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Predicate-based Focus-and-Context Visualization
for 3D Ultrasound

Christian Schulte zu Berge, Maximilian Baust, Ankur Kapoor, and Nassir Navab

Fig. 1: Our predicate-based classification approach allows for more insightful visualization of 3D ultrasound volumes. Here, tra-
ditional transfer function-based techniques suffer from occlusion of inner target anatomy such as the carotid artery (a). Facilitated
through the predicate histogram, our technique is capable of yielding a focus-and-context visualization of not only the surrounding
tissue (b), but also the target anatomy itself (c).

Abstract—Direct volume visualization techniques offer powerful insight into volumetric medical images and are part of the clinical
routine for many applications. Up to now, however, their use is mostly limited to tomographic imaging modalities such as CT or MRI.
With very few exceptions, such as fetal ultrasound, classic volume rendering using one-dimensional intensity-based transfer functions
fails to yield satisfying results in case of ultrasound volumes. This is particularly due its gradient-like nature, a high amount of noise
and speckle, and the fact that individual tissue types are rather characterized by a similar texture than by similar intensity values.
Therefore, clinicians still prefer to look at 2D slices extracted from the ultrasound volume. In this work, we present an entirely novel
approach to the classification and compositing stage of the volume rendering pipeline, specifically designed for use with ultrasonic
images. We introduce point predicates as a generic formulation for integrating the evaluation of not only low-level information like local
intensity or gradient, but also of high-level information, such as non-local image features or even anatomical models. Thus, we can
successfully filter clinically relevant from non-relevant information. In order to effectively reduce the potentially high dimensionality of
the predicate configuration space, we propose the predicate histogram as an intuitive user interface. This is augmented by a scribble
technique to provide a comfortable metaphor for selecting predicates of interest. Assigning importance factors to the predicates
allows for focus-and-context visualization that ensures to always show important (focus) regions of the data while maintaining as
much context information as possible. Our method naturally integrates into standard ray casting algorithms and yields superior results
in comparison to traditional methods in terms of visualizing a specific target anatomy in ultrasound volumes.

Index Terms—Direct Volume Rendering, Ultrasound, Classification, Predicate Function, User Interface

1 INTRODUCTION

Direct volume visualization techniques such as volume ray casting
are today’s state-of-the-art algorithms for the visualization of three-
dimensional medical images. In order to approximate the physics of
light transport, most techniques use global transfer functions for the
classification step of the classic volume rendering pipeline. While they
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yield impressive results for images from tomographic reconstructions
such as computed tomography (CT) or magnetic resonance imaging
(MRI), global 1D transfer functions reach their limits when being ap-
plied to 3D ultrasound images. Though they have recently become part
of clinical practice due to the advances in today’s 3D freehand ultra-
sound systems, effective and generic visualization tools are still miss-
ing for this imaging modality. This is mainly because several char-
acteristics of B-mode ultrasound (brightness mode ultrasound where
pixel intensities relate to the change of acoustic impedance and thus
the reflectance of the sound wave) let its volumetric visualization suf-
fer from severe occlusion artifacts as shown in Figure 2.

In lack of better alternatives, clinicians prefer to look at 2D slices
extracted from 3D ultrasound volumes. Such multi-planar reconstruc-
tions (MPRs) allow for the visualization of arbitrary planes, which is
not directly possible with 2D ultrasound. However, MPRs are hardly
able to expose spatial context and connectivity information to the clin-
ician. Rendering extracted geometry from the image obtained by seg-
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(a) Standard DVR of carotid ultrasound volume

(b) Intensity distribution and applied TF of the above visualization

Fig. 2: Occlusion artifacts of traditional methods: (a) While one can
see the outer shell of the different layers, clinical relevant information
such as the path and shape of the carotid artery and its bifurcation
are hidden. (b) Due to the homogeneous distribution of ultrasound
intensities and their highly context-sensitive nature, there is no chance
in discriminating relevant features through their intensities.

mentation algorithms, as an alternative, may show connectivity infor-
mation but does no longer expose the original image data (i.e. ultra-
sound intensities) and in particular the speckle texture, which is an
essential part of ultrasound imaging. Therefore, this kind of indirect
visualization is not well suited for many clinical routines.

In order to achieve clinically helpful direct volume visualization,
we propose a completely novel approach to the classification stage to-
gether with an intuitive tool for setting up the rendering result: We
introduce the concept of point predicates, which evaluate both local
and global features of the ultrasound image and are defined on every
sampling point. This facilitates to perform classification also based
on high-level non-local information such as speckle or texture or even
anatomical models/segmentations. By further annotating each predi-
cate with an importance factor, we can naturally implement relevance-
based visualization ensuring that important anatomies are always visi-
ble in the rendering, while preserving context information where pos-
sible in order to show better spatial clues.

Despite the recent advances regarding quality, interactiveness, and
usability, volumetric visualization still has not been fully accepted by
most clinicians for their workflow and is, if at all, only used for pub-
lications or patient presentations. Even with CT imaging, where the
image intensities (Hounsfield units) directly correspond to a physical
property that allows for direct discrimiation of tissue types, most radi-
ologists still prefer to scroll through the stack of 2D slices and make up
the 3D model in their minds instead of looking at 3D visualizations.
This is mainly due to the lack of usability of today’s classification
approaches, where changing the volume rendering to show different
anatomy relates to adaption of the transfer function. The limited ex-
pressiveness and intuitiveness, as well as the high dimensionality of
the parameter domain, in particular with multi-dimensional transfer
functions, makes their setup a tedious and cumbersome task that many
clinicians have difficulties with [20].

With this issue in mind, we further introduce the predicate his-
togram as an effective tool for reducing the dimensionality of the pred-
icate configuration space and facilitating its manipulation. Together

with the descriptive semantics of predicates, it provides the user with
easy and intuitive interaction with the point predicates to setup the
rendering. This user interface was designed to allow for interactive
exploration of clinically relevant information and switching between
visualizations of different target anatomies with minimal efforts in a
highly intuitive way. This is further enriched by a scribble technique
providing a painting metaphor to specify classification directly in the
image domain.

2 RELATED WORK

Our proposed method has three important properties:

1. It is particularly designed for the visualization of ultrasound vol-
umes.

2. It integrates different levels of information, ranging from low-
level local image intensities to even anatomical models, into a
single consistent formulation that is exposed to the user using an
intuitive widget.

3. It exploits illustrative focus-and-context rendering techniques.

Since the body of literature on volume rendering techniques is large,
we focus this section on the most closely related works regarding the
above topics and refer the interested reader to the book of Preim and
Botha [16] for a more exhaustive overview.

2.1 Visualization of Ultrasound Volumes
Compared to tomographic imaging modalities such as CT or MRI,
where direct volume rendering can show very distinct visualizations
of the anatomy, B-mode ultrasound images provide special challenges
to classification causing these techniques to fail in yielding helpful vi-
sualizations. Since ultrasound imaging exploits the echo generated by
density changes at tissue interfaces of different acoustic impedance, it
rather shows the changes in physical properties than the physical prop-
erties themselves. As a consequence, ultrasound images are funda-
mentally different to those obtained from tomographic imaging modal-
ities. In addition to this gradient-like nature, ultrasound is a highly
directional modality and suffers from a considerable amount of noise.
These properties prohibit the straightforward application of standard
classification techniques for direct volume visualization (cf. Figure
2).

One of the few methods, besides the early work of Sakas et al. [19],
specifically targeting these challenges for visualization, is the work
of Fattal and Lischinski [5], who propose a variational approach to
opacity classification that allows to extract smooth surfaces from 3D
ultrasound volumes. However, their work is mostly attributed to fe-
tal ultrasound, since it basically shows only a single surface and does
not allow for blending of multiple layers. Mann et al. propose a vol-
umetric ultrasound system augmenting B-mode ultrasound intensities
with elasticity information using two-dimensional transfer functions
in order to yield more distinct visualizations [14].

2.2 Multi-Dimensional Classification Schemes
While exploiting additional information during classification and
therefore introducing multi-dimensional transfer functions [11, 23, 15]
(for instance based on post-processing) is a viable way towards useful
3D ultrasound visualization, it significantly increases the parameter
domain to setup the rendering. Designing effective user interfaces
for transfer function and rendering setup is an extensive and impor-
tant field of research, as especially non-expert users have difficulties
with mapping the complex parameter domain to semantic features for
visualization. Therefore, Rezk-Salama et al. propose using princi-
pal component analysis to map a small set of semantic parameters
to the potentially large transfer function parameter space and claim
that this can be learned from clinicians [20]. Wang et al. introduce
the Modified Dendrogram as a means for mapping high dimensional
transfer functions into 2D space to facilitate their setup for the user
[27]. The resulting user interface, however, still has a high amount of
non-descriptive and thus unintuitive parameters. A different approach
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towards solving the classification problem by introducing a semantic
layer is the work of Rautek et al. [17], who implement a fuzzy logic
evaluation of the semantic descriptions on the GPU and combine it
with interaction-dependent rendering. While they achieve impressive
relevance-based rendering results, their work is mostly focused on in-
tegrating user interaction into the visualization and does not address
the special challenges of ultrasonic images.

