
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014 2329

1077-2626 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

LiveGantt: Interactively Visualizing a Large Manufacturing
Schedule

Jaemin Jo, Jaeseok Huh, Jonghun Park, Bohyoung Kim, and Jinwook Seo

Fig. 1. LiveGantt shows a schedule that contains 3,404 tasks on 100 resources (i.e. machines). (A) The exploration history view
illustrates the exploration sequence. Three exploration steps are taken before the current context. Two views with controllers are
juxtaposed allowing users to investigate a schedule from two different perspectives. (B) Schedule view gives an overview of a
schedule based on a Gantt chart with similar Gantt bars around a focus time line (a black vertical bar) aggregated into larger bars.
Tasks that immediately follow the focus time line are accentuated with saturated colors to improve visual saliency. In the figure
above, a user is examining details on an aggregated task (green striped). The most frequent sequence after the selected task is
also highlighted with saturated colors. (C) Package view shows changes in packages’ production as parallel line charts. The slopes
of the lines are represented as hue/saturation to facilitate understanding and analysis.

Abstract—In this paper, we introduce LiveGantt as a novel interactive schedule visualization tool that helps users explore highly-
concurrent large schedules from various perspectives. Although a Gantt chart is the most common approach to illustrate schedules,
currently available Gantt chart visualization tools suffer from limited scalability and lack of interactions. LiveGantt is built with newly
designed algorithms and interactions to improve conventional charts with better scalability, explorability, and reschedulability. It
employs resource reordering and task aggregation to display the schedules in a scalable way. LiveGantt provides four coordinated
views and filtering techniques to help users explore and interact with the schedules in more flexible ways. In addition, LiveGantt is
equipped with an efficient rescheduler to allow users to instantaneously modify their schedules based on their scheduling
experience in the fields. To assess the usefulness of the application of LiveGantt, we conducted a case study on manufacturing
schedule data with four industrial engineering researchers. Participants not only grasped an overview of a schedule but also
explored the schedule from multiple perspectives to make enhancements.

Index Terms—Schedule visualization, event sequence visualization, simplification, exploratory interactions, simulation

1 INTRODUCTION
Scheduling is an optimization process of assigning tasks to resources
on given criteria [29]. By taking a different combination of resources
and tasks, scheduling can address a variety of allocation problems
such as machine scheduling in manufacturing facilities or process

scheduling in operating systems. The optimization criteria vary
according to the primary objectives (e.g. maximization of the
resource utilization and minimization of the completion time of the
first manufactured product).

In parallel with versatility of scheduling, visualizing schedules is
commonly needed in various fields. Though several methods
[1][9][13][14][22] have been proposed, we now confront new
challenges as it becomes increasingly more common to deal with
larger and more complex schedules in various fields such as
manufacturing. After investigating those methods and major
commercial schedule visualization tools recommended by
researchers with years of experience in manufacture scheduling, we
identified the following three main challenges.

Scalability: The biggest challenge comes from the size of
schedules. For example, a typical manufacturing schedule involves
several hundreds of machines with dozens of tasks on each machine.
Since conventional schedule visualizations represent one elementary

• Jaemin Jo is with Seoul National University. E-mail: jmjo@hcil.snu.ac.kr.
• Jaeseok Huh is with Seoul National University. E-mail: dugod@snu.ac.kr.
• Jonghun Park is with Seoul National University.

E-mail: jonghun@snu.ac.kr.
• Bohyoung Kim is with Seoul National University Bundang Hospital.

E-mail: bhkim@snubh.org.
• Jinwook Seo is the corresponding author with Seoul National University.

E-Mail: jseo@snu.ac.kr.

For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014 ate of
publication 2014; date of current version 2014.11 Aug. 9 Nov.

D.

Digital Object Identifier 10.1109/TVCG.2014.2346454

2330 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

task with a simple glyph, such as a line segment or a rectangle, the
screen can quickly become cluttered when the schedule grows larger.

Figure 5a clearly demonstrates the scalability issue. A Gantt chart,
which is the most commonly used technique to represent schedules,
illustrates a manufacturing schedule with each bar representing one
task. However, since the schedule runs through a number of
machines in parallel, the height of each bar often becomes too short
for accurate interpretation. The problem is exacerbated when the
mean duration of a task is relatively short, too. In such a case, the
Gantt chart provides neither an overview of the schedule nor details
of each task.

Aggregation can be a good remedy for such scalability issue.
Some researches incorporated the techniques to simplify the
representation and give clear overviews [40][41]. The aggregation
applied to a large schedule provides overviews and brief summaries.

Explorability: Previous methods focused on visualizing tasks
over time: Gantt charts [14] placed tasks on a timeline and Tube map
[9] encoded a milestone as a station. However, displaying tasks over
time reveals only one aspect of schedules since the schedules also
consist of other components such as resources and packages.
Therefore, it is important to allow users to examine the schedules
from multiple perspectives. Rich user interactions such as zooming
and filtering are essential in providing more flexible exploration of
schedules.

Reschedulability: Experienced researchers and practitioners
often have doubts about the performance of the schedulers. They
want to modify the schedules (e.g. by reallocating some tasks) for
improved performance. Also, unexpected events such as the sudden
malfunction of machines or the delay in supply of raw materials
require rescheduling the entire timeline. Currently, users have to edit
raw input files and re-run the scheduler for each necessary
rescheduling. This is a lengthy and tedious task that could negatively
affect the flexibility and the overall production performance of
factories. To address the issue, it is required to integrate an efficient
rescheduling algorithm into interactive visualization. Such
integration allows users to test their hypotheses in an interactive
manner when they modify a schedule for better performance.

In this paper, we focus on manufacturing schedules used in
semiconductor facilities. The challenge comes from visualizing the
schedules since they are highly-concurrent and associated with a
large number of short tasks. We also briefly discuss on how our
approach can also be beneficial on different kinds of schedules, such
as flight itineraries.

This paper is organized as follows: After covering some domain
preliminaries in Section 3, we give an overview of LiveGantt in
Section 4. In the following two sections, we elaborate on our two
main contributions, i.e. aggregation and rescheduling. In Section 7,
we present a case study conducted with industrial engineering
researchers. To demonstrate the generalizability of our approach, we
apply LiveGantt to the visualization of flight schedules in Section 8.
In Section 10, we discuss results of this work and present possible
future works.

2 RELATED WORK

2.1 Schedule Visualization
Schedule visualization has long been studied in many fields such as
industrial engineering, statistics, and graphics/visualizations since
the 1900s. Since Henry L. Gantt introduced Gantt chart for factory
management [14], they have been the de facto standard for schedule
visualization in diverse fields, such as project management,
manufacturing, and parallel systems [39][42]. Figure 2 shows a
typical Gantt chart, where tasks are represented as Gantt bars on a
timeline. While the traditional Gantt charts have showed limitations
in dealing with large complex schedules that are common in real
fields these days, they are still widely used by many practitioners due
to their predominant familiarity with a representation. In this work,

we enhance the Gantt charts by ameliorating the limitations of
traditional Gantt charts.

Another noteworthy method for schedule visualization is PERT
[13] developed by United States Navy in the 1950s. PERT visualizes
a schedule as a graph; tasks as nodes and relationship between tasks
as edges. PERT supports a frequent task of identifying preceding
tasks by explicitly showing a precedence relationship.

Many commercial tools also borrow the concepts from Gantt or
PERT charts [3][4][10][18][25][26][28]. Most of them try to
alleviate the scalability problem with conventional scrollbars or
simple expand/collapse interactions, which might not satisfy the
needs of practitioners dealing with large complex schedules in the
field like manufacturing. Project management tools such as MS
Project [25] offer interactive Gantt charts, but they are not designed
to effectively support domain-specific tasks in manufacturing such as
visualizing performance of facilities over time.

There also have been several attempts to improve Gantt charts.
Kosara and Miksch [20] developed AsbruView for medical therapy
planning. They exploited the z axis to visualize different levels of
plans upon Gantt-like charts. Luz and Masoodian [21][22] created
temporal mosaics that utilize screen space more efficiently and
conducted a user study to compare the mosaics with Gantt charts.
Tufte redesigned Gantt charts adopting a focus+context technique for
improved scalability [12]. Huang et al. [17] presented a technique of
overlaying Gantt charts of multiple versions of a schedule to
compare different versions. In LiveGantt, we juxtapose two
schedules, one before rescheduling and the other after rescheduling,
to help users grasp the changes between the two.

Several studies aimed at visualizing uncertainties of schedules.
Aigner et al. [1] enhanced Gantt bars to show temporal uncertainties
of tasks by introducing novel glyphs, called PlanningLines. Gove et
al. [15][16] designed visualizations for uncertainties in resource
utilization and critical paths. In this work, we do not deal with
uncertainties since manufacturing schedules are based on highly
stable resources (i.e. very predictable machines).

Luz et al. proposed a remarkable schedule visualization tool
called Chronos [23]. Chronos illustrates schedules with two charts,
mosaic and Gantt. It provides a two-level task hierarchy which is
foldable to save the screen space and supports direct manipulation of
schedules with drag-and-drop interactions. LiveGantt further
improves the reschedulability with a help from an efficient
rescheduler that better suits on-site requirements of the users.

2.2 Event Sequence Visualization
Schedules can be regarded as event sequences that will occur in the
future. Thus, event sequence visualization techniques could also be
applicable to schedule visualization. We reviewed past literatures
focusing on visualizing multiple sequences at once, because they are
more appropriate for visualizing highly concurrent schedules.

Some papers presented techniques that could also be applicable to
visualizing large schedules. Wang et al. [38] introduced the
ARF(Alignment, Ranking, Filtering) framework to find patterns in a
large EHR(Electronic Health Records) dataset. The alignment
operator can be an effective tool since it allows users to rearrange the
data by an event at a specific time point. Continuum [2] provides a
temporal overview based on a histogram to help users explore long
history data. Users can enlarge a part of the overview to inspect the
data. We elaborated on the idea of alignment and zooming to
encourage exploration of complex schedules.

Several studies show that the aggregation approaches were
effective for not only identifying common event sequences but also
spotting outliers. ActiviTree [37] and LifeFlow [41] adopted
aggregation to visualize event sequences. Two following studies,
EventFlow [27] and TrailExplorer2 [35], further improved
LifeFlow’s aggregation by leveraging simplification and Hadoop-
based parallelization, respectively. However, the intrinsic difference
between event sequences and schedules makes it difficult to apply
these approaches directly to visualizing schedules: i.e. the relative
order of events is more important in event sequences while absolute

timing of tasks is more important in schedule visualization. To
address the issue, we designed time-based task aggregation, which
keeps time information more precise than existing order-based event
aggregation. More details are described in Section 5.

3 PROBLEM DEFINITIONS
In this section, we first introduce basic terms and domain knowledge
related to task scheduling in the manufacturing field. We will use
them to explain users’ needs and design rationales of our tool in this
paper. We then present important questions that practitioners dealing
with manufacture scheduling have in mind in performing their
everyday tasks.

3.1 Terminologies for Scheduling
A schedule is a plan to manufacture packages. Raw materials are
transformed to packages through a series of tasks on resources. Here
are brief explanations about preliminaries for a schedule.

Package: A package is a complete product manufactured in a
factory (e.g. a DRAM). Packages can be classified by their types
such as 1GB DRAM and 2GB DRAM. A schedule usually covers a
production plan to manufacture several types of packages. For
example, a schedule may produce 100 1GB DRAMs and 150 2GB
DRAMs. For convenience, we abbreviate the types of packages by
alphabets such as package A and package B.

Resource: In manufacturing field, resources are usually machines.
Machines can be categorized by their uses. For example, DA (die
attaching, attaching a silicon chip to a die pad) machines and WB
(wire bonding, creating connection between a chip and external leads)
machines are capable of different tasks. Each machine is identified as
a combination of its type and ID such as “DA001” or “WB002.”

Task: A task is a set of elementary operations performed on a
resource within a given time interval. In order to manufacture a
package, a series of tasks should be done. For example, three tasks
A_1, A_2, and A_3 should be finished on raw materials to create a
new package A. The order of the tasks must be maintained (e.g. A_1
first, A_2 second, and A_3 the last) in a schedule. This is called a
precedence rule. The task type is also referred to as the package type
that the task makes (e.g. the type of the task A_1 is the package A).

