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Trajectory-based Flow Feature Tracking in
Joint Particle/Volume Datasets

Franz Sauer, Hongfeng Yu, Member, IEEE, and Kwan-Liu Ma, Fellow, IEEE

Abstract— Studying the dynamic evolution of time-varying volumetric data is essential in countless scientific endeavors. The ability
to isolate and track features of interest allows domain scientists to better manage large complex datasets both in terms of visual
understanding and computational efficiency. This work presents a new trajectory-based feature tracking technique for use in joint
particle/volume datasets. While traditional feature tracking approaches generally require a high temporal resolution, this method
utilizes the indexed trajectories of corresponding Lagrangian particle data to efficiently track features over large jumps in time. Such
a technique is especially useful for situations where the volume dataset is either temporally sparse or too large to efficiently track
a feature through all intermediate timesteps. In addition, this paper presents a few other applications of this approach, such as the
ability to efficiently track the internal properties of volumetric features using variables from the particle data. We demonstrate the
effectiveness of this technique using real world combustion and atmospheric datasets and compare it to existing tracking methods to
justify its advantages and accuracy.
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1 INTRODUCTION

Joint particle and volume data have become increasingly popular, es-
pecially in the scientific community. Researchers in numerous fields,
such as combustion science [26], plasma physics [23], and atmo-
spheric science [11], deploy large scale simulations to model specific
physical processes and obtain a deeper understanding of their area of
study. These simulations record results simultaneously in two very
different ways: as field data on a spatial grid (volume data) and as
discrete particles which are able to move spatially (particle data).

The field data, in the form of either vector or scalar fields, repre-
sent the Eulerian specification of the system and record information
at fixed spatial locations throughout the domain. On the other hand,
the particle data represent the Lagrangian specification of the system
and record information as advected tracer particles. In many cases, the
field data are analyzed to extract volumetric features of interest, and
the particle data are assembled into a set of time series curves or tra-
jectories. However, the fact that these two data types have such inher-
ently different representations makes it difficult to utilize both forms
simultaneously in many analysis techniques.

One such technique, feature extraction and tracking, has become
a fundamental necessity for today’s scientists. The growing size and
complexity of simulations are making it increasingly difficult for sci-
entists to study the full extent of their datasets. Extracting subsets
of the data in the form of features allows scientists to easily isolate
and study portions of interest without becoming overwhelmed by the
sheer size of the dataset. In time-varying data, feature tracking can de-
termine a correspondence between the same feature at different points
in time. Not only is it important to be able to extract the same subset
of information (feature) over the entire temporal domain, but studying
how this subset changes over time can also have a number of interest-
ing implications to domain scientists.

Traditionally, feature tracking techniques use only Eulerian specifi-
cations of the data (see Section 2). However, in this work, we present
a new feature tracking method which utilizes data from both the Eule-
rian and Lagrangian specifications. It is based on a set of techniques
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which can determine a correspondence between volume and particle
data, and perform joint-analyses involving both data types. We uti-
lize these methods to determine sets of particles that correspond to our
features of interest. We then use the trajectories of these particles to
relocate these same volumetric features and/or track their evolution in
multiple subsequent timesteps.

There are many advantages to this approach. First, this method
works well even when there is a very low temporal resolution in the
field data. Since particles are easily distinguishable from one another
through some indexing or naming scheme, we can identify our fea-
tures of interest over very large time intervals without having to access
(potentially missing) intermediate data. In other words, we can sim-
ply jump to any future timestep in our particle data and re-extract our
volumetric feature. This is also useful when working with extremely
large datasets which make it computationally difficult to efficiently
track a feature though all intermediate timesteps. The ability to skip
numerous timesteps in the feature tracking process can lead to large
speedups. We also address the issue of uncertainty in the predictions
made by this approach since the accuracy of extracted features is likely
to decrease over extremely large jumps in time.

In addition, we can use this scheme to study more than just feature
movement. In many cases, particle data record a number of variables
other than spatial location. Through this correspondence between vol-
umetric features and particles, we can more efficiently track internal
changes of the feature based on variables found in the particle data.
This is because it is much easier to measure data fluctuations by fol-
lowing a set of corresponding particles rather than extracting a volu-
metric feature at every point in time.

In this paper we present our new trajectory-based feature tracking
technique and make the following contributions:

• We introduce a new feature tracking method that tracks volumet-
ric features using corresponding particle trajectory data.

• We develop uncertainty metrics to quantify the discrepancy be-
tween the particle and volume data to reduce errors over large
jumps in time.

• We extend this method to efficiently track other non-spatial time-
varying properties of a feature of interest using variables in the
particle data.

We demonstrate the effectiveness of our approach using real-world
combustion and atmospheric datasets, and justify its advantages and
accuracy by comparing it to existing methods.
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2 RELATED WORK

Some work has been done on combining volume and particle data
for analytical purposes. Our previous work [17] developed a scal-
able framework for joint-analyses on large scale particle and volume
datasets. While the correspondence between the data types is useful, it
lacked a more general description to include analyses on time-varying
data. Crossno and Angel [4] utilized particle data to extract isosurfaces
in volume datasets. In addition, Krueger [8] utilized sets of virtual par-
ticles to interact with and extract extra information from volumetric
scalar fields and applied it towards volume rendering techniques.

There has been an extensive amount of work done on feature track-
ing techniques. While originally designed for computer vision, feature
tracking techniques were first applied towards 3D volume data analy-
sis by Samtaney et al. [16], who determined a correspondence across
timesteps by comparing features with nearby centroids. Reinders et
al. [15] conducted a similar procedure by comparing properties like
the mass and size of the features.

