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Comparative Eye Tracking Study on
Node-Link Visualizations of Trajectories
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Fig. 1. Examples of different node-link visualizations: they show data from animal movement ecology in the form of GPS tracks
of two oystercatcher birds (distinguished by red/blue color). The visualizations show zoomed-in views of a large data set. Due to
zooming, there are some links for which neither start nor end node are visible; here, the texture (right image) provides an indication
of movement direction that is completely missing with the standard arrow rendering (left image).

Abstract— We present the results of an eye tracking study that compares different visualization methods for long, dense, complex,
and piecewise linear spatial trajectories. Typical sources of such data are from temporally discrete measurements of the positions of
moving objects, for example, recorded GPS tracks of animals in movement ecology. In the repeated-measures within-subjects user
study, four variants of node-link visualization techniques are compared, with the following representations of directed links: standard
arrow, tapered, equidistant arrows, and equidistant comets. In addition, we investigate the effect of rendering order for the halo
visualization of those links as well as the usefulness of node splatting. All combinations of link visualization techniques are tested
for different trajectory density levels. We used three types of tasks: tracing of paths, identification of longest links, and estimation of
the density of trajectory clusters. Results are presented in the form of the statistical evaluation of task completion time, task solution
accuracy, and two eye tracking metrics. These objective results are complemented by a summary of subjective feedback from the
participants. The main result of our study is that tapered links perform very well. However, we discuss that equidistant comets and
equidistant arrows are a good option to perceive direction information independent of zoom-level of the display.

Index Terms—User study, eye tracking, evaluation, trajectory visualization, node-link visualization, direction encoding, node splatting,
halo rendering

1 INTRODUCTION

The fast technological progress allows scientist nowadays to use small
and light-weight position tracking devices such as GPS to record time-
dependent position information of different kinds of objects or living
beings. The common way to visualizing such trajectories just uses a
line-based representation, connecting the sample points along the tra-
jectories. Without further information, the typical interpolation model
relies on linear connection between sample points, yielding a piece-
wise linear representation of the trajectory. Such visualizations are,
for example, used in animal movement ecology [23, 27] to get an
overview of movement behavior, or spot clusters that could indicate
nesting sites or hunting grounds.

Performing low-level tasks like following the path of a single tra-
jectory comes with low perceptual and cognitive effort for the user
as long as only short and simple trajectories are shown. However,
performing path-oriented tasks for complex and dense data can be-
come hard and error-prone. Therefore, there is potential for improved
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visualization techniques to increase the user’s performance for such
complex data sets. Figure 1 shows examples of different visualization
techniques applied to data from animal movement ecology; here, a
zoomed-in view of a large data set with the long-term GPS tracking of
positions of oystercatcher birds is shown, provided by collaborators at
the Institute for Biodiversity and Ecosystem Dynamics (IBED) at the
University of Amsterdam. This figure illustrates that different visual-
ization techniques provide different visual “flavors” and might show
different effectiveness.

The goal of our paper is to evaluate and compare different trajec-
tory visualization techniques. All of them follow the same fundamen-
tal principle of directed node-link diagrams: nodes represent sample
points along the trajectories, directed links connect subsequent sample
points. We have chosen to restrict ourselves to node-link diagrams be-
cause they follow the congruence principle for effective graphics [29]:
the structure and contents of the diagram fit to the structure and con-
tent of the internal, mental representation that the visualization tries
to achieve. Furthermore, other than more abstract visualizations, they
lend themselves for direct overlay on geographic maps that serve as
important spatial context for trajectories.

As concrete choices of visualization techniques, we evaluate the fol-
lowing methods for showing directed links: standard arrow, tapered,
equidistant arrows, and equidistant comets. The first two are standard
approaches known from node-link diagrams for directed graphs; the
latter two are variants of existing techniques that we developed to show
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links of largely varying length in a single diagram. The first technique
simply puts a standard arrow at the end of a link, as most commonly
used in node-link diagrams. Tapered links performed previously very
well in node-link diagrams of abstract directed graphs [17], and their
design is inspired by the human ability to perceive direction. Derived
from the standard arrow, the equidistant-arrows technique consists of
multiple arrows along a link that are placed equidistantly. Finally, the
equidistant-comets technique places a “comet texture” at equidistant
positions along a link to show direction information along the full
length of the link. In addition to the link rendering style, we inves-
tigate the effect of rendering order for the halo visualization of the
links; halos are used to visually separate crossing links, which often
appear in dense and complex data sets. Finally, we test the effective-
ness of node splatting for large data sets as an alternative approach to
visualize point locations that provides visual feedback about the point
density. All combinations of link visualization techniques are tested
for two different levels of trajectory density.

Our comparison is based on a repeated-measures within-subjects
user study with 25 participants, conducted in a controlled laboratory
environment. We used task performance as measure of visualization
effectiveness. As tasks, we chose three representative types: tracing
of paths, identification of longest links, and estimation of the density
of trajectory clusters. Task performance was measured by task com-
pletion time and accuracy. In addition, we set up our study as an eye
tracking experiment to better understand the reasons for possible dif-
ferences between visualization techniques. The eye tracking data was
analyzed by using average fixation duration and saccade length as met-
rics.

The main result of our study is that tapered links perform well, even
under different data set conditions and tasks. However, depending on
the zoom level and variability of link length, the equidistant comets
and arrows can show some benefits, too. Also the use of point splatting
turned out to be beneficial. The contributions of this paper are:

• A quantitative user study to assess and compare node-link visu-
alization techniques for trajectories.

• An additional eye tracking-based evaluation of the readability of
these visualization techniques.

• Equidistant arrows and equidistant comets as two new variants
of visualization techniques that we designed in the context of
our study.

The user study compares different rendering styles for showing di-
rected links. In addition, it explores the effect of the splatting of nodes
and the depth sorting for halo rendering. To complement the objective
results from the task performance and the eye tracking-based evalu-
ation, we also include qualitative and subjective feedback from the
participants of the study.

2 RELATED WORK

Holten et al. [17, 18] conducted two studies concerning the direction
encoding of links of node-link diagrams of directed graphs. In their
first study, they tested six different link types: standard arrow, color
gradient from green to red and light to dark and vice versa, curved
links, and tapered links. Here, tapered links outperformed all other
types in solution time as well as accuracy. In their extended study,
they tested 15 link types including the previous ones. Additional types
were glyph-based, or they used animation. Again, tapered links out-
performed all non-animated types in solution time as well as accu-
racy, whereas animation further increased the accuracy, at the cost of
a slightly increased completion time.

Like Holten et al., we also investigate the effectiveness of direc-
tion encoding of links in node-link diagrams. However, our study ad-
dresses different research questions in the following respects: First,
we look into trajectory data instead of abstract directed graphs. Tra-
jectories have node positions that have a geographic interpretation and,
thus, cannot be changed by any layout algorithm. In contrast, node-
link diagrams of abstract graphs typically follow aesthetic criteria for

graph drawing [7, 13]. Therefore, the node-link visualization of trajec-
tories has very different characteristics in the distribution of positions
of nodes and lengths of links: both are much less evenly distributed
than for abstract graph drawing. Another difference is that trajectories
have one incoming and one outgoing link at the most but no arbitrary
valence. Second, different tasks are relevant for trajectories. Third,
with the restriction to geographic positions, the node-link visualiza-
tion of trajectories tends to suffer from visual clutter and overdraw in
dense or complex regions. Therefore, we investigate additional visu-
alization techniques that are “orthogonal” to the choice of encoding
of link direction and that were not part of the studies by Holten et al.:
we examine the effect of depth sorting for halo rendering and the use-
fulness of node splatting. Fourth, we additionally use eye tracking to
assess the visual reading characteristics.

Again for node-link diagrams of abstract graphs, there are other pa-
pers that address the readability of direction encodings in the presence
of link crossings. Burch et al. [6] investigated in their study the read-
ability of directed graphs shown with partially drawn links instead of
links of full length. This approach reduces link intersections and can
lead to shorter task completion times but at the cost of higher error
rates. Bruckdorfer et al. [3] investigated the influence of different pa-
rameters in visualizations with partially drawn links. Jianu et al. [20]
proposed color encoding of each link according to a closeness metric
to address the problem of link crossings. Rusu et al. [25] introduced
breaks in links if intersections occur, leading to an effect similar to
partially drawn links. Since partially drawn links showed high error
rates and were designed for the visualization of abstract graphs, we
did not consider them as visualization technique. However, our halo
rendering approach adopts the idea of breaking up links at crossings
and, thus, incorporates the strategies from the above papers.

We chose node-link visualization because it is very common for
representing spatial trajectories in fields like geographic information
science [1] and movement ecology [23, 27]. The most common en-
coding of direction information uses arrows. Even with trajectory
clustering and bundling, arrow-style rendering is often employed [14].
Recently, Janetzko et al. [19] have described a method to simplify tra-
jectories and used tapered links for direction indication. We chose
arrows and tapered links as the two representatives of traditional ren-
dering techniques for trajectories, to be tested in our user study.

Especially for dense and large data sets of trajectories, there are
approaches that create density fields of trajectories. By convolution
of trajectories with a low-pass filter, a visualization can be achieved
that highlights frequently visited areas [33]. Density maps can also be
used to explore multivariate data of trajectories [26]. Similarly, edge
splatting can be employed to construct a density field of links in a
node-link diagram [5]. We do not use splatting or a density represen-
tation of links because they tend to obscure direction information in
order to highlight high position density. However, we include splat-
ting of nodes—similar to graph splatting [30]—to show the positions
of samples along trajectories.

The encoding of direction information is not only important for
node-link diagrams and trajectories, but also in other domains like flow
visualization. Flow visualization often encodes direction by glyphs.
Pilar et al. [24] investigated this approach in detail. Other techniques
use texture-based methods [21] to visualize flow direction. Our comet
texture is inspired by oriented line integral convolution (OLIC) [32]
and follows the recommendation for stroke design in flow visualiza-
tion [8]. However, it should be pointed out that flow visualization and
our trajectory visualization show many important differences: stream-
lines, pathlines, etc. in flow visualization are typically smooth and
curved, not piecewise linear; streamlines do not intersect, and path-
lines do not have the intersection characteristics of trajectories; finally,
sample positions along streamlines and pathlines are not visualized.

With this paper, we contribute a user study on visualization tech-
niques for node-link diagrams of trajectories. We also contribute a
user-based evaluation of splatting of nodes. In addition to the standard
evaluation of task performance, our study comes with the evaluation
of eye tracking characteristics. In general, there are only few previous
eye tracking studies in information visualization. The following ex-

amples use eye tracking to test techniques that do not deal with trajec-
tories or graphs: Goldberg et al. [11] described general aspects of eye
tracking and performed a comparison between linear and radial plots.
Burch et al. [4] investigated differences of traditional, orthogonal, and
radial node-link tree layouts. Garlandini et al. [9] tested different vi-
sual variables for the visualization of geographic maps, and performed
an empiric evaluation of recorded eye tracking data.

3 VISUALIZATION TECHNIQUES

In this section, we describe the variants of visualization techniques
compared in our user study. First, the four types of rendering directed
links are discussed, followed by an explanation of halo rendering with
depth sorting. Finally, we describe different ways of visualizing nodes.