Schedule: A schedule consists of tasks to manufacture
designated number of packages. The size of a schedule varies
according to the extent of a factory. A small schedule may contain a
few hundreds of tasks over dozens of resources. A large schedule
could comprise over 10K tasks on hundreds of resources.

3.2 Performance Measures for Schedules
There are several factors or performance measures for evaluating
manufacturing schedules. We introduce them below along with some
relevant domain knowledge.

Changeover: A changeover is a process of changing the
configuration of a resource (i.e. machine) in order to perform a
different kind of task. For example, suppose a resource is performing
an A_1 task. To make the resource perform a B_1 task, a changeover
has to be done on the resource. Changeovers require human power: a
worker should go to the resource and change some parameter
settings for the changeover. Therefore, the number of concurrent
changeovers determines the minimum number of workers to
accomplish the schedule. If the number of workers is insufficient, the
schedule will be delayed, degrading the overall yield of a factory.

Makespan: The makespan of a schedule is the time required to
finish the schedule. It is defined as the interval between the start and
finish time of a schedule. The makespan of a schedule serves as an
important performance measure for a schedule: the shorter the
schedule, the better it is, given that different schedules manufacture
the same packages.

Utilization: Utilization is another important performance
measure for assessing the efficiency of a schedule. Utilization can be
defined for a resource, a specific time point, and a schedule.
Utilization of a resource is the ratio of the total running time of the

resource to the makespan. For example, the utilization of a resource
is 0.5 if the resource runs for only half of the makespan. The
utilization at time t can be defined as the ratio of the number of
working resources at t to the total number of resources (e.g. if 1 out
of 4 resources is working at t, the utilization at t is 0.25). Finally,
utilization of an entire schedule is the average of the utilizations of
individual resources. Domain experts in manufacturing scheduling
have to continuously monitor the utilization to check the overall
performance of a factory.

WIP (Work In Process): As mentioned above, a series of tasks
is required to produce a package. For example, A_1, A_2, and A_3
should be finished for a package A. Before the last task A_3 is done,
the package A is only partially completed. We call such an
unfinished package as WIP. In this example, there are two kinds of
WIPs: after A_1 and after A_2. Generally, researchers and
practitioners want to avoid an abrupt increase and decrease in WIP
because those changes restrict the flexibility of a factory to cope with
the unexpected events such as sudden cancellation of orders.
Therefore, WIP serves as an important factor to evaluating schedules.

3.3 Tasks and Questions
In our iterative design process for LiveGantt, we adopted the nine-
stage design study methodology framework [34] as a process for
conducting our design study. We had a regular meeting with three
industrial engineering researchers at least once every two weeks for
six months with each meeting lasting about two hours. The
researchers have worked with practitioners of manufacturing
scheduling in large factories for many years to develop efficient
scheduling algorithms. During the design process, we collected
practical needs of practitioners and identified important tasks. We
learned that most of the tasks are also relevant to researchers
studying scheduling algorithms for manufacturing. We classify the
tasks into the following three categories.

Simple tasks: Simple tasks can be performed by looking at a
schedule from a single perspective. This kind of tasks are performed
for answering the following simple questions. They are simple, yet
important to assess a schedule.
 How does the utilization change over time?
 How many workers do we need to complete the schedule?
 Which package takes the longest time to finish?
 How many resources are running tasks related to package A at

time t?
 How does WIP change over time?

Complex tasks: In contrast to simple tasks, complex tasks require
investigating schedules from two or more perspectives. This kind of
tasks are performed for answering the following complex questions.
 When WIP plummets, is it a result of excessive consumption or

delay in production? (WIP-time and task-time)
 When a large number of changeovers take place at time t, which

package brings the changeovers? (changeover-time and task-time)
 Show the schedule of the resource on which the maximum

number of changeovers are scheduled. (resource-time and task-
time)
Exploratory tasks: Exploratory tasks are kind of open ended and

require users to make and test sometimes several hypotheses. For
example, the following what-if questions have to be answered to
perform exploratory tasks. They are usually related to modification
of a schedule.
 How does the entire schedule change if several tasks are

reallocated?
 Will it violate precedence rules if a task is moved to other

resource?
 Will a modification result in an increase/decrease of

utilization/makespan?
We reviewed schedules of a typical production line in a

manufacturing facility to measure overall sizes of the schedules. We
found the schedules consisted of at most 10,000 tasks per day for 20

2331JO ET AL.: LIVEGANTT: INTERACTIVELY VISUALIZING A LARGE MANUFACTURING SCHEDULE

task with a simple glyph, such as a line segment or a rectangle, the
screen can quickly become cluttered when the schedule grows larger.

Figure 5a clearly demonstrates the scalability issue. A Gantt chart,
which is the most commonly used technique to represent schedules,
illustrates a manufacturing schedule with each bar representing one
task. However, since the schedule runs through a number of
machines in parallel, the height of each bar often becomes too short
for accurate interpretation. The problem is exacerbated when the
mean duration of a task is relatively short, too. In such a case, the
Gantt chart provides neither an overview of the schedule nor details
of each task.

Aggregation can be a good remedy for such scalability issue.
Some researches incorporated the techniques to simplify the
representation and give clear overviews [40][41]. The aggregation
applied to a large schedule provides overviews and brief summaries.

Explorability: Previous methods focused on visualizing tasks
over time: Gantt charts [14] placed tasks on a timeline and Tube map
[9] encoded a milestone as a station. However, displaying tasks over
time reveals only one aspect of schedules since the schedules also
consist of other components such as resources and packages.
Therefore, it is important to allow users to examine the schedules
from multiple perspectives. Rich user interactions such as zooming
and filtering are essential in providing more flexible exploration of
schedules.

Reschedulability: Experienced researchers and practitioners
often have doubts about the performance of the schedulers. They
want to modify the schedules (e.g. by reallocating some tasks) for
improved performance. Also, unexpected events such as the sudden
malfunction of machines or the delay in supply of raw materials
require rescheduling the entire timeline. Currently, users have to edit
raw input files and re-run the scheduler for each necessary
rescheduling. This is a lengthy and tedious task that could negatively
affect the flexibility and the overall production performance of
factories. To address the issue, it is required to integrate an efficient
rescheduling algorithm into interactive visualization. Such
integration allows users to test their hypotheses in an interactive
manner when they modify a schedule for better performance.

In this paper, we focus on manufacturing schedules used in
semiconductor facilities. The challenge comes from visualizing the
schedules since they are highly-concurrent and associated with a
large number of short tasks. We also briefly discuss on how our
approach can also be beneficial on different kinds of schedules, such
as flight itineraries.

This paper is organized as follows: After covering some domain
preliminaries in Section 3, we give an overview of LiveGantt in
Section 4. In the following two sections, we elaborate on our two
main contributions, i.e. aggregation and rescheduling. In Section 7,
we present a case study conducted with industrial engineering
researchers. To demonstrate the generalizability of our approach, we
apply LiveGantt to the visualization of flight schedules in Section 8.
In Section 10, we discuss results of this work and present possible
future works.

2 RELATED WORK

2.1 Schedule Visualization
Schedule visualization has long been studied in many fields such as
industrial engineering, statistics, and graphics/visualizations since
the 1900s. Since Henry L. Gantt introduced Gantt chart for factory
management [14], they have been the de facto standard for schedule
visualization in diverse fields, such as project management,
manufacturing, and parallel systems [39][42]. Figure 2 shows a
typical Gantt chart, where tasks are represented as Gantt bars on a
timeline. While the traditional Gantt charts have showed limitations
in dealing with large complex schedules that are common in real
fields these days, they are still widely used by many practitioners due
to their predominant familiarity with a representation. In this work,

we enhance the Gantt charts by ameliorating the limitations of
traditional Gantt charts.

Another noteworthy method for schedule visualization is PERT
[13] developed by United States Navy in the 1950s. PERT visualizes
a schedule as a graph; tasks as nodes and relationship between tasks
as edges. PERT supports a frequent task of identifying preceding
tasks by explicitly showing a precedence relationship.

Many commercial tools also borrow the concepts from Gantt or
PERT charts [3][4][10][18][25][26][28]. Most of them try to
alleviate the scalability problem with conventional scrollbars or
simple expand/collapse interactions, which might not satisfy the
needs of practitioners dealing with large complex schedules in the
field like manufacturing. Project management tools such as MS
Project [25] offer interactive Gantt charts, but they are not designed
to effectively support domain-specific tasks in manufacturing such as
visualizing performance of facilities over time.

There also have been several attempts to improve Gantt charts.
Kosara and Miksch [20] developed AsbruView for medical therapy
planning. They exploited the z axis to visualize different levels of
plans upon Gantt-like charts. Luz and Masoodian [21][22] created
temporal mosaics that utilize screen space more efficiently and
conducted a user study to compare the mosaics with Gantt charts.
Tufte redesigned Gantt charts adopting a focus+context technique for
improved scalability [12]. Huang et al. [17] presented a technique of
overlaying Gantt charts of multiple versions of a schedule to
compare different versions. In LiveGantt, we juxtapose two
schedules, one before rescheduling and the other after rescheduling,
to help users grasp the changes between the two.

Several studies aimed at visualizing uncertainties of schedules.
Aigner et al. [1] enhanced Gantt bars to show temporal uncertainties
of tasks by introducing novel glyphs, called PlanningLines. Gove et
al. [15][16] designed visualizations for uncertainties in resource
utilization and critical paths. In this work, we do not deal with
uncertainties since manufacturing schedules are based on highly
stable resources (i.e. very predictable machines).

Luz et al. proposed a remarkable schedule visualization tool
called Chronos [23]. Chronos illustrates schedules with two charts,
mosaic and Gantt. It provides a two-level task hierarchy which is
foldable to save the screen space and supports direct manipulation of
schedules with drag-and-drop interactions. LiveGantt further
improves the reschedulability with a help from an efficient
rescheduler that better suits on-site requirements of the users.

2.2 Event Sequence Visualization
Schedules can be regarded as event sequences that will occur in the
future. Thus, event sequence visualization techniques could also be
applicable to schedule visualization. We reviewed past literatures
focusing on visualizing multiple sequences at once, because they are
more appropriate for visualizing highly concurrent schedules.

Some papers presented techniques that could also be applicable to
visualizing large schedules. Wang et al. [38] introduced the
ARF(Alignment, Ranking, Filtering) framework to find patterns in a
large EHR(Electronic Health Records) dataset. The alignment
operator can be an effective tool since it allows users to rearrange the
data by an event at a specific time point. Continuum [2] provides a
temporal overview based on a histogram to help users explore long
history data. Users can enlarge a part of the overview to inspect the
data. We elaborated on the idea of alignment and zooming to
encourage exploration of complex schedules.

Several studies show that the aggregation approaches were
effective for not only identifying common event sequences but also
spotting outliers. ActiviTree [37] and LifeFlow [41] adopted
aggregation to visualize event sequences. Two following studies,
EventFlow [27] and TrailExplorer2 [35], further improved
LifeFlow’s aggregation by leveraging simplification and Hadoop-
based parallelization, respectively. However, the intrinsic difference
between event sequences and schedules makes it difficult to apply
these approaches directly to visualizing schedules: i.e. the relative
order of events is more important in event sequences while absolute

timing of tasks is more important in schedule visualization. To
address the issue, we designed time-based task aggregation, which
keeps time information more precise than existing order-based event
aggregation. More details are described in Section 5.

3 PROBLEM DEFINITIONS
In this section, we first introduce basic terms and domain knowledge
related to task scheduling in the manufacturing field. We will use
them to explain users’ needs and design rationales of our tool in this
paper. We then present important questions that practitioners dealing
with manufacture scheduling have in mind in performing their
everyday tasks.

3.1 Terminologies for Scheduling
A schedule is a plan to manufacture packages. Raw materials are
transformed to packages through a series of tasks on resources. Here
are brief explanations about preliminaries for a schedule.

Package: A package is a complete product manufactured in a
factory (e.g. a DRAM). Packages can be classified by their types
such as 1GB DRAM and 2GB DRAM. A schedule usually covers a
production plan to manufacture several types of packages. For
example, a schedule may produce 100 1GB DRAMs and 150 2GB
DRAMs. For convenience, we abbreviate the types of packages by
alphabets such as package A and package B.