A different approach was taken by Silver and Wang [18, 19] who or-
ganized features into tree-like structures and then identified connected
components. This method works by assuming that a feature will over-
lap itself over two consecutive timesteps. In addition, Ji et al. [7]
introduced a way of tracking features using isosurfaces in a higher
dimensional geometry. Tzeng and Ma [22] used a machine learning
approach capable of learning information from transfer functions to
aid in tracking features. Ozer et al. [13] extended tracking to follow
groups of features rather than individual ones as it is more cost effec-
tive in large datasets. Takle et al. [20] also tracked groups of cosmo-
logical features made up of groups of dark matter particle clouds. Con-
trary to many previous approaches, which involve extracting features
in separate timesteps and then identifying a correspondence, Muelder
and Ma [12] developed a method which uses a prediction-correction
method. A feature from the previous timestep is used as a prediction
and is then refined by region growing and refinement. However, all of
these methods still require a high temporal resolution in the data, and
in many cases, a spatial overlap between features across consecutive
timesteps.

Other recent approaches try to address feature tracking in a number
of ways. Caban et al. [1] as well as Glatter et al. [5] used a texture-
based tracking approach which looks for similarities between textu-
ral characteristics to track patterns in time-varying data. This method
works well with tracking noisy volumetric features; however, may not
work as well when tracking features resembling solid shapes. Theisel
and Seidel [21] developed an approach that constructs streamlines to
track critical points in vector fields, and as a result, can track features
like saddles or vortices. While effective, this method lacks a more
general feature tracking description that can track features in scalar
fields. In addition Lee and Shen [10] as well as Gu and Wang [6] uti-
lized Time Activity Curves (TAC) in order to quantify the similarity
between the time series of voxels and features for tracking purposes.

There has also been work done by Chen et al. [2] in developing
feature extraction and tracking methods in distributed environments,
where features can span multiple refinement levels and processors.
Also, Wang et al. [24] have developed a scalable parallel extraction
and tracking method for use with large scale datasets. Other feature
tracking approaches can be found in the survey by Post et al. [14].

3 APPROACH

As previously described, our approach utilizes both particle and vol-
ume data to track features. While feature identification/extraction is
done in the volume space, the tracking is done in the particle space.
This is extremely advantageous because it is easy to re-identify a set of
particles across timesteps by either matching indexes or tracing along
their trajectories. The challenge with this approach lies in determining
a correct correspondence between these two domain spaces. Our fea-
ture tracking method consists of the following general steps: 1) Iden-
tify/extract feature of interest; 2) Determine corresponding particles;
3) Trace particles along their trajectory; 4) Re-extract feature based on
new particle locations. These steps are illustrated in Figure 1 in their
respective domain spaces.

Fig. 1. Trajectory-based feature tracking workflow with each step shown
in its respective data space.

Fig. 2. Feature-based particle query (left): Particles are mapped to the
volume space and kept only if that voxel is part of a feature. Particle-
based volume feature query (right): Particles are mapped to the volume
space signifying that a voxel is part of a region. Region growing then
fills in any potential gaps.

3.1 Particle/Volume Data Correspondence
We derive two main tasks to determine a correspondence between par-
ticle and volume data. The first is feature-based particle query, which
allows us to extract a subset of particles corresponding to a volumetric
feature. We define the shape of a feature using a 3D bitmask repre-
senting voxels in the volume domain. A value of 1 in the bitmask
represents a voxel that is part of our feature of interest, while a value
of 0 represents a voxel that is not part of our feature. When it is time to
query particles, each particle is mapped to a voxel in the volume space
based on its location and is checked against the bitmask. If the corre-
sponding voxel is part of our region, the particle is kept; otherwise the
particle is discarded. As a result, only a single pass over all particles is
required. This allows us to efficiently extract particles within irregular
spatial regions as defined by our features of interest.

The second task, particle-based volume feature query, represents
the opposite task of extracting volumetric features based on a subset
of the particle data. Once again, each particle is mapped to a voxel
in the volume space based on its location. If one or more particles
correspond to a voxel, we set a value of 1 in the bitmask, and set a
value of 0 elsewhere. This new bitmask is meant to represent a new
volumetric feature. However, gaps may occur in a feature where no
particles were found. We therefore use region growing techniques to
complete the feature.

We perform seeded region growing in a breadth-first manner in that
a queue is maintained for searching and classifying voxels as part of

Fig. 3. A visual representation of the different types of feature interac-
tions across three points in time.

our feature. The queue is first initialized using a seed point(s). For
each voxel in the queue we check the data values of its neighbors. If its
value is within a user defined threshold, the voxel is marked as part of
our feature and its neighbors that have not been visited are added to the
queue. This process is repeated until the queue is empty. To fill in gaps
caused by particle-based volume feature query we simply initialize the
queue with voxels that correspond to a value of 1 in our bitmask as
seed points. Figure 2 shows a visual representation of feature-based
particle query and particle-based volume feature query.

The above description assumes a structured regular grid; however,
we can also determine a correspondence between the two data types
using unstructured grids as well. If an easy transformation from par-
ticle location to volume cell is not available, then a nearest neighbor
approach can be used to associate each particle to a particular mesh
vertex (or volume cell) in the unstructured scalar field. Mapping par-
ticles to the mesh vertex with the smallest Euclidian distance from the
particle location will generate the correspondence. In this case, the
3D bitmask would use the same unstructured grid shape that the scalar
field uses.

3.2 Trajectory-based Feature Tracking

Traditionally, feature evolution is characterized into a number of in-
teractions: continuation, bifurcation, amalgamation, creation, and
dissipation [16]. Continuation occurs when the same feature exists
across multiple timesteps. The feature may change location or shape
across this interval but remains as one connected component. Bifur-
cation (splitting) occurs when a feature separates into two or more
sub-features, and amalgamation (merging) occurs when two or more
features combine. Lastly, creation and dissipation occur when fea-
tures appear and disappear between timesteps. These interactions can
be seen in Figure 3. In the following subsections, we describe how
trajectory-based feature tracking can be used to successfully handle
each of these cases.

3.2.1 Feature Continuation

We begin describing trajectory-based feature tracking by example us-
ing the simplest case, feature continuation. This allows us to make the
assumption that a feature not only exists between two (not necessarily
consecutive) timesteps, but also remains as one single connected com-
ponent. We first identify a feature of interest in the volume data space
at an initial timestep ti. In our implementation, users select features
by placing seed points which are used as input to a breadth-first region
growing algorithm. Neighboring voxels with values within a certain

user defined threshold are then added to the region. Our extracted fea-
ture of interest is then defined using a 3D bitmask as described earlier.

