns
form an orthonormal set of vectors. The Euclidean norm of any row of
V will be at most 1.

Proof. Firstly, the entries of V are constrained since the Euclidean
norms of the columns are equal to 1. Additionally, since V has rank
m, in order to find the largest squared values for the entries of some
rows we can assume that all of the entries of n−m rows of V are 0. In
this optimal scenario, the remaining m rows form a matrix R which is
orthogonal, where RTR = RRT = I, which implies that the rows of R
have unit Euclidean norm.

2.3 Benefits of axis calibration for data analysis

The new visualizations with centered data and V⊥ provide more faith-
ful representations that can be useful in tasks where users need to
approximate data values quickly. Figure 5 shows the benefit on
estimation accuracy of combining both approaches, on configura-
tions of five variables of the breakfast cereal data set available in
lib.stat.cmu.edu/datasets/1993.expo/. For reference,
we have labeled (calibrated) the axis associated with protein content
with the original values (in grams), which lie in [1,6], and have shaded
the area corresponding to such interval. Thus, if an embedded point
falls outside of the gray area its orthogonal projection onto the pro-
tein axis will result in a value that is outside of [1,6]. Lastly, we have
colored the embedded samples according to their protein content (the
color bars in the middle show the particular color coding).

In Fig. 5a the plot is generated with data normalized to lie in [0,1],
and is therefore not centered. Regarding the configuration of axis vec-
tors, when they are regular, as in the graphics, they only provide or-
thographic projections when the lengths of the axis vectors are

√

2/n
(where n is the number of variables) [17]. In Fig. 5a their length is
1, and therefore V is not an orthogonal matrix. The estimates asso-
ciated with the resulting plot are therefore highly inaccurate, where
more than half of the points are not even in the gray area (note that
some have large negative values). In Fig. 5b the lengths of the axis
vectors are

√

2/5, which cause the columns of V to form an orthonor-
mal set of vectors. This modifies the scaling on the axes, which has a
positive effect on the estimation accuracy, even though the number of
points that fall inside the gray area is the same as in Fig. 5a. In Fig. 5c
the vectors have unit length but the data (previously in [0,1]) has been
centered, which reduces the squared estimation error considerably. Fi-
nally, in Fig. 5d we have used this centered data and an orthogonal
matrix, where most of the points fall inside the gray area, and provide
the lowest squared estimation errors.

In addition, when users inspect data for decision making a com-
monly used approach consists of pointing vectors associated with de-
sirable features in a similar direction, while pointing undesirable vari-
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Fig. 7. Visualizing error information. A SC plot for 3 (standardized)
breakfast cereal variables is shown in (a) as usual, for an orthonor-
malized configuration of axis vectors, where the colors represent sugar
content. In (b), the samples for which the estimation errors are large are
depicted as very small dots. In contrast, we can not only estimate val-
ues accurately for the remaining large dots, but the distances between
them are almost identical to the ones in the data space.

ables in the opposite direction. Figure 6a shows a configuration of
axis vectors used to characterize healthy vs. unhealthy breakfast cere-
als, similar to that in [24]. The result of using V⊥ with centered data,
illustrated in Fig. 6b, shows that the original configuration unnecessar-
ily stretched the plot along the horizontal axis, introducing distortions
in the visualization.

In practice, the data samples will not lie on R(V) exactly, causing
nonzero estimation errors that can be visualized in order to examine
which data samples are being represented well for the particular set of
axis vectors. When they are large they provide warnings that indicate
the need to examine data samples carefully before making decisions.
However, if V⊥ is used with centered data analysts can be confident
not only about interpreting values of points that have been represented
accurately, but also regarding distances and angles between them. This
is illustrated in Fig. 7 through an example involving three breakfast
cereal variables. In Fig. 7a the points are depicted as usual, where
the color coding corresponds to sugar content. In Fig. 7b, we have
decreased the size of the dots corresponding to samples for which the
estimation errors are large. This operation simply shows samples that
have not been represented well as very small dots, since they can be
misleading. Notice that healthy cereals with high potassium values
and low sugar and sodium have practically disappeared from the plot.
This is useful for decision making, where the errors are warning us that
the data set does not contain cereals with that combination of features.
In addition, we can be very confident about the estimated values of the
remaining larger dots, where the distances between them are almost
identical to the ones in the data space.
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Fig. 5. Comparison of methods. The graphics show SC plots of a breakfast cereal data set containing five variables, where the axis associated with
protein content has been labeled with original values that lie in the interval [1,6], shown as a gray area. The points have been colored according
to protein content, where the color bar indicates the particular coding. Note that lighter points, with higher values, are located towards the right,
in the direction of the axis vector. Additionally, since the estimates for protein are the (orthogonal) projections of the points onto its labeled axis,
ideally they should be located inside the gray area. In (a) the plot uses data in [0,1] (not centered) and a configuration of axis vectors that does not
generate orthographic projections, where the estimates are highly inaccurate. In (b) the columns of V form an orthonormal set, which has a positive
effect on the accuracy. In (c) the vectors do not produce orthographic projections but the [0,1] data has been centered, which allows to reduce the
squared estimation errors considerably. Finally, in (d) both approaches are combined to reduce the attribute estimation error even further, where
almost every point lies in the [1,6] interval.

through the Gram-Schmidt orthonormalization procedure ([17] also
proposes a gradient descent based algorithm which essentially mini-
mizes ‖VTV− I‖2

Fro, where Fro denotes the Frobenius norm). This
defines an alternative configuration of axis vectors, but has several
benefits that we describe below.