2.3 Focus-and-Context Visualization
Illustrative relevance-based visualization is an efficient technique to
tackle occlusion problems in volume visualization. They extend the
classic direct volume rendering compositing scheme towards focus-
and-context rendering that defines a focus region, which must not be
occluded, and context regions that are shown with less priority for
better spatial understanding. Approaches not relying on transfer func-
tions, such as the Importance-Based Accumulated Transparency Mod-
ulation introduced by Wan and Hansen [26] extend the Maximum In-
tensity Difference Accumulation (MIDA) compositing scheme to al-
low relevance-based visualization without the need to setup a transfer
function for classification. The work of Bruckner et al. allows for
context-preserving see-through rendering by evaluating local shading
information with two global parameters, which however do not have
a direct semantic meaning [2]. The ClearView technique of Krüger et
al. exploits curvature information as well as distance metrics to deter-
mine sample importances and introduces different shading and com-
positing techniques to map relevance to optical properties [13]. De
Moura Pinto and Freitas introduce a further importance-aware com-
positing scheme, which is mathematically motivated and justified and
integrates very well with the standard direct volume rendering pipeline
[3].

2.4 Our Approach
Our approach is inspired by line predicates used in flow visualization,
where streamline tracking yields an extensive number of streamlines
that represent the global connectivity of the data very well, but at the
same time it greatly suffer from occlusion of important features. Here,
line predicates offer an effective technique to filter the flow field for
certain features such as vortices or high-velocity jets [21, 1, 12]. How-
ever, since line predicates are applied to geometry representations and
simply toggle streamline visibility, they are very limited to this specific
application. Our approach can thus be seen as a generalization of this
idea providing a consistent formulation for relevance-based rendering
with particular focus and application on 3D ultrasound visualization.

3 METHODS

Our predicate-based approach is designed to fully integrate into a stan-
dard volume rendering pipeline and consists of three steps, as illus-

trated in the schematic diagram of Figure 3. We define a point pred-
icate P as a boolean-valued function fP on the image domain X aug-
mented with an importance factor κP and a color modulation δP:

P :=
(

fP : X →{true, false}, κP, δP
)
. (1)

After selecting the predicates to apply from the point predicate li-
brary, the user specifies the rendering outcome by configuring κP and
δP. This process is heavily supported by the predicate histogram,
which we propose as a user interface for rendering setup. During
the classification stage of the rendering, the ray caster applies each
predicate to each sampling point yielding a color modulation for each
sample, which are eventually accumulated using a focus-and-context
compositing technique exploiting the predicates’ importance factors.

The term point predicate suggests that the predicate can be evalu-
ated at every point within the image domain X . However, it is essential
that predicates are not limited to local values but also to features of lo-
cal environments or even of global nature, such as texture information
or anatomical models and segmentations. Furthermore, we do not pose
any presumptions on the spatial representation of X .

3.1 Predicate Library

Our current implementation consists of a point predicate library based
on a variety of methods to evaluate both local and global features in
the image.

Range-based predicates apply to intervals of scalar measures in the
image such as intensity and gradient magnitude. While their sole ex-
pressiveness is rather limited, prone to inter-data set variability, and
in particular does not go beyond traditional 1D/2D transfer functions,
they are an essential part in combination with the other predicates.
For instance, since high curvature regions often carry important visual
depth and context cues, assigning high importance values to the gradi-
ent magnitude predicates may yield significant visual improvements.

Due to the direction dependency of ultrasound images, direction-
based predicates are an important factor for our predicate-based 3D
ultrasound visualization. They exploit additional information on the
ultrasound scanning direction, which we annotate to the compounded
ultrasound volume. The gradient angle predicate evaluates the scan-
line direction in a local context by computing the angle between scan-
line and the smoothed gradient. Since the reflection of the ultrasound
wave depends on the incident angle with the interface, this ultrasound
specific point predicate is a powerful tool to highlight or mask certain
structures.

As a third group we implemented a variety of predicates based on
derived measures. Since they apply a configurable threshold to the de-
rived measure, they can be seen as extension to the range-based predi-
cates.
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(a) Standard DVR of carotid ultrasound volume

(b) Intensity distribution and applied TF of the above visualization

Fig. 2: Occlusion artifacts of traditional methods: (a) While one can
see the outer shell of the different layers, clinical relevant information
such as the path and shape of the carotid artery and its bifurcation
are hidden. (b) Due to the homogeneous distribution of ultrasound
intensities and their highly context-sensitive nature, there is no chance
in discriminating relevant features through their intensities.

mentation algorithms, as an alternative, may show connectivity infor-
mation but does no longer expose the original image data (i.e. ultra-
sound intensities) and in particular the speckle texture, which is an
essential part of ultrasound imaging. Therefore, this kind of indirect
visualization is not well suited for many clinical routines.

In order to achieve clinically helpful direct volume visualization,
we propose a completely novel approach to the classification stage to-
gether with an intuitive tool for setting up the rendering result: We
introduce the concept of point predicates, which evaluate both local
and global features of the ultrasound image and are defined on every
sampling point. This facilitates to perform classification also based
on high-level non-local information such as speckle or texture or even
anatomical models/segmentations. By further annotating each predi-
cate with an importance factor, we can naturally implement relevance-
based visualization ensuring that important anatomies are always visi-
ble in the rendering, while preserving context information where pos-
sible in order to show better spatial clues.

Despite the recent advances regarding quality, interactiveness, and
usability, volumetric visualization still has not been fully accepted by
most clinicians for their workflow and is, if at all, only used for pub-
lications or patient presentations. Even with CT imaging, where the
image intensities (Hounsfield units) directly correspond to a physical
property that allows for direct discrimiation of tissue types, most radi-
ologists still prefer to scroll through the stack of 2D slices and make up
the 3D model in their minds instead of looking at 3D visualizations.
This is mainly due to the lack of usability of today’s classification
approaches, where changing the volume rendering to show different
anatomy relates to adaption of the transfer function. The limited ex-
pressiveness and intuitiveness, as well as the high dimensionality of
the parameter domain, in particular with multi-dimensional transfer
functions, makes their setup a tedious and cumbersome task that many
clinicians have difficulties with [20].

With this issue in mind, we further introduce the predicate his-
togram as an effective tool for reducing the dimensionality of the pred-
icate configuration space and facilitating its manipulation. Together

with the descriptive semantics of predicates, it provides the user with
easy and intuitive interaction with the point predicates to setup the
rendering. This user interface was designed to allow for interactive
exploration of clinically relevant information and switching between
visualizations of different target anatomies with minimal efforts in a
highly intuitive way. This is further enriched by a scribble technique
providing a painting metaphor to specify classification directly in the
image domain.

2 RELATED WORK

Our proposed method has three important properties:

1. It is particularly designed for the visualization of ultrasound vol-
umes.

2. It integrates different levels of information, ranging from low-
level local image intensities to even anatomical models, into a
single consistent formulation that is exposed to the user using an
intuitive widget.

3. It exploits illustrative focus-and-context rendering techniques.

Since the body of literature on volume rendering techniques is large,
we focus this section on the most closely related works regarding the
above topics and refer the interested reader to the book of Preim and
Botha [16] for a more exhaustive overview.

2.1 Visualization of Ultrasound Volumes
Compared to tomographic imaging modalities such as CT or MRI,
where direct volume rendering can show very distinct visualizations
of the anatomy, B-mode ultrasound images provide special challenges
to classification causing these techniques to fail in yielding helpful vi-
sualizations. Since ultrasound imaging exploits the echo generated by
density changes at tissue interfaces of different acoustic impedance, it
rather shows the changes in physical properties than the physical prop-
erties themselves. As a consequence, ultrasound images are funda-
mentally different to those obtained from tomographic imaging modal-
ities. In addition to this gradient-like nature, ultrasound is a highly
directional modality and suffers from a considerable amount of noise.
These properties prohibit the straightforward application of standard
classification techniques for direct volume visualization (cf. Figure
2).