Next, we utilize feature-based particle query to extract a unique sub-
set of particle positions p at our original timestep ti from the set of all
particles P. For each particle, pk ∈ p:

pk(ti) = (xk(ti),yk(ti),zk(ti)) (1)

Because each voxel in the volume space represents a volumetric re-
gion, we can map each particle position to a corresponding voxel and
then check against the bitmask to determine which particles to extract.
Note that this mapping may not be one-to-one as a single voxel could
correspond to multiple (or zero) particles. Our extracted subset of par-
ticles will then be used to track our feature and relocate it at different
timesteps.

We can now immediately identify the evolution (changes in posi-
tion, shape, etc.) of the feature by relocating it at a later timestep
ti+n. Such an operation may be necessary because the volume data
may be temporally sparse with all intermediate n− 1 timesteps un-
available. Another possibility is that the data may be too large and
users do not have the computational resources to efficiently track the
feature through all intermediate timesteps. Since the particle (trajec-
tory) data are indexed, we can quickly identify the new particle posi-
tions pk(ti+n) without accessing any (possibly unavailable) intermedi-
ate data.

With our new particle locations, the last step is to reconstruct the
feature using the volume data at time ti+n through particle-based vol-
ume feature query. We map each particle location pk(ti+n) back to a
corresponding voxel to be designated as a seed point for region grow-
ing. Any seed points whose data values lie outside of the original
threshold used to extract the region at timestep ti are discarded, be-
cause these points represent particles that have fallen outside our re-
gion of interest. We also include the option of adding a difference
value (±δ ) to the original threshold. This user defined value is meant
to accommodate expected variations in the internal properties of the
feature. For example, if we extract a feature based on a specific range
of a variable and expect this range to decrease over time in our feature
of interest, we can be more lenient about including voxels whose val-
ues may be below our original threshold. The remaining seed points
are then used in breadth-first region growing as described earlier to fill
in any gaps and re-extract the rest of the feature. A visual representa-
tion of this procedure can be seen in Figure 4.

Note that this technique also works in reverse, as we can jump to an
earlier timestep ti−n in the particle space and then re-locate our feature
of interest. This forwards/backwards duality becomes even more im-
portant when tracking the other types of feature evolution. However,
one challenge of this technique is quantifying and ensuring the accu-
racy of re-grown features as we need to account for any potential errors
or mismatches between the two data spaces, especially over extremely
large jumps in time. This is discussed in detail in Section 3.3.

3.2.2 Feature Splitting and Merging
To track splitting and merging in feature evolution, we first observe
that these two interactions become identical simply by reversing the
direction of time. By traveling backwards in time, a split becomes
a merge and vice versa. Therefore, if we are able to identify when
splitting occurs, we can use a similar technique when tracking features
backwards to identify that a merge has occurred.

To identify a split, we begin by tracking a feature using the same
method as the one used for feature continuation. We first identify a
feature of interest at timestep ti, extract corresponding particles, trace
them forward in time, and re-extract our feature. The difference is
that we end up with two or more separate sub-features after the last
region growing phase. We can identify whether our newly extracted
feature(s) at timestep ti+n are connected using a standard connected
components algorithm [24] on a graph where voxels represent nodes
with edges connecting neighboring voxels. If we end up with more
than one connected component, then with some likelihood (see Sec-
tion 3.3), a split must have occurred somewhere between timesteps ti
and ti+n. This can be seen in Figure 5.
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2 RELATED WORK

Some work has been done on combining volume and particle data
for analytical purposes. Our previous work [17] developed a scal-
able framework for joint-analyses on large scale particle and volume
datasets. While the correspondence between the data types is useful, it
lacked a more general description to include analyses on time-varying
data. Crossno and Angel [4] utilized particle data to extract isosurfaces
in volume datasets. In addition, Krueger [8] utilized sets of virtual par-
ticles to interact with and extract extra information from volumetric
scalar fields and applied it towards volume rendering techniques.

There has been an extensive amount of work done on feature track-
ing techniques. While originally designed for computer vision, feature
tracking techniques were first applied towards 3D volume data analy-
sis by Samtaney et al. [16], who determined a correspondence across
timesteps by comparing features with nearby centroids. Reinders et
al. [15] conducted a similar procedure by comparing properties like
the mass and size of the features.

A different approach was taken by Silver and Wang [18, 19] who or-
ganized features into tree-like structures and then identified connected
components. This method works by assuming that a feature will over-
lap itself over two consecutive timesteps. In addition, Ji et al. [7]
introduced a way of tracking features using isosurfaces in a higher
dimensional geometry. Tzeng and Ma [22] used a machine learning
approach capable of learning information from transfer functions to
aid in tracking features. Ozer et al. [13] extended tracking to follow
groups of features rather than individual ones as it is more cost effec-
tive in large datasets. Takle et al. [20] also tracked groups of cosmo-
logical features made up of groups of dark matter particle clouds. Con-
trary to many previous approaches, which involve extracting features
in separate timesteps and then identifying a correspondence, Muelder
and Ma [12] developed a method which uses a prediction-correction
method. A feature from the previous timestep is used as a prediction
and is then refined by region growing and refinement. However, all of
these methods still require a high temporal resolution in the data, and
in many cases, a spatial overlap between features across consecutive
timesteps.

Other recent approaches try to address feature tracking in a number
of ways. Caban et al. [1] as well as Glatter et al. [5] used a texture-
based tracking approach which looks for similarities between textu-
ral characteristics to track patterns in time-varying data. This method
works well with tracking noisy volumetric features; however, may not
work as well when tracking features resembling solid shapes. Theisel
and Seidel [21] developed an approach that constructs streamlines to
track critical points in vector fields, and as a result, can track features
like saddles or vortices. While effective, this method lacks a more
general feature tracking description that can track features in scalar
fields. In addition Lee and Shen [10] as well as Gu and Wang [6] uti-
lized Time Activity Curves (TAC) in order to quantify the similarity
between the time series of voxels and features for tracking purposes.