On the one hand, recall that the estimation errors are the distances
from x to x̂. Thus, these are minimized for individual points if x̂ is the
orthogonal projection of x onto R(V). In SC the optimal estimates are
achieved if and only if VVT is an orthogonal projection matrix, and this
occurs if and only if the columns of R(V) form an orthonormal set of
vectors (i.e., if and only if VTV = I). If the column vectors of V do
not form an orthonormal set the projections are oblique and can lead
to large estimation errors.

On the other hand, when using V⊥ dot products, and therefore dis-
tances and angles, between points that lie on R(V) are preserved ex-
actly on the low dimensional display, due to the following result.

Proposition 2. The linear mapping from the observable inner prod-
uct space Rm to R(V), defined by V, as well as the transformation
from R(V) to Rm, defined by V†, will be isometries if and only if the
columns of V form a orthonormal set of vectors (i.e., if and only if
VTV = I).

Proof. Consider two points p,q ∈ Rm, and their images Vp,Vq ∈

R(V), then:

〈p,q〉= pTq = pTVTVq = 〈Vp,Vq〉 ⇔ VTV = I,

where 〈·, ·〉 denotes dot product. Similarly, the linear mapping from
R(V) to Rm defined by V† will also be an isometry:

〈Vp,Vq〉= 〈p,q〉= 〈V†Vp,V†Vq〉,
if and only if V defines an isometry from Rm to R(V), which happens
if and only if VTV = I, as proved above.

Finally, we provide a result that shows that the lengths of the axis
vectors are at most 1 when the columns of V form an orthonormal set
of vectors:

Proposition 3. Let V be an n×m matrix, where n≥m, whose columns
form an orthonormal set of vectors. The Euclidean norm of any row of
V will be at most 1.

Proof. Firstly, the entries of V are constrained since the Euclidean
norms of the columns are equal to 1. Additionally, since V has rank
m, in order to find the largest squared values for the entries of some
rows we can assume that all of the entries of n−m rows of V are 0. In
this optimal scenario, the remaining m rows form a matrix R which is
orthogonal, where RTR = RRT = I, which implies that the rows of R
have unit Euclidean norm.

2.3 Benefits of axis calibration for data analysis

The new visualizations with centered data and V⊥ provide more faith-
ful representations that can be useful in tasks where users need to
approximate data values quickly. Figure 5 shows the benefit on
estimation accuracy of combining both approaches, on configura-
tions of five variables of the breakfast cereal data set available in
lib.stat.cmu.edu/datasets/1993.expo/. For reference,
we have labeled (calibrated) the axis associated with protein content
with the original values (in grams), which lie in [1,6], and have shaded
the area corresponding to such interval. Thus, if an embedded point
falls outside of the gray area its orthogonal projection onto the pro-
tein axis will result in a value that is outside of [1,6]. Lastly, we have
colored the embedded samples according to their protein content (the
color bars in the middle show the particular color coding).

In Fig. 5a the plot is generated with data normalized to lie in [0,1],
and is therefore not centered. Regarding the configuration of axis vec-
tors, when they are regular, as in the graphics, they only provide or-
thographic projections when the lengths of the axis vectors are

√

2/n
(where n is the number of variables) [17]. In Fig. 5a their length is
1, and therefore V is not an orthogonal matrix. The estimates asso-
ciated with the resulting plot are therefore highly inaccurate, where
more than half of the points are not even in the gray area (note that
some have large negative values). In Fig. 5b the lengths of the axis
vectors are

√

2/5, which cause the columns of V to form an orthonor-
mal set of vectors. This modifies the scaling on the axes, which has a
positive effect on the estimation accuracy, even though the number of
points that fall inside the gray area is the same as in Fig. 5a. In Fig. 5c
the vectors have unit length but the data (previously in [0,1]) has been
centered, which reduces the squared estimation error considerably. Fi-
nally, in Fig. 5d we have used this centered data and an orthogonal
matrix, where most of the points fall inside the gray area, and provide
the lowest squared estimation errors.

In addition, when users inspect data for decision making a com-
monly used approach consists of pointing vectors associated with de-
sirable features in a similar direction, while pointing undesirable vari-
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Fig. 7. Visualizing error information. A SC plot for 3 (standardized)
breakfast cereal variables is shown in (a) as usual, for an orthonor-
malized configuration of axis vectors, where the colors represent sugar
content. In (b), the samples for which the estimation errors are large are
depicted as very small dots. In contrast, we can not only estimate val-
ues accurately for the remaining large dots, but the distances between
them are almost identical to the ones in the data space.

ables in the opposite direction. Figure 6a shows a configuration of
axis vectors used to characterize healthy vs. unhealthy breakfast cere-
als, similar to that in [24]. The result of using V⊥ with centered data,
illustrated in Fig. 6b, shows that the original configuration unnecessar-
ily stretched the plot along the horizontal axis, introducing distortions
in the visualization.