Throughout this paper, we will use abbreviations for the different
options of link rendering, sorting, and node visualization. These ab-
breviations are summarized in Table 1.

3.1 Link Types
The simplest and most common type of link visualization uses the
standard arrow (A). Here, the end arrow is rendered in order to encode
direction information, see Figure 2(a). Another representation is based
on tapered links (T): the direction is encoded by a prolonged arrow
between the start position (thick end) and the end position (arrow tip),
see Figure 2(b). We chose to include standard arrows because of their
widespread use, and tapered links due to their very good performance
in previous studies on node-link diagrams of abstract graphs [17, 18].

The node-link visualization of spatial trajectories comes with ad-
ditional challenges compared to the visualization of abstract graphs.
In particular, there can be large variations in link length. Further-
more, data sets can become large and complex, requiring zooming for
detailed visual analysis. Unfortunately, standard arrows and tapered
links are not well suited for very long links. As illustrated in Figures 1
and 3, direction information might be completely missing for standard
arrows, if neither their start nor end node is shown (due to zooming).
Similarly, the thickness gradient for tapered links might become very
small, making it hard to perceive direction information. To address
this problem, we developed two new variants of link representation.
The technique that we call equidistant arrows (EA) is an extension of
the standard arrow: it places multiple arrows along a link at equidis-
tant positions, see Figure 2(c). The distance between arrows is adapted
to the zoom level and identical for all links of a zoom level—except
for the quantization effect introduced by placing an integer number of
intervals along each link.

Finally, we developed the equidistant comets (C) as another tech-
nique that is suitable for very long links, see Figure 2(d). The strategy
is the same as for the equidistant arrows. By using a repeating direc-
tion indicator along a link, it is easy to perceive the direction at any

Table 1. Abbreviations for the visualization methods of this paper.

N No direction encoding
A Direction encoding with standard arrow

EA Direction encoding with equidistant arrows
C Direction encoding with equidistant comets
T Direction encoding with tapered links

RND Random edge sorting
SF Shorter links on top of longer links
LF Longer links on top of shorter links

SP Splats for point visualization of nodes
NSP No splats for point visualization of nodes

Table 2. Abbreviations for different sizes of data sets used in our study.

D1 Low data density (3 trajectories with 30 points each)
D2 High data density (3 trajectories with 60 points each)

(a) standard arrows (b) tapered link

(c) equidistant arrows (d) equidistant comets

Fig. 2. Types of link visualization.

(a) standard arrows (b) tapered links

(c) equidistant arrows (d) equidistant comets

Fig. 3. Readability of link direction with different types of link visualiza-
tion, for a zoomed-in view.

position or scale. The repeated texture is inspired by the metaphor of a
comet: the head of the comet is large, and it is followed by a tail that is
becoming narrower. A single comet texture is similar to a scaled-down
version of the tapered link. The main difference is that direction is es-
sentially reversed: the direction goes from the narrow tail of the comet
stroke toward the large end. We chose this opposite encoding scheme
because it is inspired by stroke-based rendering in flow visualization:
Halley [12] used similar strokes as early as in 1686. The visual design
with the thick head is also recommended by Bertin [2] and confirmed
by a user study by Fowler and Ware [8]. For more background of the
perception of flow visualization, we refer to Ware [31]. We chose the
comet texture with the opposite direction encoding of tapered links
to extend the design space of our user study compared to Holten et al.
and because the equidistant placement along links resembles the visual
signature of flow visualization.

For dense data sets, both arrow rendering methods (A, EA) would
suffer from visual clutter and overdraw: important structures like link
crossings or other arrows might become occluded. To address this is-
sue, we only render those arrows that do not occlude important struc-
tures. This is a trade off because missing arrows also imply the absence
of direction information.

3.2 Depth Sorting

We employ halo rendering of links to improve the perception of them
at crossings. Therefore, the rendering order plays an important role:
links in the background are “cut-through” by the halos of foreground
links. To this end, we studied the effectiveness of different depth sort-
ing methods: we compared random ordering (RND) to ordered ren-
dering. The order, respectively the depth, reflects the importance of
links. More important links will be rendered over less important ones.
Without further information, we are restricted to data from the spatial
configuration of the trajectories to control the depth sorting. There-
fore, we used the total link length between nodes as importance mea-
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links of largely varying length in a single diagram. The first technique
simply puts a standard arrow at the end of a link, as most commonly
used in node-link diagrams. Tapered links performed previously very
well in node-link diagrams of abstract directed graphs [17], and their
design is inspired by the human ability to perceive direction. Derived
from the standard arrow, the equidistant-arrows technique consists of
multiple arrows along a link that are placed equidistantly. Finally, the
equidistant-comets technique places a “comet texture” at equidistant
positions along a link to show direction information along the full
length of the link. In addition to the link rendering style, we inves-
tigate the effect of rendering order for the halo visualization of the
links; halos are used to visually separate crossing links, which often
appear in dense and complex data sets. Finally, we test the effective-
ness of node splatting for large data sets as an alternative approach to
visualize point locations that provides visual feedback about the point
density. All combinations of link visualization techniques are tested
for two different levels of trajectory density.

Our comparison is based on a repeated-measures within-subjects
user study with 25 participants, conducted in a controlled laboratory
environment. We used task performance as measure of visualization
effectiveness. As tasks, we chose three representative types: tracing
of paths, identification of longest links, and estimation of the density
of trajectory clusters. Task performance was measured by task com-
pletion time and accuracy. In addition, we set up our study as an eye
tracking experiment to better understand the reasons for possible dif-
ferences between visualization techniques. The eye tracking data was
analyzed by using average fixation duration and saccade length as met-
rics.

The main result of our study is that tapered links perform well, even
under different data set conditions and tasks. However, depending on
the zoom level and variability of link length, the equidistant comets
and arrows can show some benefits, too. Also the use of point splatting
turned out to be beneficial. The contributions of this paper are:

• A quantitative user study to assess and compare node-link visu-
alization techniques for trajectories.

• An additional eye tracking-based evaluation of the readability of
these visualization techniques.

• Equidistant arrows and equidistant comets as two new variants
of visualization techniques that we designed in the context of
our study.

The user study compares different rendering styles for showing di-
rected links. In addition, it explores the effect of the splatting of nodes
and the depth sorting for halo rendering. To complement the objective
results from the task performance and the eye tracking-based evalu-
ation, we also include qualitative and subjective feedback from the
participants of the study.

2 RELATED WORK

Holten et al. [17, 18] conducted two studies concerning the direction
encoding of links of node-link diagrams of directed graphs. In their
first study, they tested six different link types: standard arrow, color
gradient from green to red and light to dark and vice versa, curved
links, and tapered links. Here, tapered links outperformed all other
types in solution time as well as accuracy. In their extended study,
they tested 15 link types including the previous ones. Additional types
were glyph-based, or they used animation. Again, tapered links out-
performed all non-animated types in solution time as well as accu-
racy, whereas animation further increased the accuracy, at the cost of
a slightly increased completion time.

Like Holten et al., we also investigate the effectiveness of direc-
tion encoding of links in node-link diagrams. However, our study ad-
dresses different research questions in the following respects: First,
we look into trajectory data instead of abstract directed graphs. Tra-
jectories have node positions that have a geographic interpretation and,
thus, cannot be changed by any layout algorithm. In contrast, node-
link diagrams of abstract graphs typically follow aesthetic criteria for

graph drawing [7, 13]. Therefore, the node-link visualization of trajec-
tories has very different characteristics in the distribution of positions
of nodes and lengths of links: both are much less evenly distributed
than for abstract graph drawing. Another difference is that trajectories
have one incoming and one outgoing link at the most but no arbitrary
valence. Second, different tasks are relevant for trajectories. Third,
with the restriction to geographic positions, the node-link visualiza-
tion of trajectories tends to suffer from visual clutter and overdraw in
dense or complex regions. Therefore, we investigate additional visu-
alization techniques that are “orthogonal” to the choice of encoding
of link direction and that were not part of the studies by Holten et al.:
we examine the effect of depth sorting for halo rendering and the use-
fulness of node splatting. Fourth, we additionally use eye tracking to
assess the visual reading characteristics.

Again for node-link diagrams of abstract graphs, there are other pa-
pers that address the readability of direction encodings in the presence
of link crossings. Burch et al. [6] investigated in their study the read-
ability of directed graphs shown with partially drawn links instead of
links of full length. This approach reduces link intersections and can
lead to shorter task completion times but at the cost of higher error
rates. Bruckdorfer et al. [3] investigated the influence of different pa-
rameters in visualizations with partially drawn links. Jianu et al. [20]
proposed color encoding of each link according to a closeness metric
to address the problem of link crossings. Rusu et al. [25] introduced
breaks in links if intersections occur, leading to an effect similar to
partially drawn links. Since partially drawn links showed high error
rates and were designed for the visualization of abstract graphs, we
did not consider them as visualization technique. However, our halo
rendering approach adopts the idea of breaking up links at crossings
and, thus, incorporates the strategies from the above papers.

We chose node-link visualization because it is very common for
representing spatial trajectories in fields like geographic information
science [1] and movement ecology [23, 27]. The most common en-
coding of direction information uses arrows. Even with trajectory
clustering and bundling, arrow-style rendering is often employed [14].
Recently, Janetzko et al. [19] have described a method to simplify tra-
jectories and used tapered links for direction indication. We chose
arrows and tapered links as the two representatives of traditional ren-
dering techniques for trajectories, to be tested in our user study.

Especially for dense and large data sets of trajectories, there are
approaches that create density fields of trajectories. By convolution
of trajectories with a low-pass filter, a visualization can be achieved
that highlights frequently visited areas [33]. Density maps can also be
used to explore multivariate data of trajectories [26]. Similarly, edge
splatting can be employed to construct a density field of links in a
node-link diagram [5]. We do not use splatting or a density represen-
tation of links because they tend to obscure direction information in
order to highlight high position density. However, we include splat-
ting of nodes—similar to graph splatting [30]—to show the positions
of samples along trajectories.

The encoding of direction information is not only important for
node-link diagrams and trajectories, but also in other domains like flow
visualization. Flow visualization often encodes direction by glyphs.
Pilar et al. [24] investigated this approach in detail. Other techniques
use texture-based methods [21] to visualize flow direction. Our comet
texture is inspired by oriented line integral convolution (OLIC) [32]
and follows the recommendation for stroke design in flow visualiza-
tion [8]. However, it should be pointed out that flow visualization and
our trajectory visualization show many important differences: stream-
lines, pathlines, etc. in flow visualization are typically smooth and
curved, not piecewise linear; streamlines do not intersect, and path-
lines do not have the intersection characteristics of trajectories; finally,
sample positions along streamlines and pathlines are not visualized.