There has also been work done by Chen et al. [2] in developing
feature extraction and tracking methods in distributed environments,
where features can span multiple refinement levels and processors.
Also, Wang et al. [24] have developed a scalable parallel extraction
and tracking method for use with large scale datasets. Other feature
tracking approaches can be found in the survey by Post et al. [14].

3 APPROACH

As previously described, our approach utilizes both particle and vol-
ume data to track features. While feature identification/extraction is
done in the volume space, the tracking is done in the particle space.
This is extremely advantageous because it is easy to re-identify a set of
particles across timesteps by either matching indexes or tracing along
their trajectories. The challenge with this approach lies in determining
a correct correspondence between these two domain spaces. Our fea-
ture tracking method consists of the following general steps: 1) Iden-
tify/extract feature of interest; 2) Determine corresponding particles;
3) Trace particles along their trajectory; 4) Re-extract feature based on
new particle locations. These steps are illustrated in Figure 1 in their
respective domain spaces.

Fig. 1. Trajectory-based feature tracking workflow with each step shown
in its respective data space.

Fig. 2. Feature-based particle query (left): Particles are mapped to the
volume space and kept only if that voxel is part of a feature. Particle-
based volume feature query (right): Particles are mapped to the volume
space signifying that a voxel is part of a region. Region growing then
fills in any potential gaps.

3.1 Particle/Volume Data Correspondence
We derive two main tasks to determine a correspondence between par-
ticle and volume data. The first is feature-based particle query, which
allows us to extract a subset of particles corresponding to a volumetric
feature. We define the shape of a feature using a 3D bitmask repre-
senting voxels in the volume domain. A value of 1 in the bitmask
represents a voxel that is part of our feature of interest, while a value
of 0 represents a voxel that is not part of our feature. When it is time to
query particles, each particle is mapped to a voxel in the volume space
based on its location and is checked against the bitmask. If the corre-
sponding voxel is part of our region, the particle is kept; otherwise the
particle is discarded. As a result, only a single pass over all particles is
required. This allows us to efficiently extract particles within irregular
spatial regions as defined by our features of interest.

The second task, particle-based volume feature query, represents
the opposite task of extracting volumetric features based on a subset
of the particle data. Once again, each particle is mapped to a voxel
in the volume space based on its location. If one or more particles
correspond to a voxel, we set a value of 1 in the bitmask, and set a
value of 0 elsewhere. This new bitmask is meant to represent a new
volumetric feature. However, gaps may occur in a feature where no
particles were found. We therefore use region growing techniques to
complete the feature.

We perform seeded region growing in a breadth-first manner in that
a queue is maintained for searching and classifying voxels as part of

Fig. 3. A visual representation of the different types of feature interac-
tions across three points in time.

our feature. The queue is first initialized using a seed point(s). For
each voxel in the queue we check the data values of its neighbors. If its
value is within a user defined threshold, the voxel is marked as part of
our feature and its neighbors that have not been visited are added to the
queue. This process is repeated until the queue is empty. To fill in gaps
caused by particle-based volume feature query we simply initialize the
queue with voxels that correspond to a value of 1 in our bitmask as
seed points. Figure 2 shows a visual representation of feature-based
particle query and particle-based volume feature query.

The above description assumes a structured regular grid; however,
we can also determine a correspondence between the two data types
using unstructured grids as well. If an easy transformation from par-
ticle location to volume cell is not available, then a nearest neighbor
approach can be used to associate each particle to a particular mesh
vertex (or volume cell) in the unstructured scalar field. Mapping par-
ticles to the mesh vertex with the smallest Euclidian distance from the
particle location will generate the correspondence. In this case, the
3D bitmask would use the same unstructured grid shape that the scalar
field uses.

3.2 Trajectory-based Feature Tracking

Traditionally, feature evolution is characterized into a number of in-
teractions: continuation, bifurcation, amalgamation, creation, and
dissipation [16]. Continuation occurs when the same feature exists
across multiple timesteps. The feature may change location or shape
across this interval but remains as one connected component. Bifur-
cation (splitting) occurs when a feature separates into two or more
sub-features, and amalgamation (merging) occurs when two or more
features combine. Lastly, creation and dissipation occur when fea-
tures appear and disappear between timesteps. These interactions can
be seen in Figure 3. In the following subsections, we describe how
trajectory-based feature tracking can be used to successfully handle
each of these cases.

3.2.1 Feature Continuation

We begin describing trajectory-based feature tracking by example us-
ing the simplest case, feature continuation. This allows us to make the
assumption that a feature not only exists between two (not necessarily
consecutive) timesteps, but also remains as one single connected com-
ponent. We first identify a feature of interest in the volume data space
at an initial timestep ti. In our implementation, users select features
by placing seed points which are used as input to a breadth-first region
growing algorithm. Neighboring voxels with values within a certain

user defined threshold are then added to the region. Our extracted fea-
ture of interest is then defined using a 3D bitmask as described earlier.

Next, we utilize feature-based particle query to extract a unique sub-
set of particle positions p at our original timestep ti from the set of all
particles P. For each particle, pk ∈ p:

pk(ti) = (xk(ti),yk(ti),zk(ti)) (1)

Because each voxel in the volume space represents a volumetric re-
gion, we can map each particle position to a corresponding voxel and
then check against the bitmask to determine which particles to extract.
Note that this mapping may not be one-to-one as a single voxel could
correspond to multiple (or zero) particles. Our extracted subset of par-
ticles will then be used to track our feature and relocate it at different
timesteps.

We can now immediately identify the evolution (changes in posi-
tion, shape, etc.) of the feature by relocating it at a later timestep
ti+n. Such an operation may be necessary because the volume data
may be temporally sparse with all intermediate n− 1 timesteps un-
available. Another possibility is that the data may be too large and
users do not have the computational resources to efficiently track the
feature through all intermediate timesteps. Since the particle (trajec-
tory) data are indexed, we can quickly identify the new particle posi-
tions pk(ti+n) without accessing any (possibly unavailable) intermedi-
ate data.