In practice, the data samples will not lie on R(V) exactly, causing
nonzero estimation errors that can be visualized in order to examine
which data samples are being represented well for the particular set of
axis vectors. When they are large they provide warnings that indicate
the need to examine data samples carefully before making decisions.
However, if V⊥ is used with centered data analysts can be confident
not only about interpreting values of points that have been represented
accurately, but also regarding distances and angles between them. This
is illustrated in Fig. 7 through an example involving three breakfast
cereal variables. In Fig. 7a the points are depicted as usual, where
the color coding corresponds to sugar content. In Fig. 7b, we have
decreased the size of the dots corresponding to samples for which the
estimation errors are large. This operation simply shows samples that
have not been represented well as very small dots, since they can be
misleading. Notice that healthy cereals with high potassium values
and low sugar and sodium have practically disappeared from the plot.
This is useful for decision making, where the errors are warning us that
the data set does not contain cereals with that combination of features.
In addition, we can be very confident about the estimated values of the
remaining larger dots, where the distances between them are almost
identical to the ones in the data space.
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Fig. 8. Error information in cluster analysis. Image (a) shows an exam-
ple with a 3-dimensional toy data set consisting in six small clusters cen-
tered at the vertices of an octahedron: (−1,−1,0), (−1,1,0), (1,−1,0),
(1,1,0), (0,0,1) and (0,0,−1). The range of V only passes through two
of the clusters, centered at (1,−1,0) and (−1,1,0), whose samples are
represented well in the low-dimensional plot. The result of the linear
mapping is shown in (b), where the points with larger estimation errors
are depicted with smaller dots. Thus, analysts should be cautious when
interpreting and comparing values or distances between those points.

Lastly, Fig. 8 shows an example with a 3-dimensional toy data set
containing six small clusters. The particular choice of axis vectors re-
sults in the range of V passing through only two of the clusters, as
shown in Fig. 8a. Therefore, the points in those clusters are repre-
sented well, and analysts can be confident about correctly interpret-
ing and comparing their values. Furthermore, the relative distances
between those points are also better represented. The result of the
method’s linear mapping is shown in Fig. 8b. In order to focus on the
points that have been represented well, those with larger estimation
errors have been displayed with smaller dots. Thus, it is important to
note that the approach is effectively revealing the loss of information
associated with the ability to recover original data values.

3 EVALUATION OF THE ESTIMATION ACCURACY

In this section we evaluate the accuracy of the estimates associated
with the approaches on real data sets, and describe models of how
users estimate data values in SC and RadViz. In particular, Tab. 1
summarizes the methods’ approaches and estimation strategies used
in the experiments.

The user study involved 10 computer science professors (all male,
with average age 37) and 10 graduate students (with average age 28,
where only 2 were female), at Universidad Rey Juan Carlos, in Madrid,
Spain. The participants did not have a previous background in SC nor
in RadViz.

3.1 Star Coordinates
Before performing estimation experiments we explained to them SC
in detail. We made special emphasis on understanding the linear com-
bination geometrically as a weighted sum of vectors, which could be
interpreted as a path from the origin to the low-dimensional point p,
as illustrated in Fig. 1.

For this purpose, we developed a tool to teach the method prior to
performing the estimation experiments. Given a configuration of axis
vectors, and a low-dimensional point p corresponding to a particular
data instance x from the breakfast cereal data set (with values in [0,1]),
it allowed users to visualize and construct a path from the origin to p
by updating the coefficients associated with the axis vectors. These
values would represent possible estimates for the data sample x that
had been mapped onto p by SC. At the end of the process the true
values of x were revealed to the users. One of our goals consisted
of showing that there is usually an infinite number of possibilities to
choose the coefficients. Additionally, by using the cereal database,
which is not sparse, we intended to show that in most cases the actual
values of x were not 0 (i.e., most variables contributed a segment to the

path). In total, each participant estimated values of nine data entries in
this training stage: 3 (for sets of 3, 6, and 9 variables) × 3 instances.

Afterwards we measured the participants’ ability to estimate data
attributes in SC without the aid of calibrated axes. In a first experiment
we showed users the embeddings of randomly chosen data samples
from the breakfast cereal database and the wine data set in [6], together
with configurations of axis vectors (V) whose directions were random
and lengths were drawn from a uniform U [0.5,2.5]. This particular
choice implies that the longest vector will be at most 5 times larger
than the smallest. On the one hand, we guarantee that the variable with
the smallest vector will still have a relevant effect on the plot, since
the contribution of a variable is proportional to the length of its axis
vector. On the other hand, we chose the upper limit of 2.5 in order to
expect a notable reduction of the estimation errors when carrying out
the orthonormalization process. Note that V⊥ could be quite different
than V, since the length of its axis vectors can be at most 1, due to
Prop. 3.

The experiments considered configurations of 3, 5, 7, and 9 vari-
ables, also chosen at random from the data sets. Finally, we asked the
participants to estimate the value of only one of the attributes (also
selected at random). In total, every participant estimated 40 values: 5
attribute values × 2 data sets × 4 (for sets of 3, 5, 7 and 9 variables). It
is worth mentioning that we encouraged the participants to use a fast
and intuitive estimation strategy that would not involve complex cal-
culations, since otherwise users could simply look up the values of the
data quicker on the graphical interface (e.g., in a table). This allowed
them to report values typically in under 15 seconds.

Finally, we compared the results with those relative to automatic
strategies based on projections onto calibrated axes (see Tab. 1). Fig-
ure 9 shows average estimation errors for the user (SCUser), and auto-
matic estimates (see the supplemental material for separate results on
each data set). The reported measure for a certain number of variables
n is:

υ(n) =
1

P ·D ·M
P

∑
p=1

D

∑
d=1

M

∑
i=1

|x̂i,d,p − xi,d,p|,

where P = 20 is the number of participants, D = 2 is the number of
data sets, M = 5 is the number of values to estimate, xi,d,p is the i-
th value to be estimated for the d-th data set and p-th participant,
and finally x̂i,d,p is the corresponding estimate. It is apparent that,
although the orthonormalization process has a positive effect, the es-
timates based on projections onto calibrated axes are only appropriate
when the data is centered. In that case the approach clearly provides
more accurate estimates than the users’. Without the aid of the cali-
brated axes the estimation task requires carrying out complex calcula-
tions that are generally inaccurate and too time consuming.

