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Fig. 1: Proofreading with Dojo. We present a web-based application for interactive proofreading of automatic segmentations
of connectome data acquired via electron microscopy. Split, merge and adjust functionality enables multiple users to correct the
labeling of neurons in a collaborative fashion. Color-coded structures can be explored in 2D and 3D.

Abstract—Proofreading refers to the manual correction of automatic segmentations of image data. In connectomics, electron mi-
croscopy data is acquired at nanometer-scale resolution and results in very large image volumes of brain tissue that require fully
automatic segmentation algorithms to identify cell boundaries. However, these algorithms require hundreds of corrections per cubic
micron of tissue. Even though this task is time consuming, it is fairly easy for humans to perform corrections through splitting, merging,
and adjusting segments during proofreading. In this paper we present the design and implementation of Mojo, a fully-featured single-
user desktop application for proofreading, and Dojo, a multi-user web-based application for collaborative proofreading. We evaluate
the accuracy and speed of Mojo, Dojo, and Raveler, a proofreading tool from Janelia Farm, through a quantitative user study. We
designed a between-subjects experiment and asked non-experts to proofread neurons in a publicly available connectomics dataset.
Our results show a significant improvement of corrections using web-based Dojo, when given the same amount of time. In addition,
all participants using Dojo reported better usability. We discuss our findings and provide an analysis of requirements for designing
visual proofreading software.

Index Terms—Proofreading, Segmentation, Connectomics, Quantitative Evaluation

1 INTRODUCTION

In computer vision, image segmentation is the process of partitioning
an image into several sub-regions or segments, where individual seg-
ments correspond to distinct areas or objects in the image. Automatic
segmentation approaches eliminate user interaction, which is often the
bottleneck of manual and semi-automatic segmentation techniques.
However, automatic approaches are computationally expensive and
need to be targeted towards very specific segmentation problems and
data sets to achieve high-quality results. Furthermore, even optimized
automatic segmentation algorithms usually exhibit higher error rates
and are less accurate than manual expert segmentations. Manual pixel
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labeling, on the other hand, requires users to have domain-specific
knowledge and is usually a tedious and time-consuming process. A
powerful alternative to fully automatic or manual approaches are in-
teractive semi-automatic techniques. They usually rely on minimal
user input to achieve an initial result and allow users to further im-
prove the segmentation by manual adjustments. Proofreading refers
to the manual and semi-automatic correction of automatic segmenta-
tions as a post-processing step. In a proofreading tool, segments can
be quickly joined or split to produce the correct segmentation faster
than it would be possible with manual annotation. The combination of
automatic segmentation and proofreading is the preferred option for
large data sets where manual segmentation is not feasible.

Our work stems from a collaboration with neuroscientists in the
field of connectomics. Connectomics aims to completely reconstruct
the wiring diagram of the mammalian brain at nanometer resolution,
comprising billions of nerve cells and their interconnections [32, 44].
By deciphering this vast network and analyzing its underlying prop-
erties, scientists hope to better understand mental illnesses, learning
disorders and neural pathologies [33]. However, to analyze neuronal
connectivity at the level of individual synapses (i.e., connections be-
tween nerve cells), high-resolution electron microscopy (EM) image
stacks have to be acquired and processed (Fig. 2). These image stacks
are typically on the order of hundreds of terabytes in size and often
exhibit severe noise and artifacts. The huge size of these volumes
makes (semi-)automatic segmentation approaches the only viable op-
tion, however, the complex structure of the data provides difficulties
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Fig. 2: Proofreading as part of the Connectome workflow. Electron microscopy data of the mammalian brain gets acquired, registered and
segmented. Since the output of the automatic segmentation algorithm is not perfect, proofreading is a mandatory stage before any analysis.

for automatic segmentation. The resulting segmentations, on average,
require over 120 manual corrections per cubic micron of tissue [30].
Previous research has focused on image acquisition, segmentation [28]
and interactive visualization and analysis [16, 8, 7], but little research
has focused on the proofreading stage [38].

A powerful proofreading tool is crucial for enhancing segmenta-
tions efficiently and effectively. Particularly, communicating the three
dimensional property of EM stacks is essential for identifying segmen-
tation errors in 3D and for confirming the correctness of changes in the
automatic segmentation. Existing software solutions tend to be geared
towards domain experts and often have a steep learning curve. One
example is Raveler [23], a stand-alone proofreading tool recently de-
veloped at the Janelia Farm Research Campus. The huge scale of the
data that needs to be segmented and proofread, however, requires that
proofreading will have to be crowdsourced in the future. This, on the
other hand, implies that proofreading will have to be performed in a
distributed setting by non-domain-experts and novice users.

In collaboration with neuroscientists at the Harvard Center for Brain
Science we have developed two novel tools to increase the efficiency,
accuracy and usability for proofreading large, complex EM data. First,
we have developed Mojo–a powerful stand-alone software applica-
tion [30] for experienced as well as non-expert users that offers ad-
vanced semi-automatic proofreading features. Building on the experi-
ence we gained from Mojo, we developed Dojo (”Distributed Mojo”)–
a web-based, distributed proofreading application that includes collab-
orative features and is geared towards non-expert users. Dojo offers
easy access through a web browser, no installation requirements, 3D
volume rendering, and a clean user interface that improves usability,
especially for novice users. To evaluate the effectiveness of Dojo, we
perform a quantitative user study. The study targets non-experts from
all fields with no previous knowledge of proofreading electron mi-
croscopy data. We compare Dojo against Mojo and Raveler on a rep-
resentative sub-volume of connectomics data. The study is designed as
a between-subjects experiment with very little training for all partici-
pants and a fixed time frame of thirty minutes to proofread the given
dataset. As a baseline, we also asked two domain experts to label the
same sub-volume from scratch using manual segmentation.