Resource: In manufacturing field, resources are usually machines.
Machines can be categorized by their uses. For example, DA (die
attaching, attaching a silicon chip to a die pad) machines and WB
(wire bonding, creating connection between a chip and external leads)
machines are capable of different tasks. Each machine is identified as
a combination of its type and ID such as “DA001” or “WB002.”

Task: A task is a set of elementary operations performed on a
resource within a given time interval. In order to manufacture a
package, a series of tasks should be done. For example, three tasks
A_1, A_2, and A_3 should be finished on raw materials to create a
new package A. The order of the tasks must be maintained (e.g. A_1
first, A_2 second, and A_3 the last) in a schedule. This is called a
precedence rule. The task type is also referred to as the package type
that the task makes (e.g. the type of the task A_1 is the package A).

Schedule: A schedule consists of tasks to manufacture
designated number of packages. The size of a schedule varies
according to the extent of a factory. A small schedule may contain a
few hundreds of tasks over dozens of resources. A large schedule
could comprise over 10K tasks on hundreds of resources.

3.2 Performance Measures for Schedules
There are several factors or performance measures for evaluating
manufacturing schedules. We introduce them below along with some
relevant domain knowledge.

Changeover: A changeover is a process of changing the
configuration of a resource (i.e. machine) in order to perform a
different kind of task. For example, suppose a resource is performing
an A_1 task. To make the resource perform a B_1 task, a changeover
has to be done on the resource. Changeovers require human power: a
worker should go to the resource and change some parameter
settings for the changeover. Therefore, the number of concurrent
changeovers determines the minimum number of workers to
accomplish the schedule. If the number of workers is insufficient, the
schedule will be delayed, degrading the overall yield of a factory.

Makespan: The makespan of a schedule is the time required to
finish the schedule. It is defined as the interval between the start and
finish time of a schedule. The makespan of a schedule serves as an
important performance measure for a schedule: the shorter the
schedule, the better it is, given that different schedules manufacture
the same packages.

Utilization: Utilization is another important performance
measure for assessing the efficiency of a schedule. Utilization can be
defined for a resource, a specific time point, and a schedule.
Utilization of a resource is the ratio of the total running time of the

resource to the makespan. For example, the utilization of a resource
is 0.5 if the resource runs for only half of the makespan. The
utilization at time t can be defined as the ratio of the number of
working resources at t to the total number of resources (e.g. if 1 out
of 4 resources is working at t, the utilization at t is 0.25). Finally,
utilization of an entire schedule is the average of the utilizations of
individual resources. Domain experts in manufacturing scheduling
have to continuously monitor the utilization to check the overall
performance of a factory.

WIP (Work In Process): As mentioned above, a series of tasks
is required to produce a package. For example, A_1, A_2, and A_3
should be finished for a package A. Before the last task A_3 is done,
the package A is only partially completed. We call such an
unfinished package as WIP. In this example, there are two kinds of
WIPs: after A_1 and after A_2. Generally, researchers and
practitioners want to avoid an abrupt increase and decrease in WIP
because those changes restrict the flexibility of a factory to cope with
the unexpected events such as sudden cancellation of orders.
Therefore, WIP serves as an important factor to evaluating schedules.

3.3 Tasks and Questions
In our iterative design process for LiveGantt, we adopted the nine-
stage design study methodology framework [34] as a process for
conducting our design study. We had a regular meeting with three
industrial engineering researchers at least once every two weeks for
six months with each meeting lasting about two hours. The
researchers have worked with practitioners of manufacturing
scheduling in large factories for many years to develop efficient
scheduling algorithms. During the design process, we collected
practical needs of practitioners and identified important tasks. We
learned that most of the tasks are also relevant to researchers
studying scheduling algorithms for manufacturing. We classify the
tasks into the following three categories.

Simple tasks: Simple tasks can be performed by looking at a
schedule from a single perspective. This kind of tasks are performed
for answering the following simple questions. They are simple, yet
important to assess a schedule.
 How does the utilization change over time?
 How many workers do we need to complete the schedule?
 Which package takes the longest time to finish?
 How many resources are running tasks related to package A at

time t?
 How does WIP change over time?

Complex tasks: In contrast to simple tasks, complex tasks require
investigating schedules from two or more perspectives. This kind of
tasks are performed for answering the following complex questions.
 When WIP plummets, is it a result of excessive consumption or

delay in production? (WIP-time and task-time)
 When a large number of changeovers take place at time t, which

package brings the changeovers? (changeover-time and task-time)
 Show the schedule of the resource on which the maximum

number of changeovers are scheduled. (resource-time and task-
time)
Exploratory tasks: Exploratory tasks are kind of open ended and

require users to make and test sometimes several hypotheses. For
example, the following what-if questions have to be answered to
perform exploratory tasks. They are usually related to modification
of a schedule.
 How does the entire schedule change if several tasks are

reallocated?
 Will it violate precedence rules if a task is moved to other

resource?
 Will a modification result in an increase/decrease of

utilization/makespan?
We reviewed schedules of a typical production line in a

manufacturing facility to measure overall sizes of the schedules. We
found the schedules consisted of at most 10,000 tasks per day for 20

2332 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

different package types running on 500 resources. These number
served as a guideline for our design process.

4 VISUALIZATION DESIGN FOR LIVEGANTT
As shown in Figure 1, LiveGantt consists of three user interface
components: a main window, an exploration history view, a
visualization controller. In this section, we explain each UI
component in detail.

LiveGantt features four unique views to help users examine a
schedule from multidimensional perspectives. By using the carefully
designed multiple views, users can explore and understand schedules
more comprehensively. They can select a view to see the schedule
from a specific perspective. LiveGantt provides four views as
follows: the schedule view, the performance view, the resource view,
and the package view.

LiveGantt supports three types of filtering interactions which are
useful for interactive exploration of schedules: temporal filtering,
package filtering, and resource filtering. We equip each visualization
with most appropriate filtering interactions. For example,
performance view provides temporal filtering. For consistency,
mouse interaction is performed in the same manner across all four
views of LiveGantt: left mouse button for selection and right mouse
button for filtering.

4.1 Schedule View
Schedule view (Figure 1B) gives users a succinct overview of an
entire schedule of tasks. We employ the basic visual encoding

scheme of typical Gantt charts in our schedule view, since most users
are accustomed to the typical Gantt charts. Figure 2 shows a typical
Gantt chart. Each row represents a resource (i.e. a machine) and each
rectangular bar (i.e. Gantt bar) represents a task performed on the
resource. The position and length of a Gantt bar represent the
start/finish time and the duration of the task, respectively. Each Gantt
bar (representing a task) is usually color-coded by the type of the
task (i.e. what kind of package the resource is making at that time).

The horizontal axis of the schedule view (Figure 1B) is mapped
to time as in the typical Gantt charts. LiveGantt simplifies a
traditional Gantt chart by applying an aggregation algorithm for
improved scalability. When designing the algorithm, we
contemplated on the behavior that practitioners in the field frequently
encounter queries related to a specific time such as “How many
resources are idle at time t?” or “Show the schedule around time t”.
Therefore, we decide to develop a locally-effective aggregation
technique, which works effectively at and around a specific time
point of users’ interest. To support this design goal, the schedule
view employs the focus time line, which serves as a basis of
aggregation. The focus time line is displayed as a black vertical line
on the visualization. Users can set the focus time by dragging the line
horizontally to place it at a time point of interest. And then, Gantt
bars at or around the focus time are merged to form a bigger
aggregated Gantt bar. That is why Gantt bars in the schedule view
(Figure 1B) can have different heights unlike in traditional Gantt
charts. The aggregation algorithm will be described in more detail in
Section 5.

To further improve the clarity of the schedule overview, names of
the resources are not repeated if they are of the same type. For
example, two types of resources (25 DA machines and 75 WB
machines) are visualized in Figure 1B with only the two resource
labels (DA and WB).

When the schedule is small enough to be shown in a traditional
Gantt chart, users can choose to explore the schedule in such way.
When the traditional Gantt chart is in action, the aggregation
technique is disabled, but LiveGantt still provides options to
facilitate visual exploration: users can rearrange the resources
according to one of the three fields such as resource ID, start time,
and finish time.

When users identify an interesting pattern in the schedule
overview, they can hover the mouse cursor over a task bar of interest
to see details about the task in a tooltip. The level of details varies
depending on the version of Gantt chart currently activated. In case
of traditional ones, only simple information like name of the task,
name of the resource, start time, finish time, and duration is provided
(Figure 3a). However, in the case of improved Gantt charts, an in-

Fig. 2. An example of a traditional Gantt chart. A schedule runs 13
tasks on 4 resources (i.e. machines) for 18 hours. The horizontal axis
represents time and each row represents a resource, i.e. a machine.
Tasks on a resource are represented as bars on the corresponding
row for the resource. Color of a bar illustrates the package the task
makes. DA001 runs a task for making package A from 0:00 for 6
hours. After 3-hour break, DA001 continues on package B.
Changeover (a dark gray rectangle) is taken between package C and
D to change the configuration of the machine. WB001 and WB002
alternate package D and E 2 times.

Fig. 3. Details on demand. (a) Hovering the cursor on a Gantt bar shows the details. (b) Hovering the cursor on an aggregated bar gives more
information including the summary of subsequent tasks. (c) A right-click on an aggregated bar reveals traditional Gantt bars which are
aggregated into the bar. (d) Lens metaphor helps rescheduling on aggregated Gantt bars. When users drag and drop a task onto an aggregated
bar, all Gantt bars aggregated into the bar are shown in a semantic zoom lens.

depth summary about the selected aggregated bar is given in the
tooltip (Figure 3b). It contains the number of resources that the bar
aggregates, mean duration of aggregated tasks, and information
about the subsequent tasks. Also, the most frequent task sequence
after the bar is highlighted in saturated colors (Figure 1B)

LiveGantt supports semantic zooming into an aggregated bar.
When users right-click on an aggregated bar to know more details,
individual task bars which are aggregated into the bar appear (Figure
3c). Users can get details about each task by hovering the cursor over
an individual task bar. A tooltip turns up in the same way as in
traditional Gantt charts. Users can drag and drop a task bar from a
resource to another for instantaneously rescheduling the task. More
information about rescheduling is described in Section 6.

4.2 Performance View
Another important everyday task that practitioners have to perform is
to monitor the performance of a schedule over time. They are
especially interested in two performance measures: utilization and
changeover. Performance view (Figure 4a) shows utilization as an
orange line chart and the number of concurrent changeovers as a blue
bar chart. The horizontal axis represents time and two vertical axes
are for utilization and changeover, respectively. The two charts are
superimposed to help users investigate the correlation between the
two measures, which is an important task especially for practitioners.
For example, if the utilization of a schedule fell but the number of
concurrent changeovers was not changed, they can conclude the drop
came from idle resources not from changeovers.

If the makespan of a schedule is too long, it can result in a
scalability problem in the line chart for utilization: the chart becomes
crowded with too many points that could hinder seamless exploration.
To deal with the issue, we employed Ramer-Douglas-Peucker
algorithm [11][30] to reduce the number of points in the line chart. If
the number of points is more than a threshold, the algorithm
approximates the line chart using smaller number of points.

The number of concurrent changeovers is critical for a successful
run of a schedule, because it determines the minimum number of
workers required to perform the changeovers to accomplish the
schedule. In order to illustrate changeovers on a timeline, the
performance view divides the entire makespan of the schedule into
small unit intervals. Bar charts are employed to show both time
information of an interval and the maximum number of concurrent
changeovers in the interval simultaneously. A bar in bar charts
represents time information of an interval as horizontal position of
the bar and the maximum number of concurrent changeovers as the
height of the bar. The granularity of the unit interval is chosen from
customizable preset unit intervals (e.g. 1-hour unit interval for a 2-

day or shorter period and 3-hour unit interval for a 2-day or longer
period). This feature prevents too many or too few bars from being
displayed in the screen.