With this paper, we contribute a user study on visualization tech-
niques for node-link diagrams of trajectories. We also contribute a
user-based evaluation of splatting of nodes. In addition to the standard
evaluation of task performance, our study comes with the evaluation
of eye tracking characteristics. In general, there are only few previous
eye tracking studies in information visualization. The following ex-

amples use eye tracking to test techniques that do not deal with trajec-
tories or graphs: Goldberg et al. [11] described general aspects of eye
tracking and performed a comparison between linear and radial plots.
Burch et al. [4] investigated differences of traditional, orthogonal, and
radial node-link tree layouts. Garlandini et al. [9] tested different vi-
sual variables for the visualization of geographic maps, and performed
an empiric evaluation of recorded eye tracking data.

3 VISUALIZATION TECHNIQUES

In this section, we describe the variants of visualization techniques
compared in our user study. First, the four types of rendering directed
links are discussed, followed by an explanation of halo rendering with
depth sorting. Finally, we describe different ways of visualizing nodes.

Throughout this paper, we will use abbreviations for the different
options of link rendering, sorting, and node visualization. These ab-
breviations are summarized in Table 1.

3.1 Link Types
The simplest and most common type of link visualization uses the
standard arrow (A). Here, the end arrow is rendered in order to encode
direction information, see Figure 2(a). Another representation is based
on tapered links (T): the direction is encoded by a prolonged arrow
between the start position (thick end) and the end position (arrow tip),
see Figure 2(b). We chose to include standard arrows because of their
widespread use, and tapered links due to their very good performance
in previous studies on node-link diagrams of abstract graphs [17, 18].

The node-link visualization of spatial trajectories comes with ad-
ditional challenges compared to the visualization of abstract graphs.
In particular, there can be large variations in link length. Further-
more, data sets can become large and complex, requiring zooming for
detailed visual analysis. Unfortunately, standard arrows and tapered
links are not well suited for very long links. As illustrated in Figures 1
and 3, direction information might be completely missing for standard
arrows, if neither their start nor end node is shown (due to zooming).
Similarly, the thickness gradient for tapered links might become very
small, making it hard to perceive direction information. To address
this problem, we developed two new variants of link representation.
The technique that we call equidistant arrows (EA) is an extension of
the standard arrow: it places multiple arrows along a link at equidis-
tant positions, see Figure 2(c). The distance between arrows is adapted
to the zoom level and identical for all links of a zoom level—except
for the quantization effect introduced by placing an integer number of
intervals along each link.

Finally, we developed the equidistant comets (C) as another tech-
nique that is suitable for very long links, see Figure 2(d). The strategy
is the same as for the equidistant arrows. By using a repeating direc-
tion indicator along a link, it is easy to perceive the direction at any

Table 1. Abbreviations for the visualization methods of this paper.

N No direction encoding
A Direction encoding with standard arrow

EA Direction encoding with equidistant arrows
C Direction encoding with equidistant comets
T Direction encoding with tapered links

RND Random edge sorting
SF Shorter links on top of longer links
LF Longer links on top of shorter links

SP Splats for point visualization of nodes
NSP No splats for point visualization of nodes

Table 2. Abbreviations for different sizes of data sets used in our study.

D1 Low data density (3 trajectories with 30 points each)
D2 High data density (3 trajectories with 60 points each)

(a) standard arrows (b) tapered link

(c) equidistant arrows (d) equidistant comets

Fig. 2. Types of link visualization.

(a) standard arrows (b) tapered links

(c) equidistant arrows (d) equidistant comets

Fig. 3. Readability of link direction with different types of link visualiza-
tion, for a zoomed-in view.

position or scale. The repeated texture is inspired by the metaphor of a
comet: the head of the comet is large, and it is followed by a tail that is
becoming narrower. A single comet texture is similar to a scaled-down
version of the tapered link. The main difference is that direction is es-
sentially reversed: the direction goes from the narrow tail of the comet
stroke toward the large end. We chose this opposite encoding scheme
because it is inspired by stroke-based rendering in flow visualization:
Halley [12] used similar strokes as early as in 1686. The visual design
with the thick head is also recommended by Bertin [2] and confirmed
by a user study by Fowler and Ware [8]. For more background of the
perception of flow visualization, we refer to Ware [31]. We chose the
comet texture with the opposite direction encoding of tapered links
to extend the design space of our user study compared to Holten et al.
and because the equidistant placement along links resembles the visual
signature of flow visualization.

For dense data sets, both arrow rendering methods (A, EA) would
suffer from visual clutter and overdraw: important structures like link
crossings or other arrows might become occluded. To address this is-
sue, we only render those arrows that do not occlude important struc-
tures. This is a trade off because missing arrows also imply the absence
of direction information.

3.2 Depth Sorting

We employ halo rendering of links to improve the perception of them
at crossings. Therefore, the rendering order plays an important role:
links in the background are “cut-through” by the halos of foreground
links. To this end, we studied the effectiveness of different depth sort-
ing methods: we compared random ordering (RND) to ordered ren-
dering. The order, respectively the depth, reflects the importance of
links. More important links will be rendered over less important ones.
Without further information, we are restricted to data from the spatial
configuration of the trajectories to control the depth sorting. There-
fore, we used the total link length between nodes as importance mea-
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sure. Here, we evaluate an ordering that puts the shortest links in the
foreground (SF) and one that places the longest links in the foreground
(LF). Figure 4 illustrates the effect of depth sorting for halo rendering.

(a) short links first (b) long links first

Fig. 4. Effects of the ordering in combination with a halo rendering.

3.3 Node Visualization
The nodes of a node-link diagram are shown by some kind of point vi-
sualization. Typically, these points are rendered as non-filled circles,
filled dots, or they are not explicitly shown (only implicitly as ends
of links)—the latter being abbreviated as NSP. However, for large and
dense data sets, opaque rendering of circles or dots would lead to much
overdraw and clutter. Therefore, we include point splatting (SP), sim-
ilar to the splatting of vertices in graph splatting [30]. Here, each node
is rendered as a circular splat with a radially decreasing intensity. Us-
ing additive blending to render each splat, results in a density field.
Regions with many nodes that are very close to each other will lead
to high values in the density field and thus can be identified easily. In
contrast, using dots to indicate nodes would lead to much overdraw; in
bad cases, a user might perceive a single dot although this dot might
occlude dozens of other node representations. Figure 5 illustrates SP
and NSP.

(a) (b)

Fig. 5. (a) Node visualization by splatting, (b) implicit node representa-
tion (indirectly through the end points of links).

4 EXPERIMENT

This section describes the design, hypotheses, tasks, stimuli, and fur-
ther details of our user study.

4.1 Design
The user study follows a repeated-measures design. The study was
conducted in a controlled laboratory environment; eye tracking infor-
mation was recorded during the study. The study consisted of three
independent parts. The first two parts were designed to compare the
different rendering methods for links. Those two parts had the fol-
lowing within-subjects factors to represent the different visualization
techniques: link type (A, EA, C, T) and sorting order (RND, SF or
LF). In addition, two different data set sizes were tested for each com-
bination of techniques: data density (D1, D2), see Section 4.4. The
two first parts mainly differ in the tasks (see Section 4.3). The third
part of the study was designed to evaluate the effect of node splatting.
It had the following within-subjects factors: splatting or no splatting
for point rendering (SP, NSP).

The three parts used the same dependent quantities that served as
basis to assess the effectiveness: task solution accuracy, task comple-
tion time, average fixation duration, and average Euclidean saccade
distance (the latter two were acquired through eye tracking).

4.2 Hypotheses
Our hypotheses were based on previous results from user studies on
node-link diagrams of abstract graphs [17, 18] and our own impression
and prior experience obtained from working with trajectory visualiza-
tion for movement ecology:

H1: Tapered links (T) outperform the other link representations for
tasks related to following trajectory paths.

H2: Equidistant comets (C) outperform the other link representations
for tasks related to recognizing very long links.

H3: Depth sorting (SF) improves correctness of following trajectory
paths in dense regions because short links are rendered on top of
longer ones.

H4: Depth sorting (LF) improves correctness of tasks related to rec-
ognizing very long links because long links are rendered with
guaranteed visibility.

H5: Point splatting (SP) improves the perception of clusters of high-
density clusters of nodes because it provides a more accurate rep-
resentation of node distribution than the visualization by the links
alone.

Hypotheses H1–H4 refer to the first two parts of the study (related
to link rendering), hypothesis H5 refers to the third part of the study
(related to node splatting).

4.3 Tasks
We designed two tasks (Task 1 and Task 2) to compare the techniques
for link visualization and one task (Task 3) to evaluate the effect of
node splatting. We chose those tasks based on similar tasks used in
the visualization of abstract graphs [10, 22] and on tasks specific to the
analysis of movement patterns [28]. While the tasks of our user study
are presented as abstract tasks to the participants, they have concrete
and realistic correspondences to examples in movement ecology: our
tasks could be used to identify behavioral patterns like migration and
foraging of animals. Nevertheless, the tasks are generic in the sense
that they carry over to many other application domains.

Task 1 (Path Following): The first task was to follow the path of
a trajectory from a given start point. In particular, we asked the par-
ticipants to answer the following question for the shown stimulus: “Is
there a way from start to end in only 5 hops?” The start and end po-
sition were color-coded (start=blue, end=orange) in a way they were
easy to recognize. The dots for the two positions were shown alone—
without the trajectory visualization—for 2 seconds before the full vi-
sualization was presented. In this way, no time for visual search of the
two nodes was required, restricting the task to actually following the
path of the trajectory. The participants were instructed to answer as
correctly and fast as possible; they were told that there was no time
limit (and thus no pressure of time). The participants provided their
answer by pressing a respective key. The task completion time was
measured as the temporal difference between pressing the key and the
first appearance of the full visualization. Figure 6 shows the screen-
shot of an example of Task 1.

Task 2 (Longest Link): The second task was to identify the longest
link. This task was chosen because it tests whether the full visual-
ization can be read effectively, making it complementary to the path
tracing of Task 1. In particular, we asked the participants: “Select the
longest link by clicking on it.” Again, the participants were instructed
to provide correct and fast answers, and that there was no time limit.
The task completion time was measured as the temporal difference
between mouse click and the first appearance of the visualization. Ac-
curacy was measured by checking whether the mouse click was on the
correct link, or not. To avoid unintended errors from slightly wrong
mouse positions, we surrounded the longest link with a virtual rectan-
gular bounding box. The width of the box was twice the link width. A
click within the bounding box was recognized as correct answer. We
instructed the participants that they did not click on the intersection
with other links, to avoid ambiguity in the identification of the links.
Figure 7 shows the screenshot of an example of Task 2.

Task 3 (Number of Nodes in Clusters): The third task was de-
signed to test the visualization techniques for nodes. We were inter-
ested in how well participants could identify the overall structure of
the spatial distribution of nodes. To test this, we asked the partici-
pants: “Select the cluster with the most elements by clicking.”

Fig. 6. Screenshot of an example of Task 1 (path following). Here,
equidistant arrows (EA) with node splatting (SP) and no depth sorting
(RND) are shown. The legend at the top contains the question and the
description of start and end nodes.

Fig. 7. Screenshot of an example of Task 2 (longest link). Tapered links
(T) with node splatting (SP) and depth sorting (LF) is used. The legend
at the top contains the question.