While in the first experiment users only had to estimate one value
per data instance, we carried out another study where we asked the
participants to estimate all of the attributes. Our goal was not only
to evaluate the accuracy of users’ estimates, but also to analyze their
strategies.

In this new experiment we showed regular (with unit vectors) and
random configurations of axis vectors (again with random directions
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Fig. 9. Average estimation errors υ(n) obtained in experiments with
users for SC, and the automatic estimates onto calibrated axes. Project-
ing points onto calibrated axes allows to obtain more accurate results,
but the data must be previously centered.

Table 1. Summary of the Methods’ Approaches and Estimation Strategies Used to Gather Results.
Result notation Method Data normalization Axis vectors Estimation strategy
SCUser SC [0,1] V Reported by users
SCM SC [0,1] V Modeled by (6)
RadVizM RadViz [0,1] V Modeled by (7)
PR SC [0,1] V Projections onto calibrated axes
PR⊥ SC [0,1] V⊥ Projections onto calibrated axes
PRc SC Range 1, centered V Projections onto calibrated axes
PR⊥c SC Range 1, centered V⊥ Projections onto calibrated axes

and lengths drawn from a uniform U [0.5,2.5]), and the embedding of
a randomly chosen data sample x from the breakfast cereal database,
where the variables were normalized to lie in [0,1]. The experiments
considered sets of 3, 6, and 9 variables, also chosen at random from the
database. Finally, we asked the participants to estimate the attributes
of x. In total, every participant estimated the variable values of 12 data
instances: 2 (for regular and random configurations) × 3 (for sets of
3, 6, and 9 variables) × 2 instances.

At the end of the experiment we asked the participants to explain
their strategies. We identified one main approach, used by 13 par-
ticipants (65%), where they searched for estimates (i.e., the coeffi-
cients of the linear combination) that minimize the length of the path
from the origin to p by using the least number of variables as possible
(typically, only two or three), while satisfying the linear combination
equation (1), as well as the constraints associated with the data nor-
malization. Thus, many of the reported estimates were 0, despite our
efforts in the training stage to show that the solutions were usually not
sparse. This simple approach arises not only due to the difficulty to es-
timate values, but also to the necessity to visualize them quickly. For
this strategy users needed about 20 seconds to report the nonzero esti-
mates. Note that the particular scale of the axis vectors does not affect
the user estimates. In other words, we would have obtained identical
results had we chosen a uniform U [0.2,1] for the lengths of the axis
vectors. Lastly, we did not identify other common strategies.

In order to extrapolate the results to more data we modeled the
user strategy, denoted as SCM, with the following convex optimiza-
tion problem:

minimize
x ∈ Rn

‖Dx‖1

subject to VTx = p,
0 � x � 1,

(6)

where D is diagonal matrix in which di,i = ‖vi‖, and � denotes vector
componentwise inequality. Note that ‖Dx‖1 corresponds to the length
of the path. Thus, the optimization problem models the fact that users
generally search for solutions where the path associated with the linear
combination is shortest. Moreover, the �1 norm is appropriate for ob-
taining solutions that use only a few variables (nonzero coefficients),
since it usually produces sparse solutions, i.e., many values of x̂ will
be 0, which is equivalent to not considering a variable in the linear
combination. The supplemental material includes an alternative for-
mulation (as a linear program) [1], and shows that the solutions are
sparse.

Figure 10 analyzes the validity of model SCM by examining the dis-
crepancy between the model and user estimates (only for the 13 partic-
ipants who used the associated strategy), and evaluating their average
estimation errors. In Fig. 10a the estimates of the model (x̂Model), are
very close to the ones provided by the users (x̂User). Thus, the average
squared estimation errors for SCUser and SCM are also very similar.
In Fig. 10b the average estimation errors for random configurations
are also very close, despite a higher discrepancy (‖x̂User − x̂Model‖2)
between the users’ and the model’s estimates.

3.2 RadViz
In addition, we studied possible ways users estimate values in RadViz.
Since the method was new to the participants we explained to them
its physical spring model and described its properties, as mentioned in
Sec. 1.
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Fig. 10. Validity of SCM for (a) regular, and (b) random configurations of
axis vectors. In (a) the estimates of the model are very close to the ones
provided by users (‖x̂User − x̂Model‖2). Therefore, the average squared
estimation errors for SCUser (‖x− x̂User‖2) and SCM (‖x− x̂Model‖2) are
also very similar. For random configurations there is more discrepancy
between the model and the user estimates, but the average estimation
errors are nevertheless still very similar.

Firstly, we carried out an experiment where, given a regular config-
uration of five variables (with anchor points distributed uniformly on
the unit circle), and a point p inside the pentagon formed by the an-
chor points, users were asked to intuitively choose all of the values of
some possible instance that would have been mapped onto p. In par-
ticular, each participant chose the five attribute values associated with
five points. Let IC denote these “intuitive choices”.