With our new particle locations, the last step is to reconstruct the
feature using the volume data at time ti+n through particle-based vol-
ume feature query. We map each particle location pk(ti+n) back to a
corresponding voxel to be designated as a seed point for region grow-
ing. Any seed points whose data values lie outside of the original
threshold used to extract the region at timestep ti are discarded, be-
cause these points represent particles that have fallen outside our re-
gion of interest. We also include the option of adding a difference
value (±δ ) to the original threshold. This user defined value is meant
to accommodate expected variations in the internal properties of the
feature. For example, if we extract a feature based on a specific range
of a variable and expect this range to decrease over time in our feature
of interest, we can be more lenient about including voxels whose val-
ues may be below our original threshold. The remaining seed points
are then used in breadth-first region growing as described earlier to fill
in any gaps and re-extract the rest of the feature. A visual representa-
tion of this procedure can be seen in Figure 4.

Note that this technique also works in reverse, as we can jump to an
earlier timestep ti−n in the particle space and then re-locate our feature
of interest. This forwards/backwards duality becomes even more im-
portant when tracking the other types of feature evolution. However,
one challenge of this technique is quantifying and ensuring the accu-
racy of re-grown features as we need to account for any potential errors
or mismatches between the two data spaces, especially over extremely
large jumps in time. This is discussed in detail in Section 3.3.

3.2.2 Feature Splitting and Merging
To track splitting and merging in feature evolution, we first observe
that these two interactions become identical simply by reversing the
direction of time. By traveling backwards in time, a split becomes
a merge and vice versa. Therefore, if we are able to identify when
splitting occurs, we can use a similar technique when tracking features
backwards to identify that a merge has occurred.

To identify a split, we begin by tracking a feature using the same
method as the one used for feature continuation. We first identify a
feature of interest at timestep ti, extract corresponding particles, trace
them forward in time, and re-extract our feature. The difference is
that we end up with two or more separate sub-features after the last
region growing phase. We can identify whether our newly extracted
feature(s) at timestep ti+n are connected using a standard connected
components algorithm [24] on a graph where voxels represent nodes
with edges connecting neighboring voxels. If we end up with more
than one connected component, then with some likelihood (see Sec-
tion 3.3), a split must have occurred somewhere between timesteps ti
and ti+n. This can be seen in Figure 5.
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Fig. 4. Steps involved in trajectory-based feature tracking for a feature exhibiting continuation.

Fig. 5. Identifying a split in feature evolution: 1) Identify feature and
extract particles. 2) Trace particles forward and re-extract feature. Then
check connectivity to identify and isolate a new set of sub-features.

Since users are generally interested in tracking features forward in
time, we need an alternate method to determine whether a merge has
occurred within our time interval. After re-extracting our feature from
the particle locations pk(ti+n) and using region growing to fill in the
gaps, we perform an additional feature-based particle query to extract
another subset of particle positions q from the set of all particles P,
where qm(ti+n) ∈ q. This excludes the original set p of particles used
to track the feature (p∩q = 0, where pk,qm ∈ P). This set represents
any additional particles that may have entered our feature within the
time interval.

Next, we trace the new particle set backwards to our original
timestep ti and identify the original locations of particles qm(ti).
Through another final particle-based volume feature query and con-
nected components check, we can extract an additional feature(s) at
timestep ti and conclude with some likelihood (see Section 3.3) that
these features merged between timesteps ti and ti+n. This can be seen
in Figure 6. We can use the combination of these methods to track
cases where both splits and merges occur over our time interval. For
example, a feature can split onto one or more sub-features, and one
of these sub-features may have undergone a merge. This is achieved
by performing a connectivity check as well as a check for additional
particles after every feature re-extraction (i.e., particle-based volume
feature query).

3.2.3 Feature Creation and Dissipation

In the same way that splitting and merging can be considered the same
type of evolution by reversing the direction of time, so can creation and
dissipation. Dissipation occurs when the voxels that make up a feature
of interest no longer fall within the threshold requirements that define
the feature. In our trajectory-based feature tracking approach, we say
that a feature has dissipated if we discard all seed points during the
feature re-extraction phase. In other words, if particle-based volume
feature query results in no available seed points for growing because
all corresponding voxel values lie outside of the threshold, then we can

Fig. 6. Identifying a merge in feature evolution: 1) Identify feature and
extract particles (p). 2) Trace particles forward and re-extract feature.
3) Identify any additional particles (q) found in the feature. 4) Trace the
new set of particles (q) backwards and re-extract feature.

say with high likelihood that our feature has dissipated. To identify
feature creation, we reverse the direction of time and trace our particle
positions to an earlier timestep. If we discard all seed points during
the feature re-extraction phase, then we conclude that our feature of
interest underwent creation during our time interval.

3.3 Uncertainty Metrics
In this section we discuss uncertainty metrics that can be used to gauge
the accuracy of predictions made by trajectory-based feature tracking.
While the aforementioned techniques tend be very accurate for reason-
able jumps in time, jumping too many timesteps can lead to a build-up
in discrepancies between the particle and volume data correspondence
(see Section 4.3), and as a result, inaccuracies in feature evolution
predictions. There are a number of potential causes for these discrep-
ancies. The first major cause is due to the fact that parts of features
(voxels) can pop in and out of existence based on whether its value
meets threshold standards, whereas particles often cannot. For exam-
ple, if parts of our original feature dissipate during our time interval,
the particles will continue to evolve and may enter nearby features.
This can trigger a false positive, because it can result in the identifi-
cation of a split, even if the two features have not interacted with one
another. Another potential cause is that simulation particles are often
massless, whereas our features (e.g. an ash cloud) may not be, result-
ing in differences in their physical movement. Lastly, computational
interpolation errors and inaccuracies in lower order advection schemes
can also increase this discrepancy.