We encouraged the participants to make their decision according to
the visual appearance of the clusters, not by explicitly counting nodes,
because we were interested in how well the participants could obtain a
rough impression of the distribution of nodes. Again, the participants
were instructed to provide correct and fast answers, and that there was
no time limit. The task completion time was measured as the temporal
difference between mouse click and the first appearance of the visual-
ization. Accuracy was measured by checking whether the mouse click
was on the area of the correct cluster. Figure 8 shows two example
screenshots for Task 3.

4.4 Stimuli
The visual stimuli were images rendered with the different variants
of visualization techniques. The images were generated with 2x anti-
aliasing and had a size of 1100× 1100 pixels. We enabled halo ren-
dering for all images. The line width was 5 pixels in the virtual high-
resolution frame buffer of 2200× 2200 pixels, i.e., 2.5 pixels in the
final image.

The visualization techniques were applied to a generative data
model to produce the visual stimuli. To generate realistic data, we
used a Markov chain model based on real-world movement data from
birds: the input data contained the trajectories of three oystercatcher
birds with a total number of 16,434 GPS locations. From that data, we
computed transition matrices for both the travel distance between GPS
locations and the relative change in direction per location. Each matrix

(a) (b)
Fig. 8. Screenshots of examples of Task 3 (number of nodes in clusters).
Left: no splatting (NSP), right: node splatting (SP).

contained a probability distribution for the transition from one state to
another, based on the training data. We used 20 states to encode the
transitions, i.e., each matrix had a size of 20×20. The maximum dis-
tance between two locations in the data set was around 4,000 m, so
each state covered around 200 m. For the change for movement di-
rection, each state covered 360◦/20 = 18◦. With this Markov chain
model, we retain important characteristics of real trajectories from
movement ecology, serving as a basis for a realistic user study.

The stimuli for Task 1 were produced from our generative data
model directly. The stimuli were generated so that in 50% of the tri-
als the correct answer for Task 1 was “yes”. We randomly chose the
start position and selected an intermediate end position at a random
distance of 2 to 5 hops (i.e., a position for which the participants were
expected to answer “yes”). Then, with a probability of 0.5, the end
position was changed by selecting the nearest position downward the
trajectory for which the correct answer was “no”.

For Task 2, it was important that a participant was able to determine
the longest link. Therefore, some difference in length was required to
distinguish the longest from the second longest link, allowing partic-
ipants to perform Task 2. We used a threshold of at least 8% length
difference. We obtained this 8% threshold from a preliminary study
(see Section 4.5).

For both tasks, two different data densities were used: D1 and D2,
see Table 2. The total number of points for D1 was 90, distributed
across three trajectories each containing 30 points. More than one
trajectory was necessary to simulate an appropriate use case. For D2,
the number of points on each trajectory was doubled to 60, resulting
in a total number of 180 points.

In Task 3, participants should recognize the cluster containing the
most GPS locations. In our preliminary study, we determined a thresh-
old of 15% in the difference of number of locations between clusters.
Therefore, the data set was generated so that the largest cluster had
15% more nodes than the second largest cluster, leading to a total num-
ber of 654 points distributed over 12 clusters. Each cluster had a radius
of 200 m and a buffer zone of 50 m, in order to prevent visual merging
of clusters. Within each cluster, the trajectories were generated with
the Markov chain model. The overall trajectory was constructed by
connecting clusters in random order.

4.5 Parameter Choices and Pilot Study

We conducted an informal small-scale study to set up the details of the
parameters for the main study, in particular, the choice of thresholds
discussed above. In this preliminary study, there were 10 volunteers
who were different from the participants of the main study. Eye track-
ing was not used in the preliminary study.

To set the threshold for Task 2 we asked the participants to select
the longest link within 5 different stimuli, shown in random order. The
stimuli had varying difference in length between the longest link and
the second longest link. We tested difference thresholds of 2%, 4%,
6%, 8%, and 10%. The stimuli were rendered using NSP for point
indication, RND for link sorting, and N (standard lines without direc-
tion cues) as link type. There were three trajectories with between 30
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sure. Here, we evaluate an ordering that puts the shortest links in the
foreground (SF) and one that places the longest links in the foreground
(LF). Figure 4 illustrates the effect of depth sorting for halo rendering.

(a) short links first (b) long links first

Fig. 4. Effects of the ordering in combination with a halo rendering.

3.3 Node Visualization
The nodes of a node-link diagram are shown by some kind of point vi-
sualization. Typically, these points are rendered as non-filled circles,
filled dots, or they are not explicitly shown (only implicitly as ends
of links)—the latter being abbreviated as NSP. However, for large and
dense data sets, opaque rendering of circles or dots would lead to much
overdraw and clutter. Therefore, we include point splatting (SP), sim-
ilar to the splatting of vertices in graph splatting [30]. Here, each node
is rendered as a circular splat with a radially decreasing intensity. Us-
ing additive blending to render each splat, results in a density field.
Regions with many nodes that are very close to each other will lead
to high values in the density field and thus can be identified easily. In
contrast, using dots to indicate nodes would lead to much overdraw; in
bad cases, a user might perceive a single dot although this dot might
occlude dozens of other node representations. Figure 5 illustrates SP
and NSP.

(a) (b)

Fig. 5. (a) Node visualization by splatting, (b) implicit node representa-
tion (indirectly through the end points of links).

4 EXPERIMENT

This section describes the design, hypotheses, tasks, stimuli, and fur-
ther details of our user study.

4.1 Design
The user study follows a repeated-measures design. The study was
conducted in a controlled laboratory environment; eye tracking infor-
mation was recorded during the study. The study consisted of three
independent parts. The first two parts were designed to compare the
different rendering methods for links. Those two parts had the fol-
lowing within-subjects factors to represent the different visualization
techniques: link type (A, EA, C, T) and sorting order (RND, SF or
LF). In addition, two different data set sizes were tested for each com-
bination of techniques: data density (D1, D2), see Section 4.4. The
two first parts mainly differ in the tasks (see Section 4.3). The third
part of the study was designed to evaluate the effect of node splatting.
It had the following within-subjects factors: splatting or no splatting
for point rendering (SP, NSP).

The three parts used the same dependent quantities that served as
basis to assess the effectiveness: task solution accuracy, task comple-
tion time, average fixation duration, and average Euclidean saccade
distance (the latter two were acquired through eye tracking).

4.2 Hypotheses
Our hypotheses were based on previous results from user studies on
node-link diagrams of abstract graphs [17, 18] and our own impression
and prior experience obtained from working with trajectory visualiza-
tion for movement ecology:

H1: Tapered links (T) outperform the other link representations for
tasks related to following trajectory paths.

H2: Equidistant comets (C) outperform the other link representations
for tasks related to recognizing very long links.

H3: Depth sorting (SF) improves correctness of following trajectory
paths in dense regions because short links are rendered on top of
longer ones.

H4: Depth sorting (LF) improves correctness of tasks related to rec-
ognizing very long links because long links are rendered with
guaranteed visibility.

H5: Point splatting (SP) improves the perception of clusters of high-
density clusters of nodes because it provides a more accurate rep-
resentation of node distribution than the visualization by the links
alone.

Hypotheses H1–H4 refer to the first two parts of the study (related
to link rendering), hypothesis H5 refers to the third part of the study
(related to node splatting).

4.3 Tasks
We designed two tasks (Task 1 and Task 2) to compare the techniques
for link visualization and one task (Task 3) to evaluate the effect of
node splatting. We chose those tasks based on similar tasks used in
the visualization of abstract graphs [10, 22] and on tasks specific to the
analysis of movement patterns [28]. While the tasks of our user study
are presented as abstract tasks to the participants, they have concrete
and realistic correspondences to examples in movement ecology: our
tasks could be used to identify behavioral patterns like migration and
foraging of animals. Nevertheless, the tasks are generic in the sense
that they carry over to many other application domains.

Task 1 (Path Following): The first task was to follow the path of
a trajectory from a given start point. In particular, we asked the par-
ticipants to answer the following question for the shown stimulus: “Is
there a way from start to end in only 5 hops?” The start and end po-
sition were color-coded (start=blue, end=orange) in a way they were
easy to recognize. The dots for the two positions were shown alone—
without the trajectory visualization—for 2 seconds before the full vi-
sualization was presented. In this way, no time for visual search of the
two nodes was required, restricting the task to actually following the
path of the trajectory. The participants were instructed to answer as
correctly and fast as possible; they were told that there was no time
limit (and thus no pressure of time). The participants provided their
answer by pressing a respective key. The task completion time was
measured as the temporal difference between pressing the key and the
first appearance of the full visualization. Figure 6 shows the screen-
shot of an example of Task 1.

Task 2 (Longest Link): The second task was to identify the longest
link. This task was chosen because it tests whether the full visual-
ization can be read effectively, making it complementary to the path
tracing of Task 1. In particular, we asked the participants: “Select the
longest link by clicking on it.” Again, the participants were instructed
to provide correct and fast answers, and that there was no time limit.
The task completion time was measured as the temporal difference
between mouse click and the first appearance of the visualization. Ac-
curacy was measured by checking whether the mouse click was on the
correct link, or not. To avoid unintended errors from slightly wrong
mouse positions, we surrounded the longest link with a virtual rectan-
gular bounding box. The width of the box was twice the link width. A
click within the bounding box was recognized as correct answer. We
instructed the participants that they did not click on the intersection
with other links, to avoid ambiguity in the identification of the links.
Figure 7 shows the screenshot of an example of Task 2.

Task 3 (Number of Nodes in Clusters): The third task was de-
signed to test the visualization techniques for nodes. We were inter-
ested in how well participants could identify the overall structure of
the spatial distribution of nodes. To test this, we asked the partici-
pants: “Select the cluster with the most elements by clicking.”

Fig. 6. Screenshot of an example of Task 1 (path following). Here,
equidistant arrows (EA) with node splatting (SP) and no depth sorting
(RND) are shown. The legend at the top contains the question and the
description of start and end nodes.

Fig. 7. Screenshot of an example of Task 2 (longest link). Tapered links
(T) with node splatting (SP) and depth sorting (LF) is used. The legend
at the top contains the question.

We encouraged the participants to make their decision according to
the visual appearance of the clusters, not by explicitly counting nodes,
because we were interested in how well the participants could obtain a
rough impression of the distribution of nodes. Again, the participants
were instructed to provide correct and fast answers, and that there was
no time limit. The task completion time was measured as the temporal
difference between mouse click and the first appearance of the visual-
ization. Accuracy was measured by checking whether the mouse click
was on the area of the correct cluster. Figure 8 shows two example
screenshots for Task 3.

4.4 Stimuli
The visual stimuli were images rendered with the different variants
of visualization techniques. The images were generated with 2x anti-
aliasing and had a size of 1100× 1100 pixels. We enabled halo ren-
dering for all images. The line width was 5 pixels in the virtual high-
resolution frame buffer of 2200× 2200 pixels, i.e., 2.5 pixels in the
final image.