One of the few methods, besides the early work of Sakas et al. [19],
specifically targeting these challenges for visualization, is the work
of Fattal and Lischinski [5], who propose a variational approach to
opacity classification that allows to extract smooth surfaces from 3D
ultrasound volumes. However, their work is mostly attributed to fe-
tal ultrasound, since it basically shows only a single surface and does
not allow for blending of multiple layers. Mann et al. propose a vol-
umetric ultrasound system augmenting B-mode ultrasound intensities
with elasticity information using two-dimensional transfer functions
in order to yield more distinct visualizations [14].

2.2 Multi-Dimensional Classification Schemes
While exploiting additional information during classification and
therefore introducing multi-dimensional transfer functions [11, 23, 15]
(for instance based on post-processing) is a viable way towards useful
3D ultrasound visualization, it significantly increases the parameter
domain to setup the rendering. Designing effective user interfaces
for transfer function and rendering setup is an extensive and impor-
tant field of research, as especially non-expert users have difficulties
with mapping the complex parameter domain to semantic features for
visualization. Therefore, Rezk-Salama et al. propose using princi-
pal component analysis to map a small set of semantic parameters
to the potentially large transfer function parameter space and claim
that this can be learned from clinicians [20]. Wang et al. introduce
the Modified Dendrogram as a means for mapping high dimensional
transfer functions into 2D space to facilitate their setup for the user
[27]. The resulting user interface, however, still has a high amount of
non-descriptive and thus unintuitive parameters. A different approach
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towards solving the classification problem by introducing a semantic
layer is the work of Rautek et al. [17], who implement a fuzzy logic
evaluation of the semantic descriptions on the GPU and combine it
with interaction-dependent rendering. While they achieve impressive
relevance-based rendering results, their work is mostly focused on in-
tegrating user interaction into the visualization and does not address
the special challenges of ultrasonic images.

2.3 Focus-and-Context Visualization
Illustrative relevance-based visualization is an efficient technique to
tackle occlusion problems in volume visualization. They extend the
classic direct volume rendering compositing scheme towards focus-
and-context rendering that defines a focus region, which must not be
occluded, and context regions that are shown with less priority for
better spatial understanding. Approaches not relying on transfer func-
tions, such as the Importance-Based Accumulated Transparency Mod-
ulation introduced by Wan and Hansen [26] extend the Maximum In-
tensity Difference Accumulation (MIDA) compositing scheme to al-
low relevance-based visualization without the need to setup a transfer
function for classification. The work of Bruckner et al. allows for
context-preserving see-through rendering by evaluating local shading
information with two global parameters, which however do not have
a direct semantic meaning [2]. The ClearView technique of Krüger et
al. exploits curvature information as well as distance metrics to deter-
mine sample importances and introduces different shading and com-
positing techniques to map relevance to optical properties [13]. De
Moura Pinto and Freitas introduce a further importance-aware com-
positing scheme, which is mathematically motivated and justified and
integrates very well with the standard direct volume rendering pipeline
[3].

2.4 Our Approach
Our approach is inspired by line predicates used in flow visualization,
where streamline tracking yields an extensive number of streamlines
that represent the global connectivity of the data very well, but at the
same time it greatly suffer from occlusion of important features. Here,
line predicates offer an effective technique to filter the flow field for
certain features such as vortices or high-velocity jets [21, 1, 12]. How-
ever, since line predicates are applied to geometry representations and
simply toggle streamline visibility, they are very limited to this specific
application. Our approach can thus be seen as a generalization of this
idea providing a consistent formulation for relevance-based rendering
with particular focus and application on 3D ultrasound visualization.

3 METHODS

Our predicate-based approach is designed to fully integrate into a stan-
dard volume rendering pipeline and consists of three steps, as illus-

trated in the schematic diagram of Figure 3. We define a point pred-
icate P as a boolean-valued function fP on the image domain X aug-
mented with an importance factor κP and a color modulation δP:

P :=
(

fP : X →{true, false}, κP, δP
)
. (1)

After selecting the predicates to apply from the point predicate li-
brary, the user specifies the rendering outcome by configuring κP and
δP. This process is heavily supported by the predicate histogram,
which we propose as a user interface for rendering setup. During
the classification stage of the rendering, the ray caster applies each
predicate to each sampling point yielding a color modulation for each
sample, which are eventually accumulated using a focus-and-context
compositing technique exploiting the predicates’ importance factors.

The term point predicate suggests that the predicate can be evalu-
ated at every point within the image domain X . However, it is essential
that predicates are not limited to local values but also to features of lo-
cal environments or even of global nature, such as texture information
or anatomical models and segmentations. Furthermore, we do not pose
any presumptions on the spatial representation of X .

3.1 Predicate Library

Our current implementation consists of a point predicate library based
on a variety of methods to evaluate both local and global features in
the image.

Range-based predicates apply to intervals of scalar measures in the
image such as intensity and gradient magnitude. While their sole ex-
pressiveness is rather limited, prone to inter-data set variability, and
in particular does not go beyond traditional 1D/2D transfer functions,
they are an essential part in combination with the other predicates.
For instance, since high curvature regions often carry important visual
depth and context cues, assigning high importance values to the gradi-
ent magnitude predicates may yield significant visual improvements.

Due to the direction dependency of ultrasound images, direction-
based predicates are an important factor for our predicate-based 3D
ultrasound visualization. They exploit additional information on the
ultrasound scanning direction, which we annotate to the compounded
ultrasound volume. The gradient angle predicate evaluates the scan-
line direction in a local context by computing the angle between scan-
line and the smoothed gradient. Since the reflection of the ultrasound
wave depends on the incident angle with the interface, this ultrasound
specific point predicate is a powerful tool to highlight or mask certain
structures.

As a third group we implemented a variety of predicates based on
derived measures. Since they apply a configurable threshold to the de-
rived measure, they can be seen as extension to the range-based predi-
cates.
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The Signal-to-Noise ratio predicate computes the variance-based
SNR of the ultrasound image in a local neighborhood of the sample
position and can be used to select regions with certain entropy. We
therefore build for each voxel the weighted variance within a uniform
7x7x7 kernel and perform windowing on the results. The windowing
parameters are user-controlled in our current implementation, since an
elaborate evaluation is beyond the scope of this work.

Furthermore, we implemented a GPU version of Frangi’s vesselness
filter [6] and bound its results to a vesselness predicate. By computing
local Hessians for each voxel on multi-level Gaussians of the ultra-
sound volume and performing an eigenvalue analysis, the Frangi filter
provides a scalar measure of presence of tubular structures. Therefore,
this predicate is particularly useful in vascular imaging.

The presence of ultrasound confidence maps [9] can be exploited
with the confidence predicate. Confidence Maps compute a relative
per-pixel attenuation of the ultrasound signal using a random-walks
approach. This attenuation could be interpreted as uncertainty infor-
mation and therefore directly be integrated into the volume rendering
pipeline. Our experiments however show only limited use of the ad-
ditional information, which may be an issue with the confidence maps
themselves. Nevertheless, we think that this is a promising direction
for future work to integrate uncertainty visualization into our pipeline
since future work on Confidence Maps, such as [8], may improve their
quality and validity.

Finally, we implemented a label predicate that evaluates on option-
ally existing labeling information of the image in two different ways.
For our evaluation in Section 6 we performed a manual segmentation
on the data sets partitioning the ultrasound volumes into semantic lay-
ers of anatomy such as skin, muscle and bone. This was performed in
the style of Surface Function Actives segmentation [4], which could
yield a similar result in a (semi-)automatic fashion [10]. The segmen-
tation layers were stored as B-spline surfaces in voxel space. With
these, the label predicate can then directly determine to which layer
the current sample belongs. The second version of the label predi-
cate uses a 3D voxel grid as input data, where each voxel stores a bit
mask with the labeling information. With the cost of discretization,
this predicate allows the same evaluation of segmentation information
but in a more generic way. This yields a very natural way to seam-
lessly integrate segmentations into the ray casting process and offers a
powerful tool to accurately define importance factors or color modu-
lations for specific regions.

As our work focuses on providing a novel approach together with
a high-level tool, the presented point predicate library is certainly not
complete, but rather provides a proof-of-concept implementation. Fu-
ture work by the community may yield a variety of further application-
dependent predicates that evaluate both local and global features in the
image to yield even better classification results.

3.2 Predicate Combination
To allow sufficient generality, we keep the individual predicates sim-
ple with each just evaluating a single feature in the image domain. We
achieve further flexibility by assembling multiple predicates P1, . . . ,Pn
into meta predicates using combination operators. Our boolean for-
mulation of the predicate function therefore yields the classic boolean
operators:

NOT: P1 yields the negation of the original predicate and allows to
semantically complement the accepted domain of the original
predicate.