The goal of our uncertainty metrics is to quantify the discrepancies
between the particle and volume data in an attempt to reduce errors
that may arise over large jumps in time. It is based on a few main
assumptions: the prediction made by the majority of the particles is
most likely the correct one, and if particles truly evolve with the fea-
tures, then the number of particles that fall outside the feature during
re-extraction should be small. However, with the case of dissipation
(or features that simply decrease in size), we have to expect that a

certain number of particles may leave the feature.
We can measure the volume V of features in number of voxels and

can compute it by summing up all the values in our bitmask,

V = ∑bitmask( j), (2)

where the index j spans our 3D domain. In addition, we can deter-
mine the number of particles originally extracted from our feature at
timestep ti by measuring the size of set p. We define the subset of
particles that fall outside our feature at timestep ti+n (i.e., the parti-
cles which result in discarded seed points) as p′, where p′ ⊂ p. We
then estimate the discrepancy D between the particle and volume data
by checking how much the fraction of discarded particles exceeds the
amount of reduction in feature volume:

D = max(
|p′|
|p|

−max(1− Vi+n

Vi
,0),0) (3)

This results in a discrepancy value that lies between 0 and 1 with
higher values only occurring when both |p′| and Vi+n are large (relative
to |p| and Vi respectively). By taking the change in size of the feature
into consideration, we can handle the case of dissipation (Vi+n = 0),
where we expect all particles to be discarded (|p′| = |p|), as well as
features that simply reduce in size.

Because we use the particle positions as seed points into region
growing, only one particle must remain inside our feature in order to
re-extract it in its entirety. Moreover, in the case where splitting oc-
curs, we only require one particle (seed point) per sub-feature. There-
fore, even if the discrepancy between the two data types is high, we
can fully re-extract our feature with high likelihood. The errors that
can arise however, lie in the form of false positives. In other words,
when the discrepancy is high, there is a greater chance that a particle
wanders into a nearby feature, falsely extracts it, and identifies it as
something that has split off of our original feature.

We utilize the discrepancy measure in an attempt to mitigate the
possibility of false positives. If a split is identified, we assume that the
sub-feature that contains the majority of the particles (the main sub-
feature) is correct and evaluate the possibility that other sub-features
may be false positives. We compute the ratio of the number of particles
in each sub-feature to the number of particles in the main sub-feature,
and then compare this value to the calculated discrepancy. If this ratio
is smaller than the discrepancy we ignore this sub-feature in our final
extraction. For example, if the computed discrepancy is 0.33, then we
require that each sub-feature has at least 1/3 of the number of particles
that the main sub-feature has, otherwise it is discarded. This allows
us to potentially ignore extracted sub-features generated from small
groups of stray particles. Note that this comparison can be tweaked to
form a stricter or more lenient extraction criteria.

4 RESULTS

We demonstrate the effectiveness of this feature tracking technique
using two real world datasets. The first is a large-scale combustion
dataset that comes from S3D, a massively parallel simulation code de-
veloped by scientists at Sandia National Labs [26]. This peta-scale
simulation records information as both particle and volume data si-
multaneously. The second is an atmospheric dataset that comes from
two sources. The “volume data”, in this case 2D satellite detections,
comes from the Atmospheric Infrared Sounder developed by NASA’s
Jet Propulsion Laboratory [9]. The particle trajectory data represent-
ing atmospheric flow comes from Chemical Lagrangian Model of the
Stratosphere, a simulation developed by Research Center Jülich [11].

4.1 Combustion Dataset
The combustion dataset represents a 3D lifted ethylene jet flame. Its
highly-connected turbulent nature makes feature tracking difficult be-
cause inter-feature evolution events (e.g. splitting and merging) are
more likely to occur. This particular dataset has sufficient spatial
and temporal resolution to compare the results of our trajectory-based
feature tracking approach with traditional approaches. The volume

Fig. 7. A depiction of the FC/U (shown in blue) and FS/S (shown in
green) flow classifications.

Fig. 8. A subset of the corresponding particle data colored according to
temperature. Red indicates hotter portions of the jet while blue indicates
colder portions.

Fig. 9. An extracted volumetric feature of interest. A zoomed-in view (A)
as well as the corresponding extracted particles (B) are shown.

dataset (∼ 108 voxels per timestep) represents a series of 27 dif-
ferent flow classifications determined by computing a local rate-of-
deformation tensor from the underlying vector field [3]. A depiction
of the two most prominent classifications, FC/U (focusing compress-
ing unstable) and FS/S (focusing stretching stable) can be seen in Fig-
ure 7. Scientists are especially interested in these features as they are
presumed to have a strong influence on flamelet deformation. The par-
ticle dataset (∼ 106 particles per timestep) consists of massless par-
ticles which, in addition to spatial location, records other parameters
such as temperature and the mass fractions of molecules that make up
the jet. A representative subset of the particle dataset can be seen in
Figure 8. The volume dataset in this case is temporally sparser than
the particle dataset with one timestep of volume data for every five
timesteps of particle data.

Since the features we aim to track are highly connected, simply
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Fig. 4. Steps involved in trajectory-based feature tracking for a feature exhibiting continuation.

Fig. 5. Identifying a split in feature evolution: 1) Identify feature and
extract particles. 2) Trace particles forward and re-extract feature. Then
check connectivity to identify and isolate a new set of sub-features.

Since users are generally interested in tracking features forward in
time, we need an alternate method to determine whether a merge has
occurred within our time interval. After re-extracting our feature from
the particle locations pk(ti+n) and using region growing to fill in the
gaps, we perform an additional feature-based particle query to extract
another subset of particle positions q from the set of all particles P,
where qm(ti+n) ∈ q. This excludes the original set p of particles used
to track the feature (p∩q = 0, where pk,qm ∈ P). This set represents
any additional particles that may have entered our feature within the
time interval.