Our first contribution is a set of requirements and design guide-
lines for visual proofreading applications based on our interviews with
domain experts and feedback from an initial deployment of Mojo to
non-expert users, interns and high-school students. Our second con-
tribution is the design and development of Mojo, a stand-alone soft-
ware application for proofreading. Based on our experiences during
our work on Mojo, we defined requirements for a successive software
which aims at increasing the usability of a proofreading tool geared
towards non-expert users. These thoughts have led to the development
of web-based Dojo, the third contribution of this paper. Dojo is easier
to use and adds 3D volume rendering and collaborative features. Our
final contribution is our quantitative user study. We present statisti-
cally significant results showing that novice users of Dojo are able to
proofread a given data set better and faster than with existing proof-
reading tools. Based on these results we present design guidelines that
will help developers of future proofreading tools.

2 RELATED WORK

Connectomics. Neuroscience and especially connectomics with its
goals and challenges [32] has received a lot of attention recently. Se-
ung [43] motivates the need for dense reconstruction of neuronal struc-
tures, underpinning the requirement for segmentation methods that au-
tomatically label huge volumes of high-resolution EM images.
Registration, segmentation and annotation for neuroscience. Cur-
rently, the main bottleneck for analyzing connectomics data is the need
for registration and segmentation of the underlying image data (Fig. 2).
EM images are acquired slice by slice by physically cutting a block of
tissue. Registration has to be performed between slices and also be-
tween individual sub-tiles of a single slice. Several methods focus on
registration of large EM data [5, 8, 42].

Segmentation methods for connectomics can be classified into man-
ual [10, 12], semi-automatic [3, 20, 26, 27, 40, 47, 49], and auto-
matic [22, 28, 34, 36, 37, 48] approaches. While initially manual and
semi-automatic approaches were very popular, in recent years the need
for automatic approaches that are scalable to volumes of hundreds
of terabytes has become apparent. ITK-SNAP [49] supports semi-
automatic segmentation methods based on active contours as well as
manual labeling. Vazquez-Reina et al. [48] propose an automatic 3D
segmentation of EM volumes by taking the whole volume into ac-
count rather than a section-to-section approach. They formulate the
segmentation as the solution to a fusion problem with a global context.
Kaynig et al. [28] propose a pipeline for the automatic reconstruction
of neuronal processes that is based on a random forest classifier cou-
pled with an anisotropic smoothing prior in a conditional random field
framework and 3D segment fusion. This pipeline is integrated into the
RhoANA open-source software available at http://www.rhoana.org.
Automatic segmentation methods are more scalable than manual or
semi-automatic approaches, but often require a clean-up or proofread-
ing step where incorrect segmentations are fixed. In 2013 the IEEE
ISBI challenge [2] called for machine learning algorithms for the 3D
segmentation of neurites in EM data. The organizers provided test and
training data, and a manual expert segmentation. While the results
were quite impressive, all algorithms still exhibited a rather high error
rate, motivating the need for proofreading. We use the data of that
challenge in our user study.
Collaborative segmentation and annotation. EyeWire [3] is an on-
line segmentation tool where novice users participate in a segmen-
tation game to get points for segmenting neuronal structures using a
semi-automatic algorithm. D2P [15] uses a micro-labor workforce ap-
proach (based on Amazon’s Mechanical Turk) where boolean choice
questions are presented to users and local decisions are combined
to produce a consensus segmentation. Catmaid [41] and the Viking
Viewer [6] are collaborative annotation frameworks for experts, that
allow users to create skeleton segmentations for terabyte-sized data
sets. However, they do not offer proofreading support.
Visualization and visual analytics for connectomics. A good
overview of visualization for connectomics and human connectomics
is given by Pfister et al. [39] and Margulies et al. [35] respectively.
Most visualization frameworks for connectome data have only basic
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Fig. 3: User interface of Raveler by Janelia Farm. The interface con-
sists of the 2D slice view (center), the toolbox (right), additional tex-
tual information (bottom) and a simple 3D renderer showing bounding
boxes of segments (bottom left).

support for 3D rendering [1] and focus on displaying network maps
of connected brain regions [6]. The Connectome Viewer [13] offers a
general processing and plug-in framework for visualization. Hadwiger
et al. [16] propose a visualization-driven petavoxel volume rendering
framework for high-resolution electron microscopy streams. For vi-
sual analysis of connectomics data, interactive query systems have
been proposed [7, 31]. None of these systems, however, run in a
distributed multi-user environment and many need high-performance
workstations and modern GPUs for rendering and data processing.
Collaborative and web-based visualization of image data. Gins-
burg et al. [14] propose a visualization system for connectome data
based on WebGL [29]. They combine brain surface rendering with
tractography fibers and render a 3D network of connected brain re-
gions. The X toolkit [18] offers WebGL rendering for neuroimag-
ing data, and SliceDrop [17] is a web-based viewer for medical imag-
ing data that supports volume rendering and axis-aligned slice views.
Jeong et al. [25] describe an online collaborative pathology viewer.
None of these frameworks, however, support volume rendering of seg-
mented data or interactively updating segmentations.
Proofreading. Until recently, visual proofreading methods for auto-
matically generated segmentations have not received a lot of attention.
Sicat et al. [46] propose a graph abstraction method to simplify proof-
reading. They construct a skeleton of the segmentation and identify
potential problematic regions in the segmentation and guide users to
these areas. Raveler [23] (Fig. 3), by Janelia Farms, is used for an-
notation and proofreading and uses a quadtree-based tiling system to
support large data. It targets expert users and offers many parameters
for tweaking the proofreading process at the cost of a higher complex-
ity. In this paper we introduce two novel proofreading tools: Mojo
(Sec. 4.1) and Dojo (Sec. 4.2); and compare them to Raveler in a quan-
titative user study (Sec. 5).

3 VISUAL PROOFREADING

In this section we introduce the overall workflow for proofreading
high-resolution EM image stacks and discuss common issues (e.g., us-
ability and scalability) before presenting a detailed requirement anal-
ysis of the necessary tasks in a scalable proofreading tool.

3.1 Proofreading Workflow

The visual proofreading workflow consists of three main steps:

1. Searching for structures containing segmentation errors.

2. Modifying the existing segmentation to fix the errors.

3. Confirming the correctness of the modified segmentation.

Fig. 4: Segmentation errors. Common errors of automatic segmen-
tation algorithms include merge errors (green), split errors (red) and
boundary errors (yellow). The 2D slice visualization is shown on the
left and Dojo’s 3D volume rendering is shown on the right.