AND: P1 ∧ ·· · ∧Pn yields a predicate that satisfies the constraints of
all predicates P1 through Pn. Often it is desired to have this oper-
ation in order to semantically restrict the accepted domain to the
intersection of the accepted domains of each predicate, as also
shown in Figure 4 where the second and the third predicate from
the left are of this type.

OR: P1 ∨ ·· · ∨ Pn yields a predicate that satisfies the constraints of
either of the predicates P1 through Pn. Since our formulation
computes the final sample importance by computing a weighted

sum of the predicates’ importances (cf. Section 3.4), the OR
operator can also be obtained by suitable setup of the importance
factors.

3.3 Predicate Selection & Setup

Fig. 4: Our proposed widget shows the predicate histogram and al-
lows an easy and intuitive configuration of the point predicates for
relevance-based rendering: The main area shows the distribution of
predicate importances and enables easy manipulation using drag and
drop. Two sets of controls allow for further manipulation of the cur-
rently selected predicate: The sliders on the left set up the color modu-
lation; the controls on the bottom set up optional predicate parameters.

The point predicates to apply are selected from the user or, alter-
natively, given by a workflow model later potentially learned specif-
ically for the given anatomy and application. Each predicate has a
small set of parameters, defining the predicate importance κ and an
optional color modulation δ having components hue δ (H) and satu-
ration δ (S). Certain predicates may have further optional parameters
defining where the predicate yields true (e.g. intensity range).

We propose to combine predicate selection and configuration via
the predicate histogram, a single intuitive widget as shown in Figure
4. The heights of the bars directly represent the relative importance
weighting of the predicates, while their fill color shows the color mod-
ulation. The user can manipulate the importance of each predicate
with intuitive drag and drop interaction on the histogram bar and will
directly see the results of his/her actions, as the predicate-based ren-
dering is evaluated in real-time. In order to further reduce the parame-
ter space without losing flexibility, the predicate histogram normalizes
the sum of the predicates weights:

∑
j

κ j = 1. (2)

Hence, increasing the importance of one predicate automatically de-
creases the importances of the other predicates and vice versa.

We place two additional sets of manipulators around the predicate
histogram widget, which allow controlling additional parameters of
the currently selected predicate: Two vertical sliders on the left allow
the user to configure the color modulation in terms of hue and sat-
uration. The resulting color is visualized in the predicate histogram
as fill color of the corresponding bar. Furthermore, widgets to con-
trol feature specific predicate parameters (such as the range where the
predicate yields true) are placed below the histogram in a horizontal
layout.

The predicate selection process is currently a fully manual task of
explorative nature. However, we argue that achieving satisfying ren-
dering results is significantly more intuitive and easier than with tradi-
tional 1D/2D transfer functions, since the parameter space of our point
predicate technique is much more expressive due to its semantic nature
and the whole process runs in real-time providing interactive feedback.
Furthermore, the predicate histogram reduces the parameter space ef-
fectively in size through the normalization of predicate importances
(cf. Equation (2)).

3.4 Classification & Compositing
For classification and compositing, our predicate-based ray caster
evaluates the selected predicates on each input sample point s to com-
pute the sample importance κ(s) and sample color modulation δ (s).
As we wish the individual importances to contribute in an additive
manner, we define κ(s) as

κ(s) =
∑n

j=1 χ j(s)I(κ j)

∑n
j=1 χ j(s)

, (3)

where I(κ j) denotes the impact function for predicate j and χ j(s) the
characteristic function for predicate j (i.e. indicating whether f j(s) is
true). We would like the following two conditions to hold:

1. A non-linear amplification of importance differences, meaning
that κi ∼ κ j ⇒ I(κi)∼ I(κ j) but κi < κ j ⇒ I(κi)� I(κ j). This
allows for better usability since the user does not need to be
pixel-perfect when assigning the same importance to multiple
predicates. This condition can be rewritten to

κi −κ j < I(κi)− I(κ j), (4)

which holds for all differentiable I with I′(x)> 1.

2. In the case of all predicates having the same importance factor
assigned, we wish κ(s) to be always 1:

∀i, j : κi = κ j ⇒ ∀s : κ(s) = 1. (5)

Experimentally, we found I(κ j) := (n · κ j)
2, where n is the total

number of predicates, to yield good results and satisfy both conditions.
This gives us the following full definition (cf. Equation (3)):

κ(s) =
∑n

j=1 χ j(s) · (n ·κ j)
2

∑n
j=1 χ j(s)

. (6)

It should be noted that one certainly can select very small κi,κ j , so
that n ·κi < 0.5 and n ·κ j < 0.5 violate the first condition. However, in
such cases there is at least one κk with n ·κk > 1 due to Equation (2).
We argue that this effect is even desirable as predicate k shall have the
major impact on the visualization and we can neglect the importance
difference between predicates i and j.

In order to specify the optical properties of the sample s, we com-
pute the sample color modulation in terms of hue δ (H)(s) and satu-
ration δ (S)(s) in HSL color space. The sample luminance as well as
its opacity are set to the original ultrasound intensity. This serves two
goals: It reduces the dimensionality of the parameter space, and even
more importantly allows to retain the appearance of the original ultra-
sound data, which we see as an essential part of ultrasound visualiza-
tion. The color modulation is computed in an additive manner using
the predicate contributions

ω j(s) := χ j(s) · (n ·κ j)
2 (7)

as weights. The hue modulation is additionally weighted by the sat-
uration modulation to avoid undesirable effects in cases where large
hue shifts with small saturation modulations are combined with small
hue shifts with large saturation modulations.

δ (S)(s) =
1

∑n
j=1 ω j(s)

·
n

∑
j=1

ω j(s) ·δ
(S)
j ,

δ (H)(s) =
1

∑n
j=1 ω j(s)δ

(S)
j

·
n

∑
j=1

ω j(s)δ
(S)
j ·δ (H)

j .

(8)

With sample importance, color and opacity set, the samples are
fed into a focus and context compositing scheme. While our pro-
posed method should work with most relevance-based compositing
techniques, we use use the one proposed by De Moura Pinto and Fre-
itas [3], which has various desirable properties:

1. Its well motivated front-to-back recurrence scheme formulation
allows straightforward integration into standard ray casters.

2. In the absence of importance values or with all samples be-
ing equally important, it resolves to the standard emission-
absorption-based volume rendering integral.

3. Its input parameters are clear and limited to a scalar importance
value besides the standard optical properties of color and opac-
ity. We therefore map κ(s) to Is, δ (s) to Cs and I(s) to αs as
introduced in [3].

The full recurrence scheme for compositing can be found in the Ap-
pendix.

4 EXTENSIONS

Our technique integrates very well into the existing volume rendering
pipeline. This is also valid for a variety of possible extensions that
current state-of-the-art methods provide to facilitate standard transfer
function-based classification, such as data driven techniques to gener-
ate transfer function presets, shape-based transfer functions, or image-
driven transfer function setup where the user can manipulate the clas-
sification by direct interaction with the original image. Many of these
works can be easily transferred to our predicate-based approach for
direct volume rendering. As an example, we present how to integrate
a scribble technique into our framework similar to the interface pro-
posed by Tzeng et al. [25] and the stroke-based transfer function de-
sign by Ropinski et al. [18].

(a) Original Predicate Histogram

(b) Scribbles painted into cross-sectional slice views

(c) Predicate Histogram After Applying Scribbles

Fig. 5: Illustration of scribble-based Predicate Histogram Setup:
(a) shows the original predicate histogram. (b) By delineating image
features to show (green scribble along bone structure) and image fea-
tures to hide (red scribble in skin layer) in the cross-sectional MPRs,
the user can configure the predicate histogram directly in the image
domain. (c) shows the updated predicate histogram after applying the
scribbles.
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The Signal-to-Noise ratio predicate computes the variance-based
SNR of the ultrasound image in a local neighborhood of the sample
position and can be used to select regions with certain entropy. We
therefore build for each voxel the weighted variance within a uniform
7x7x7 kernel and perform windowing on the results. The windowing
parameters are user-controlled in our current implementation, since an
elaborate evaluation is beyond the scope of this work.

Furthermore, we implemented a GPU version of Frangi’s vesselness
filter [6] and bound its results to a vesselness predicate. By computing
local Hessians for each voxel on multi-level Gaussians of the ultra-
sound volume and performing an eigenvalue analysis, the Frangi filter
provides a scalar measure of presence of tubular structures. Therefore,
this predicate is particularly useful in vascular imaging.