When users detect interesting patterns (e.g. abnormal changes) in
a specific temporal range, they can exploit temporal filtering to
investigate the changes in detail. Users can drag on the timeline to
select the interval of interest, which will be zoomed in. The selected
interval is highlighted in semitransparent gray. Users can adjust the
interval by dragging on the interval itself or the start/end points.
When users right-click on the interval, they can zoom in to the
selected interval to check the detailed pattern of
utilization/changeover changes within the interval.

4.3 Resource View
Detecting inefficient behavior of resources (i.e. machines) is also
important for maintaining the flexibility and the overall production
performance of factories. For example, if the utilization of a resource
is low, there may be room for improvement in the schedule. Using
the resource view, users can monitor the performance of resources
from various perspectives: utilization of a resource, total time
consumed for changeover, and operation start/finish time (Figure 4b).

Utilization and total changeover time for each resource are shown
in bar charts (the blue and orange charts in Figure 4b). In those bar
charts, resources are mapped to the horizontal axis sorted by the
value of utilization or total changeover time, i.e. resources with the
lowest utilization or the least amount of changeover time come first.
Using these two charts, users can easily identify the resources that
are underutilized or experience lengthy changeover. Operation start
time and finish time are shown in a Gantt-like chart where users can
easily examine when a resource started the first task and finished the
last task assigned to it (the green chart in Figure 4b).

Since users are interested in the cause of unusual behaviors of
resources, the resource view supports multiple view interconnected
through brushing and linking [6], so that they can select resources of
interest in one chart to investigate them in other linked views. For
example, users can select resource with low utilization in the
utilization bar chart and check whether they suffer from long
changeovers in the bar chart of the total changeover time. All charts
in the resource view are interconnected through resource ID, and
thus when users select resources by dragging on a chart,
corresponding resources in other charts are highlighted.

Users can take advantage of a simple resource filtering
interaction to focus more on a small number of selected resources.
To maintain internal consistency with other views, the resource view
also uses the brushing interaction to select the focused resources. A
right-click on the brushed area filters out unselected resources.

Fig 4. The performance view and the resource view. (a) The performance view displays two important measures for assessing schedules,
changes in utilization and the number of concurrent changeovers. A time interval is selected for temporal filtering (gray rectangle). A reference
line (black vertical line) follows the mouse cursor indicating corresponding values. This feature can be turned off. (b) The resource view allows
users to inspect resources by their attributes of utilization and total changeover time. Some resources are brushed with semitransparent gray.
The resource view supports brushing and linking so resources on other charts are also highlighted. Brushing can trigger resource filtering.

2333JO ET AL.: LIVEGANTT: INTERACTIVELY VISUALIZING A LARGE MANUFACTURING SCHEDULE

different package types running on 500 resources. These number
served as a guideline for our design process.

4 VISUALIZATION DESIGN FOR LIVEGANTT
As shown in Figure 1, LiveGantt consists of three user interface
components: a main window, an exploration history view, a
visualization controller. In this section, we explain each UI
component in detail.

LiveGantt features four unique views to help users examine a
schedule from multidimensional perspectives. By using the carefully
designed multiple views, users can explore and understand schedules
more comprehensively. They can select a view to see the schedule
from a specific perspective. LiveGantt provides four views as
follows: the schedule view, the performance view, the resource view,
and the package view.

LiveGantt supports three types of filtering interactions which are
useful for interactive exploration of schedules: temporal filtering,
package filtering, and resource filtering. We equip each visualization
with most appropriate filtering interactions. For example,
performance view provides temporal filtering. For consistency,
mouse interaction is performed in the same manner across all four
views of LiveGantt: left mouse button for selection and right mouse
button for filtering.

4.1 Schedule View
Schedule view (Figure 1B) gives users a succinct overview of an
entire schedule of tasks. We employ the basic visual encoding

scheme of typical Gantt charts in our schedule view, since most users
are accustomed to the typical Gantt charts. Figure 2 shows a typical
Gantt chart. Each row represents a resource (i.e. a machine) and each
rectangular bar (i.e. Gantt bar) represents a task performed on the
resource. The position and length of a Gantt bar represent the
start/finish time and the duration of the task, respectively. Each Gantt
bar (representing a task) is usually color-coded by the type of the
task (i.e. what kind of package the resource is making at that time).

The horizontal axis of the schedule view (Figure 1B) is mapped
to time as in the typical Gantt charts. LiveGantt simplifies a
traditional Gantt chart by applying an aggregation algorithm for
improved scalability. When designing the algorithm, we
contemplated on the behavior that practitioners in the field frequently
encounter queries related to a specific time such as “How many
resources are idle at time t?” or “Show the schedule around time t”.
Therefore, we decide to develop a locally-effective aggregation
technique, which works effectively at and around a specific time
point of users’ interest. To support this design goal, the schedule
view employs the focus time line, which serves as a basis of
aggregation. The focus time line is displayed as a black vertical line
on the visualization. Users can set the focus time by dragging the line
horizontally to place it at a time point of interest. And then, Gantt
bars at or around the focus time are merged to form a bigger
aggregated Gantt bar. That is why Gantt bars in the schedule view
(Figure 1B) can have different heights unlike in traditional Gantt
charts. The aggregation algorithm will be described in more detail in
Section 5.

To further improve the clarity of the schedule overview, names of
the resources are not repeated if they are of the same type. For
example, two types of resources (25 DA machines and 75 WB
machines) are visualized in Figure 1B with only the two resource
labels (DA and WB).

When the schedule is small enough to be shown in a traditional
Gantt chart, users can choose to explore the schedule in such way.
When the traditional Gantt chart is in action, the aggregation
technique is disabled, but LiveGantt still provides options to
facilitate visual exploration: users can rearrange the resources
according to one of the three fields such as resource ID, start time,
and finish time.

When users identify an interesting pattern in the schedule
overview, they can hover the mouse cursor over a task bar of interest
to see details about the task in a tooltip. The level of details varies
depending on the version of Gantt chart currently activated. In case
of traditional ones, only simple information like name of the task,
name of the resource, start time, finish time, and duration is provided
(Figure 3a). However, in the case of improved Gantt charts, an in-

Fig. 2. An example of a traditional Gantt chart. A schedule runs 13
tasks on 4 resources (i.e. machines) for 18 hours. The horizontal axis
represents time and each row represents a resource, i.e. a machine.
Tasks on a resource are represented as bars on the corresponding
row for the resource. Color of a bar illustrates the package the task
makes. DA001 runs a task for making package A from 0:00 for 6
hours. After 3-hour break, DA001 continues on package B.
Changeover (a dark gray rectangle) is taken between package C and
D to change the configuration of the machine. WB001 and WB002
alternate package D and E 2 times.

Fig. 3. Details on demand. (a) Hovering the cursor on a Gantt bar shows the details. (b) Hovering the cursor on an aggregated bar gives more
information including the summary of subsequent tasks. (c) A right-click on an aggregated bar reveals traditional Gantt bars which are
aggregated into the bar. (d) Lens metaphor helps rescheduling on aggregated Gantt bars. When users drag and drop a task onto an aggregated
bar, all Gantt bars aggregated into the bar are shown in a semantic zoom lens.

depth summary about the selected aggregated bar is given in the
tooltip (Figure 3b). It contains the number of resources that the bar
aggregates, mean duration of aggregated tasks, and information
about the subsequent tasks. Also, the most frequent task sequence
after the bar is highlighted in saturated colors (Figure 1B)

LiveGantt supports semantic zooming into an aggregated bar.
When users right-click on an aggregated bar to know more details,
individual task bars which are aggregated into the bar appear (Figure
3c). Users can get details about each task by hovering the cursor over
an individual task bar. A tooltip turns up in the same way as in
traditional Gantt charts. Users can drag and drop a task bar from a
resource to another for instantaneously rescheduling the task. More
information about rescheduling is described in Section 6.

4.2 Performance View
Another important everyday task that practitioners have to perform is
to monitor the performance of a schedule over time. They are
especially interested in two performance measures: utilization and
changeover. Performance view (Figure 4a) shows utilization as an
orange line chart and the number of concurrent changeovers as a blue
bar chart. The horizontal axis represents time and two vertical axes
are for utilization and changeover, respectively. The two charts are
superimposed to help users investigate the correlation between the
two measures, which is an important task especially for practitioners.
For example, if the utilization of a schedule fell but the number of
concurrent changeovers was not changed, they can conclude the drop
came from idle resources not from changeovers.

If the makespan of a schedule is too long, it can result in a
scalability problem in the line chart for utilization: the chart becomes
crowded with too many points that could hinder seamless exploration.
To deal with the issue, we employed Ramer-Douglas-Peucker
algorithm [11][30] to reduce the number of points in the line chart. If
the number of points is more than a threshold, the algorithm
approximates the line chart using smaller number of points.

The number of concurrent changeovers is critical for a successful
run of a schedule, because it determines the minimum number of
workers required to perform the changeovers to accomplish the
schedule. In order to illustrate changeovers on a timeline, the
performance view divides the entire makespan of the schedule into
small unit intervals. Bar charts are employed to show both time
information of an interval and the maximum number of concurrent
changeovers in the interval simultaneously. A bar in bar charts
represents time information of an interval as horizontal position of
the bar and the maximum number of concurrent changeovers as the
height of the bar. The granularity of the unit interval is chosen from
customizable preset unit intervals (e.g. 1-hour unit interval for a 2-

day or shorter period and 3-hour unit interval for a 2-day or longer
period). This feature prevents too many or too few bars from being
displayed in the screen.

When users detect interesting patterns (e.g. abnormal changes) in
a specific temporal range, they can exploit temporal filtering to
investigate the changes in detail. Users can drag on the timeline to
select the interval of interest, which will be zoomed in. The selected
interval is highlighted in semitransparent gray. Users can adjust the
interval by dragging on the interval itself or the start/end points.
When users right-click on the interval, they can zoom in to the
selected interval to check the detailed pattern of
utilization/changeover changes within the interval.

4.3 Resource View
Detecting inefficient behavior of resources (i.e. machines) is also
important for maintaining the flexibility and the overall production
performance of factories. For example, if the utilization of a resource
is low, there may be room for improvement in the schedule. Using
the resource view, users can monitor the performance of resources
from various perspectives: utilization of a resource, total time
consumed for changeover, and operation start/finish time (Figure 4b).

Utilization and total changeover time for each resource are shown
in bar charts (the blue and orange charts in Figure 4b). In those bar
charts, resources are mapped to the horizontal axis sorted by the
value of utilization or total changeover time, i.e. resources with the
lowest utilization or the least amount of changeover time come first.
Using these two charts, users can easily identify the resources that
are underutilized or experience lengthy changeover. Operation start
time and finish time are shown in a Gantt-like chart where users can
easily examine when a resource started the first task and finished the
last task assigned to it (the green chart in Figure 4b).

Since users are interested in the cause of unusual behaviors of
resources, the resource view supports multiple view interconnected
through brushing and linking [6], so that they can select resources of
interest in one chart to investigate them in other linked views. For
example, users can select resource with low utilization in the
utilization bar chart and check whether they suffer from long
changeovers in the bar chart of the total changeover time. All charts
in the resource view are interconnected through resource ID, and
thus when users select resources by dragging on a chart,
corresponding resources in other charts are highlighted.

Users can take advantage of a simple resource filtering
interaction to focus more on a small number of selected resources.
To maintain internal consistency with other views, the resource view
also uses the brushing interaction to select the focused resources. A
right-click on the brushed area filters out unselected resources.

Fig 4. The performance view and the resource view. (a) The performance view displays two important measures for assessing schedules,
changes in utilization and the number of concurrent changeovers. A time interval is selected for temporal filtering (gray rectangle). A reference
line (black vertical line) follows the mouse cursor indicating corresponding values. This feature can be turned off. (b) The resource view allows
users to inspect resources by their attributes of utilization and total changeover time. Some resources are brushed with semitransparent gray.
The resource view supports brushing and linking so resources on other charts are also highlighted. Brushing can trigger resource filtering.

2334 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

Filtered out resources are hidden in a subsequent resource view and
the schedule view. Selection and filtering interactions in one chart
are also coordinated with other charts to facilitate multidimensional
exploration of resource behaviors.