The first step – searching for segmentation errors – requires users
to be very focused. This is especially true for volumetric data be-
cause tracking 3D structures in a 2D slice-based visualization involves
constant switching between slices. Segmentation data is typically dis-
played as a colored overlay on top of the original image data. A com-
mon strategy to spot segmentation errors is to continuously toggle the
visibility of this segmentation overlay to compare the labeled bound-
aries to the actual image data. During this search three different types
of errors can be spotted: a) merge errors or under-segmentation, where
two separate structures are erroneously connected; b) split errors or
over-segmentation, where a single structure is erroneously split into
several different segments; and c) boundary errors, where the bound-
aries of a labeled segment do not match the boundaries of the structure
in the image data (Fig. 4).

The second step – modifying the existing segmentation – is men-
tally less demanding than the search phase but needs good tool sup-
port, to allow users to quickly and correctly modify the existing seg-
mentation. The most common semi-automatic tools for correcting the
segmentation correspond to the three error types: merge, split, and
adjust. Once a segmentation error is spotted, the user chooses the ap-
propriate tool to fix the error. Merge errors can be corrected by using
the split tool to divide the segments. Split errors can be corrected by
joining the segments using the merge tool. Boundary errors can be
fixed by adjusting either the erroneous label or the neighboring la-
bels. In connectomics data, these errors always look similar (e.g., a
merge error fails to detect a dark boundary between two lighter struc-
tures). Therefore, after understanding these three error types it should
be possible, even for non-expert users, to recognize and subsequently
fix these errors.

The last step – confirming the correctness of the modified segmen-
tation – requires the user to check if the modifications did fix the seg-
mentation error, or if another correction step is necessary. Most proof-
reading tools only offer a 2D slice view for that task, however, we pro-
pose that an additional 3D view can significantly improve the speed
and accuracy in which users can confirm their modifications.

3.2 Proofreading Issues
We identified several issues that have to be considered when design-
ing proofreading tools for connectomics data. The main problems in
proofreading tools usually correspond to usability issues, scalability
issues, and failing to target the system towards the expected users, their
needs and background knowledge. Developers of systems for experts
can expect users to have a thorough domain background as well as a
higher motivation to use the system, hence higher frustration thresh-
old. Most proofreading tools are geared towards expert users and offer
a full-featured segmentation framework and often a very complex user
interface (Fig. 3). When designing a system for non-experts, however,
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Requirement Mojo Dojo Raveler
R1. Navigation 2D 2D+3D 2D+simple 3D
R2. E. Detection manual manual manual
R3. E. Correction advanced parameter-free very advanced
R4. Validation 2D 2D+3D 2D+simple 3D
R5. Collaboration n/a yes n/a
R6. Deployment download web access compilation
R7. GUI complex minimalistic very complex

Table 1: Comparison of proofreading tools. Features offered by
Mojo, Dojo and Raveler are summarized in respect to the requirements
as identified in Section 3.3.

one has to pay particular attention to usability issues and guidance that
will help novice users to perform their proofreading tasks.

Data set sizes in connectomics are increasing at a rapid pace. Cur-
rently our collaborators routinely acquire datasets of several terabytes,
but in the future this will continue to grow. One solution for handing
large data is to work on sub-volumes of the data. However, it is com-
mon that neuronal structures extend across long distances especially
when images are in nanometer pixel resolution. These sub-volumes
would then have to be merged in an extra step to guarantee that struc-
tures across block boundaries receive corresponding labels. The prob-
lem of combining segmentations is further complicated in settings
where multiple users work on the same dataset concurrently. With-
out a collaboration mode, each user has to either work on a different
sub-volume, or segmentations of different users might overlap. The
former is not scalable to a system with potentially thousands of users
while the latter can result in conflicts where the segmentation between
users differs, and which will have to be solved in a post-processing
step. Collaborative approaches would allow users to discuss unclear
areas or conflicts directly during the proofreading process.

3.3 Requirement Analysis
We regularly met with our collaborating scientists to discuss their
goals and define required user tasks for proofreading. We conducted
informal as well as semi-structured interviews with them over the
course of several months and identified several domain-specific proof
reading tasks. After initial development, we installed Mojo at the lab
of our domain experts, where it was used for a first informal user study.
After this initial testing phase, Mojo was used by a larger group of
non-experts (20+ high-school students and lab interns) to correct the
segmentation of a small data set of a mouse cortex. The feedback ac-
quired in this first deployment step led us to the development of Dojo,
targeting a web-based, non-expert, multi-user environment.

We have identified the following general requirements for proof-
reading large-scale EM image stacks:

R1. Intuitive navigation inside the 3D image stack. Users have to
be able to easily and intuitively navigate within the 3D data including
zooming and navigating within a single slice and multiple slices. A 3D
view is necessary to help non-expert users grasp the spatial relations
in the data and should be able to display either the entire volume or
only selected user-defined structures.

R2. Detection of segmentation errors. To quickly detect segmen-
tation errors the user has to be able to easily switch between different
rendering modes (i.e., showing the raw data, showing the segmentation
data, showing the segmentation outline).

R3. Fast correction of errors. Correcting errors has to be as sim-
ple and easy as possible. Manual corrections have to be supported, but
semi-automatic methods for splitting and merging should be the main
interaction metaphors and have to be accurate, fast, and easy to use.

R4. Checking the correctness of modified segmentations. Non-
expert users have to be able to quickly judge the correctness of their
last modification. This requires visualizing and highlighting the mod-
ified segment in 2D as well as in 3D.

R5. Collaborative proofreading environment. The system has to
support multiple simultaneous users. The amount of data that needs to
be processed necessitates crowdsourcing the proofreading step. This

Fig. 5: User interface of Mojo. The interface consists of the 2D slice
view (center), the toolbox (top) and additional textual information as
well as the label list (bottom, right).

means that multiple users have to be able to work on the same data set
and giving users the ability to work together collaboratively.