The presence of ultrasound confidence maps [9] can be exploited
with the confidence predicate. Confidence Maps compute a relative
per-pixel attenuation of the ultrasound signal using a random-walks
approach. This attenuation could be interpreted as uncertainty infor-
mation and therefore directly be integrated into the volume rendering
pipeline. Our experiments however show only limited use of the ad-
ditional information, which may be an issue with the confidence maps
themselves. Nevertheless, we think that this is a promising direction
for future work to integrate uncertainty visualization into our pipeline
since future work on Confidence Maps, such as [8], may improve their
quality and validity.

Finally, we implemented a label predicate that evaluates on option-
ally existing labeling information of the image in two different ways.
For our evaluation in Section 6 we performed a manual segmentation
on the data sets partitioning the ultrasound volumes into semantic lay-
ers of anatomy such as skin, muscle and bone. This was performed in
the style of Surface Function Actives segmentation [4], which could
yield a similar result in a (semi-)automatic fashion [10]. The segmen-
tation layers were stored as B-spline surfaces in voxel space. With
these, the label predicate can then directly determine to which layer
the current sample belongs. The second version of the label predi-
cate uses a 3D voxel grid as input data, where each voxel stores a bit
mask with the labeling information. With the cost of discretization,
this predicate allows the same evaluation of segmentation information
but in a more generic way. This yields a very natural way to seam-
lessly integrate segmentations into the ray casting process and offers a
powerful tool to accurately define importance factors or color modu-
lations for specific regions.

As our work focuses on providing a novel approach together with
a high-level tool, the presented point predicate library is certainly not
complete, but rather provides a proof-of-concept implementation. Fu-
ture work by the community may yield a variety of further application-
dependent predicates that evaluate both local and global features in the
image to yield even better classification results.

3.2 Predicate Combination
To allow sufficient generality, we keep the individual predicates sim-
ple with each just evaluating a single feature in the image domain. We
achieve further flexibility by assembling multiple predicates P1, . . . ,Pn
into meta predicates using combination operators. Our boolean for-
mulation of the predicate function therefore yields the classic boolean
operators:

NOT: P1 yields the negation of the original predicate and allows to
semantically complement the accepted domain of the original
predicate.

AND: P1 ∧ ·· · ∧Pn yields a predicate that satisfies the constraints of
all predicates P1 through Pn. Often it is desired to have this oper-
ation in order to semantically restrict the accepted domain to the
intersection of the accepted domains of each predicate, as also
shown in Figure 4 where the second and the third predicate from
the left are of this type.

OR: P1 ∨ ·· · ∨ Pn yields a predicate that satisfies the constraints of
either of the predicates P1 through Pn. Since our formulation
computes the final sample importance by computing a weighted

sum of the predicates’ importances (cf. Section 3.4), the OR
operator can also be obtained by suitable setup of the importance
factors.

3.3 Predicate Selection & Setup

Fig. 4: Our proposed widget shows the predicate histogram and al-
lows an easy and intuitive configuration of the point predicates for
relevance-based rendering: The main area shows the distribution of
predicate importances and enables easy manipulation using drag and
drop. Two sets of controls allow for further manipulation of the cur-
rently selected predicate: The sliders on the left set up the color modu-
lation; the controls on the bottom set up optional predicate parameters.

The point predicates to apply are selected from the user or, alter-
natively, given by a workflow model later potentially learned specif-
ically for the given anatomy and application. Each predicate has a
small set of parameters, defining the predicate importance κ and an
optional color modulation δ having components hue δ (H) and satu-
ration δ (S). Certain predicates may have further optional parameters
defining where the predicate yields true (e.g. intensity range).

We propose to combine predicate selection and configuration via
the predicate histogram, a single intuitive widget as shown in Figure
4. The heights of the bars directly represent the relative importance
weighting of the predicates, while their fill color shows the color mod-
ulation. The user can manipulate the importance of each predicate
with intuitive drag and drop interaction on the histogram bar and will
directly see the results of his/her actions, as the predicate-based ren-
dering is evaluated in real-time. In order to further reduce the parame-
ter space without losing flexibility, the predicate histogram normalizes
the sum of the predicates weights:

∑
j

κ j = 1. (2)

Hence, increasing the importance of one predicate automatically de-
creases the importances of the other predicates and vice versa.

We place two additional sets of manipulators around the predicate
histogram widget, which allow controlling additional parameters of
the currently selected predicate: Two vertical sliders on the left allow
the user to configure the color modulation in terms of hue and sat-
uration. The resulting color is visualized in the predicate histogram
as fill color of the corresponding bar. Furthermore, widgets to con-
trol feature specific predicate parameters (such as the range where the
predicate yields true) are placed below the histogram in a horizontal
layout.

The predicate selection process is currently a fully manual task of
explorative nature. However, we argue that achieving satisfying ren-
dering results is significantly more intuitive and easier than with tradi-
tional 1D/2D transfer functions, since the parameter space of our point
predicate technique is much more expressive due to its semantic nature
and the whole process runs in real-time providing interactive feedback.
Furthermore, the predicate histogram reduces the parameter space ef-
fectively in size through the normalization of predicate importances
(cf. Equation (2)).

3.4 Classification & Compositing
For classification and compositing, our predicate-based ray caster
evaluates the selected predicates on each input sample point s to com-
pute the sample importance κ(s) and sample color modulation δ (s).
As we wish the individual importances to contribute in an additive
manner, we define κ(s) as

κ(s) =
∑n

j=1 χ j(s)I(κ j)

∑n
j=1 χ j(s)

, (3)

where I(κ j) denotes the impact function for predicate j and χ j(s) the
characteristic function for predicate j (i.e. indicating whether f j(s) is
true). We would like the following two conditions to hold:

1. A non-linear amplification of importance differences, meaning
that κi ∼ κ j ⇒ I(κi)∼ I(κ j) but κi < κ j ⇒ I(κi)� I(κ j). This
allows for better usability since the user does not need to be
pixel-perfect when assigning the same importance to multiple
predicates. This condition can be rewritten to

κi −κ j < I(κi)− I(κ j), (4)

which holds for all differentiable I with I′(x)> 1.

2. In the case of all predicates having the same importance factor
assigned, we wish κ(s) to be always 1:

∀i, j : κi = κ j ⇒ ∀s : κ(s) = 1. (5)

Experimentally, we found I(κ j) := (n · κ j)
2, where n is the total

number of predicates, to yield good results and satisfy both conditions.
This gives us the following full definition (cf. Equation (3)):

κ(s) =
∑n

j=1 χ j(s) · (n ·κ j)
2

∑n
j=1 χ j(s)

. (6)

It should be noted that one certainly can select very small κi,κ j , so
that n ·κi < 0.5 and n ·κ j < 0.5 violate the first condition. However, in
such cases there is at least one κk with n ·κk > 1 due to Equation (2).
We argue that this effect is even desirable as predicate k shall have the
major impact on the visualization and we can neglect the importance
difference between predicates i and j.

In order to specify the optical properties of the sample s, we com-
pute the sample color modulation in terms of hue δ (H)(s) and satu-
ration δ (S)(s) in HSL color space. The sample luminance as well as
its opacity are set to the original ultrasound intensity. This serves two
goals: It reduces the dimensionality of the parameter space, and even
more importantly allows to retain the appearance of the original ultra-
sound data, which we see as an essential part of ultrasound visualiza-
tion. The color modulation is computed in an additive manner using
the predicate contributions

ω j(s) := χ j(s) · (n ·κ j)
2 (7)

as weights. The hue modulation is additionally weighted by the sat-
uration modulation to avoid undesirable effects in cases where large
hue shifts with small saturation modulations are combined with small
hue shifts with large saturation modulations.

δ (S)(s) =
1

∑n
j=1 ω j(s)

·
n

∑
j=1

ω j(s) ·δ
(S)
j ,

δ (H)(s) =
1

∑n
j=1 ω j(s)δ

(S)
j

·
n

∑
j=1

ω j(s)δ
(S)
j ·δ (H)

j .

(8)

With sample importance, color and opacity set, the samples are
fed into a focus and context compositing scheme. While our pro-
posed method should work with most relevance-based compositing
techniques, we use use the one proposed by De Moura Pinto and Fre-
itas [3], which has various desirable properties:

1. Its well motivated front-to-back recurrence scheme formulation
allows straightforward integration into standard ray casters.

2. In the absence of importance values or with all samples be-
ing equally important, it resolves to the standard emission-
absorption-based volume rendering integral.

3. Its input parameters are clear and limited to a scalar importance
value besides the standard optical properties of color and opac-
ity. We therefore map κ(s) to Is, δ (s) to Cs and I(s) to αs as
introduced in [3].

The full recurrence scheme for compositing can be found in the Ap-
pendix.