Afterwards, we asked the participants to obtain a formula or algo-
rithm for visualizing values quickly, which would be consistent with
the RadViz properties. They were given 24 hours to come up with a
strategy. The following day only two professors and one student re-
ported a consistent strategy, which was identical. In particular, they
formed estimates by tracing a line segment from the anchor vi to p,
and finally reaches the convex hull of the anchors at a point c. The i-th
estimate x̂i is then defined as:

x̂i = ‖c−p‖/‖c−vi‖. (7)

This approach, denoted as RadVizM, is illustrated in Fig. 11.
Other users reported strategies that were consistent with every prop-

erty but the 4-th, when p is on an edge of the convex hull of the an-
chor points. For instance, 5 participants used x̂i = ‖c−p‖/d, where
d = 2‖v‖ is the diameter of the circumference on which the anchor
points lie. However, these users corrected their strategy to (7) when
notified that their initial solution was inconsistent. Other solutions in-
volved ratios of areas, or the ratio between the distance from anchor i
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Fig. 8. Error information in cluster analysis. Image (a) shows an exam-
ple with a 3-dimensional toy data set consisting in six small clusters cen-
tered at the vertices of an octahedron: (−1,−1,0), (−1,1,0), (1,−1,0),
(1,1,0), (0,0,1) and (0,0,−1). The range of V only passes through two
of the clusters, centered at (1,−1,0) and (−1,1,0), whose samples are
represented well in the low-dimensional plot. The result of the linear
mapping is shown in (b), where the points with larger estimation errors
are depicted with smaller dots. Thus, analysts should be cautious when
interpreting and comparing values or distances between those points.

Lastly, Fig. 8 shows an example with a 3-dimensional toy data set
containing six small clusters. The particular choice of axis vectors re-
sults in the range of V passing through only two of the clusters, as
shown in Fig. 8a. Therefore, the points in those clusters are repre-
sented well, and analysts can be confident about correctly interpret-
ing and comparing their values. Furthermore, the relative distances
between those points are also better represented. The result of the
method’s linear mapping is shown in Fig. 8b. In order to focus on the
points that have been represented well, those with larger estimation
errors have been displayed with smaller dots. Thus, it is important to
note that the approach is effectively revealing the loss of information
associated with the ability to recover original data values.

3 EVALUATION OF THE ESTIMATION ACCURACY

In this section we evaluate the accuracy of the estimates associated
with the approaches on real data sets, and describe models of how
users estimate data values in SC and RadViz. In particular, Tab. 1
summarizes the methods’ approaches and estimation strategies used
in the experiments.

The user study involved 10 computer science professors (all male,
with average age 37) and 10 graduate students (with average age 28,
where only 2 were female), at Universidad Rey Juan Carlos, in Madrid,
Spain. The participants did not have a previous background in SC nor
in RadViz.

3.1 Star Coordinates
Before performing estimation experiments we explained to them SC
in detail. We made special emphasis on understanding the linear com-
bination geometrically as a weighted sum of vectors, which could be
interpreted as a path from the origin to the low-dimensional point p,
as illustrated in Fig. 1.

For this purpose, we developed a tool to teach the method prior to
performing the estimation experiments. Given a configuration of axis
vectors, and a low-dimensional point p corresponding to a particular
data instance x from the breakfast cereal data set (with values in [0,1]),
it allowed users to visualize and construct a path from the origin to p
by updating the coefficients associated with the axis vectors. These
values would represent possible estimates for the data sample x that
had been mapped onto p by SC. At the end of the process the true
values of x were revealed to the users. One of our goals consisted
of showing that there is usually an infinite number of possibilities to
choose the coefficients. Additionally, by using the cereal database,
which is not sparse, we intended to show that in most cases the actual
values of x were not 0 (i.e., most variables contributed a segment to the

path). In total, each participant estimated values of nine data entries in
this training stage: 3 (for sets of 3, 6, and 9 variables) × 3 instances.

Afterwards we measured the participants’ ability to estimate data
attributes in SC without the aid of calibrated axes. In a first experiment
we showed users the embeddings of randomly chosen data samples
from the breakfast cereal database and the wine data set in [6], together
with configurations of axis vectors (V) whose directions were random
and lengths were drawn from a uniform U [0.5,2.5]. This particular
choice implies that the longest vector will be at most 5 times larger
than the smallest. On the one hand, we guarantee that the variable with
the smallest vector will still have a relevant effect on the plot, since
the contribution of a variable is proportional to the length of its axis
vector. On the other hand, we chose the upper limit of 2.5 in order to
expect a notable reduction of the estimation errors when carrying out
the orthonormalization process. Note that V⊥ could be quite different
than V, since the length of its axis vectors can be at most 1, due to
Prop. 3.

The experiments considered configurations of 3, 5, 7, and 9 vari-
ables, also chosen at random from the data sets. Finally, we asked the
participants to estimate the value of only one of the attributes (also
selected at random). In total, every participant estimated 40 values: 5
attribute values × 2 data sets × 4 (for sets of 3, 5, 7 and 9 variables). It
is worth mentioning that we encouraged the participants to use a fast
and intuitive estimation strategy that would not involve complex cal-
culations, since otherwise users could simply look up the values of the
data quicker on the graphical interface (e.g., in a table). This allowed
them to report values typically in under 15 seconds.

Finally, we compared the results with those relative to automatic
strategies based on projections onto calibrated axes (see Tab. 1). Fig-
ure 9 shows average estimation errors for the user (SCUser), and auto-
matic estimates (see the supplemental material for separate results on
each data set). The reported measure for a certain number of variables
n is:

υ(n) =
1

P ·D ·M
P

∑
p=1

D

∑
d=1

M

∑
i=1

|x̂i,d,p − xi,d,p|,

where P = 20 is the number of participants, D = 2 is the number of
data sets, M = 5 is the number of values to estimate, xi,d,p is the i-
th value to be estimated for the d-th data set and p-th participant,
and finally x̂i,d,p is the corresponding estimate. It is apparent that,
although the orthonormalization process has a positive effect, the es-
timates based on projections onto calibrated axes are only appropriate
when the data is centered. In that case the approach clearly provides
more accurate estimates than the users’. Without the aid of the cali-
brated axes the estimation task requires carrying out complex calcula-
tions that are generally inaccurate and too time consuming.