Next, we trace the new particle set backwards to our original
timestep ti and identify the original locations of particles qm(ti).
Through another final particle-based volume feature query and con-
nected components check, we can extract an additional feature(s) at
timestep ti and conclude with some likelihood (see Section 3.3) that
these features merged between timesteps ti and ti+n. This can be seen
in Figure 6. We can use the combination of these methods to track
cases where both splits and merges occur over our time interval. For
example, a feature can split onto one or more sub-features, and one
of these sub-features may have undergone a merge. This is achieved
by performing a connectivity check as well as a check for additional
particles after every feature re-extraction (i.e., particle-based volume
feature query).

3.2.3 Feature Creation and Dissipation

In the same way that splitting and merging can be considered the same
type of evolution by reversing the direction of time, so can creation and
dissipation. Dissipation occurs when the voxels that make up a feature
of interest no longer fall within the threshold requirements that define
the feature. In our trajectory-based feature tracking approach, we say
that a feature has dissipated if we discard all seed points during the
feature re-extraction phase. In other words, if particle-based volume
feature query results in no available seed points for growing because
all corresponding voxel values lie outside of the threshold, then we can

Fig. 6. Identifying a merge in feature evolution: 1) Identify feature and
extract particles (p). 2) Trace particles forward and re-extract feature.
3) Identify any additional particles (q) found in the feature. 4) Trace the
new set of particles (q) backwards and re-extract feature.

say with high likelihood that our feature has dissipated. To identify
feature creation, we reverse the direction of time and trace our particle
positions to an earlier timestep. If we discard all seed points during
the feature re-extraction phase, then we conclude that our feature of
interest underwent creation during our time interval.

3.3 Uncertainty Metrics
In this section we discuss uncertainty metrics that can be used to gauge
the accuracy of predictions made by trajectory-based feature tracking.
While the aforementioned techniques tend be very accurate for reason-
able jumps in time, jumping too many timesteps can lead to a build-up
in discrepancies between the particle and volume data correspondence
(see Section 4.3), and as a result, inaccuracies in feature evolution
predictions. There are a number of potential causes for these discrep-
ancies. The first major cause is due to the fact that parts of features
(voxels) can pop in and out of existence based on whether its value
meets threshold standards, whereas particles often cannot. For exam-
ple, if parts of our original feature dissipate during our time interval,
the particles will continue to evolve and may enter nearby features.
This can trigger a false positive, because it can result in the identifi-
cation of a split, even if the two features have not interacted with one
another. Another potential cause is that simulation particles are often
massless, whereas our features (e.g. an ash cloud) may not be, result-
ing in differences in their physical movement. Lastly, computational
interpolation errors and inaccuracies in lower order advection schemes
can also increase this discrepancy.

The goal of our uncertainty metrics is to quantify the discrepancies
between the particle and volume data in an attempt to reduce errors
that may arise over large jumps in time. It is based on a few main
assumptions: the prediction made by the majority of the particles is
most likely the correct one, and if particles truly evolve with the fea-
tures, then the number of particles that fall outside the feature during
re-extraction should be small. However, with the case of dissipation
(or features that simply decrease in size), we have to expect that a

certain number of particles may leave the feature.
We can measure the volume V of features in number of voxels and

can compute it by summing up all the values in our bitmask,

V = ∑bitmask( j), (2)

where the index j spans our 3D domain. In addition, we can deter-
mine the number of particles originally extracted from our feature at
timestep ti by measuring the size of set p. We define the subset of
particles that fall outside our feature at timestep ti+n (i.e., the parti-
cles which result in discarded seed points) as p′, where p′ ⊂ p. We
then estimate the discrepancy D between the particle and volume data
by checking how much the fraction of discarded particles exceeds the
amount of reduction in feature volume:

D = max(
|p′|
|p|

−max(1− Vi+n

Vi
,0),0) (3)

This results in a discrepancy value that lies between 0 and 1 with
higher values only occurring when both |p′| and Vi+n are large (relative
to |p| and Vi respectively). By taking the change in size of the feature
into consideration, we can handle the case of dissipation (Vi+n = 0),
where we expect all particles to be discarded (|p′| = |p|), as well as
features that simply reduce in size.

Because we use the particle positions as seed points into region
growing, only one particle must remain inside our feature in order to
re-extract it in its entirety. Moreover, in the case where splitting oc-
curs, we only require one particle (seed point) per sub-feature. There-
fore, even if the discrepancy between the two data types is high, we
can fully re-extract our feature with high likelihood. The errors that
can arise however, lie in the form of false positives. In other words,
when the discrepancy is high, there is a greater chance that a particle
wanders into a nearby feature, falsely extracts it, and identifies it as
something that has split off of our original feature.

We utilize the discrepancy measure in an attempt to mitigate the
possibility of false positives. If a split is identified, we assume that the
sub-feature that contains the majority of the particles (the main sub-
feature) is correct and evaluate the possibility that other sub-features
may be false positives. We compute the ratio of the number of particles
in each sub-feature to the number of particles in the main sub-feature,
and then compare this value to the calculated discrepancy. If this ratio
is smaller than the discrepancy we ignore this sub-feature in our final
extraction. For example, if the computed discrepancy is 0.33, then we
require that each sub-feature has at least 1/3 of the number of particles
that the main sub-feature has, otherwise it is discarded. This allows
us to potentially ignore extracted sub-features generated from small
groups of stray particles. Note that this comparison can be tweaked to
form a stricter or more lenient extraction criteria.

4 RESULTS

We demonstrate the effectiveness of this feature tracking technique
using two real world datasets. The first is a large-scale combustion
dataset that comes from S3D, a massively parallel simulation code de-
veloped by scientists at Sandia National Labs [26]. This peta-scale
simulation records information as both particle and volume data si-
multaneously. The second is an atmospheric dataset that comes from
two sources. The “volume data”, in this case 2D satellite detections,
comes from the Atmospheric Infrared Sounder developed by NASA’s
Jet Propulsion Laboratory [9]. The particle trajectory data represent-
ing atmospheric flow comes from Chemical Lagrangian Model of the
Stratosphere, a simulation developed by Research Center Jülich [11].