4 EXTENSIONS

Our technique integrates very well into the existing volume rendering
pipeline. This is also valid for a variety of possible extensions that
current state-of-the-art methods provide to facilitate standard transfer
function-based classification, such as data driven techniques to gener-
ate transfer function presets, shape-based transfer functions, or image-
driven transfer function setup where the user can manipulate the clas-
sification by direct interaction with the original image. Many of these
works can be easily transferred to our predicate-based approach for
direct volume rendering. As an example, we present how to integrate
a scribble technique into our framework similar to the interface pro-
posed by Tzeng et al. [25] and the stroke-based transfer function de-
sign by Ropinski et al. [18].

(a) Original Predicate Histogram

(b) Scribbles painted into cross-sectional slice views

(c) Predicate Histogram After Applying Scribbles

Fig. 5: Illustration of scribble-based Predicate Histogram Setup:
(a) shows the original predicate histogram. (b) By delineating image
features to show (green scribble along bone structure) and image fea-
tures to hide (red scribble in skin layer) in the cross-sectional MPRs,
the user can configure the predicate histogram directly in the image
domain. (c) shows the updated predicate histogram after applying the
scribbles.
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Fig. 6: Visualization results for the shoulder data set together with the used predicate histograms: Compared to the standard transfer function-
based visualization (a), (b) was generated by exploiting the SNR Range predicate to mark fibrous structures in the muscle layer. The final
rendering (c) additionally highlights the bone surface as focus region.

4.1 Scribble-based Predicate Histogram Setup
While the predicate histogram widget already provides an intuitive
metaphor to setup the predicate configuration, it still requires the user
to perform an implicit mapping between the semantic meaning of each
predicate and its corresponding features in the image. To further facil-
itate the predicate importance setup, we implemented a scribble tech-
nique that offers the user the possibility to directly interact with the
ultrasound image by using a painting metaphor to mark focus and con-
text regions in cross-sectional slice views of the volume as illustrated
in Figure 5.

The scribbles yield a set of positive samples that should be em-
phasized in the volume rendering and a set of negative samples that
should be less prominent. Since emphasizing certain regions relates to
increasing the importances of the corresponding predicates and since
decreasing importances results in decreased visibility, we transform
the scribbles into a modulation of the predicate importances κi.

For each predicate i we denote the number of positively labeled
samples where the predicate yields true by N+

i and the number of neg-
atively labeled samples where the predicate yields true by N−

i . We
compute an importance modulation vector m as

mi =
q
(
N+

i −N−
i
)

∑ j N+
j −N−

j
, (9)

where q describes the percentage by which the current predicate his-
togram is altered through the scribbles, which we empirically set to
0.25. In order to keep the predicate histogram in its normalized state
(Equation (2)), we first normalize m so that ∑ j m j = 0 before we up-
date each importance κi by adding mi.

This approach can certainly be extended with more elaborate impor-
tance modulation or even automatic predicate parameter configuration.
However, since this is beyond the scope of this paper we consider it as
future work.

5 IMPLEMENTATION

We implemented our predicate-based ray casting technique entirely
using OpenGL 4 and GLSL, so that apart from setting up the predi-
cate logic, all evaluations and computations are performed on the GPU
using a single fragment shader. Furthermore, our formulation is de-
signed to seamlessly integrate into the standard direct volume render-
ing pipeline.

5.1 Predicate Selection & Setup
The client-side selection and setup is automatically transformed into
shader code, for which we use a building block like system similar
to the shader templates in [17]. Every point predicate provides three
blocks:

1. A GLSL header defining uniform names for the predicate param-
eters and further optional definitions.

2. A closed GLSL expression defining how to evaluate the predicate
with respect to the input data.

3. A function to setup the shader, which is called by the renderer
(prior to rendering) and assigns the parameter values to the cor-
responding uniforms.

The classification scheme from Equations (6) and (8) is transformed
into a single GLSL function combining the evaluation expressions and
yielding the final sample intensity and color modulation. Together
with the predicates’ GLSL headers, the predicate evaluation function
is injected into the renderers fragment shader. Meta predicates are
easily implemented using a composite pattern.

Potentially expensive recompilation of the shader has to be per-
formed only when the set of selected point predicates changes, as
this is the single event changing the definition of uniform variables
and predicate expressions. Subsequent rendering setup by configuring
the predicates’ importance factors, color modulations, and optional
parameters is entirely implemented by updating the uniform values,
which is even less overhead than an update of the transfer function
texture as performed by traditional transfer function-based renderers.

To implement the proposed scribble technique, we need to encode
for each pixel which predicates yield true. This is easily done by gen-
erating a 3D volume where each voxel encodes the results of the pred-
icates’ characteristic functions in a bit mask.

5.2 Integration into the Standard DVR Pipeline
Integrating our predicate-based classification and compositing into a
standard GLSL ray caster is straightforward and needs only minimal
changes in the shader code: Instead of a texture lookup on the transfer
function, the shader gathers all necessary input data for the predicates
and calls the predicate evaluation function yielding final sample im-
portance and color modulation. The color modulation is then applied
to sample intensity in HSL space, yielding the sample color value and
opacity. Together with the sample importance they are directly fed into
the compositing scheme as defined in [3].

6 RESULTS

For evaluation we acquired ultrasound sweeps of three distinct
anatomies (shoulder, carotid artery, and achilles tendon) using an
ACUSON S2000TM ultrasound machine equipped with an Acuson
9L4 linear transducer and electromagnetic tracking hardware. These
sweeps were reconstructed using an advanced backward compounding
algorithm exploiting frame orientation information to yield high qual-
ity volumes. Further details on this algorithm can be found in [22].

Fig. 7: Visualization results for the second carotid artery data set together with the used predicate histograms: Compared to the standard
transfer function-based visualization (a), the predicate setup in (b) removes the skin layer and highlights vascular structures. The vesselness
predicate in (c) allows to further show the vessel path (the bifurcation is only partly present in this data set and thus can not be seen).

Fig. 8: Visualization results for the achilles tendon data set together with the used predicate histograms: Compared to the standard transfer
function-based visualization (a), (b) highlights the target anatomy (achilles tendon) through the gradient angle predicate and the corresponding
label predicate. (c) Shows the final rendering with highlighted fibrous muscle structures as context information using the SNR range predicate.

The resulting volumes have a resolution of 5123 voxels for the shoul-
der data set and of 3843 voxels for the carotid and the achilles tendon
data set.

After discussions with clinicians we identified clinically relevant
features for each data set: For the shoulder data set, the clinicians
were interested in seeing the bone surface in context with the muscle
layer. Figure 6 shows possible visualization results of our technique
in conjunction with the predicate histogram used. 3D Visualization of
carotid ultrasound specifically needs to show the path of the carotid
artery and its bifurcation in a spatial context, as shown in Figures 1
and 7. Finally, for the achilles tendon acquisition, the clinicians need
to see the tendon in its whole shape in order to identify possible tears
or other lesions. Figure 8 shows the results of our approach.

To support our predicate-based approach to classification, we per-
formed a manual segmentation on the data sets partitioning the ultra-
sound volumes into semantic layers of anatomy such as skin, muscle
and bone (cf. Section 3.1 on label predicate).

To evaluate the transferability of the predicate histogram setup, we
applied the same configuration to both our carotid ultrasound data sets.
As depicted in Figure 9, a single predicate histogram was able to cre-
ate a proper visualization for both data sets. This suggests that our
formulation allows to reuse a predicate histogram, which was created
for a specific data set, for a different data set of the same anatomy as
valid preset, so that the user does not need to start the exploration and

tuning from scratch.
All results presented in this work were acquired in interactive ses-

sions with a nVidia GeForce 670 GTX GPU. While implementing a
performance-optimized rendering was not our main goal, our imple-
mentation is still capable of generating sufficient frame rates for inter-
active renderings as shown in Table 1. The decreased performance in
comparison to standard 1D transfer function-based direct volume ren-
dering is mainly because the illustrative focus-and-context rendering
does no longer allow for early ray termination.

Achilles Tendon Shoulder
(3843 voxels) (5123 voxels)

Standard 1D TF-based 102.3 fps 30.4 fps
Predicate-based Rendering 38.9 fps 15.7 fps

Table 1: Frame rates of our predicate-based approach compared to
standard 1D transfer function-based direct volume rendering for dif-
ferent data sets on a GeForce 670 GTX, viewport size 800x600.

7 DISCUSSION

In the previous section, we compared our rendering results only to
standard direct volume rendering with a 1D grayscale transfer func-
tion, which may raise the question how our technique compares to
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Fig. 6: Visualization results for the shoulder data set together with the used predicate histograms: Compared to the standard transfer function-
based visualization (a), (b) was generated by exploiting the SNR Range predicate to mark fibrous structures in the muscle layer. The final
rendering (c) additionally highlights the bone surface as focus region.