While in the first experiment users only had to estimate one value
per data instance, we carried out another study where we asked the
participants to estimate all of the attributes. Our goal was not only
to evaluate the accuracy of users’ estimates, but also to analyze their
strategies.

In this new experiment we showed regular (with unit vectors) and
random configurations of axis vectors (again with random directions
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Fig. 9. Average estimation errors υ(n) obtained in experiments with
users for SC, and the automatic estimates onto calibrated axes. Project-
ing points onto calibrated axes allows to obtain more accurate results,
but the data must be previously centered.

Table 1. Summary of the Methods’ Approaches and Estimation Strategies Used to Gather Results.
Result notation Method Data normalization Axis vectors Estimation strategy
SCUser SC [0,1] V Reported by users
SCM SC [0,1] V Modeled by (6)
RadVizM RadViz [0,1] V Modeled by (7)
PR SC [0,1] V Projections onto calibrated axes
PR⊥ SC [0,1] V⊥ Projections onto calibrated axes
PRc SC Range 1, centered V Projections onto calibrated axes
PR⊥c SC Range 1, centered V⊥ Projections onto calibrated axes

and lengths drawn from a uniform U [0.5,2.5]), and the embedding of
a randomly chosen data sample x from the breakfast cereal database,
where the variables were normalized to lie in [0,1]. The experiments
considered sets of 3, 6, and 9 variables, also chosen at random from the
database. Finally, we asked the participants to estimate the attributes
of x. In total, every participant estimated the variable values of 12 data
instances: 2 (for regular and random configurations) × 3 (for sets of
3, 6, and 9 variables) × 2 instances.

At the end of the experiment we asked the participants to explain
their strategies. We identified one main approach, used by 13 par-
ticipants (65%), where they searched for estimates (i.e., the coeffi-
cients of the linear combination) that minimize the length of the path
from the origin to p by using the least number of variables as possible
(typically, only two or three), while satisfying the linear combination
equation (1), as well as the constraints associated with the data nor-
malization. Thus, many of the reported estimates were 0, despite our
efforts in the training stage to show that the solutions were usually not
sparse. This simple approach arises not only due to the difficulty to es-
timate values, but also to the necessity to visualize them quickly. For
this strategy users needed about 20 seconds to report the nonzero esti-
mates. Note that the particular scale of the axis vectors does not affect
the user estimates. In other words, we would have obtained identical
results had we chosen a uniform U [0.2,1] for the lengths of the axis
vectors. Lastly, we did not identify other common strategies.

In order to extrapolate the results to more data we modeled the
user strategy, denoted as SCM, with the following convex optimiza-
tion problem:

minimize
x ∈ Rn

‖Dx‖1

subject to VTx = p,
0 � x � 1,

(6)

where D is diagonal matrix in which di,i = ‖vi‖, and � denotes vector
componentwise inequality. Note that ‖Dx‖1 corresponds to the length
of the path. Thus, the optimization problem models the fact that users
generally search for solutions where the path associated with the linear
combination is shortest. Moreover, the �1 norm is appropriate for ob-
taining solutions that use only a few variables (nonzero coefficients),
since it usually produces sparse solutions, i.e., many values of x̂ will
be 0, which is equivalent to not considering a variable in the linear
combination. The supplemental material includes an alternative for-
mulation (as a linear program) [1], and shows that the solutions are
sparse.

Figure 10 analyzes the validity of model SCM by examining the dis-
crepancy between the model and user estimates (only for the 13 partic-
ipants who used the associated strategy), and evaluating their average
estimation errors. In Fig. 10a the estimates of the model (x̂Model), are
very close to the ones provided by the users (x̂User). Thus, the average
squared estimation errors for SCUser and SCM are also very similar.
In Fig. 10b the average estimation errors for random configurations
are also very close, despite a higher discrepancy (‖x̂User − x̂Model‖2)
between the users’ and the model’s estimates.

3.2 RadViz
In addition, we studied possible ways users estimate values in RadViz.
Since the method was new to the participants we explained to them
its physical spring model and described its properties, as mentioned in
Sec. 1.
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Fig. 10. Validity of SCM for (a) regular, and (b) random configurations of
axis vectors. In (a) the estimates of the model are very close to the ones
provided by users (‖x̂User − x̂Model‖2). Therefore, the average squared
estimation errors for SCUser (‖x− x̂User‖2) and SCM (‖x− x̂Model‖2) are
also very similar. For random configurations there is more discrepancy
between the model and the user estimates, but the average estimation
errors are nevertheless still very similar.

Firstly, we carried out an experiment where, given a regular config-
uration of five variables (with anchor points distributed uniformly on
the unit circle), and a point p inside the pentagon formed by the an-
chor points, users were asked to intuitively choose all of the values of
some possible instance that would have been mapped onto p. In par-
ticular, each participant chose the five attribute values associated with
five points. Let IC denote these “intuitive choices”.

Afterwards, we asked the participants to obtain a formula or algo-
rithm for visualizing values quickly, which would be consistent with
the RadViz properties. They were given 24 hours to come up with a
strategy. The following day only two professors and one student re-
ported a consistent strategy, which was identical. In particular, they
formed estimates by tracing a line segment from the anchor vi to p,
and finally reaches the convex hull of the anchors at a point c. The i-th
estimate x̂i is then defined as:

x̂i = ‖c−p‖/‖c−vi‖. (7)

This approach, denoted as RadVizM, is illustrated in Fig. 11.
Other users reported strategies that were consistent with every prop-

erty but the 4-th, when p is on an edge of the convex hull of the an-
chor points. For instance, 5 participants used x̂i = ‖c−p‖/d, where
d = 2‖v‖ is the diameter of the circumference on which the anchor
points lie. However, these users corrected their strategy to (7) when
notified that their initial solution was inconsistent. Other solutions in-
volved ratios of areas, or the ratio between the distance from anchor i
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Fig. 11. Estimation strategy employed by users in RadViz for individual
variables that is consistent with the method’s properties.

to p and the sum of the distances from p to the rest of the anchors.
Finally, we compared the intuitive choices IC before the partici-

pants thought of a strategy, to those produced by the RadViz model
for the same settings used in the initial experiment. Figure 12 shows
a histogram of the differences between the estimates. Most of the dis-
crepancies have an absolute value less than 0.1, which indicates that
RadVizM approximates the users’ intuitive estimates fairly well.