The visualization techniques were applied to a generative data
model to produce the visual stimuli. To generate realistic data, we
used a Markov chain model based on real-world movement data from
birds: the input data contained the trajectories of three oystercatcher
birds with a total number of 16,434 GPS locations. From that data, we
computed transition matrices for both the travel distance between GPS
locations and the relative change in direction per location. Each matrix

(a) (b)
Fig. 8. Screenshots of examples of Task 3 (number of nodes in clusters).
Left: no splatting (NSP), right: node splatting (SP).

contained a probability distribution for the transition from one state to
another, based on the training data. We used 20 states to encode the
transitions, i.e., each matrix had a size of 20×20. The maximum dis-
tance between two locations in the data set was around 4,000 m, so
each state covered around 200 m. For the change for movement di-
rection, each state covered 360◦/20 = 18◦. With this Markov chain
model, we retain important characteristics of real trajectories from
movement ecology, serving as a basis for a realistic user study.

The stimuli for Task 1 were produced from our generative data
model directly. The stimuli were generated so that in 50% of the tri-
als the correct answer for Task 1 was “yes”. We randomly chose the
start position and selected an intermediate end position at a random
distance of 2 to 5 hops (i.e., a position for which the participants were
expected to answer “yes”). Then, with a probability of 0.5, the end
position was changed by selecting the nearest position downward the
trajectory for which the correct answer was “no”.

For Task 2, it was important that a participant was able to determine
the longest link. Therefore, some difference in length was required to
distinguish the longest from the second longest link, allowing partic-
ipants to perform Task 2. We used a threshold of at least 8% length
difference. We obtained this 8% threshold from a preliminary study
(see Section 4.5).

For both tasks, two different data densities were used: D1 and D2,
see Table 2. The total number of points for D1 was 90, distributed
across three trajectories each containing 30 points. More than one
trajectory was necessary to simulate an appropriate use case. For D2,
the number of points on each trajectory was doubled to 60, resulting
in a total number of 180 points.

In Task 3, participants should recognize the cluster containing the
most GPS locations. In our preliminary study, we determined a thresh-
old of 15% in the difference of number of locations between clusters.
Therefore, the data set was generated so that the largest cluster had
15% more nodes than the second largest cluster, leading to a total num-
ber of 654 points distributed over 12 clusters. Each cluster had a radius
of 200 m and a buffer zone of 50 m, in order to prevent visual merging
of clusters. Within each cluster, the trajectories were generated with
the Markov chain model. The overall trajectory was constructed by
connecting clusters in random order.

4.5 Parameter Choices and Pilot Study

We conducted an informal small-scale study to set up the details of the
parameters for the main study, in particular, the choice of thresholds
discussed above. In this preliminary study, there were 10 volunteers
who were different from the participants of the main study. Eye track-
ing was not used in the preliminary study.

To set the threshold for Task 2 we asked the participants to select
the longest link within 5 different stimuli, shown in random order. The
stimuli had varying difference in length between the longest link and
the second longest link. We tested difference thresholds of 2%, 4%,
6%, 8%, and 10%. The stimuli were rendered using NSP for point
indication, RND for link sorting, and N (standard lines without direc-
tion cues) as link type. There were three trajectories with between 30



2226 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,    VOL. 20,    NO. 12,    DECEMBER 2014

Table 3. Summary of used methods and multipliers, describing the number of trials.

Task 1 Task 2 Task 3
Factor Method Multiplier Method Multiplier Method Multiplier

Depth sorting (RND, SF) 2 (RND, LF) 2 (SF) 1
Density (D1, D2) 2 (D1, D2) 2 - 1
Node rendering (SP) 1 (SP) 1 (SP, NSP) 2
Repetitions 4 5 20
Trials per block 16 20 40

Link rendering (A, EA, C, T) 4 (A, EA, C, T) 4 (N) 1
Trials per task 64 80 40

Participants 25
Trials per task 1600 2000 1000

and 60 nodes, randomly chosen; this range of densities was used be-
cause it corresponds to the interval of densities defined by D1 and D2.
At a threshold of 8%, 9 of 10 participants provided correct answers.
Therefore, we assumed that this threshold is sufficient to allow for a
fair identification of the longest link.

To determine the threshold for Task 3 we asked the participants to
identify the cluster with the largest number of elements. There were
7 different test data sets with varying difference in the number of ele-
ments between the largest and the second largest cluster, ranging from
3% to 21% in steps of 3% difference. We used both NSP and SP for
node rendering, and N for link rendering. For a difference of 15%, 9
of 10 participants provided correct answers for NSP rendering, and 8
of 10 for SP rendering. Therefore, we assumed that this threshold is
sufficient to allow for a fair identification of the largest cluster.

Before the main experiment, we ran a pilot eye tracking study with
another four participants. With the pilot study, we were able to refine
our study; in particular, we found out that we had to reduce the number
of repetitions for each participant to keep the average duration to just
above one hour per participant. In detail, we reduced the number of
trials per block of Task 2 from 40 to 20, and for Task 1 from 40 to 16.
Since Task 1 was more complex than Task 2, the completion time of a
trial of Task 1 was higher than that of Task 2. Therefore, we adjusted
the trials per block of Task 1 to achieve an overall completion time
comparable to Task 2; in this way, participants spent approximately
the same amount of time using the same link type in Tasks 1 and 2.
We did not have to reduce the number of trials per block of Task 3
because the completion time was not as high as for Tasks 1 and 2. See
Table 3 for a detailed overview. Finally, the pilot study also allowed
us to set up the number of participants required for the full study.

4.6 Environment Conditions and Technical Setup

Our study was conducted in a laboratory isolated from outside distrac-
tions. The room was artificially illuminated with dimmed lights. The
laboratory space contained no distracting objects.

The study was conducted with a Windows PC driving a TFT screen
with a resolution of 1920 × 1200 pixels. Eye tracking data was
recorded by a Tobii T60 XL eye tracking system integrated into the
TFT screen. The viewing distance was about 60 cm from the screen to
allow for a good calibration of the eye tracking system. Key parame-
ters for the analysis software of the eye tracker were set to a minimum
of 10 pixels covering and a minimum of 30 ms fixation duration.

4.7 Participants

There were 25 participants (17 male, 8 female). Their age was between
19 and 66 years, with a median of 24 years. According to a test with
a Snellen chart, all participants had normal or corrected-to-normal vi-
sion; according to the Ishihara test, all participants had normal color
vision. Except for two participants, all were students of our univer-
sity. 19 participants reported that they were familiar with node-link
diagrams. The participants were compensated by e10 each.

4.8 Study Procedure

The within-subjects design comes with a combination of the follow-
ing factors: link type (A, EA, C, T, N), depth sorting (RND, SF, LF),
node visualization technique (SP, NSP), and density of the data set
(D1, D2). The concrete combination of factors depends on the task.
Table 3 summarizes the relationship between factors and tasks. For
Task 1, we tested the depth sorting conditions RND and SF, but not LF,
because SF is more helpful for this path following task than LF, espe-
cially in dense regions, where the participants have to follow mostly
short links. In contrast, we tested RND against LF for Task 2, where
good perception of long links is obviously beneficial. For Task 3, we
used SF for depth ordering of links because it shows best the detailed
structure of the clusters represented by short links. Furthermore, we
used N for link rendering because it is the most “neutral” link type;
thus, we avoided that a specific link type interferes with NSP or SP as
point indication.

At the beginning of the study, there was an introduction to the study
and the participants were given general instructions and explanations.
Also, the vision tests were performed, and questionnaires about the
background of the participant were filled in.

The main part of the study was split into three blocks: one block
for each task. In this way, the participants could adapt to the different
tasks, and cognitive load from frequent context changes was avoided.
At the beginning of each task block, the participants were given de-
tailed information about the task and instructions; they performed ex-
ercises on a printed version, followed by a practice phase in front of
the screen. The order of the task blocks was counterbalanced between
the subjects to compensate for learning effects and fatigue.

For Task 1 and Task 2, there were four internal blocks of link render-
ing techniques (A, EA, C, T). Again, the order of these internal blocks
was counterbalanced between the subjects. Within each internal block,
16 trials (for Task 1) or 20 trials (for Task 2) were performed. Here,
the order of depth sorting (RND, SF or LF), data density (D1, D2), and
the repetitions of these combinations were randomized.

Task 3 only evaluated the effect of node splatting (SP, NSP). The
rendering technique was blocked. The order of the internal blocks
was counterbalanced between subjects. The 20 repetitions within each
internal block were randomized.

Participants were asked to fill in a questionnaire after each task to
obtain subjective feedback on the respective task and techniques. The
average duration of the study was about 70 minutes per participant.

5 RESULTS

In this section, we present the results of the statistical analysis of aver-
age completion time and correctness for all tasks. Time was measured
in milliseconds; a log transformation was applied before statistical in-
ference to conform to the normality assumption. Diagrams with tim-
ings are shown in units of seconds. We used the Shapiro Wilk test to
check for normal distributions. The time analysis for all tasks was con-
ducted with a repeated-measures ANOVA followed by pairwise t-tests
for post-hoc analysis, if significance was indicated.
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Fig. 9. Average correctness (x-axis) and average completion time (y-
axis) for Task 1. Error bars show the standard error of means (SEM).
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Fig. 10. Performance for Task 1 and the different link types: (a) average
completion time with different sorting options, (b) average correctness
for different data densities.

For the correctness, the normality assumption was not valid; there-
fore, we used for all tasks the non-parametric Friedman test as signif-
icance test, and the Wilcoxon signed rank test for post-hoc analysis.
In the following, abbreviations will be used for the different rendering
methods and data set sizes, as summarized in Tables 1 and 2. The re-
sults of the statistical analysis of completion time and correctness are
discussed for each task separately.

The results for the ANOVA are in presented in the form F(a,b) = c,
where a stands for the degrees of freedom (DoF), b for the residuals,
and c for the calculated F value. A corresponding partial effect size
is indicated through η2

p . The non-parametric test results are presented
in the form χ2(a) = c. In both cases, p is the corresponding p value.
The Holm-Bonferroni method [15] was used to account for multiple
comparisons.

Results for Task 1: With a mean correctness of 87.53% and a mean
completion time of 7.37 s, T performed best. This is consistent with
the results of Holten et al. [17]. C performed better than A and EA with
respect to completion time, with a mean time of 8.12 s, and also better
than A regarding the correctness with 83.38%. Figure 9 provides a
summary of the descriptive statistical graphics of completion time and
accuracy for the four link visualization techniques. ANOVA shows
a significant effect of the link type (F(3,72) = 9.45; p < 0.001;η2

p =

0.28) and depth sorting (F(1,24) = 22.27; p < 0.001;η2
p = 0.48), con-

cerning completion time. The post-hoc pairwise comparisons show
significance for T compared to all other types (p < 0.001 for T-A and
T-EA; p = 0.046 for T-C), and also between C and EA (p = 0.011).
The influence of the depth sorting, leading to a decrease in time for
each link type, is illustrated in Figure 10(a). The correctness anal-
ysis exhibited only a significance for the data set density (χ2(1) =
13.5; p < 0.001). Here, the correctness decreases for all link types,
excluding C, see Figure 10(b). This indicates that it is slightly easier
to handle C in regions with high density.