R6. Simple deployment. A crowdsourcing system has to support
easy deployment and must not require any special hardware. High-
schools, for example, do not allow installing any external software on
their computers. To enable high-school students to work on proofread-
ing, the system has to be web-based and should run in every browser.

R7. Minimalistic GUI. The final requirement targets the usability
of the system. To support non-expert users, the user interface has to be
simple and easy to understand. It is better to have fewer options that
are well understood by its users, than to have a cluttered user interface
that confuses novice users.

Table 1 summarizes the different features supported by each of the
proofreading tools.

4 TECHNOLOGY

In the following section we describe the technology behind Mojo and
Dojo. Mojo was developed as a powerful standalone application and is
now used by domain experts and trained researchers to perform proof-
reading. To overcome the limitations of Mojo regarding installation,
multi-platform support and hardware requirements, we also developed
a web-based proofreading tool. Dojo does not require any installation
and can be accessed with a web browser such as Google Chrome and
also runs on tablets and smartphones.

4.1 Mojo - A Standalone Proofreading Tool
Mojo supports the computer-assisted correction of automatic segmen-
tation results by providing a simple scribble interface for correcting
merge and split errors in automatic segmentations. Mojo is capable of
annotating any volumetric segmentation data, but works best when a
reasonable automatic segmentation can be provided as a starting point.
Mojo is written in C++ and C# and available as open source software
at http://www.rhoana.org.

4.1.1 User Interface
The Mojo GUI (Fig. 5) reflects a typical desktop application, with a
toolbar at the top of the window to control interface and view options,
a 2D slice view window showing the current segmentation and EM
data, and a segment list showing segment names, ids and sizes.

4.1.2 Proofreading Features
The Mojo interface provides split, merge and adjust tools that enable
edit operations to be performed with simple, wide brush strokes. This
allows annotation to be performed on a standard workstation, without
the use of a tablet drawing or touchscreen device. The interaction
mode of each tool can be customized in the Mojo toolbar.
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Fig. 6: User interface of Dojo. The interface consists of the 2D slice
view (center), the 3D volume renderer (top right corner), the toolbox
(top left corner), additional textual information (bottom left corner)
and an activity log including all connected users (bottom right corner).

The merge tool offers two interaction modes; draw and click. In
draw mode, the user draws a wide brush stroke over the objects to be
merged. Any objects touched by this brush stroke are combined into
a single object. In click mode the user selects a seed object with a
left click and merges additional objects to the seed object with a right
click. Merging operates on 2D segments, 3D connected objects, or all
3D objects in the volume, depending on the selected merge behavior.

The split tool offers three interaction modes. In boundary line split-
ting, the user simply draws a wide brush stroke over the membrane that
represents the boundary. From the lines drawn, non-adjacent perime-
ter pixels are found and used as seed points for a watershed algorithm.
This method is very fast to compute, and results can be adjusted in-
teractively by adding or removing pixels from the boundary line. The
remaining two modes are point-based split, which is similar to a live-
wire segmentation where individual points are added to the split line;
and region-based split, where seed regions are painted and a watershed
boundary is found between them. Once one split has been performed,
Mojo can predict how segments in adjacent slices will be split. User
can navigate through the stack and quickly confirm or modify split
operations while retaining 3D connectivity of the split objects.

In addition to the merge and split tools, the adjust tool allows the
user to manually draw a region and add it to the selected segment.
This tool is useful when a combination of split and merge operations
are required to correct a segment. Segments which have been fully
corrected can be locked, which changes their appearance to a striped
pattern and ensures that they will not be included in further actions.

4.1.3 Visualization
Mojo displays the original data in a single slice view and allows users
to toggle the colored segmentation overlays. Boundaries of segmented
structures can be enhanced by showing contours. Additionally, the
user can zoom in and pan within a single slice or navigate between
slices. When an object is selected, or the mouse hovers over an object,
all parts of that object are highlighted to help the user navigate through
the volume and to quickly identify all parts belonging to that object.

4.1.4 Data Handling
Mojo data is stored on the filesystem as a quadtree hierarchy of 2D im-
age and segmentation tiles. Additional segment information, such as
segment name and size, is stored in an sqlite database. To improve tile
loading and processing times we maintain a tile index table to identify
which tiles each segment id appears in. Additionally, we use a seg-
ment remap table to allow fast merge operations. Merging segment A
with segment B can be achieved without having to modify the original

(a) select (b) click 1 (c) click 2 (d) click 3

Fig. 7: Merge workflow. Dojo merges segments via mouse clicks.

segmentation tiles but by adding a look-up or redirection entry (e.g.,
A→B) into the segment remap table. The remap table is maintained in
system memory on the GPU, so that stored segmentation tile ids can
be loaded directly to the GPU and large volume changes can propagate
quickly to the display. 2D merge, split and adjust operations modify
segment tiles directly and the tile index table is updated accordingly.

4.2 Dojo - A Distributed Web-Based Approach
Dojo is a web-based proofreading tool consisting of an image server
component written in python and an HTML5/JavaScript based user
interface on the client side. This has the advantage that users can ac-
cess the software by simply pointing their web-browser to the URL of
the Dojo server. The main goal of Dojo’s GUI and interaction design
is to reduce complexity for non-expert users. Furthermore, Dojo was
designed to be compatible with Mojo. Both tools use the same data
structures, ensuring that annotated data from Mojo can be loaded into
Dojo and vice-versa. The source code of Dojo and a demo installation
are available at http://rhoana.org/dojo.

4.2.1 User Interface

The graphical user interface of Dojo (Fig. 6) was designed with non-
expert users in mind and aims to be minimalistic and clean. The 2D
slice viewer uses the full window size while controls, information and
help are moved to the corners to not disturb the data visualization and
to provide a distraction-free environment. All textual information is
kept small but still readable. The elements of the toolbox (i.e., split,
merge, adjust) are presented as simple icons that show help tooltips
upon hovering. Furthermore, to reduce interaction complexity, Dojo’s
proofreading tools are parameter-free and only require simple point-
and-click mouse interaction. Additionally, all tools can be activated
with keyboard shortcuts which are documented in the lower left corner
for quick reference. The 3D volume rendering view is located in the
upper right corner of the main window and can be resized as desired.