3.3 Comparison among models
We have empirically compared the estimation accuracy of the de-
scribed approaches by carrying out a simulation involving the break-
fast cereal data set, the Breast Cancer Wisconsin (Diagnostic), Parkin-
sons, and Wine data sets available in [6]. The experiment measured
average estimation errors for configurations of axis vectors where the
variables were selected at random. In particular the reported measure
for a data set is:

δ (n) =
1

n ·T
T

∑
t=1

‖x̂t −xt‖,

where n is the number of variables, T = 2000 is the number of trials,
xt is the randomly chosen sample from the data set on the t-th trial,
and x̂t is the corresponding vector of estimates for such sample.

Figure 13 shows results on random configurations of axis vectors.
The vectors’ angles were chosen at random, while their lengths fol-
lowed a uniform U [0.5,1] distribution. The figure shows that center-
ing the data (PRc) has a greater positive effect on estimation accuracy
than the orthonormalization process alone (PR⊥). However, both ap-
proaches combined lead to the best results (PR⊥c). The results are poor
for SCM, PR, and even PR⊥. In this regard, notice that the differences
between V and V⊥ are relatively small, since the lengths of the axis
vectors are at most 1 (see Prop. 3). Thus, the results for PR and PR⊥,
and for PRc and PR⊥c, are similar. Finally, RadVizM can achieve, at
most, the performance of PRc. It is important to note that, since the
axis vectors define the anchor points, in this setting these are not ar-
ranged in a regular pattern.

Figure 14 shows results on regular orthonormalized configurations
of axis vectors. In these examples it is apparent that the centering is
crucial for obtaining accurate estimates. In this case the anchors for
RadViz are arranged in a regular pattern, which has a positive effect
on the estimation accuracy of RadVizM.

Figure 15 shows results on PCA configurations of axis vectors. In
these cases the columns of V, which are the eigenvectors of the data’s
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Fig. 12. Histogram of differences between the intuitive choices of values
(IC) in the first RadViz user experiment, and the estimates generated by
RadVizM for the same settings.

covariance matrix, form an orthonormal set, and therefore generate or-
thographic projections in SC. The examples also show the importance
of centering regarding estimation accuracy. In all cases (Fig. 13, 14,
and 15), the most accurate estimates are obtained by PR⊥c (orthonor-
malized vectors with centered data), as predicted by the theoretical
analysis.

4 DISCUSSION

In this paper we have addressed one of the main drawbacks of SC,
namely, the difficulty to estimate data attributes, providing a new ap-
proach to mitigate the issue where estimates are computed through
projections onto calibrated axes, similarly to statistical biplots. How-
ever, the data and axis vectors must satisfy certain conditions in order
to obtain accurate estimates. In particular, the columns of V must form
an orthonormal set of vectors, and the data must be centered.

Specifically, the estimates after centering the data can be consid-
erably more accurate than those provided by orthonormalizing the
columns of V, showing that normalizing the data to lie in [0,1] is a poor
choice regarding estimation accuracy when using projections onto cal-
ibrated axes. However, both approaches can be combined to enhance
the estimates even further, where the orthonormalization provides sev-
eral benefits, since it allows to represent the data more faithfully. Addi-
tionally, we have also shown that the estimates in our experiments with
V⊥ and centered data are more accurate than those obtained through
the SC and RadViz estimation models.

Another important contribution is a detailed geometrical description
of the decomposition of the dimensionality reduction mapping, which
explains the optimality of the approaches, why distances in R(V) are
preserved on the display, and how to understand plotted information
and estimation errors.

The axis calibration also allows to visualize the errors and interpret
them geometrically. This is useful for data analysis since it provides
a measure of goodness of a plot (see [2]). In particular, the errors
can be used to discard or highlight data samples that have not been
represented well and can be misleading, which can enhance decision
support tasks. In addition, they can improve our interpretation of the
distances between the embedded samples.

Naturally, since there is a loss of information in any dimensional-
ity reduction process, our goal is not to recover exact values, but to
obtain better estimates for exploratory purposes. Note that the ability
to represent an entire data set accurately depends on how well R(V)
fits the data. Unless the points lie close to an m-dimensional linear
manifold, and the axis vectors are chosen so that R(V) is aligned with
it, the estimates for some points will inevitably be inaccurate. In this
regard, the configuration of axis vectors for which R(V) fits the data
optimally (i.e., minimizes the sum of squared estimation errors over
every sample) leads to the PCA plot. However, while in PCA the axis
vectors are fixed, SC allows to manipulate them interactively, which
is useful in other tasks such as searching for cluster structure, outlier
detection, or searching for data with particular characteristics.