4.4 Package View
Practitioners in the manufacturing field have to carefully monitor the
number of completed packages and WIPs over time, since it is
directly related to the yield of a factory. They have to avoid a
situation where drastic changes in the number of WIPs could harm
the smooth production cycle. We designed the package view to help
practitioners identify such situations in advance and take a pre-
emptive action to prevent it from happening.

Package view (Figure 1C) shows the number of completed
packages and WIPs. The package view employs multiple line charts
with one line chart for each package type, because line charts are
familiar to practitioners and manufacturing schedules have only a
small number of different package types.

Since a series of tasks are required to manufacture a complete
package, the package view is designed to support 2-level exploration.
Users first see the overview of the number of completed packages for
each package type in line charts. And then they can drill down to a
specific package type and investigate the number of WIPs generated
in process of packages of the package type.

To facilitate efficient identification of sudden changes in the
number of WIPs, the slope of a line chart in the package view is
encoded by the color of area below the line, which was introduced in
[5]. The more saturated the color is, the higher the slope is. In the
case of a line chart for the number of WIPs, the slope of the line can
be negative, which means some resources are consuming the WIPs to
complete packages. Negative slope is encoded with a different hue
(i.e. blue) to make it clearly distinguishable from the positive slope.

Users can control the visibility of each line chart for a package
type using a corresponding checkbox (see the red rectangle in Figure
1C). This feature helps users focus on a small set of packages of their
interest. When users make some packages invisible by unchecking
the corresponding checkbox, charts for the invisible packages
become collapsed and charts of the visible packages are vertically
stretched to show their contents in more detail.

To help interactive exploration in the package view, we support
two interactive filtering operations: temporal filtering and package
filtering. Temporal filtering works in the same way as in the
performance view. Users can interactively select a time period of
interest and zoom into the period for more detailed examination.
Users can also filter out some packages to focus on a small number
of selected packages in the package view. Users can select packages
by clicking the package names, and the selected packages are
highlighted in semitransparent gray, and an accompanying right-
click on the packages filters out packages other than the highlighted
packages. When one or more packages are filtered out, tasks
pertaining to those packages become semitransparent in other
connected views in LiveGantt such as in schedule view.

4.5 Exploration History View and Visualization
Controller

In addition to four main views, LiveGantt provides two components,
an exploration history view and a visualization controller, in order to
facilitate exploration of a schedule.

The exploration history view visualizes the exploration sequence
with thumbnails (Figure 1A). Enabling users to interact with their
exploration history is known to play an important role in the
visualization process [36]. We designed an exploration history view
to help users recall exploration sequences and understand the
exploration context leading to the current visualization session.

Whenever users perform any filtering interaction, the exploration
history view keeps track of the thumbnail of the main window and
the corresponding filtering operation. The thumbnails show the
selected area before the operation, which allows users to conjecture

what kind of and how filtering operation is applied. Additionally, the
view where a temporal filtering interaction occurs is connected to the
resulting view using an upside-down funnel-shaped block that
clearly indicates what is selected to see more detail about. User can
examine details of each operation by hovering the cursor on a
magnifier icon at the funnel-shaped block.

Reviewing thumbnails in the exploration history view can help
users grasp the overview of their exploration sequence. Users can
click on a thumbnail to review the previous views again in the main
window. An eye-shaped icon on the top left corner of a thumbnail
indicates that the corresponding view is shown in the main window.
When users want to undo the last filtering interaction, they can
mouse over on the last thumbnail and click on the “X” button that
appears on the thumbnail.

The visualization controller allows users to control all aspects of
LiveGantt (see the red rectangles in Figure 4). The controller
window is compact and floating so that users can utilize whole
screen space for the important main window. Users can change the
current view by using four buttons at the top.

There are two buttons for juxtaposition right below four buttons
for views. Juxtaposition is a powerful device for comparative
exploration. LiveGantt provides two kinds of juxtaposition,
horizontal and vertical. For example, in Figure 1, the schedule view
is juxtaposed with the package view horizontally. Timeline-related
interactions such as dragging the focus time line in one view create a
vertical line on the timeline of the other view for a reference.
LiveGantt allows at most two views to share the main window
concurrently because of space limitation. The remove button on the
controller deletes the secondary view and reverts the state of the
main window to the single view mode.

Additional options are available in the option tab right below the
two juxtaposition buttons. The option tab is collapsible for saving
screen space. Additional options varies depending on the active view
(see the red rectangles in Figure 1). For example, the schedule view
offers an option to determine whether the aggregation is used or not.

5 AGGREGATION ALGORITHM
To visualize schedules in a scalable way, LiveGantt applies two
simplification methods to Gantt charts, resource reordering and
aggregation. Resource reordering can be thought of as a clustering to
group similar tasks together. After reordering, adjacent tasks are
aggregated to form a single task block, which will significantly
reduce the clutter in visualization and actually make the schedule
visualization more scalable.

We decided to do the aggregation only at and around a specific
time point (i.e. focus time) instead of doing it globally over the
whole schedule visualization. The main reason was that domain
experts usually focus on a specific time point of interest at a time
when they examine large schedules. Another reason was that
manufacturing schedules are globally diverse but locally similar.
Thus, local aggregation can simplify a schedule in a more
ecologically effective way while better preserving valuable time
information in the schedule.

Before devising an aggregation algorithm, we explained our idea
to domain experts to make sure that it would not hurt any important
constraints in the manufacturing domain. While they gave positive
feedback in general, they also told us some important constraints that
should be satisfied during and after the aggregation. We summarize
the constraints as follows:
 Tasks can be merged only if the resources that the tasks are

performed on have the same type and the tasks target the same
package type. For example, a task from DA001 and a task from
WB001 cannot be merged. Also, an A_1 task and a B_1 task
cannot be merged because they target different package types, A
and B.
 It is important to identify whether a resource is working or not at

focus time t. If a resource is idle at t, the aggregation should
preserve the minimum gap between the focus time line and the

first task after t to prevent misunderstanding that the resource is
working at t.
 When aggregating tasks before the focus time t, the tasks on

already finished resources should be separated from the tasks on
ongoing resources to enable separate investigation according to
the status of resources at t.
Resource reordering is a process which changes the order of

resources placed on the vertical axis. Typically in Gantt charts,
resources are arranged on the vertical axis according to a specific
order such as alphabetical order of resources’ ID. We developed a
novel resource reordering algorithm to maximize the effect of
aggregation, resulting in a simplified representation of a schedule (i.e.
a less cluttered Gantt chart). For example, Figure 5b shows the
resource reordering result of Figure 5a.

Along the same lines as reorderable matrix techniques [7][24],
our reordering algorithm changes the order of resources according to
resource and package types. The order of resources is determined by
follows: Given a focus time t, resources are first rearranged
according to their type such as “DA” or “WB.” For resources that
have the same type, the package type that is being made at t on each
resource is considered as the next criterion. For example, resources
that produce package A at t will precede resources that produce
package B at t. For resources that even work on the same package
type at t, comparison continues on the next package types that the

resources will work on after finishing tasks at t until order is
determined.

Aggregation merges vertically adjacent tasks (i.e. Gantt bars) into
a simplified form (i.e. a single Gantt bar) after resource reordering.
The objective of aggregation is to decrease the number of visible
Gantt bars (i.e. tasks in order to provide a neater overview of a
complex schedule. When several tasks are aggregated into a single
aggregated task, the start time and finish time of the aggregated task
are calculated as the mean of aggregated tasks (Figure 5c).

Given a focus time t, two subsequent aggregations occur: forward
aggregation and backward aggregation. Forward aggregation deals
with tasks after t while backward aggregation works on tasks before t.
Although users are more interested in tasks in the future, backward
aggregation could help users recall the past. Figure 6 illustrates how
resource reordering and aggregation work.

Aggregation was especially inspired by LifeFlow [41] which
adopts aggregation to simplify event sequences. We improved the
LifeFlow’s aggregation algorithm to make it more appropriate for
schedule visualization. To distinguish the two algorithms, we named
the algorithms order-based event aggregation (LifeFlow’s) and time-
based task aggregation (ours).

The order-based event aggregation introduced in LifeFlow
aggregates two event sequences by merging corresponding events
from start until the i-th events from each sequence have different

Fig. 6. Graphic explanation for aggregation. Before aggregation, a resource reordering method is taken. (a) The first ordering criterion is the
type of a resource. All DA(die attaching) machines are grouped together. The same applies to other resource types (e.g. WB machines). (b)
The second criterion is the package type which is being manufactured at the focus time. Reordered resources are depicted in a dashed box. (c)
If the package at the focus time have the same type, comparison continues on the subsequent tasks. A dashed box encloses reordered
resources. (d) The reordering finished. (e) After reordering, forward aggregation takes place on tasks after 𝑡𝑡𝑡𝑡. Forward aggregation created 3
holes. If the length of a hole is shorter than the threshold (τ), the subsequent task of the hole is stretched to fill the hole. (f) Tasks which have
larger time difference than the threshold cannot be aggregated. Note that stretching is skipped on task A to preserve the gap between task A
and the focus time line. (g) Forward aggregation finished. (h) Backward aggregation finished.

Fig. 5. Interactive simplification of a schedule view by applying our aggregation algorithm (a) A Gantt chart with the black focus time line.
Unaligned colorful Gantt bars are the main culprit of the cluttering problem of Gantt charts. (b) Resources are reordered to boost the effect of
subsequent aggregation. (c) After aggregation, tasks around the focus time line are simplified showing the subsequent schedule clearly. This
aggregation interaction can be done interactively and instantaneously while users dragging the black focus time line. (d) Tasks are faded out to
avoid cluttering problems except for the tasks which follow right behind the focus time line.

2335JO ET AL.: LIVEGANTT: INTERACTIVELY VISUALIZING A LARGE MANUFACTURING SCHEDULE

Filtered out resources are hidden in a subsequent resource view and
the schedule view. Selection and filtering interactions in one chart
are also coordinated with other charts to facilitate multidimensional
exploration of resource behaviors.

4.4 Package View
Practitioners in the manufacturing field have to carefully monitor the
number of completed packages and WIPs over time, since it is
directly related to the yield of a factory. They have to avoid a
situation where drastic changes in the number of WIPs could harm
the smooth production cycle. We designed the package view to help
practitioners identify such situations in advance and take a pre-
emptive action to prevent it from happening.

Package view (Figure 1C) shows the number of completed
packages and WIPs. The package view employs multiple line charts
with one line chart for each package type, because line charts are
familiar to practitioners and manufacturing schedules have only a
small number of different package types.

Since a series of tasks are required to manufacture a complete
package, the package view is designed to support 2-level exploration.
Users first see the overview of the number of completed packages for
each package type in line charts. And then they can drill down to a
specific package type and investigate the number of WIPs generated
in process of packages of the package type.

To facilitate efficient identification of sudden changes in the
number of WIPs, the slope of a line chart in the package view is
encoded by the color of area below the line, which was introduced in
[5]. The more saturated the color is, the higher the slope is. In the
case of a line chart for the number of WIPs, the slope of the line can
be negative, which means some resources are consuming the WIPs to
complete packages. Negative slope is encoded with a different hue
(i.e. blue) to make it clearly distinguishable from the positive slope.

Users can control the visibility of each line chart for a package
type using a corresponding checkbox (see the red rectangle in Figure
1C). This feature helps users focus on a small set of packages of their
interest. When users make some packages invisible by unchecking
the corresponding checkbox, charts for the invisible packages
become collapsed and charts of the visible packages are vertically
stretched to show their contents in more detail.

To help interactive exploration in the package view, we support
two interactive filtering operations: temporal filtering and package
filtering. Temporal filtering works in the same way as in the
performance view. Users can interactively select a time period of
interest and zoom into the period for more detailed examination.
Users can also filter out some packages to focus on a small number
of selected packages in the package view. Users can select packages
by clicking the package names, and the selected packages are
highlighted in semitransparent gray, and an accompanying right-
click on the packages filters out packages other than the highlighted
packages. When one or more packages are filtered out, tasks
pertaining to those packages become semitransparent in other
connected views in LiveGantt such as in schedule view.

4.5 Exploration History View and Visualization
Controller

In addition to four main views, LiveGantt provides two components,
an exploration history view and a visualization controller, in order to
facilitate exploration of a schedule.