Results for Task 2: T performs best with an average completion
time of 6.38 s and an average correctness of 79.2%, followed by A with
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axis) for Task 2. Error bars show the standard error of the means (SEM).

Arrows (A) Equid. Arrows (EA) Comets (C) Tapered (T)

A
ve

ra
g

e
 c

o
rr

e
ct

n
e

ss
 (

%
)

0

20

40

60

80

100 Low density  (D1)

High density (D2)

(a) Different densities
Arrows (A) Equid. Arrows (EA) Comets (C) Tapered (T)

A
ve

ra
g

e
 c

o
rr

e
ct

n
e

ss
 (

%
)

0

20

40

60

80

100 Random (RND)

Sorted     (LF)

(b) Different sorting

Fig. 12. Average correctness for Task 2 and the different link types:
(a) with different densities, (b) with different sorting methods.

7.79 s and 78.6%. On average, participants needed the longest time
(9.33 s) for C with a correctness of 77.2%, which is still better than the
correctness of EA. ANOVA shows significance for the link types con-
cerning the completion time (F(3,72) = 6.82; p < 0.001;η2

p = 0.22).
The post-hoc comparison exhibits significant differences between T
and all other types (p< 0.001), and also between C and A (p= 0.012).
For correctness, there is a significance for the data density (χ2(1) =
11.64; p < 0.001) and depth sorting (χ2(1) = 5.2609; p = 0.022). Fig-
ure 12(a) illustrates that the correctness increases with the density
summarized over all sorting options. Figure 12(b) shows that sorting
also affects the correctness, summarized over all densities.

Results for Task 3: The analysis showed a significant effect for the
correctness (χ2(1) = 4.17; p = 0.041), with an average correctness of
72.8% for SP and 65.4% for NSP; see Figure 13. While SP achieves a
better correctness, it comes with a higher average completion time of
8.54 s compared to NSP with 8.04 s (not significant).
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Table 3. Summary of used methods and multipliers, describing the number of trials.

Task 1 Task 2 Task 3
Factor Method Multiplier Method Multiplier Method Multiplier

Depth sorting (RND, SF) 2 (RND, LF) 2 (SF) 1
Density (D1, D2) 2 (D1, D2) 2 - 1
Node rendering (SP) 1 (SP) 1 (SP, NSP) 2
Repetitions 4 5 20
Trials per block 16 20 40

Link rendering (A, EA, C, T) 4 (A, EA, C, T) 4 (N) 1
Trials per task 64 80 40

Participants 25
Trials per task 1600 2000 1000

and 60 nodes, randomly chosen; this range of densities was used be-
cause it corresponds to the interval of densities defined by D1 and D2.
At a threshold of 8%, 9 of 10 participants provided correct answers.
Therefore, we assumed that this threshold is sufficient to allow for a
fair identification of the longest link.

To determine the threshold for Task 3 we asked the participants to
identify the cluster with the largest number of elements. There were
7 different test data sets with varying difference in the number of ele-
ments between the largest and the second largest cluster, ranging from
3% to 21% in steps of 3% difference. We used both NSP and SP for
node rendering, and N for link rendering. For a difference of 15%, 9
of 10 participants provided correct answers for NSP rendering, and 8
of 10 for SP rendering. Therefore, we assumed that this threshold is
sufficient to allow for a fair identification of the largest cluster.

Before the main experiment, we ran a pilot eye tracking study with
another four participants. With the pilot study, we were able to refine
our study; in particular, we found out that we had to reduce the number
of repetitions for each participant to keep the average duration to just
above one hour per participant. In detail, we reduced the number of
trials per block of Task 2 from 40 to 20, and for Task 1 from 40 to 16.
Since Task 1 was more complex than Task 2, the completion time of a
trial of Task 1 was higher than that of Task 2. Therefore, we adjusted
the trials per block of Task 1 to achieve an overall completion time
comparable to Task 2; in this way, participants spent approximately
the same amount of time using the same link type in Tasks 1 and 2.
We did not have to reduce the number of trials per block of Task 3
because the completion time was not as high as for Tasks 1 and 2. See
Table 3 for a detailed overview. Finally, the pilot study also allowed
us to set up the number of participants required for the full study.

4.6 Environment Conditions and Technical Setup

Our study was conducted in a laboratory isolated from outside distrac-
tions. The room was artificially illuminated with dimmed lights. The
laboratory space contained no distracting objects.

The study was conducted with a Windows PC driving a TFT screen
with a resolution of 1920 × 1200 pixels. Eye tracking data was
recorded by a Tobii T60 XL eye tracking system integrated into the
TFT screen. The viewing distance was about 60 cm from the screen to
allow for a good calibration of the eye tracking system. Key parame-
ters for the analysis software of the eye tracker were set to a minimum
of 10 pixels covering and a minimum of 30 ms fixation duration.

4.7 Participants

There were 25 participants (17 male, 8 female). Their age was between
19 and 66 years, with a median of 24 years. According to a test with
a Snellen chart, all participants had normal or corrected-to-normal vi-
sion; according to the Ishihara test, all participants had normal color
vision. Except for two participants, all were students of our univer-
sity. 19 participants reported that they were familiar with node-link
diagrams. The participants were compensated by e10 each.

4.8 Study Procedure

The within-subjects design comes with a combination of the follow-
ing factors: link type (A, EA, C, T, N), depth sorting (RND, SF, LF),
node visualization technique (SP, NSP), and density of the data set
(D1, D2). The concrete combination of factors depends on the task.
Table 3 summarizes the relationship between factors and tasks. For
Task 1, we tested the depth sorting conditions RND and SF, but not LF,
because SF is more helpful for this path following task than LF, espe-
cially in dense regions, where the participants have to follow mostly
short links. In contrast, we tested RND against LF for Task 2, where
good perception of long links is obviously beneficial. For Task 3, we
used SF for depth ordering of links because it shows best the detailed
structure of the clusters represented by short links. Furthermore, we
used N for link rendering because it is the most “neutral” link type;
thus, we avoided that a specific link type interferes with NSP or SP as
point indication.

At the beginning of the study, there was an introduction to the study
and the participants were given general instructions and explanations.
Also, the vision tests were performed, and questionnaires about the
background of the participant were filled in.

The main part of the study was split into three blocks: one block
for each task. In this way, the participants could adapt to the different
tasks, and cognitive load from frequent context changes was avoided.
At the beginning of each task block, the participants were given de-
tailed information about the task and instructions; they performed ex-
ercises on a printed version, followed by a practice phase in front of
the screen. The order of the task blocks was counterbalanced between
the subjects to compensate for learning effects and fatigue.

For Task 1 and Task 2, there were four internal blocks of link render-
ing techniques (A, EA, C, T). Again, the order of these internal blocks
was counterbalanced between the subjects. Within each internal block,
16 trials (for Task 1) or 20 trials (for Task 2) were performed. Here,
the order of depth sorting (RND, SF or LF), data density (D1, D2), and
the repetitions of these combinations were randomized.

Task 3 only evaluated the effect of node splatting (SP, NSP). The
rendering technique was blocked. The order of the internal blocks
was counterbalanced between subjects. The 20 repetitions within each
internal block were randomized.

Participants were asked to fill in a questionnaire after each task to
obtain subjective feedback on the respective task and techniques. The
average duration of the study was about 70 minutes per participant.

5 RESULTS

In this section, we present the results of the statistical analysis of aver-
age completion time and correctness for all tasks. Time was measured
in milliseconds; a log transformation was applied before statistical in-
ference to conform to the normality assumption. Diagrams with tim-
ings are shown in units of seconds. We used the Shapiro Wilk test to
check for normal distributions. The time analysis for all tasks was con-
ducted with a repeated-measures ANOVA followed by pairwise t-tests
for post-hoc analysis, if significance was indicated.
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Fig. 9. Average correctness (x-axis) and average completion time (y-
axis) for Task 1. Error bars show the standard error of means (SEM).
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Fig. 10. Performance for Task 1 and the different link types: (a) average
completion time with different sorting options, (b) average correctness
for different data densities.

For the correctness, the normality assumption was not valid; there-
fore, we used for all tasks the non-parametric Friedman test as signif-
icance test, and the Wilcoxon signed rank test for post-hoc analysis.
In the following, abbreviations will be used for the different rendering
methods and data set sizes, as summarized in Tables 1 and 2. The re-
sults of the statistical analysis of completion time and correctness are
discussed for each task separately.

The results for the ANOVA are in presented in the form F(a,b) = c,
where a stands for the degrees of freedom (DoF), b for the residuals,
and c for the calculated F value. A corresponding partial effect size
is indicated through η2

p . The non-parametric test results are presented
in the form χ2(a) = c. In both cases, p is the corresponding p value.
The Holm-Bonferroni method [15] was used to account for multiple
comparisons.

Results for Task 1: With a mean correctness of 87.53% and a mean
completion time of 7.37 s, T performed best. This is consistent with
the results of Holten et al. [17]. C performed better than A and EA with
respect to completion time, with a mean time of 8.12 s, and also better
than A regarding the correctness with 83.38%. Figure 9 provides a
summary of the descriptive statistical graphics of completion time and
accuracy for the four link visualization techniques. ANOVA shows
a significant effect of the link type (F(3,72) = 9.45; p < 0.001;η2

p =

0.28) and depth sorting (F(1,24) = 22.27; p < 0.001;η2
p = 0.48), con-

cerning completion time. The post-hoc pairwise comparisons show
significance for T compared to all other types (p < 0.001 for T-A and
T-EA; p = 0.046 for T-C), and also between C and EA (p = 0.011).
The influence of the depth sorting, leading to a decrease in time for
each link type, is illustrated in Figure 10(a). The correctness anal-
ysis exhibited only a significance for the data set density (χ2(1) =
13.5; p < 0.001). Here, the correctness decreases for all link types,
excluding C, see Figure 10(b). This indicates that it is slightly easier
to handle C in regions with high density.

Results for Task 2: T performs best with an average completion
time of 6.38 s and an average correctness of 79.2%, followed by A with
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Fig. 11. Average correctness (x-axis) and average completion time (y-
axis) for Task 2. Error bars show the standard error of the means (SEM).

Arrows (A) Equid. Arrows (EA) Comets (C) Tapered (T)

A
ve

ra
g

e
 c

o
rr

e
ct

n
e

ss
 (

%
)

0

20

40

60

80

100 Low density  (D1)

High density (D2)

(a) Different densities
Arrows (A) Equid. Arrows (EA) Comets (C) Tapered (T)

A
ve

ra
g

e
 c

o
rr

e
ct

n
e

ss
 (

%
)

0

20

40

60

80

100 Random (RND)

Sorted     (LF)

(b) Different sorting

Fig. 12. Average correctness for Task 2 and the different link types:
(a) with different densities, (b) with different sorting methods.

7.79 s and 78.6%. On average, participants needed the longest time
(9.33 s) for C with a correctness of 77.2%, which is still better than the
correctness of EA. ANOVA shows significance for the link types con-
cerning the completion time (F(3,72) = 6.82; p < 0.001;η2

p = 0.22).
The post-hoc comparison exhibits significant differences between T
and all other types (p< 0.001), and also between C and A (p= 0.012).
For correctness, there is a significance for the data density (χ2(1) =
11.64; p < 0.001) and depth sorting (χ2(1) = 5.2609; p = 0.022). Fig-
ure 12(a) illustrates that the correctness increases with the density
summarized over all sorting options. Figure 12(b) shows that sorting
also affects the correctness, summarized over all densities.