Finally, these improvements on attribute estimation are focused on
addressing one of the major goals of data visualization, which is to
provide meaningful representations of data that will allow analysts to
extract knowledge visually, without the need to inspect concrete values
in tables.
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Fig. 13. Average estimation error δ (n) obtained in a simulation for random configurations of axis vectors.
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Fig. 14. Average estimation error δ (n) obtained in a simulation for regular configurations V⊥ of axis vectors, which lead to orthographic projections
in SC. Note that in this case PR = PR⊥, and PRc = PR⊥c.
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Fig. 11. Estimation strategy employed by users in RadViz for individual
variables that is consistent with the method’s properties.

to p and the sum of the distances from p to the rest of the anchors.
Finally, we compared the intuitive choices IC before the partici-

pants thought of a strategy, to those produced by the RadViz model
for the same settings used in the initial experiment. Figure 12 shows
a histogram of the differences between the estimates. Most of the dis-
crepancies have an absolute value less than 0.1, which indicates that
RadVizM approximates the users’ intuitive estimates fairly well.

3.3 Comparison among models
We have empirically compared the estimation accuracy of the de-
scribed approaches by carrying out a simulation involving the break-
fast cereal data set, the Breast Cancer Wisconsin (Diagnostic), Parkin-
sons, and Wine data sets available in [6]. The experiment measured
average estimation errors for configurations of axis vectors where the
variables were selected at random. In particular the reported measure
for a data set is:

δ (n) =
1

n ·T
T

∑
t=1

‖x̂t −xt‖,

where n is the number of variables, T = 2000 is the number of trials,
xt is the randomly chosen sample from the data set on the t-th trial,
and x̂t is the corresponding vector of estimates for such sample.

Figure 13 shows results on random configurations of axis vectors.
The vectors’ angles were chosen at random, while their lengths fol-
lowed a uniform U [0.5,1] distribution. The figure shows that center-
ing the data (PRc) has a greater positive effect on estimation accuracy
than the orthonormalization process alone (PR⊥). However, both ap-
proaches combined lead to the best results (PR⊥c). The results are poor
for SCM, PR, and even PR⊥. In this regard, notice that the differences
between V and V⊥ are relatively small, since the lengths of the axis
vectors are at most 1 (see Prop. 3). Thus, the results for PR and PR⊥,
and for PRc and PR⊥c, are similar. Finally, RadVizM can achieve, at
most, the performance of PRc. It is important to note that, since the
axis vectors define the anchor points, in this setting these are not ar-
ranged in a regular pattern.

Figure 14 shows results on regular orthonormalized configurations
of axis vectors. In these examples it is apparent that the centering is
crucial for obtaining accurate estimates. In this case the anchors for
RadViz are arranged in a regular pattern, which has a positive effect
on the estimation accuracy of RadVizM.

Figure 15 shows results on PCA configurations of axis vectors. In
these cases the columns of V, which are the eigenvectors of the data’s
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Fig. 12. Histogram of differences between the intuitive choices of values
(IC) in the first RadViz user experiment, and the estimates generated by
RadVizM for the same settings.

covariance matrix, form an orthonormal set, and therefore generate or-
thographic projections in SC. The examples also show the importance
of centering regarding estimation accuracy. In all cases (Fig. 13, 14,
and 15), the most accurate estimates are obtained by PR⊥c (orthonor-
malized vectors with centered data), as predicted by the theoretical
analysis.

4 DISCUSSION

In this paper we have addressed one of the main drawbacks of SC,
namely, the difficulty to estimate data attributes, providing a new ap-
proach to mitigate the issue where estimates are computed through
projections onto calibrated axes, similarly to statistical biplots. How-
ever, the data and axis vectors must satisfy certain conditions in order
to obtain accurate estimates. In particular, the columns of V must form
an orthonormal set of vectors, and the data must be centered.

Specifically, the estimates after centering the data can be consid-
erably more accurate than those provided by orthonormalizing the
columns of V, showing that normalizing the data to lie in [0,1] is a poor
choice regarding estimation accuracy when using projections onto cal-
ibrated axes. However, both approaches can be combined to enhance
the estimates even further, where the orthonormalization provides sev-
eral benefits, since it allows to represent the data more faithfully. Addi-
tionally, we have also shown that the estimates in our experiments with
V⊥ and centered data are more accurate than those obtained through
the SC and RadViz estimation models.

Another important contribution is a detailed geometrical description
of the decomposition of the dimensionality reduction mapping, which
explains the optimality of the approaches, why distances in R(V) are
preserved on the display, and how to understand plotted information
and estimation errors.

The axis calibration also allows to visualize the errors and interpret
them geometrically. This is useful for data analysis since it provides
a measure of goodness of a plot (see [2]). In particular, the errors
can be used to discard or highlight data samples that have not been
represented well and can be misleading, which can enhance decision
support tasks. In addition, they can improve our interpretation of the
distances between the embedded samples.

Naturally, since there is a loss of information in any dimensional-
ity reduction process, our goal is not to recover exact values, but to
obtain better estimates for exploratory purposes. Note that the ability
to represent an entire data set accurately depends on how well R(V)
fits the data. Unless the points lie close to an m-dimensional linear
manifold, and the axis vectors are chosen so that R(V) is aligned with
it, the estimates for some points will inevitably be inaccurate. In this
regard, the configuration of axis vectors for which R(V) fits the data
optimally (i.e., minimizes the sum of squared estimation errors over
every sample) leads to the PCA plot. However, while in PCA the axis
vectors are fixed, SC allows to manipulate them interactively, which
is useful in other tasks such as searching for cluster structure, outlier
detection, or searching for data with particular characteristics.

Finally, these improvements on attribute estimation are focused on
addressing one of the major goals of data visualization, which is to
provide meaningful representations of data that will allow analysts to
extract knowledge visually, without the need to inspect concrete values
in tables.
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