4.1 Scribble-based Predicate Histogram Setup
While the predicate histogram widget already provides an intuitive
metaphor to setup the predicate configuration, it still requires the user
to perform an implicit mapping between the semantic meaning of each
predicate and its corresponding features in the image. To further facil-
itate the predicate importance setup, we implemented a scribble tech-
nique that offers the user the possibility to directly interact with the
ultrasound image by using a painting metaphor to mark focus and con-
text regions in cross-sectional slice views of the volume as illustrated
in Figure 5.

The scribbles yield a set of positive samples that should be em-
phasized in the volume rendering and a set of negative samples that
should be less prominent. Since emphasizing certain regions relates to
increasing the importances of the corresponding predicates and since
decreasing importances results in decreased visibility, we transform
the scribbles into a modulation of the predicate importances κi.

For each predicate i we denote the number of positively labeled
samples where the predicate yields true by N+

i and the number of neg-
atively labeled samples where the predicate yields true by N−

i . We
compute an importance modulation vector m as

mi =
q
(
N+

i −N−
i
)

∑ j N+
j −N−

j
, (9)

where q describes the percentage by which the current predicate his-
togram is altered through the scribbles, which we empirically set to
0.25. In order to keep the predicate histogram in its normalized state
(Equation (2)), we first normalize m so that ∑ j m j = 0 before we up-
date each importance κi by adding mi.

This approach can certainly be extended with more elaborate impor-
tance modulation or even automatic predicate parameter configuration.
However, since this is beyond the scope of this paper we consider it as
future work.

5 IMPLEMENTATION

We implemented our predicate-based ray casting technique entirely
using OpenGL 4 and GLSL, so that apart from setting up the predi-
cate logic, all evaluations and computations are performed on the GPU
using a single fragment shader. Furthermore, our formulation is de-
signed to seamlessly integrate into the standard direct volume render-
ing pipeline.

5.1 Predicate Selection & Setup
The client-side selection and setup is automatically transformed into
shader code, for which we use a building block like system similar
to the shader templates in [17]. Every point predicate provides three
blocks:

1. A GLSL header defining uniform names for the predicate param-
eters and further optional definitions.

2. A closed GLSL expression defining how to evaluate the predicate
with respect to the input data.

3. A function to setup the shader, which is called by the renderer
(prior to rendering) and assigns the parameter values to the cor-
responding uniforms.

The classification scheme from Equations (6) and (8) is transformed
into a single GLSL function combining the evaluation expressions and
yielding the final sample intensity and color modulation. Together
with the predicates’ GLSL headers, the predicate evaluation function
is injected into the renderers fragment shader. Meta predicates are
easily implemented using a composite pattern.

Potentially expensive recompilation of the shader has to be per-
formed only when the set of selected point predicates changes, as
this is the single event changing the definition of uniform variables
and predicate expressions. Subsequent rendering setup by configuring
the predicates’ importance factors, color modulations, and optional
parameters is entirely implemented by updating the uniform values,
which is even less overhead than an update of the transfer function
texture as performed by traditional transfer function-based renderers.

To implement the proposed scribble technique, we need to encode
for each pixel which predicates yield true. This is easily done by gen-
erating a 3D volume where each voxel encodes the results of the pred-
icates’ characteristic functions in a bit mask.

5.2 Integration into the Standard DVR Pipeline
Integrating our predicate-based classification and compositing into a
standard GLSL ray caster is straightforward and needs only minimal
changes in the shader code: Instead of a texture lookup on the transfer
function, the shader gathers all necessary input data for the predicates
and calls the predicate evaluation function yielding final sample im-
portance and color modulation. The color modulation is then applied
to sample intensity in HSL space, yielding the sample color value and
opacity. Together with the sample importance they are directly fed into
the compositing scheme as defined in [3].

6 RESULTS

For evaluation we acquired ultrasound sweeps of three distinct
anatomies (shoulder, carotid artery, and achilles tendon) using an
ACUSON S2000TM ultrasound machine equipped with an Acuson
9L4 linear transducer and electromagnetic tracking hardware. These
sweeps were reconstructed using an advanced backward compounding
algorithm exploiting frame orientation information to yield high qual-
ity volumes. Further details on this algorithm can be found in [22].

Fig. 7: Visualization results for the second carotid artery data set together with the used predicate histograms: Compared to the standard
transfer function-based visualization (a), the predicate setup in (b) removes the skin layer and highlights vascular structures. The vesselness
predicate in (c) allows to further show the vessel path (the bifurcation is only partly present in this data set and thus can not be seen).

Fig. 8: Visualization results for the achilles tendon data set together with the used predicate histograms: Compared to the standard transfer
function-based visualization (a), (b) highlights the target anatomy (achilles tendon) through the gradient angle predicate and the corresponding
label predicate. (c) Shows the final rendering with highlighted fibrous muscle structures as context information using the SNR range predicate.

The resulting volumes have a resolution of 5123 voxels for the shoul-
der data set and of 3843 voxels for the carotid and the achilles tendon
data set.

After discussions with clinicians we identified clinically relevant
features for each data set: For the shoulder data set, the clinicians
were interested in seeing the bone surface in context with the muscle
layer. Figure 6 shows possible visualization results of our technique
in conjunction with the predicate histogram used. 3D Visualization of
carotid ultrasound specifically needs to show the path of the carotid
artery and its bifurcation in a spatial context, as shown in Figures 1
and 7. Finally, for the achilles tendon acquisition, the clinicians need
to see the tendon in its whole shape in order to identify possible tears
or other lesions. Figure 8 shows the results of our approach.

To support our predicate-based approach to classification, we per-
formed a manual segmentation on the data sets partitioning the ultra-
sound volumes into semantic layers of anatomy such as skin, muscle
and bone (cf. Section 3.1 on label predicate).

To evaluate the transferability of the predicate histogram setup, we
applied the same configuration to both our carotid ultrasound data sets.
As depicted in Figure 9, a single predicate histogram was able to cre-
ate a proper visualization for both data sets. This suggests that our
formulation allows to reuse a predicate histogram, which was created
for a specific data set, for a different data set of the same anatomy as
valid preset, so that the user does not need to start the exploration and

tuning from scratch.
All results presented in this work were acquired in interactive ses-

sions with a nVidia GeForce 670 GTX GPU. While implementing a
performance-optimized rendering was not our main goal, our imple-
mentation is still capable of generating sufficient frame rates for inter-
active renderings as shown in Table 1. The decreased performance in
comparison to standard 1D transfer function-based direct volume ren-
dering is mainly because the illustrative focus-and-context rendering
does no longer allow for early ray termination.

Achilles Tendon Shoulder
(3843 voxels) (5123 voxels)

Standard 1D TF-based 102.3 fps 30.4 fps
Predicate-based Rendering 38.9 fps 15.7 fps

Table 1: Frame rates of our predicate-based approach compared to
standard 1D transfer function-based direct volume rendering for dif-
ferent data sets on a GeForce 670 GTX, viewport size 800x600.

7 DISCUSSION

In the previous section, we compared our rendering results only to
standard direct volume rendering with a 1D grayscale transfer func-
tion, which may raise the question how our technique compares to
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(a) Carotid ultrasound data set 1

(b) Used predicate histogram

(c) Carotid ultrasound data set 2

Fig. 9: Results suggest a transferability of predicate histograms be-
tween different data sets of the same anatomy: (a) A visualization for
carotid data set 1 was created using the predicate histogram (b). This
was then applied as preset to carotid data set 2 yielding a very viable
visualization (c).

other related visualization techniques referenced in Section 2. The
main issue is that most of these techniques are not applicable to ultra-
sound data. Ultrasound intensities are of highly context-sensitive na-
ture (cf. Section 2.1) so that transfer functions solely relying on local
information, such as intensity and gradient, neither improve the visual
outcome nor are a suitable domain for defining color. Since our results
rely to some extent on segmentation output, our approach can be seen
as specialization of multi-volume rendering techniques, which could
yield similar results. However, we would like to stress that the focus
of our work is the full integration of a large variety of classification
techniques into a single consistent formulation in combination with an
intuitive user interface that allows for highly interactive exploration of
the data.

One side effect of relevance-based rendering is the limited depth
perception, in particular in still images. It is an inherent property of
this approach that features, which would usually be occluded, pop out
if they are assigned with a higher importance factor than features in
the front. The correct depth perception can however still be perceived
for instance through motion parallax in dynamic scenes as shown in
our video in the supplementary material. Furthermore, the used com-
positing scheme [3] ensures a correct depth ordering in case of uni-
form importances so that the depth perception of the individual fea-
tures themselves remains intact.