Results for Task 3: The analysis showed a significant effect for the
correctness (χ2(1) = 4.17; p = 0.041), with an average correctness of
72.8% for SP and 65.4% for NSP; see Figure 13. While SP achieves a
better correctness, it comes with a higher average completion time of
8.54 s compared to NSP with 8.04 s (not significant).
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Fig. 14. Average saccade length (x-axis) and average fixation duration
(y-axis) for Task 1. Error bars show the standard error of the means
(SEM) for the eye tracking data.
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Fig. 15. Average fixation duration and saccade length for each link type
with different densities for Task 1.

6 EYE TRACKING EVALUATION

In this section, we present the results of the eye tracking measure-
ments. We performed a statistical analysis of the average fixation du-
ration and average saccade length per displayed image, since these are
common metrics in eye tracking. We will explain our choice of met-
rics and also their interpretation, but we refer to Holmqvist et al. [16]
for a more detailed description of these eye tracking metrics and cor-
responding conducted experiments.

The first metric—average fixation duration—is an indicator for the
cognitive processing depth. A high value typically means that a par-
ticipant spent more time thinking about an area, for example, due to
high visual complexity or absence of intuitiveness. Low values in a
restricted area can be the result of stress, according to Holmqvist et
al. (chapter 11.4.2; page 383). The second metric—the average sac-
cade length or saccade amplitude—is often used to quantify similarity.
Long saccade length can be interpreted as explorative eye movement,
whereas short saccade lengths may occur when the task difficulty in-
creases as short eye movements are used to collect information from
a restricted area to support the current cognitive process, according to
Holmqvist et al. (chapter 10.2.1; page 313). In the following, we will
identify visual stress by a combined interpretation of the two metrics:
short average saccade length and low fixation duration indicate a high
level of stress. The perceptual and cognitive interpretation of these eye
tracking metrics should be used with caution because of the complex
perceptual and cognitive processes involved. However, these metrics
add a useful view on our user study.

A common characteristic of eye tracking metrics, including the ones
that we employ, is that they do not exhibit normal distribution. There-
fore, we used the non-parametric Friedman test as significance test and
the Wilcoxon signed rank test for a post-hoc analysis.

Eye Tracking Evaluation for Task 1: Figure 14 shows an
overview of the duration and the saccade length of all link types. C
has here both the longest average saccade length of 130.62 pixels
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Fig. 16. Average saccade length (x-axis) and average fixation duration
(y-axis) for Task 2. Error bars show the standard error of the means
(SEM) for the eye tracking data.
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Fig. 17. Average saccade length for Task 2 and the different link types:
(a) with different densities, (b) with different sorting methods.

and the highest average fixation duration of 940.15 ms. For EA, the
smallest values for these parameters are obtained: 115.16 pixels and
773.41 ms. The statistical analysis shows a significance in duration
for the density (χ2(1) = 25; p < 0.001). This influence—increasing
duration with increasing data set size—is shown in more detail in
Figure 15(a). For the saccade length, there is a significance for the
density (χ2(1) = 6.67; p = 0.009). A decline of the saccade length
is depicted in Figure 15(b). In both cases, this is consistent with our
expectations that a higher data density would lead to a higher average
duration and a reduced average saccade length, since more complex
images may need more attention (longer duration) and have to be
investigated in more detail (shorter saccades).
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Fig. 18. Average saccade length (x-axis) and average fixation duration
(y-axis) of Task 3. Error bars show the standard error of the means
(SEM) for the eye tracking data.

Eye Tracking Evaluation for Task 2: In this task, again, the small-
est values for the average duration and saccade length were measured
for EA (216.46 pixels and 287.97 ms). We obtained the longest du-
ration for C (220.06 pixels with 304.97 ms) and the longest saccade
length for T (242.96 pixels with 291.94 ms). Figure 16 shows an
overview of the eye tracking metrics. The statistical analysis showed
only significance for the average saccade length. Here, all three fac-
tors were affected: link types (χ2(3) = 35.35; p < 0.001), density
(χ2(1) = 9; p = 0.003), and depth sorting (χ2(1) = 11.56; p < 0.001).

The post-hoc analysis for the link types reveals significance be-
tween T-EA (p< 0.001), T-C (p< 0.001), C-A (p= 0.003), and EA-A
(p < 0.001). The influence of density and sorting for each link type is
shown in Figures 17(a) and 17(b). According to these plots, the aver-
age saccade length decreases with increasing density, while the sorting
has the opposite effect. This may be interpreted as follows: increas-
ing the data density also increases the visual stress resulting in shorter
saccades, whereas the opposite holds for the sorting.

Eye Tracking Evaluation for Task 3: On average, NSP achieved
a slightly shorter fixation duration of 335.09 ms and also a slightly
longer saccade length of 289.76 pixels compared to SP with 340.34 ms
and 286.15 pixels. This might vaguely indicate that participants
needed more attention investigating clusters while SP was used. How-
ever, the statistical analysis showed no significance. Figure 18 pro-
vides the respective statistical graphics.

7 PARTICIPANT FEEDBACK

In this section, we present feedback obtained from questionnaires that
the participants filled in after they finished a task. The link types were
ranked on a Likert scale from 0 (not helpful) to 5 (very helpful); we
did not apply any statistical tests to those data obtained. Furthermore,
participants provided free-text comments.

Feedback for Task 1: T was voted as the most helpful link type fol-
lowed by A, C, and EA. The average ratings were: 3.88 (T), 3.40 (A),
3.28 (C), 2.20 (EA). The comments for this task can be condensed into
four statements: Hiding arrows using A and EA, if important struc-
tures would be occluded, made sense to all participants. However, for
this task, it was confusing because direction information was missing
in dense regions. This indicates that the correctness could have suf-
fered because the participants started guessing. In contrast, the com-
pletion time might have been increased because it takes longer to come
to a decision. Visualization with C and T can be recognized very well
in dense regions; this is especially true for T because it is very simple.
These two methods are also reported to be pleasant, since they guide
the eyes. The direction encoding with C was not intuitive for some
participants.

Feedback for Task 2: The vote order of link types is identical to
that for Task 1. Average ratings were: 3.84 (T), 3.36 (A), 3.16 (C),
2.48 (EA). The comments indicate here that the missing arrows were
regarded as negative, because there was not always an arrow at the end
of a line. Also it was possible to count the arrows of EA (when they
were there) or the comets of C. This might have led to increased cor-
rectness, but also increase the completion time. Again, visualizations
with C and T could be recognized very well in dense regions.

Feedback for Task 3: SP was voted as more helpful then NSP with
an average of 3.24 over 2.40. The participants commented that the
splats used in SP made it hard to decide between two similar clusters
because there is nearly no difference in brightness. However, the SP
enabled them to identify locations within a cluster where several points
are very close to each other. Some had the feeling that they solved the
task faster when NSP was used. All participants commented that this
task was in general hard to solve.

8 DISCUSSION

One result of our study is that T performed better than the other link
types for Task 1, with the highest correctness and the lowest comple-
tion time (Figure 9), confirming H1. We could also confirm H3: depth
sorting led to a reduction of the solution time (Figure 10(a)). In ad-
dition, the evaluation of the eye tracking data revealed that A had the
highest average saccade length and the shortest average fixation du-
ration. This may be interpreted as intuitive and efficient usage of A

(Figure 14)—with less of short hectic eye movement, exhibiting less
visual stress compared to the other methods.

For Task 2, T again performed best, concerning the solution accu-
racy and time, as depicted in Figure 11. Therefore, we have to reject
H2. From Figure 11, we can see that the group (C, EA) with repeat-
ing directional cues is outperformed by the techniques A and T, which
come with only one cue (an arrow at the end or a prolonged arrow).
Figure 16 shows that the techniques A and T have similar eye track-
ing characteristics in terms of average fixation duration and saccade
length. T led to the longest average saccade length and the lowest fix-
ation duration, compared to the other link types; this can be interpreted
as an indicator for high efficiency. The high fixation duration and short
saccade length for C and EA can be explained by the fact that partic-
ipants counted the comets or arrows in order to estimate and compare
the length of links. Furthermore, we can confirm H4 because sorting
leads to higher accuracy, which is true for any link type (Figure 12(b)).

Using SP as point visualization in Task 3 reveals an increase of both
accuracy and completion time compared to using NSP (Figure 13).
The eye tracking evaluation showed a lower average fixation duration
and a longer saccade length for NSP (Figure 18). According to this re-
sult, participants might have investigated clusters more carefully when
SP was used, which could explain the higher average solution correct-
ness and increased solution time, shown in Figure 13. Since we value
accuracy higher than response time, we would argue that our findings
support H5.

Overall, T performed very well in all tasks, followed by A. This
gives evidence that participants can handle simple link types quite
well. Nevertheless, the results for solution accuracy and completion
time for C and EA were similar to those of T and A. Also, the par-
ticipants stated that they liked the equidistant comets. Therefore, the
equidistant comets can be recommended for trajectory visualization
in large and complex data sets. We base our reasoning on the obser-
vations described in Section 3.1 and illustrated in Figure 3: For such
data sets, detailed exploration requires frequent zooming. However,
zooming affects the readability of direction information in T and A.
In fact, that information might be completely missing is such visual-
izations. In contrast, C and EA are not affected by zooming, which
makes it possible to interpret the direction of a link independent of the
zoom level. It should be pointed out that we did not include stimuli
with zooming because the disadvantages of T and A are obvious from
construction, and we did not have to confirm them by the user study.

9 CONCLUSION

In this paper, we conducted an eye tracking study that compared dif-
ferent visualization methods for long, dense, and complex piecewise
linear trajectories. We used the following representations of directed
links: standard arrow (A), tapered links (T), equidistant arrows (EA),
and equidistant comets (C). Furthermore, we have investigated the ef-
fect of rendering order (SF and LF) for the halo visualization of these
links, also considering different levels of density (D1 and D2). Finally,
we have evaluated the effectiveness of node splatting. Participants in
our study were asked to perform three tasks: tracing of paths, iden-
tification of longest links, and estimation of the density of trajectory
clusters. The tasks were meant to be overview tasks, therefore partici-
pants were not provided with interaction techniques like zooming.

According to the results of this study, T performed very well, fol-
lowed by A, for tracing of paths and identifying longest links. We also
have shown that these two link types can lose their ability to encode
direction, if interactions, such as zooming, are possible. In this case,
C and EA benefit from equidistantly placed direction information on
a link, present at different zoom levels. We also were able to confirm
that using point splatting increases accuracy.

ACKNOWLEDGMENTS

This work was funded by Deutsche Forschungsgemeinschaft (DFG)
within project WE 2836/4-1. We thank Emiel van Loon (University
of Amsterdam) for the oystercatcher GPS data, and the participants
for having attended our study. Many thanks to all reviewers for their
constructive comments.