4.2.2 Proofreading Features

Dojo provides three proofreading tools, inspired by Mojo’s toolbox
described in Section 4.1.2. The key difference is that Dojo offers a
single interaction mode for each tool, thus simplifying the interface.

With the merge tool, the user clicks on the propagating structure
and then on all segments which should be merged with it (Fig. 7). This
action connects the segments across all slices (3D merge) and can also
be used to merge segments which are located on different slices.

The split tool allows users to split a single segment into two or
more segments by drawing a line across the segment that is to be split
(Fig. 8). A split is confirmed by clicking in that part of the original

(a) select (b) brush (c) confirm (d) result

Fig. 8: Split workflow. Users can split connected segments in Dojo by
brushing over cell boundaries. The software then calculates the best
split which can be accepted or discarded.
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(a) select (b) no borders (c) paint (d) result

Fig. 9: Adjust workflow. Users can perform fine-grained pixel-wise
adjustments by painting on the image data.

object that should keep the original color. Under the hood, the split-
ting algorithm works differently to Mojo: Dojo uses all points of the
segment to be split that are not part of the drawn line as seeds for a wa-
tershed algorithm, instead of only two perimeter pixels. Additionally,
before computing the watershed algorithm, the original image data is
blurred by a Gaussian and then contrast enhanced, which has experi-
mentally been proven to generate better and more stable results.

The adjust tool works as in Mojo and lets users paint on the image
data to extend a segmentation label (Fig. 9).

Merging uses the remap table data structure of Mojo and is com-
puted solely on the client. Once a client adds or removes a merge,
the merge table is sent to the server to keep all clients synchronized.
No pixel data needs to be modified when merging segments. Splitting
is performed on the server and does require pixel modifications. A
split triggers a reload event for all clients to fetch new segmentation
data for the specific slice. Users identify segmentation errors by con-
stantly comparing the original image with the segmentation results.
This tedious procedure results in a high mental workload for users but
Dojo offers hotkeys for switching or adjusting opacity of the layers.
Also, the volume rendering component of Dojo is useful for this task
(Fig. 11). In the future, we want to integrate methods that provide user
guidance by automatically identifying potential errors of such segmen-
tations [37] and showing them to the user.

4.2.3 Visualization and Volume Rendering

In addition to the 2D slice view, Dojo provides full 3D volume ren-
dering of the image stack based on WebGL. We leverage the X toolkit
(XTK) for this purpose [18]. Since XTK is primarily used for med-
ical imaging data sets which are smaller in size than EM data, we
extended XTK to support 32 bit label overlays and raw image data of
larger sizes. WebGL does not support 3D textures, therefore, volume
rendering is based on 2D textures [9]. To circumvent memory and tex-
ture size limitations, the volume renderer limits the resolution of the
loaded image slices to 512× 512 for the xy-plane. This resolution is
sufficient to display the 3D context of a structure and to gain a better
spatial understanding of the data. The volume rendering can be acti-
vated by selecting an icon in the toolbox. Once active, the renderer
displays the full image stack and segmentation volume or multiple se-
lected segmentations. To enhance the users’ orientation, the current
slice position in the image stack is displayed as a red outline. Ad-
ditionally, we have integrated collaborative features into the 3D view
which are explained in more detail in Section 4.2.5 (Fig. 10c). Our
volume renderer is built on top of WebGL and therefore requires a
web browser with WebGL support. Nevertheless, recent advances in
technology have brought WebGL to all major web browsers including
most smartphones and tablets.

4.2.4 Data Handling - Large image data on the web

One key feature of Dojo is the support of large image and segmen-
tation data. Transferring large amounts of image data between server
and web client has previously been explored as part of several research
projects [24, 41]. When designing Dojo we therefore evaluated differ-
ent frameworks for interactively displaying large-scale images on the
web. Most existing solutions are based on quadtree multi-resolution
hierarchies that always load the currently requested resolution of the
image data–low resolution levels for far-away and zoomed-out views
and high resolution levels when the user zooms in. This approach

(a)

(b) (c)

Fig. 10: Collaborative features of Dojo. When active, the collabora-
tive mode of Dojo facilitates proofreading the same data among multi-
ple users. (a) 2D: cursors of other users are visible as colored squares
if working on the same slice, (b) 2D: users can mark difficult regions
with an exclamation mark and (c) 3D: cursors of all connected users
and exclamation marks are visible as colored pins pointing to specific
locations in the volume. Users can directly jump to that location by
clicking on the pins.

is well known and similar to Mojo’s quadtree data structure. Unfor-
tunately, most existing web-based image servers exhibit poor perfor-
mance when loading different zoom levels so the user experience was
not comparable to Mojo or other standalone software applications.

The only framework with a comparable performance was
OpenSeaDragon [4]. OpenSeaDragon is based on the DeepZoom pro-
tocol and was initially developed by Microsoft but later open sourced
as a community project. In our initial feasibility study we used an
OpenSeaDragon viewer to connect to an IIP (Internet Imaging Proto-
col) image server to transfer images in a very performant way. The
initial development stage of Dojo focused on using these technolo-
gies and it worked well for raw images. Unfortunately, there was no
easy way of transferring segmentation data nor to display it as over-
lays. We initially added this functionality to OpenSeaDragon in close
collaboration with their core developers, however, eventually had to
abandon this path. While the basic integration of segmentation data
worked, the viewer exhibited severe flickering artifacts and the image
server did not support correct downsampling of segmentation masks.
Another problem was the bit depth: our segmentation data can have
up to 64 bit per pixel, which is not supported by the OpenSeaDragon
framework. Based on these experiences we decided to a) develop our
own client side image viewer and b) develop our own image server.

Using a custom web-client and image server let us optimize the
transfer of images to our specific requirements. We now transfer
high bit-per-pixel segmentation data directly as a zlib-compressed byte
stream. This results in data sizes comparable to PNG encoding with-
out any interpolation errors or loss of precision. Furthermore, the de-
velopment of a custom image server and web client led to significant
performance improvements. Zooming and scrolling through the image
stack can now be done in real-time, even for large volumes.