A very important aspect is the intuitiveness of our predicate his-

togram based on the semantic nature of the predicates. Therefore, it is
essential to provide the predicates and their settings with easily com-
prehendable naming. Since all the user needs to do is deciding whether
he/she wants to see more or less of a certain feature and adjust the cor-
responding bar in the predicate histogram accordingly, this can also be
considered as an implicit parameter space reduction

It should be noted that the focus of this paper is the introduction
of the predicate concept and the predicate histogram, as well as the
demonstration its potential on selected examples. An exhaustive study
regarding the selection of suitable features for defining predicates is
beyond the scope of this paper, as are techniques for automatic seg-
mentation of specific anatomies. For a detailed overview on suitable
segmentation techniques, we refer the interested reader to the book of
Szeliski [24] or the survey paper of Heimann and Meinzer [7]. Due to
our generic formulation, segmentation results obtained by such tech-
niques or even the techniques themselves can be easily transferred into
predicates and integrated into our visualization concept.

8 CONCLUSION

In this work, we introduced a novel consistent formulation for
predicate-based classification of volumetric image data. It does not
only allow for integration of both local and global image information
and even anatomical models, but also naturally extends to illustrative
focus-and-context visualization. While our technique does not make
any a-priori assumptions on the type of input data or its spatial repre-
sentation, it was designed for the specific application of direct volume
visualization to 3D ultrasound volumes, for which it yields superior
results in terms of occlusion and distinctly exposing selected image
features than traditional global transfer function-based visualization.

To complement our approach, we additionally proposed the predi-
cate histogram as an effective means for reducing the potentially high
dimensionality of the predicate configuration domain.

It provides the user with an intuitive interface showing an overview
over the parameter space, as well as with interaction metaphors to in-
teractively manipulate the visualization result in real-time. Especially
in combination with the implemented scribble technique, the predicate
histogram can be modified by direct interaction with the rendered ul-
trasound image. Thus, we obtain an intuitive workflow, which allows
also non-expert users to obtain insightful visualizations. The whole
framework is designed to seamlessly integrate in the standard volume
rendering pipeline without significantly increasing the computational
burden and thus allowing for a real-time interaction with the system.

While directly integrating adequate segmentation technique into our
predicate formulation might be one aspect of future work, other as-
pects are the application of our technique to other imaging modalities
and multi-modal data sets. We imagine the predicate domain to be
well suited for machine learning approaches, which could generate
application-specific workflow models to automatically provide predi-
cate histogram presets.

APPENDIX

The detailed recurrence scheme for the relevance-based compositing
of our technique is as follows. The equations are the same as in [3] but
adapted to our naming conventions.

Let κ(s) be the computed sample importance, C(s) be the sample
color and α(s) be the sample opacity as we defined in Section 3.4.
Then we define the visibility factor vis(κ(s),κi) of the current sample
κ(s) compared to the accumulated importance κi as

vis(κ(s),κi) = 1− exp(κiκ(s)), (10)

as well as the modulation factor m as

m =




1 κ(s)≤ κi,

1 1−αi ≥ vis(κ(s),κi),
1−vis(κ(s),κi)

αi
else.

(11)

The incremental front-to-back compositing scheme is defined by:

C′
i+1 = mCi +(1−mαi)C(s),

α ′
i+1 = mαi(1−α(s))+α(s),

αi+1 = αi(1−α(s))+α(s),

Ci+1 =

{
0 α ′

i+1 = 0,
αi+1C′

i+1
α ′

i+1
else,

κi+1 = max(κi, ln(α(s)+(1−α(s))exp(κi −κ(s)))+κ(s)).

(12)
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(a) Carotid ultrasound data set 1

(b) Used predicate histogram

(c) Carotid ultrasound data set 2

Fig. 9: Results suggest a transferability of predicate histograms be-
tween different data sets of the same anatomy: (a) A visualization for
carotid data set 1 was created using the predicate histogram (b). This
was then applied as preset to carotid data set 2 yielding a very viable
visualization (c).

other related visualization techniques referenced in Section 2. The
main issue is that most of these techniques are not applicable to ultra-
sound data. Ultrasound intensities are of highly context-sensitive na-
ture (cf. Section 2.1) so that transfer functions solely relying on local
information, such as intensity and gradient, neither improve the visual
outcome nor are a suitable domain for defining color. Since our results
rely to some extent on segmentation output, our approach can be seen
as specialization of multi-volume rendering techniques, which could
yield similar results. However, we would like to stress that the focus
of our work is the full integration of a large variety of classification
techniques into a single consistent formulation in combination with an
intuitive user interface that allows for highly interactive exploration of
the data.

One side effect of relevance-based rendering is the limited depth
perception, in particular in still images. It is an inherent property of
this approach that features, which would usually be occluded, pop out
if they are assigned with a higher importance factor than features in
the front. The correct depth perception can however still be perceived
for instance through motion parallax in dynamic scenes as shown in
our video in the supplementary material. Furthermore, the used com-
positing scheme [3] ensures a correct depth ordering in case of uni-
form importances so that the depth perception of the individual fea-
tures themselves remains intact.

A very important aspect is the intuitiveness of our predicate his-

togram based on the semantic nature of the predicates. Therefore, it is
essential to provide the predicates and their settings with easily com-
prehendable naming. Since all the user needs to do is deciding whether
he/she wants to see more or less of a certain feature and adjust the cor-
responding bar in the predicate histogram accordingly, this can also be
considered as an implicit parameter space reduction

It should be noted that the focus of this paper is the introduction
of the predicate concept and the predicate histogram, as well as the
demonstration its potential on selected examples. An exhaustive study
regarding the selection of suitable features for defining predicates is
beyond the scope of this paper, as are techniques for automatic seg-
mentation of specific anatomies. For a detailed overview on suitable
segmentation techniques, we refer the interested reader to the book of
Szeliski [24] or the survey paper of Heimann and Meinzer [7]. Due to
our generic formulation, segmentation results obtained by such tech-
niques or even the techniques themselves can be easily transferred into
predicates and integrated into our visualization concept.

8 CONCLUSION

In this work, we introduced a novel consistent formulation for
predicate-based classification of volumetric image data. It does not
only allow for integration of both local and global image information
and even anatomical models, but also naturally extends to illustrative
focus-and-context visualization. While our technique does not make
any a-priori assumptions on the type of input data or its spatial repre-
sentation, it was designed for the specific application of direct volume
visualization to 3D ultrasound volumes, for which it yields superior
results in terms of occlusion and distinctly exposing selected image
features than traditional global transfer function-based visualization.

To complement our approach, we additionally proposed the predi-
cate histogram as an effective means for reducing the potentially high
dimensionality of the predicate configuration domain.

It provides the user with an intuitive interface showing an overview
over the parameter space, as well as with interaction metaphors to in-
teractively manipulate the visualization result in real-time. Especially
in combination with the implemented scribble technique, the predicate
histogram can be modified by direct interaction with the rendered ul-
trasound image. Thus, we obtain an intuitive workflow, which allows
also non-expert users to obtain insightful visualizations. The whole
framework is designed to seamlessly integrate in the standard volume
rendering pipeline without significantly increasing the computational
burden and thus allowing for a real-time interaction with the system.

While directly integrating adequate segmentation technique into our
predicate formulation might be one aspect of future work, other as-
pects are the application of our technique to other imaging modalities
and multi-modal data sets. We imagine the predicate domain to be
well suited for machine learning approaches, which could generate
application-specific workflow models to automatically provide predi-
cate histogram presets.

APPENDIX

The detailed recurrence scheme for the relevance-based compositing
of our technique is as follows. The equations are the same as in [3] but
adapted to our naming conventions.

Let κ(s) be the computed sample importance, C(s) be the sample
color and α(s) be the sample opacity as we defined in Section 3.4.
Then we define the visibility factor vis(κ(s),κi) of the current sample
κ(s) compared to the accumulated importance κi as

vis(κ(s),κi) = 1− exp(κiκ(s)), (10)

as well as the modulation factor m as

m =




1 κ(s)≤ κi,

1 1−αi ≥ vis(κ(s),κi),
1−vis(κ(s),κi)

αi
else.

(11)

The incremental front-to-back compositing scheme is defined by:

C′
i+1 = mCi +(1−mαi)C(s),

α ′
i+1 = mαi(1−α(s))+α(s),

αi+1 = αi(1−α(s))+α(s),

Ci+1 =

{
0 α ′

i+1 = 0,
αi+1C′

i+1
α ′

i+1
else,

κi+1 = max(κi, ln(α(s)+(1−α(s))exp(κi −κ(s)))+κ(s)).

(12)
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