2229NETZEL ET AL.: COMPARATIVE EYE TRACKING STUDY ON NODE-LINK VISUALIZATIONS OF TRAJECTORIES

110 115 120 125 130 135

750

800

850

900

950

Average saccade length (pixel)

A
ve

ra
g

e
 fi

xa
ti

o
n

 d
u

ra
ti

o
n

 (
m

s)

Arrows (A)

Equid. Arrows (EA)

Comets (C)

Tapered (T)

Fig. 14. Average saccade length (x-axis) and average fixation duration
(y-axis) for Task 1. Error bars show the standard error of the means
(SEM) for the eye tracking data.
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Fig. 15. Average fixation duration and saccade length for each link type
with different densities for Task 1.

6 EYE TRACKING EVALUATION

In this section, we present the results of the eye tracking measure-
ments. We performed a statistical analysis of the average fixation du-
ration and average saccade length per displayed image, since these are
common metrics in eye tracking. We will explain our choice of met-
rics and also their interpretation, but we refer to Holmqvist et al. [16]
for a more detailed description of these eye tracking metrics and cor-
responding conducted experiments.

The first metric—average fixation duration—is an indicator for the
cognitive processing depth. A high value typically means that a par-
ticipant spent more time thinking about an area, for example, due to
high visual complexity or absence of intuitiveness. Low values in a
restricted area can be the result of stress, according to Holmqvist et
al. (chapter 11.4.2; page 383). The second metric—the average sac-
cade length or saccade amplitude—is often used to quantify similarity.
Long saccade length can be interpreted as explorative eye movement,
whereas short saccade lengths may occur when the task difficulty in-
creases as short eye movements are used to collect information from
a restricted area to support the current cognitive process, according to
Holmqvist et al. (chapter 10.2.1; page 313). In the following, we will
identify visual stress by a combined interpretation of the two metrics:
short average saccade length and low fixation duration indicate a high
level of stress. The perceptual and cognitive interpretation of these eye
tracking metrics should be used with caution because of the complex
perceptual and cognitive processes involved. However, these metrics
add a useful view on our user study.

A common characteristic of eye tracking metrics, including the ones
that we employ, is that they do not exhibit normal distribution. There-
fore, we used the non-parametric Friedman test as significance test and
the Wilcoxon signed rank test for a post-hoc analysis.

Eye Tracking Evaluation for Task 1: Figure 14 shows an
overview of the duration and the saccade length of all link types. C
has here both the longest average saccade length of 130.62 pixels

215 220 225 230 235 240 245

285

290

295

300

305

Average saccade length (pixel)

A
ve

ra
g

e
 fi

xa
ti

o
n

 d
u

ra
ti

o
n

 (
m

s)

Arrows (A)

Equid. Arrows (EA)

Comets (C)

Tapered (T)

Fig. 16. Average saccade length (x-axis) and average fixation duration
(y-axis) for Task 2. Error bars show the standard error of the means
(SEM) for the eye tracking data.
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Fig. 17. Average saccade length for Task 2 and the different link types:
(a) with different densities, (b) with different sorting methods.

and the highest average fixation duration of 940.15 ms. For EA, the
smallest values for these parameters are obtained: 115.16 pixels and
773.41 ms. The statistical analysis shows a significance in duration
for the density (χ2(1) = 25; p < 0.001). This influence—increasing
duration with increasing data set size—is shown in more detail in
Figure 15(a). For the saccade length, there is a significance for the
density (χ2(1) = 6.67; p = 0.009). A decline of the saccade length
is depicted in Figure 15(b). In both cases, this is consistent with our
expectations that a higher data density would lead to a higher average
duration and a reduced average saccade length, since more complex
images may need more attention (longer duration) and have to be
investigated in more detail (shorter saccades).
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Fig. 18. Average saccade length (x-axis) and average fixation duration
(y-axis) of Task 3. Error bars show the standard error of the means
(SEM) for the eye tracking data.

Eye Tracking Evaluation for Task 2: In this task, again, the small-
est values for the average duration and saccade length were measured
for EA (216.46 pixels and 287.97 ms). We obtained the longest du-
ration for C (220.06 pixels with 304.97 ms) and the longest saccade
length for T (242.96 pixels with 291.94 ms). Figure 16 shows an
overview of the eye tracking metrics. The statistical analysis showed
only significance for the average saccade length. Here, all three fac-
tors were affected: link types (χ2(3) = 35.35; p < 0.001), density
(χ2(1) = 9; p = 0.003), and depth sorting (χ2(1) = 11.56; p < 0.001).

The post-hoc analysis for the link types reveals significance be-
tween T-EA (p< 0.001), T-C (p< 0.001), C-A (p= 0.003), and EA-A
(p < 0.001). The influence of density and sorting for each link type is
shown in Figures 17(a) and 17(b). According to these plots, the aver-
age saccade length decreases with increasing density, while the sorting
has the opposite effect. This may be interpreted as follows: increas-
ing the data density also increases the visual stress resulting in shorter
saccades, whereas the opposite holds for the sorting.

Eye Tracking Evaluation for Task 3: On average, NSP achieved
a slightly shorter fixation duration of 335.09 ms and also a slightly
longer saccade length of 289.76 pixels compared to SP with 340.34 ms
and 286.15 pixels. This might vaguely indicate that participants
needed more attention investigating clusters while SP was used. How-
ever, the statistical analysis showed no significance. Figure 18 pro-
vides the respective statistical graphics.

7 PARTICIPANT FEEDBACK

In this section, we present feedback obtained from questionnaires that
the participants filled in after they finished a task. The link types were
ranked on a Likert scale from 0 (not helpful) to 5 (very helpful); we
did not apply any statistical tests to those data obtained. Furthermore,
participants provided free-text comments.

Feedback for Task 1: T was voted as the most helpful link type fol-
lowed by A, C, and EA. The average ratings were: 3.88 (T), 3.40 (A),
3.28 (C), 2.20 (EA). The comments for this task can be condensed into
four statements: Hiding arrows using A and EA, if important struc-
tures would be occluded, made sense to all participants. However, for
this task, it was confusing because direction information was missing
in dense regions. This indicates that the correctness could have suf-
fered because the participants started guessing. In contrast, the com-
pletion time might have been increased because it takes longer to come
to a decision. Visualization with C and T can be recognized very well
in dense regions; this is especially true for T because it is very simple.
These two methods are also reported to be pleasant, since they guide
the eyes. The direction encoding with C was not intuitive for some
participants.

Feedback for Task 2: The vote order of link types is identical to
that for Task 1. Average ratings were: 3.84 (T), 3.36 (A), 3.16 (C),
2.48 (EA). The comments indicate here that the missing arrows were
regarded as negative, because there was not always an arrow at the end
of a line. Also it was possible to count the arrows of EA (when they
were there) or the comets of C. This might have led to increased cor-
rectness, but also increase the completion time. Again, visualizations
with C and T could be recognized very well in dense regions.

Feedback for Task 3: SP was voted as more helpful then NSP with
an average of 3.24 over 2.40. The participants commented that the
splats used in SP made it hard to decide between two similar clusters
because there is nearly no difference in brightness. However, the SP
enabled them to identify locations within a cluster where several points
are very close to each other. Some had the feeling that they solved the
task faster when NSP was used. All participants commented that this
task was in general hard to solve.

8 DISCUSSION

One result of our study is that T performed better than the other link
types for Task 1, with the highest correctness and the lowest comple-
tion time (Figure 9), confirming H1. We could also confirm H3: depth
sorting led to a reduction of the solution time (Figure 10(a)). In ad-
dition, the evaluation of the eye tracking data revealed that A had the
highest average saccade length and the shortest average fixation du-
ration. This may be interpreted as intuitive and efficient usage of A

(Figure 14)—with less of short hectic eye movement, exhibiting less
visual stress compared to the other methods.

For Task 2, T again performed best, concerning the solution accu-
racy and time, as depicted in Figure 11. Therefore, we have to reject
H2. From Figure 11, we can see that the group (C, EA) with repeat-
ing directional cues is outperformed by the techniques A and T, which
come with only one cue (an arrow at the end or a prolonged arrow).
Figure 16 shows that the techniques A and T have similar eye track-
ing characteristics in terms of average fixation duration and saccade
length. T led to the longest average saccade length and the lowest fix-
ation duration, compared to the other link types; this can be interpreted
as an indicator for high efficiency. The high fixation duration and short
saccade length for C and EA can be explained by the fact that partic-
ipants counted the comets or arrows in order to estimate and compare
the length of links. Furthermore, we can confirm H4 because sorting
leads to higher accuracy, which is true for any link type (Figure 12(b)).

Using SP as point visualization in Task 3 reveals an increase of both
accuracy and completion time compared to using NSP (Figure 13).
The eye tracking evaluation showed a lower average fixation duration
and a longer saccade length for NSP (Figure 18). According to this re-
sult, participants might have investigated clusters more carefully when
SP was used, which could explain the higher average solution correct-
ness and increased solution time, shown in Figure 13. Since we value
accuracy higher than response time, we would argue that our findings
support H5.

Overall, T performed very well in all tasks, followed by A. This
gives evidence that participants can handle simple link types quite
well. Nevertheless, the results for solution accuracy and completion
time for C and EA were similar to those of T and A. Also, the par-
ticipants stated that they liked the equidistant comets. Therefore, the
equidistant comets can be recommended for trajectory visualization
in large and complex data sets. We base our reasoning on the obser-
vations described in Section 3.1 and illustrated in Figure 3: For such
data sets, detailed exploration requires frequent zooming. However,
zooming affects the readability of direction information in T and A.
In fact, that information might be completely missing is such visual-
izations. In contrast, C and EA are not affected by zooming, which
makes it possible to interpret the direction of a link independent of the
zoom level. It should be pointed out that we did not include stimuli
with zooming because the disadvantages of T and A are obvious from
construction, and we did not have to confirm them by the user study.

9 CONCLUSION

In this paper, we conducted an eye tracking study that compared dif-
ferent visualization methods for long, dense, and complex piecewise
linear trajectories. We used the following representations of directed
links: standard arrow (A), tapered links (T), equidistant arrows (EA),
and equidistant comets (C). Furthermore, we have investigated the ef-
fect of rendering order (SF and LF) for the halo visualization of these
links, also considering different levels of density (D1 and D2). Finally,
we have evaluated the effectiveness of node splatting. Participants in
our study were asked to perform three tasks: tracing of paths, iden-
tification of longest links, and estimation of the density of trajectory
clusters. The tasks were meant to be overview tasks, therefore partici-
pants were not provided with interaction techniques like zooming.

According to the results of this study, T performed very well, fol-
lowed by A, for tracing of paths and identifying longest links. We also
have shown that these two link types can lose their ability to encode
direction, if interactions, such as zooming, are possible. In this case,
C and EA benefit from equidistantly placed direction information on
a link, present at different zoom levels. We also were able to confirm
that using point splatting increases accuracy.
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[13] I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and
navigation in information visualization: A survey. IEEE Transactions on
Visualization and Computer Graphics, 6(1):24–43, 2000.
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