4.2.5 Collaborative Features
Web pages inherently support connections from multiple clients (i.e.,
web browsers) and thus multiple users at the same time. By default,
clients fetch information from and post information to the server. Usu-
ally, servers do not push information to all clients. Nevertheless, the
latter can be achieved by using web sockets. We decided to use a web
socket server in addition to standard HTTP to enable synchronization
between all connected clients. Modifications of image data through
merging, splitting and adjusting are sent to the server which then dis-
tributes them to each client. This can be a heavy operation depending
on how many clients are connected. Thus, we limit the transfer to
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Fig. 11: Volume rendering of proofreading results in Dojo. Prior to
proofreading, incorrect segments are present (different colors). Right:
After proofreading, neurons are smooth and uniformly colored.

coordinates and meta information but never send binary data via web
sockets. Additionally, each image operation gets stored as an entry in
the activity log which is displayed on all connected clients, and located
at the bottom right corner of the view.

Proofreading of larger volumes can be sped up considerably when
multiple clients are working on the same volume. Hence, in addition
to the synchronization of the current state of segmentation, we decided
to add several collaborative features. Mouse cursors of all connected
users are shared (Fig. 10). If two or more users work on the same tile
in the image volume, the other users’ cursors are shown as little col-
ored squares. The colors are randomly assigned and each users’ action
is also colored in the activity log. If the 3D visualization is active, the
cursors are also displayed as colored pins or needles pointing to a po-
sition of the volume. It is possible to click on a needle to jump to the
position the other user is currently working on. In addition to cursor
sharing, users can actively mark an area of the data to seek help from
other users. When a user sets such a mark, all other users see a large
exclamation mark in the 3D view and a small exclamation mark if they
view the same slice. After navigating to that position and resolving the
issue, it is possible for users to mark this problem as solved. Asking
for help and marking an area as fixed is also reported in the activity log.
Since these collaborative features can be distracting, they are optional
and can be toggled by each individual client.

4.2.6 Limitations
Dojo has several limitations due to its minimalistic user interface and
web-based nature (see Table 1): parameter-free operations do not al-
low complex operations as in Mojo and Raveler, the 3D view is less
versatile than stand-alone GPU approaches due to memory restrictions
resulting in downsampled textures, and the undo stack is limited.

5 USER STUDY

We conducted a quantitative user study to evaluate the performance
and usability of three proofreading tools. In particular, we evaluate
how nearly untrained non-experts can correct an automatic segmenta-
tion using Mojo, Dojo and Raveler. We designed a between-subjects
experiment and asked the participants to proofread a small dataset in a
fixed time frame of 30 minutes. We used the most representative sub-
volume of a larger freely available real-world data set where expert
ground truth is available. We recruited participants from all fields with
no experience in electron microscopy data or proofreading of such. As
baseline, we asked two domain experts to label the same sub-volume
from scratch using manual segmentation in the same fixed time frame.

5.1 Hypotheses
We proposed three hypotheses entering the study:

• H.1 Proofreading will be measurably better with Dojo com-
pared to other tools. When presented with identical data, users

of Dojo with no experience in proofreading and very short train-
ing, will perform significantly better (i.e., more accurately) than
users of Mojo or Raveler.

• H.2 Dojo’s usability is higher than other tools. Users of Dojo
will report increased usability and that they like the system.

• H.3 Given a fixed short time frame, proofreading by non-
experts gives more correct results than completely manual
annotations by experts. In a fixed short time frame, inexpe-
rienced participants will generate a corrected data set which is
more accurate and similar to the ground truth than a manual
labeling from domain experts that was done in the same time
frame.

5.2 Participants
Because we wanted to study how completely inexperienced users per-
form with the three proofreading tools, we recruited people of all oc-
cupations through flyers, mailing lists and personal interaction. Based
on sample size calculation theory, we estimated the study sample
size as ten users per proofreading tool including six potential drop-
outs [11, 21]. Nevertheless, all thirty participants completed the study
(N = 30, 17 female; 20-40 years old, M = 27). Participants had no
experience with electron microscopy data or proofreading of such and
had never seen or used any of the three software tools. They received
monetary compensation for their time.

5.3 Experimental Conditions
The three conditions in our study were the proofreading tools Mojo,
Dojo and Raveler. Each participant proofread the same dataset in a
time frame of 30 minutes. The requirement for participating was no
experience in proofreading EM data. Since the three tools run on dif-
ferent platforms (except web-based Dojo which runs on all), we used
three different machines with similar and standard, off-the-shelf hard-
ware. Therefore, the only variable was the used software.

5.3.1 Dataset
We used a publicly available dataset of a mouse cortex
(1024x1024x100 pixels) that was published for the ISBI 2013
challenge ”SNEMI3D: 3D Segmentation of neurites in EM images”.
It was acquired with a serial section scanning electron microscope
(ssSEM) with a resolution of 6x6x30 nm/pixel. We trained our
automatic segmentation pipeline (Rhoana pipeline) on a similar
dataset and used it to segment the data. Details of the segmentation
pipeline are published in [28]. Manually labeled expert segmentation
was available as a ground truth for the complete dataset. Since it is
not feasible to let users proofread such a large volume, we cropped
a sub-volume to 400x400x10 pixels. To find the most representative
sub-volume (i.e., the sub-volume with the distribution of object sizes
that is closest to the empirical mean distribution of object sizes in the
volume) we calculated object size histograms, used them as features
in a multi-dimensional vector space and chose the sub-volume with
the minimal Euclidean distance to the centroid.

5.4 Procedure
Each study session started off with the participants signing the con-
sent form and a basic demographic survey (age, sex, occupation, neu-
roscience background, scientific visualization background, familiar-
ity with proofreading of segmentations and familiarity with EM data).
Next, the participants were introduced to the Connectome project and
its typical workflow (Fig. 2). Then, participants sat down at their ran-
domly assigned study station which ran one of the three proofreading
tools and the experimenter explained the tool. To demonstrate merging
and splitting functionalities of each tool, a training dataset was loaded
which was the second most representative sub-volume of the larger
dataset with the same size of the test dataset.