The exploration history view visualizes the exploration sequence
with thumbnails (Figure 1A). Enabling users to interact with their
exploration history is known to play an important role in the
visualization process [36]. We designed an exploration history view
to help users recall exploration sequences and understand the
exploration context leading to the current visualization session.

Whenever users perform any filtering interaction, the exploration
history view keeps track of the thumbnail of the main window and
the corresponding filtering operation. The thumbnails show the
selected area before the operation, which allows users to conjecture

what kind of and how filtering operation is applied. Additionally, the
view where a temporal filtering interaction occurs is connected to the
resulting view using an upside-down funnel-shaped block that
clearly indicates what is selected to see more detail about. User can
examine details of each operation by hovering the cursor on a
magnifier icon at the funnel-shaped block.

Reviewing thumbnails in the exploration history view can help
users grasp the overview of their exploration sequence. Users can
click on a thumbnail to review the previous views again in the main
window. An eye-shaped icon on the top left corner of a thumbnail
indicates that the corresponding view is shown in the main window.
When users want to undo the last filtering interaction, they can
mouse over on the last thumbnail and click on the “X” button that
appears on the thumbnail.

The visualization controller allows users to control all aspects of
LiveGantt (see the red rectangles in Figure 4). The controller
window is compact and floating so that users can utilize whole
screen space for the important main window. Users can change the
current view by using four buttons at the top.

There are two buttons for juxtaposition right below four buttons
for views. Juxtaposition is a powerful device for comparative
exploration. LiveGantt provides two kinds of juxtaposition,
horizontal and vertical. For example, in Figure 1, the schedule view
is juxtaposed with the package view horizontally. Timeline-related
interactions such as dragging the focus time line in one view create a
vertical line on the timeline of the other view for a reference.
LiveGantt allows at most two views to share the main window
concurrently because of space limitation. The remove button on the
controller deletes the secondary view and reverts the state of the
main window to the single view mode.

Additional options are available in the option tab right below the
two juxtaposition buttons. The option tab is collapsible for saving
screen space. Additional options varies depending on the active view
(see the red rectangles in Figure 1). For example, the schedule view
offers an option to determine whether the aggregation is used or not.

5 AGGREGATION ALGORITHM
To visualize schedules in a scalable way, LiveGantt applies two
simplification methods to Gantt charts, resource reordering and
aggregation. Resource reordering can be thought of as a clustering to
group similar tasks together. After reordering, adjacent tasks are
aggregated to form a single task block, which will significantly
reduce the clutter in visualization and actually make the schedule
visualization more scalable.

We decided to do the aggregation only at and around a specific
time point (i.e. focus time) instead of doing it globally over the
whole schedule visualization. The main reason was that domain
experts usually focus on a specific time point of interest at a time
when they examine large schedules. Another reason was that
manufacturing schedules are globally diverse but locally similar.
Thus, local aggregation can simplify a schedule in a more
ecologically effective way while better preserving valuable time
information in the schedule.

Before devising an aggregation algorithm, we explained our idea
to domain experts to make sure that it would not hurt any important
constraints in the manufacturing domain. While they gave positive
feedback in general, they also told us some important constraints that
should be satisfied during and after the aggregation. We summarize
the constraints as follows:
 Tasks can be merged only if the resources that the tasks are

performed on have the same type and the tasks target the same
package type. For example, a task from DA001 and a task from
WB001 cannot be merged. Also, an A_1 task and a B_1 task
cannot be merged because they target different package types, A
and B.
 It is important to identify whether a resource is working or not at

focus time t. If a resource is idle at t, the aggregation should
preserve the minimum gap between the focus time line and the

first task after t to prevent misunderstanding that the resource is
working at t.
 When aggregating tasks before the focus time t, the tasks on

already finished resources should be separated from the tasks on
ongoing resources to enable separate investigation according to
the status of resources at t.
Resource reordering is a process which changes the order of

resources placed on the vertical axis. Typically in Gantt charts,
resources are arranged on the vertical axis according to a specific
order such as alphabetical order of resources’ ID. We developed a
novel resource reordering algorithm to maximize the effect of
aggregation, resulting in a simplified representation of a schedule (i.e.
a less cluttered Gantt chart). For example, Figure 5b shows the
resource reordering result of Figure 5a.

Along the same lines as reorderable matrix techniques [7][24],
our reordering algorithm changes the order of resources according to
resource and package types. The order of resources is determined by
follows: Given a focus time t, resources are first rearranged
according to their type such as “DA” or “WB.” For resources that
have the same type, the package type that is being made at t on each
resource is considered as the next criterion. For example, resources
that produce package A at t will precede resources that produce
package B at t. For resources that even work on the same package
type at t, comparison continues on the next package types that the

resources will work on after finishing tasks at t until order is
determined.

Aggregation merges vertically adjacent tasks (i.e. Gantt bars) into
a simplified form (i.e. a single Gantt bar) after resource reordering.
The objective of aggregation is to decrease the number of visible
Gantt bars (i.e. tasks in order to provide a neater overview of a
complex schedule. When several tasks are aggregated into a single
aggregated task, the start time and finish time of the aggregated task
are calculated as the mean of aggregated tasks (Figure 5c).

Given a focus time t, two subsequent aggregations occur: forward
aggregation and backward aggregation. Forward aggregation deals
with tasks after t while backward aggregation works on tasks before t.
Although users are more interested in tasks in the future, backward
aggregation could help users recall the past. Figure 6 illustrates how
resource reordering and aggregation work.

Aggregation was especially inspired by LifeFlow [41] which
adopts aggregation to simplify event sequences. We improved the
LifeFlow’s aggregation algorithm to make it more appropriate for
schedule visualization. To distinguish the two algorithms, we named
the algorithms order-based event aggregation (LifeFlow’s) and time-
based task aggregation (ours).

The order-based event aggregation introduced in LifeFlow
aggregates two event sequences by merging corresponding events
from start until the i-th events from each sequence have different

Fig. 6. Graphic explanation for aggregation. Before aggregation, a resource reordering method is taken. (a) The first ordering criterion is the
type of a resource. All DA(die attaching) machines are grouped together. The same applies to other resource types (e.g. WB machines). (b)
The second criterion is the package type which is being manufactured at the focus time. Reordered resources are depicted in a dashed box. (c)
If the package at the focus time have the same type, comparison continues on the subsequent tasks. A dashed box encloses reordered
resources. (d) The reordering finished. (e) After reordering, forward aggregation takes place on tasks after 𝑡𝑡𝑡𝑡. Forward aggregation created 3
holes. If the length of a hole is shorter than the threshold (τ), the subsequent task of the hole is stretched to fill the hole. (f) Tasks which have
larger time difference than the threshold cannot be aggregated. Note that stretching is skipped on task A to preserve the gap between task A
and the focus time line. (g) Forward aggregation finished. (h) Backward aggregation finished.

Fig. 5. Interactive simplification of a schedule view by applying our aggregation algorithm (a) A Gantt chart with the black focus time line.
Unaligned colorful Gantt bars are the main culprit of the cluttering problem of Gantt charts. (b) Resources are reordered to boost the effect of
subsequent aggregation. (c) After aggregation, tasks around the focus time line are simplified showing the subsequent schedule clearly. This
aggregation interaction can be done interactively and instantaneously while users dragging the black focus time line. (d) Tasks are faded out to
avoid cluttering problems except for the tasks which follow right behind the focus time line.

2336 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

event types. However, the time-based task aggregation has a stronger
stop condition: the aggregation also stops when time difference of
two tasks (e.g. larger difference in start time and finish time) is
longer than a given small threshold (τ). This condition prevents tasks
from being aggregated when there is a large time difference between
them. In this way, the important timing information of a schedule can
be better preserved.

Order-based event aggregation and time-based task aggregation
enable different kinds of alignment operations. Order-based event
aggregation handles alignment queries based on event type and
relative order, for example, “Align by the first ICU event.” In
contrast, time-based task aggregation accepts queries involving a
specific time point such as “Align at 3:00 pm.”

The threshold (τ) plays one more important role in addition to
preventing the merge of tasks with large time difference between
them. During aggregation, a hole between consecutive tasks can
appear, which could cause some extra clutter (Figure 6e). For
example, suppose two consecutive tasks, task A and task B. Task A
precedes task B and the finish time of task A is the start time of task
B. After averaging the finish time to merge task A with other tasks
into an aggregated task block, a hole emerges between task A and
task B if the average finish time of the task block is earlier than the
start time of task B. Because those holes could hurt the neatness of
the overview, in the example, task B is stretched to fill the hole if the
length of hole is shorter than the threshold. In summary, a larger
threshold simplifies Gantt charts more, but at the cost of showing
accurate timing information of a given schedule. However, even in
the case, it is guaranteed that the degree of inaccuracy is less than the
threshold.

6 INTERACTION DESIGN FOR RESCHEDULING
Users’ eventual goal of exploring a schedule is to modify the
schedule for better performance using empirical knowledge.
Previously, every time they tested a new hypothesis on the
improvement of a schedule, they had to edit input files and feed them
back to a rescheduler. Such a lack of instantaneous reschedulability
exhausts users and consequently discourages them from applying
their expert knowledge to test more hypotheses. To address the issue,
we integrate rescheduling interactions into the schedule view.

We note the fact that a Gantt chart itself can be an intuitive
interface for rescheduling. Dragging a Gantt bar and dropping the bar
on a different resource reallocates the corresponding task to the
resource. After users modify task sequences, a rescheduler is called
to simulate required changes. Since we implement and apply a real
time rescheduling algorithm, users can instantaneously check the
result of rescheduling in the schedule view.

To help users select a promising one from numerous possible
places to reposition a task on, LiveGantt shows a preview of the
result of rescheduling before users commit the change. The preview
includes the place where the task will be allocated and how
utilization and makespan are changed compared to the current
schedule (Figure 3d). A right-click cancels dragging and reverts the
selected task to the original position.

Sometimes, users try invalid rescheduling operations such as
moving a task to an incompatible resource. To prevent these
erroneous actions, tasks on incompatible resources become
transparent when dragging a task. Unfortunately, it is very hard to
indicate area where a task can be placed without violation of
precedence rules. Therefore, in this case, the background color of the
preview tooltip becomes red to alert infeasibility.

Another practical need of practitioners is to compare schedules
before and after rescheduling. LiveGantt satisfies the need by
juxtaposing two views. After rescheduling, two visualizations are
juxtaposed: the primary view shows the new schedule while the
secondary view illustrates the original schedule. Users can use every
feature of LiveGantt to explore the new schedule. Users can keep
rescheduling in the primary view until they make a satisfactory new
schedule. While rescheduling being repeated in the primary view, the

secondary view keeps showing the original schedule to allow
effective comparison with the original version.

Considering both scalability and reschedulability at the same time
in designing LiveGantt was challenging. We overcome this challenge
by adopting a lens metaphor. As mentioned in Section 4.1, a right
click on an aggregated bar exposes traditional Gantt bars that
represent the tasks aggregated in the bar (Figure 3c). When users
drag a task bar onto other aggregated bar and stay longer than a
threshold, a lens appears with the selected task in the center (Figure
3d). The lens reveals individual Gantt bars below the task bar so that
users can decide a good new position effectively.

7 CASE STUDY
To evaluate LiveGantt in terms of efficacy in practice and identify
further improvement opportunities, we conducted a case study with
four industrial engineering researchers. None of them have
participated in design or development meetings of LiveGantt. Three
of them have worked with practitioners in semiconductor facilities
for years and experienced the work in the factory as interns. The
ideal participants for our case study would be practitioners working
in the semiconductor factory, but it was impossible to recruit them
because of tight security and confidentiality requirements of the
factory. However, the four participants have enough experience and
solid knowledge to be good alternative participants for our study.

The case study was carried out in their laboratory for two days.
We used a real manufacturing schedule obtained from one of the
biggest semiconductor factories in Korea, which comprises 3,404
tasks and 100 resources. Each participant had used LiveGantt on
his/her desktop for 30 minutes after a 10-minute tutorial. Their tasks
were to understand the big picture of the schedule, find inefficiencies,
and finally improve the schedule by rescheduling it. We asked them
to report their findings and how they could reach the findings. We
answered questions from the participants during each session and
transcribed all sessions.