There was no common region between the training data and the
test data even though both were highly representative of the larger
dataset. After explaining two merge and two split operations (average
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Fig. 12: Variation of information. The VI similarity measure for each
tool after proofreading for 30 minutes (lower is better). Participants
using Dojo achieved a lower VI than subjects with the other tools.
These results are statistically significant. The red line shows the VI of
the automatic segmentation before proofreading. The blue lines show
the VI of the experts’ manual segmentation after 30 minutes.

time about 5 minutes), the participants were asked to try the proof-
reading tool themselves for another 5 minutes. The experimenter then
loaded the test dataset which was the same for each participant. For the
next 30 minutes participants were asked to correct as many segmenta-
tion errors as possible but were warned that it was highly unlikely that
they could finish proofreading the complete dataset in the given time
frame. During the assessment, usage questions regarding the proof-
reading software were answered in a short manner.

After 30 minutes or if the participant decided to stop the experi-
ment, the participants completed a qualitative questionnaire with ten
questions regarding the software. Then, they answered the raw NASA-
TLX standard questions for task evaluation [19]. At the end of the
session, participants were presented their similarity scores in respect
to the ground truth segmentation and could give general feedback and
comments. The entire study session took approximately 60 minutes.

5.4.1 Expert Segmentations

To generate a baseline measure regarding hypothesis 3, we asked
two experts to manually annotate the representative sub-volume from
scratch. The experts used their software of choice, ITK-SNAP [49].
We set a time limit of 30 minutes and computed the similarity mea-
sures variation of information and Rand index as well as Edit Distance.

5.5 Design and Analysis

We used a single factor between-subject design with the factor proof-
reading tool (Mojo, Dojo, Raveler). The participants were randomly
assigned to one of the three tools. From our group of participants
(N = 30) we excluded two subjects (using Raveler and Mojo). One
of the two subjects stated to be familiar with proofreading of EM data
and for the other participant Mojo crashed after 20 minutes.

Our dependent measures were two measures of similarity between
participants’ results and the ground truth segmentation (manually la-
beled by experts, publicly available), the number of not performed
merges and splits to fully correct the segmentation, as well as the par-
ticipants’ subjective responses recorded on a 7-point Likert scale.

Similarity was measured as variation of information (VI) (Fig. 12)
and Rand index (RI) (Fig. 13) which are common benchmarks for clus-
tering comparison in computer vision. VI is a measure of the distance
between two clusterings, closely related to mutual information, but
lower being better. Rand index is a measure of similarity, related to
the accuracy, meaning higher scores are better. The number of not
performed merges and splits to correct the segmentation is the Edit
Distance, another common metric in computer vision. We calculated
these measures and treated them as continuous variables. We analyzed

Fig. 13: Rand index. The RI similarity measure for each tool after
proofreading for 30 minutes (higher is better). Participants using Dojo
achieved a higher RI than subjects with the other tools. These results
are statistically significant. The red line shows the RI of the automatic
segmentation before proofreading. The blue lines show the RI of the
two experts’ manual segmentation after 30 minutes.

these dependent variables using analysis of variance followed by para-
metric tests. For the subjective responses on Likert scales, we created
sub-groups and performed ANOVA according to Holm’s sequentially-
rejective Bonferroni method [45] and parametric tests, if relevant.

6 RESULTS AND DISCUSSION

The results of our user study demonstrate a modest advantage of
Dojo regarding the quality of corrections. The difference in similar-
ity was minor but statistically significant (Sec. 6.1). Another inter-
esting but expected finding was that proofreading yielded better per-
formance than manual segmentation of experts starting from scratch,
when given the same short time frame (Sec. 6.3). Overall, participants
reported better usability of Dojo compared to the other proofreading
tools (Sec. 6.4), thus confirming our initial hypotheses.

6.1 Similarity
The initial segmentation for all participants was created using the
Rhoana pipeline and had a VI of 0.98 and a RI of 0.53. The ten par-
ticipants using Dojo had a mean VI of 0.90 (SD = 0.10). The nine
participants using Mojo had a mean VI of 1.11 (SD = 0.12). The nine
participants using Raveler had a mean VI of 1.12 (SD = 0.25). The ef-

Fig. 14: Edit Distance. The ED similarity measure for each tool after
proofreading, in respect of the ground truth segmentation after 30 min-
utes (lower is better). On average, participants using Dojo reached a
lower ED than subjects with the other tools. The red line shows the
ED of the automatic segmentation before proofreading. The blue lines
show the ED of the experts’ manual segmentation after 30 minutes.
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fect of the proofreading tool, therefore, was significant, F2,25 = 5.04,
p = .015. Post hoc comparisons (after Bonferroni correction) indicate
that the mean VI for results with Dojo was significantly lower than for
Mojo (t25 = 2.06, p = .0411) and also lower than the one for Raveler
(t25 = 2.06, p < .01). Figure 12 shows this relation. We also analyzed
the mean RI of participants using Dojo which was 0.55 (SD = 0.03).
For participants using Mojo, the mean RI was 0.51 (SD= 0.02) and for
participants who used Raveler, the mean RI was 0.5 (SD = 0.06). This
difference was statistically significant, F2,25 = 3.59, p = .043. Further
testing (after Bonferroni correction) showed, that only the difference
between Dojo and Raveler was significant (t25 = 2.06, p = .05). The
results are displayed in Figure 13.

6.2 Edit Distance
The edit distance metric (ED) reports how many operations have to be
performed to reach the state of another labeled image. We calculated
the ED for the proofread EM data as the sum of required 2D splits and
3D merges to reach the ground truth for each participant. These are the
operations which can be performed by all three tools. The initial seg-
mentation which was the input for all participants, had an ED of 54 (32
splits, 22 merges). A blank segmentation of our data had a ED value of
386, requiring 386 splits and 0 merges. The mean ED of participants
for Dojo was 59.1 (SD = 23.28), for Mojo 62.9 (SD = 12.03) and for
Raveler 83.22 (SD = 37.03). These results were not statistically sig-
nificant but they follow the trend of better performance with Dojo. In
fact, about half of the participants using Dojo were able to reduce the
ED. Figure 14 shows this relation. Even though the improvement of
the ED was not statistically relevant, the improvements of VI and RI
allow us to accept H1 and to confirm that complete novice users per-
form slightly better on a proofreading task using Dojo than with other
tools. Interestingly, many participants were not able to improve the
automatic segmentation but made it worse. In fact, only participants
using Dojo were able to correct the segmentation on average. We be-
lieve that this is caused by several of factors:

1. Three-dimensional thinking. It is hard for untrained users to
grasp the 3D structure of EM data. Dojo provides full 3D volume
rendering to help users get a three dimensional intuition of the
data, for single structures as well as for the whole EM stack.