All of them found that the schedule concentrated on producing D,
E, and G packages in an early phase of the schedule (green, orange,
and blue tasks in Figure 1B). One of them explained it was an
expected behavior of the scheduler. Since those packages have long
task sequences, initiating those package early was advantageous to
reduce the makespan of the schedule. They also noticed several thick
long rainbow-striped horizontal bars (Figure 1B), each of which
represented schedules for a group of resources that share almost the
same task sequences. Two of them commented that frequent
occurrences of the groups meant that the schedule was well-balanced
and minimized the number of changeovers.

 Besides comprehending the overall schedule, they also found
some inefficiencies hidden in the schedule. First, 20 resources would
be idle for a day, which was very wasteful. Furthermore,
changeovers on 46 resources were planned at the beginning of the
schedule concurrently. One participant applied a temporal filtering to

Fig. 7. LiveGantt can visualize a huge schedule which comprises
18,577 tasks and 500 machines. Resources which have very similar
task sequences are represented by rainbow-striped horizontal bars.

that period and selected the schedule view to check the result. Those
changeovers resulted from a wrong initial status of resources not
from configuration changes of machines for making a different
package. An outlier resource which had a quite long changeover time
was identified in the resource view. Resource filtering and the
schedule view revealed that the resource would produce all 10
packages and waste an enormous amount time for changeovers.

They attempted to improve the schedule by rescheduling. Their
strategy was simple: reallocating the last task to other available
resource. The strategy was effective. After reallocating 15 tasks, the
makespan of the schedule was reduced by 540 minutes to 4,430
minutes, which was about 11% improvement in the makespan of the
schedule. Three of them commented rescheduling would be
practically useful in unexpected scenarios where some resources
broke down.

Participants also made some critical remarks during the sessions.
They expressed difficulties in comparing two schedules in LiveGantt.
Although LiveGantt can visualize two schedules vertically or
horizontally at once, it is not enough to support effective
investigations of the differences between the schedules. Also, one of
them mentioned that highlighting preceding tasks of a selected task
in the schedule view results in a visual clutter.

We tested scalability of LiveGantt with the largest schedule we
had. The schedule consisted of 18,577 tasks and 500 machines,
which is too big to run in most general semiconductor facilities.
LiveGantt successfully visualized the schedule as shown in Figure 7,
which could serve as a practical evidence of LiveGantt’s scalability.

8 APPLICATION EXAMPLE: AIRLINE EXAMPLE
To verify versatility of our approach, we applied LiveGantt to a
different kind of schedules, i.e. airline itineraries. We gathered 237
itineraries from 38 airlines which depart on 9 November from Seoul
to Paris. Segments and transfers were considered as tasks and
changeovers, respectively.

Figure 8 shows the result. Each airline is encoded with color.
Two airlines (orange and blue) were responsible for about half the
itineraries. Hovering over those itineraries revealed that they were
the two biggest airlines in Korea. It was evident that the itineraries of
the two airlines were scheduled with a similar pattern (see orange
and blue bars in Figure 8b).

9 IMPLEMENTATION
We have implemented LiveGantt comprising a client-server
architecture to separate visualization and rescheduling, which gives
extensibility to LiveGantt. Any rescheduler can cooperate with
LiveGantt if the rescheduler complies with our protocol specification.

The client is a web-based application, implemented in a typical
web development way: HTML5 for the structure, CSS3 for styling,
and Javascript for interactivity. LiveGantt runs on a web browser
taking advantage of compatibility of the web. For fast and efficient
development iterations, LiveGantt was built upon open-source
libraries and frameworks [8][19][32].

The server is developed in Java. The server generates the initial
schedule based on genetic algorithms without time information, such
as start time and finish time. Once the tasks for each resource are
assigned, a discrete event simulator [33] simulates the schedule and
allocates time information to tasks. Since rescheduling is done on the
simulator in real time, users can obtain immediate feedback

10 CONCLUSION & FUTURE WORK
In this paper, we presented LiveGantt, a novel interactive
visualization tool for large complex manufacturing schedules. We
first pointed out limitations of existing schedule visualization tools in
terms of scalability, explorability, and reschedulability. We
introduced a time-based task aggregation method with resource
reordering and designed user interactions to overcome the limitations.
A case study with a real manufacturing schedule was conducted to
verify the efficacy of LiveGantt.

As shown in Section 8, our approach can be applied to schedules
in other domains such as airline itineraries. More work needs to be
done to deal with schedules that have different characteristics from
manufacturing schedules. For example, when multiple resources
assigned to the same task, a different visual encoding have to be
applied to highlight such cases.

Though LiveGantt can visualize the largest schedule we obtained
from semiconductor facilities, for even larger schedules, advanced
infovis techniques can be applied for improved scalability. For
instance, the package view can employ horizon graphs [31] rather
than line graphs to deal with more package types than in this study.

An interesting topic for future work we found in the case study is
to visualize differences between two or more schedules in a more
scalable way. Although [17] addressed the topic by superimposing
two Gantt charts, visual clutter can be a problem when it is applied to
larger schedules.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIP) (No.
2011-0030813) and also supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology (NRF-
2013R1A1A3006706).

Fig. 8. The airline example. LiveGantt visualizes 237 airline itineraries from 38 airlines. Each row represents an itinerary from Seoul to Paris on 9
November. The color of a bar represents an airline. Especially, a gray bar shows transferring time to a different airplane. (a) The original data in
a typical Gantt chart. Itineraries are sorted according to the alphabetical order of airlines’ name. (b) LiveGantt summarizes the data based on
aggregation. Two airlines (orange and blue) are salient. Those airlines are the two biggest airlines in Korea. The itineraries of the two airlines are
scheduled with a similar pattern. (c) Users can observe the status of flights around the world by setting the focus time line. About 30% of the
itineraries have transfer (a gray rectangle) at the focus time.

2337JO ET AL.: LIVEGANTT: INTERACTIVELY VISUALIZING A LARGE MANUFACTURING SCHEDULE

event types. However, the time-based task aggregation has a stronger
stop condition: the aggregation also stops when time difference of
two tasks (e.g. larger difference in start time and finish time) is
longer than a given small threshold (τ). This condition prevents tasks
from being aggregated when there is a large time difference between
them. In this way, the important timing information of a schedule can
be better preserved.

Order-based event aggregation and time-based task aggregation
enable different kinds of alignment operations. Order-based event
aggregation handles alignment queries based on event type and
relative order, for example, “Align by the first ICU event.” In
contrast, time-based task aggregation accepts queries involving a
specific time point such as “Align at 3:00 pm.”

The threshold (τ) plays one more important role in addition to
preventing the merge of tasks with large time difference between
them. During aggregation, a hole between consecutive tasks can
appear, which could cause some extra clutter (Figure 6e). For
example, suppose two consecutive tasks, task A and task B. Task A
precedes task B and the finish time of task A is the start time of task
B. After averaging the finish time to merge task A with other tasks
into an aggregated task block, a hole emerges between task A and
task B if the average finish time of the task block is earlier than the
start time of task B. Because those holes could hurt the neatness of
the overview, in the example, task B is stretched to fill the hole if the
length of hole is shorter than the threshold. In summary, a larger
threshold simplifies Gantt charts more, but at the cost of showing
accurate timing information of a given schedule. However, even in
the case, it is guaranteed that the degree of inaccuracy is less than the
threshold.

6 INTERACTION DESIGN FOR RESCHEDULING
Users’ eventual goal of exploring a schedule is to modify the
schedule for better performance using empirical knowledge.
Previously, every time they tested a new hypothesis on the
improvement of a schedule, they had to edit input files and feed them
back to a rescheduler. Such a lack of instantaneous reschedulability
exhausts users and consequently discourages them from applying
their expert knowledge to test more hypotheses. To address the issue,
we integrate rescheduling interactions into the schedule view.

We note the fact that a Gantt chart itself can be an intuitive
interface for rescheduling. Dragging a Gantt bar and dropping the bar
on a different resource reallocates the corresponding task to the
resource. After users modify task sequences, a rescheduler is called
to simulate required changes. Since we implement and apply a real
time rescheduling algorithm, users can instantaneously check the
result of rescheduling in the schedule view.

To help users select a promising one from numerous possible
places to reposition a task on, LiveGantt shows a preview of the
result of rescheduling before users commit the change. The preview
includes the place where the task will be allocated and how
utilization and makespan are changed compared to the current
schedule (Figure 3d). A right-click cancels dragging and reverts the
selected task to the original position.

Sometimes, users try invalid rescheduling operations such as
moving a task to an incompatible resource. To prevent these
erroneous actions, tasks on incompatible resources become
transparent when dragging a task. Unfortunately, it is very hard to
indicate area where a task can be placed without violation of
precedence rules. Therefore, in this case, the background color of the
preview tooltip becomes red to alert infeasibility.

Another practical need of practitioners is to compare schedules
before and after rescheduling. LiveGantt satisfies the need by
juxtaposing two views. After rescheduling, two visualizations are
juxtaposed: the primary view shows the new schedule while the
secondary view illustrates the original schedule. Users can use every
feature of LiveGantt to explore the new schedule. Users can keep
rescheduling in the primary view until they make a satisfactory new
schedule. While rescheduling being repeated in the primary view, the

secondary view keeps showing the original schedule to allow
effective comparison with the original version.

Considering both scalability and reschedulability at the same time
in designing LiveGantt was challenging. We overcome this challenge
by adopting a lens metaphor. As mentioned in Section 4.1, a right
click on an aggregated bar exposes traditional Gantt bars that
represent the tasks aggregated in the bar (Figure 3c). When users
drag a task bar onto other aggregated bar and stay longer than a
threshold, a lens appears with the selected task in the center (Figure
3d). The lens reveals individual Gantt bars below the task bar so that
users can decide a good new position effectively.

7 CASE STUDY
To evaluate LiveGantt in terms of efficacy in practice and identify
further improvement opportunities, we conducted a case study with
four industrial engineering researchers. None of them have
participated in design or development meetings of LiveGantt. Three
of them have worked with practitioners in semiconductor facilities
for years and experienced the work in the factory as interns. The
ideal participants for our case study would be practitioners working
in the semiconductor factory, but it was impossible to recruit them
because of tight security and confidentiality requirements of the
factory. However, the four participants have enough experience and
solid knowledge to be good alternative participants for our study.

The case study was carried out in their laboratory for two days.
We used a real manufacturing schedule obtained from one of the
biggest semiconductor factories in Korea, which comprises 3,404
tasks and 100 resources. Each participant had used LiveGantt on
his/her desktop for 30 minutes after a 10-minute tutorial. Their tasks
were to understand the big picture of the schedule, find inefficiencies,
and finally improve the schedule by rescheduling it. We asked them
to report their findings and how they could reach the findings. We
answered questions from the participants during each session and
transcribed all sessions.

All of them found that the schedule concentrated on producing D,
E, and G packages in an early phase of the schedule (green, orange,
and blue tasks in Figure 1B). One of them explained it was an
expected behavior of the scheduler. Since those packages have long
task sequences, initiating those package early was advantageous to
reduce the makespan of the schedule. They also noticed several thick
long rainbow-striped horizontal bars (Figure 1B), each of which
represented schedules for a group of resources that share almost the
same task sequences. Two of them commented that frequent
occurrences of the groups meant that the schedule was well-balanced
and minimized the number of changeovers.

 Besides comprehending the overall schedule, they also found
some inefficiencies hidden in the schedule. First, 20 resources would
be idle for a day, which was very wasteful. Furthermore,
changeovers on 46 resources were planned at the beginning of the
schedule concurrently. One participant applied a temporal filtering to

Fig. 7. LiveGantt can visualize a huge schedule which comprises
18,577 tasks and 500 machines. Resources which have very similar
task sequences are represented by rainbow-striped horizontal bars.

that period and selected the schedule view to check the result. Those
changeovers resulted from a wrong initial status of resources not
from configuration changes of machines for making a different
package. An outlier resource which had a quite long changeover time
was identified in the resource view. Resource filtering and the
schedule view revealed that the resource would produce all 10
packages and waste an enormous amount time for changeovers.

They attempted to improve the schedule by rescheduling. Their
strategy was simple: reallocating the last task to other available
resource. The strategy was effective. After reallocating 15 tasks, the
makespan of the schedule was reduced by 540 minutes to 4,430
minutes, which was about 11% improvement in the makespan of the
schedule. Three of them commented rescheduling would be
practically useful in unexpected scenarios where some resources
broke down.

Participants also made some critical remarks during the sessions.
They expressed difficulties in comparing two schedules in LiveGantt.
Although LiveGantt can visualize two schedules vertically or
horizontally at once, it is not enough to support effective
investigations of the differences between the schedules. Also, one of
them mentioned that highlighting preceding tasks of a selected task
in the schedule view results in a visual clutter.

We tested scalability of LiveGantt with the largest schedule we
had. The schedule consisted of 18,577 tasks and 500 machines,
which is too big to run in most general semiconductor facilities.
LiveGantt successfully visualized the schedule as shown in Figure 7,
which could serve as a practical evidence of LiveGantt’s scalability.

8 APPLICATION EXAMPLE: AIRLINE EXAMPLE
To verify versatility of our approach, we applied LiveGantt to a
different kind of schedules, i.e. airline itineraries. We gathered 237
itineraries from 38 airlines which depart on 9 November from Seoul
to Paris. Segments and transfers were considered as tasks and
changeovers, respectively.

Figure 8 shows the result. Each airline is encoded with color.
Two airlines (orange and blue) were responsible for about half the
itineraries. Hovering over those itineraries revealed that they were
the two biggest airlines in Korea. It was evident that the itineraries of
the two airlines were scheduled with a similar pattern (see orange
and blue bars in Figure 8b).

9 IMPLEMENTATION
We have implemented LiveGantt comprising a client-server
architecture to separate visualization and rescheduling, which gives
extensibility to LiveGantt. Any rescheduler can cooperate with
LiveGantt if the rescheduler complies with our protocol specification.

The client is a web-based application, implemented in a typical
web development way: HTML5 for the structure, CSS3 for styling,
and Javascript for interactivity. LiveGantt runs on a web browser
taking advantage of compatibility of the web. For fast and efficient
development iterations, LiveGantt was built upon open-source
libraries and frameworks [8][19][32].

The server is developed in Java. The server generates the initial
schedule based on genetic algorithms without time information, such
as start time and finish time. Once the tasks for each resource are
assigned, a discrete event simulator [33] simulates the schedule and
allocates time information to tasks. Since rescheduling is done on the
simulator in real time, users can obtain immediate feedback

10 CONCLUSION & FUTURE WORK
In this paper, we presented LiveGantt, a novel interactive
visualization tool for large complex manufacturing schedules. We
first pointed out limitations of existing schedule visualization tools in
terms of scalability, explorability, and reschedulability. We
introduced a time-based task aggregation method with resource
reordering and designed user interactions to overcome the limitations.
A case study with a real manufacturing schedule was conducted to
verify the efficacy of LiveGantt.

As shown in Section 8, our approach can be applied to schedules
in other domains such as airline itineraries. More work needs to be
done to deal with schedules that have different characteristics from
manufacturing schedules. For example, when multiple resources
assigned to the same task, a different visual encoding have to be
applied to highlight such cases.

Though LiveGantt can visualize the largest schedule we obtained
from semiconductor facilities, for even larger schedules, advanced
infovis techniques can be applied for improved scalability. For
instance, the package view can employ horizon graphs [31] rather
than line graphs to deal with more package types than in this study.

An interesting topic for future work we found in the case study is
to visualize differences between two or more schedules in a more
scalable way. Although [17] addressed the topic by superimposing
two Gantt charts, visual clutter can be a problem when it is applied to
larger schedules.

ACKNOWLEDGMENTS
This work was supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIP) (No.
2011-0030813) and also supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology (NRF-
2013R1A1A3006706).

Fig. 8. The airline example. LiveGantt visualizes 237 airline itineraries from 38 airlines. Each row represents an itinerary from Seoul to Paris on 9
November. The color of a bar represents an airline. Especially, a gray bar shows transferring time to a different airplane. (a) The original data in
a typical Gantt chart. Itineraries are sorted according to the alphabetical order of airlines’ name. (b) LiveGantt summarizes the data based on
aggregation. Two airlines (orange and blue) are salient. Those airlines are the two biggest airlines in Korea. The itineraries of the two airlines are
scheduled with a similar pattern. (c) Users can observe the status of flights around the world by setting the focus time line. About 30% of the
itineraries have transfer (a gray rectangle) at the focus time.

2338 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

REFERENCES
[1] W. Aigner, S. Miksch, B. Thurnher, and S. Biffl, “PlanningLines: Novel

Glyphs for Representing Temporal Uncertainties and Their Evaluation,”
Proc. IEEE Conf. on Information Visualisation, pp. 457-463, 2005.

[2] P. André, M.L. Wilson, A. Russell, D.A. Smith, and A. Owens,
“Continuum: Designing Timelines for Hierarchies, Relationships and
Scale,” Proc. ACM Symp. User Interface Software and Technology, pp.
101-110, 2007.

[3] Artemis Enterprise, http://www.aisc.com/enterprise, Jun 2014.
[4] Asprova, http://www.asprova.com/en/asprova/, Jun 2014.
[5] R. Bade, S. Schlechtweg, and S. Miksch, “Connecting Time-oriented

Data and Information to a Coherent Interactive Visualization,” Proc.
ACM SIGCHI Conf. Human Factors in Computing Systems, pp. 105-
112, 1991.

[6] R.A. Becker and W.S. Cleveland, “Brushing Scatterplots,”
Technometrics, vol. 29, no. 2, pp. 127-142, 1987.

[7] J. Bertin, Graphics and graphic information processing, Walter de
Gruyter, 1981.

[8] M. Bostock, V. Ogievetsky, and J. Heer, “D³ Data-Driven Documents,”
IEEE Trans. on Visualization and Computer Graphics, vol. 17, no. 12,
pp. 2301-2309, 2011.

[9] R. Burkhard and M. Meier, “Tube Map: Evaluation of a Visual
Metaphor for Interfunctional Communication of Complex Projects,”
Proc. I-Know, vol. 4, pp. 449-456, June. 2004.

[10] Decision One, http://www.taylor.com/products/decision_one.php, Jun
2014.

[11] D.H. Douglas and T.K. Peucker, “Algorithms for the Reduction of the
Number of Points Required to Represent a Digitized Line or Its
Caricature,” Cartographica: The International Journal for Geographic
Information and Geovisualization, vol. 10, no. 2, pp. 112-122, 1973.

[12] Edward Tufte forum: Project Management Graphics (or Gantt Charts),
http://www.edwardtufte.com/bboard/q-and-a-fetch-
msg?msg_id=000076, Jun 2014.

[13] W. Fazar, “Program Evaluation and Review Technique,” The American
Statistician, vol. 13, no. 2, p. 10, 1959.

[14] H.L. Gantt, Work, Wages, and Profits, S. Engineering Magazine Co.,
1913.

[15] R. Gove and B. Herzog, “Visualizing Uncertain Critical Paths in
Schedule Management,” Proc. IEEE. VIS Industry and Government
Posters, 2013.

[16] R. Gove and B. Herzog, “4D Heat Maps: Visualizing Uncertain
Resource Utilization Over Time,” Proc. IEEE. VIS Industry and
Government Posters, 2013.

[17] D. Huang, M. Tory, S. Staub‐French, and R. Pottinger, “Visualization
Techniques for Schedule Comparison,” Computer Graphics Forum, vol.
28, no. 3, pp. 951-958, 2009.

[18] ILOG Elixir, http://www-03.ibm.com/software/products/en/elixir-
enterprise/, Jun 2014.

[19] jQuery, http://jquery.com/, Jun 2014.
[20] R. Kosara and S. Miksch, “A Visualization of Medical Therapy Plans

compared To Gantt and PERT Charts,” Proc. IEEE Workshop on
Temporal Representation and Reasoning, pp. 173-181, 2000.

[21] S. Luz and M. Masoodian, “Comparing Static Gantt and Mosaic Charts
for Visualization of Task Schedules,” Proc. IEEE Conf. on Information
Visualisation, pp. 182-187, 2011.

[22] S. Luz and M. Masoodian, “Visualisation of Parallel Data Streams with
Temporal Mosaics,” Proc. IEEE Conf. on Information Visualisation, pp.
197-202, 2007.

[23] S. Luz, M. Masoodian, D. McKenzie, and W.V. Broeck, “Chronos: A
Tool for Interactive Scheduling and Visualisation of Task Hierarchies,”
Proc. IEEE Conf. on Information Visualisation, pp. 241-246, 2009.

[24] P. McLachlan, T. Munzner, E. Koutsofios, and S. North, “LiveRAC:
interactive visual exploration of system management time-series data,”
Proc. ACM SIGCHI Conf. Human Factors in Computing Systems, pp.
1483-1492, 2008.

[25] Microsoft Project, http://office.microsoft.com/en-us/project, Jun 2014.
[26] MinuteMan, http://minuteman-systems.com, Jun 2014.

[27] M. Monroe, R. Lan, H. Lee, C. Plaisant and B. Shneiderman,
“Temporal Event Sequence Simplification,” IEEE Trans. on
Visualization and Computer Graphics, vol. 19, no. 12, pp. 2227-2236,
2013.

[28] OmniPlan, http://www.omnigroup.com/omniplan, Jun 2014.
[29] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, Springer,

2012.
[30] U. Ramer, “An Iterative Procedure for the Polygonal Approximation of

Plane Curves,” Computer Graphics and Image Processing, vol. 1, no. 3,
pp. 244-256, 1972.

[31] H. Reijner, “The Development of the Horizon Graph,” Proc. Workshop
on from Theory to Practice: Design, Vision and Visualization, 2008.

[32] Require.js, http://requirejs.org/, Jun 2014.
[33] S. Robinson, Simulation: the Practice of Model Development and Use,

John Wiley & Sons., 2004.
[34] M. Sedlmair, M. Meyer, and T. Munzner, “Design study methodology:

Reflections from the trenches and the stacks,” IEEE Trans. on
Visualization and Computer Graphics, vol. 18, no. 12, pp. 2431-2440,
2012.

[35] Z. Shen, J. Wei, N. Sundaresan, and K-L. Ma, “Visual analysis of
massive web session data,” Proc. IEEE Symp on Large Data Analysis
and Visualization, pp. 65–72, 2012.

[36] B. Shneiderman, “The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations,” Proc. Symp. on Visual Languages, pp.
336-343, 1996.

[37] K. Vrotsou, J. Johansson, and M. Cooper, “ActiviTree: Interactive
Visual Exploration of Sequences in Event-based Data Using Graph
Similarity,” IEEE Trans. on Visualization and Computer Graphics, vol.
15, no. 6, pp. 945-952, 2009.

[38] T.D. Wang, C. Plaisant, A.J. Quinn, R. Stanchak, S. Murphy, and B.
Shneiderman, “Aligning Temporal Data by Sentinel Events:
Discovering Patterns in Electronic Health Records,” Proc. ACM
SIGCHI Conf. Human Factors in Computing Systems, pp. 457-466,
2008.

[39] J.M. Wilson, “Gantt Charts: A Centenary Appreciation,” European
Journal of Operational Research, vol. 149, no. 2, pp. 430-437, 2003.

[40] K. Wongsuphasawat and D. Gotz, “Exploring Flow, Factors, and
Outcomes of Temporal Event Sequences with the Outflow
Visualization,” IEEE Trans. on Visualization and Computer Graphics,
vol. 18, no. 12, pp. 2659-2668, 2012.

[41] K. Wongsuphasawat, J.A. Guerra Gómez, C. Plaisant, T.D. Wang, M.
Taieb-Maimon, and B. Shneiderman, “LifeFlow: Visualizing an
Overview of Event Sequences,” Proc. ACM SIGCHI Conf. Human
Factors in Computing Systems, pp. 1747-1756, 2011.

[42] C.E. Wu and A. Bolmarcich, “Gantt Chart Visualization for MPI and
Apache Multi-dimensional Trace Files,” Proc. IEEE Conf. on Parallel
and Distributed Systems, pp. 523-528, 2002.