2. Difficulty identifying boundaries. EM data can be very noisy
and cell boundary detection needs to be practiced. From ob-
servations, it seemed that a large amount of time was spent by
participants trying to identify boundaries.

3. Time. Participants tried to correct as much as possible in the
given time frame. Even though they were told to only perform
corrections when confident, they felt rushed. Therefore, we want
to do a follow-up study without that fixed time frame.

4. Usability of tools. The usability of many existing proofreading
tools is lacking. An overwhelming number of features and pa-
rameters are available and confuse users. Only Dojo provides
parameter-free, easy-to-use tools.

5. Almost zero training. The participants of this study received,
on purpose, nearly no training regarding the data or the software.
We believe that training in the range of hours or days can dras-
tically improve the performance of non-experts. Especially the
manual detection of errors is very difficult for novices. Algo-
rithms that guide the user to potential errors could greatly im-
prove user performance.

6.3 Proofreading versus Manual Expert Segmentation
The two experts who were asked to manually label the data set from
scratch in 30 minutes, did not reach the result of our proofreading par-
ticipants starting from automatic segmentation (Figures 12, 13, 14).
The mean values were VI=1.77, RI=0.26 and ED=277. These re-
sults were significant in comparison to Dojo (t25 = 2.06, p < .0001).
This is no surprise since manual segmentation is very time consuming.
Hence, we accept H3. In the given time frame experts were able to
label 60.3% and 57.8% of the sub-volume. It is clear that given more
time, the VI, RI and ED measures would improve rather quickly for
manual expert segmentations.

6.4 Subjective Responses

All subjective responses were recorded on a 7 point Likert scale with
1=fully disagree and 7=fully agree. To ensure representative results,
we grouped the questions and performed Holm’s sequentially-rejective
Bonferroni adjustment (N reported) before reporting statistic signifi-
cance. We observed statistical significance for qualitative responses
regarding usability: Participants stated that the tool is easy to use
for Dojo M = 4.5 (SD = 1.27), Mojo M = 4.11 (SD = 2.03) and
Raveler M = 3.22 (SD = 1.09) and that the tool is usable for Dojo
M = 5.1 (SD = 1.1), for Mojo M = 4.3 (SD = 1.87) and for Raveler
M = 3.11 (SD = 1.27). After adjustment with N = 2, being usable is
statistically significant (F2,25 = 4.57, p = .0408) while further analy-
sis only confirmed significance between Dojo and Raveler (t25 = 2.06,
p = .006). We asked three questions regarding the visualization com-
ponents: Participants stated that the slice visualizations were pleasing
for Dojo M = 5.8 (SD = 0.92), Mojo M = 4.7 (SD = 1.73) and Rav-
eler M = 4.33 (SD = 1.58), the segment visualizations were pleasing
for Dojo M = 5.5 (SD = 1.08), Mojo M = 5.11 (SD = 0.93) and Rav-
eler M = 4.0 (SD = 1.5) and additional information beside 2D was
useful for Dojo M = 5.0 (SD = 1.63), Mojo M = 4.0 (SD = 2.2)
and Raveler M = 4.0 (SD = 1.63). Unfortunately, none of these re-
sults were significant after adjustment (segment visualization was be-
fore). Nevertheless, we do believe that the 3D volume rendering of
Dojo had impact on the superior quantitative performance reported in
the previous section. Other interesting observations were that partici-
pants reported that the merge tool was easy to use: for Dojo M = 5.8
(SD = 1.14), Mojo M = 4.89 (SD = 1.17) and Raveler M = 3.78
(SD= 1.39). After adjustment with N = 3, this was statistically signif-
icant (F2,25 = 6.37, p = .0174). The NASA-TLX workload reported
by the users did not yield any interesting results. As the overall con-
clusion, participants reported that they generally liked the used soft-
ware for Dojo M = 5.4 (SD = 1.17), Mojo M = 4.33 (SD = 1.66) and
Raveler M = 3.67 (SD = 1.41). This result was statistically signifi-
cant with N = 1 (F2,25 = 3.62, p = .0416) but further analysis showed
significance only between Dojo and Raveler (t25 = 2.06, p = .0135).
Because of that and the usability findings, we partially accept H2.
The qualitative as well as the quantitative evaluation was in favor of
Dojo which also matches our observations during the user study.

7 CONCLUSION AND FUTURE WORK

In this paper, we have presented an analysis and evaluation of proof-
reading tools for automatic segmentations of connectomics data.
Based on this analysis and on our experience with Mojo, we devel-
oped Dojo, a web-based proofreading tool. Dojo provides several
proofreading aids such as a clean and minimalistic user interface as
well as 3D volume rendering. We performed a between-subjects user
study regarding Dojo, Mojo and another proofreading tool called Rav-
eler. The results of our quantitative evaluation confirm the need for
easy-to-use and well-designed visualization features for proofreading
tools but also show the need of user training regarding the proofread-
ing task. The individual differences between the evaluated tools were
not large due to study design limitations (see Section 6.2).

In the near future we will deploy Dojo to hundreds of high school
students to proofread EM data in a collaborative fashion. Furthermore,
we want to investigate in novel methods for simplifying cell bound-
ary detection. Using interactive edge-detection to highlight boundaries
could significantly improve the performance of non-expert users. We
would also like to perform an in-depth user study without the time lim-
itation to see how far proofreading can optimize faulty segmentations.
Furthermore, we hope that offering an open source proofreading tool
will promote the adoption of web-based scientific visualization and
encourage more research in novel proofreading applications.
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