4.1 Combustion Dataset
The combustion dataset represents a 3D lifted ethylene jet flame. Its
highly-connected turbulent nature makes feature tracking difficult be-
cause inter-feature evolution events (e.g. splitting and merging) are
more likely to occur. This particular dataset has sufficient spatial
and temporal resolution to compare the results of our trajectory-based
feature tracking approach with traditional approaches. The volume

Fig. 7. A depiction of the FC/U (shown in blue) and FS/S (shown in
green) flow classifications.

Fig. 8. A subset of the corresponding particle data colored according to
temperature. Red indicates hotter portions of the jet while blue indicates
colder portions.

Fig. 9. An extracted volumetric feature of interest. A zoomed-in view (A)
as well as the corresponding extracted particles (B) are shown.

dataset (∼ 108 voxels per timestep) represents a series of 27 dif-
ferent flow classifications determined by computing a local rate-of-
deformation tensor from the underlying vector field [3]. A depiction
of the two most prominent classifications, FC/U (focusing compress-
ing unstable) and FS/S (focusing stretching stable) can be seen in Fig-
ure 7. Scientists are especially interested in these features as they are
presumed to have a strong influence on flamelet deformation. The par-
ticle dataset (∼ 106 particles per timestep) consists of massless par-
ticles which, in addition to spatial location, records other parameters
such as temperature and the mass fractions of molecules that make up
the jet. A representative subset of the particle dataset can be seen in
Figure 8. The volume dataset in this case is temporally sparser than
the particle dataset with one timestep of volume data for every five
timesteps of particle data.

Since the features we aim to track are highly connected, simply
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Fig. 10. Tracking a feature that exhibits splitting and merging (A) and a feature that exhibits creation and splitting (B).

growing based on connectivity will result in a large single feature that
spans the entire domain. Instead, we use a modified version of region
growing to “pinch off” weakly connected portions [17]. This is done
by measuring the connectivity strength of voxels by counting the num-
ber of similar neighbors. Voxels are then only added to the region if
their connectivity strength exceeds a threshold. This modified region
growing is used both for the initial feature extraction and re-extraction
phases in this particular dataset. An example of an extracted feature of
interest as well as the corresponding particles can be seen in Figure 9.

We demonstrate the ability of this technique to track different types
of feature evolution in Figure 10. Features and corresponding particles
were initially extracted at time t = 25. Features were then re-extracted
at time t = 50, 75, and 100 by jumping 25, 50, and 75 timesteps from
the initial extraction timestep respectively. Feature A shows an exam-
ple of splitting and merging as it splits into two sub-features between t
= 50 and 75 which merge back together between t = 75 and 100. Fea-
ture B shows an example of creation and splitting. This feature was
created between t = 0 and 25 since tracing the particles backwards to t
= 0 results in no available seed points for growing. The splitting then
occurs between t = 75 and 100. This coarse method of re-extracting
the feature at incremental timesteps is a useful way for users to quickly
examine the general evolution of a feature. Users can then examine
the evolution in more detail by inspecting the intermediate timesteps
(if available).

We also demonstrate the ability of using the particle data to track
the internal properties of a feature. In this case we examine the aver-

Fig. 11. A graph showing the average temperature of the two features
depicted in Figure 10.

age temperature of a feature of interest by averaging the temperature
values of all corresponding particles. We discard any particles that
fall outside the feature when computing the average. The results can
be seen in Figure 11, which displays the average temperature for the
two features shown in Figure 10. From the graph we can see that the
temperature of Feature A remains relatively constant, while the tem-
perature of Feature B steadily increases. This indicates that Feature
B is entering a portion of the jet where burning is occurring, whereas
Feature A is not.

In addition, we compare this method to an existing feature tracking
approach to justify its accuracy. In other words, we show that the pre-
dictions made by our trajectory-based approach can extract features
similar to those generated by an approach that tracks features through
all intermediate timesteps. In this comparison, we implement a feature
tracking approach similar to the one discussed by Muelder et al. [12].
This is a predictor-corrector method which uses region growing and re-
finement to track features that physically overlap between consecutive
timesteps. The identified feature from a previous timestep is used as
a prediction. It is then corrected using region growing and refinement
to identify the feature in the current timestep. We choose this method
as a comparison as it is one of the more efficient available options for
feature tracking.

Figure 12 shows a comparison between the resulting features that
are extracted using the trajectory-based method and the predictor-
corrector method. In this example, the trajectory-based method ex-
tracts particles at t = 0 and then jumps directly to t = 150, while

Fig. 12. A comparison between the trajectory-based approach and the
predictor-corrector approach. Only subtle differences (approximately
1% of the feature) can be seen at the location of the red arrow.

the predictor-corrector method steps through all available intermedi-
ate timesteps. The figure shows that the end results for each method
are very similar, although some minor differences can be seen at the
location of the red arrow. This difference can be attributed to the lack
of available particles (seed points) to extract that sub-feature. A direct
voxel comparison between these results via a Jaccard Index indicates
that the trajectory-based method extracts a feature that is 98.9% simi-
lar to the feature determined by the predictor-corrector method.

In addition, timing results on a desktop computer (using a 3.20 GHz
Intel Core i7 processor) show that the trajectory-based method took a
total of 59 ms, while the predictor-corrector method took a total of
541 ms, almost a 10x speedup. Admittedly, this comparison can be
considered slightly biased as the trajectory-based approach has access
to extra information (the particle data). However, it demonstrates the
value of our approach in being able to greatly reduce the amount of
computation that is generally required to track features. Also, note that
the speedup will be heavily dependent on the number of timesteps that
are skipped. Of the 59 ms, 20 ms are used to build the correspondence
between the feature and the particle data. This time scales with the
number of particles in the dataset as it takes a single pass over all
particles to build the correspondence.

4.2 Atmospheric Dataset

The atmospheric dataset represents a 2D global coverage of volcanic
ash detections using infrared sensing. Unlike the combustion dataset,
the atmospheric dataset is extremely temporally and spatially sparse,
and is much smaller in size. This sparseness is inherent in the acqui-
sition method used to collect the data because a satellite can only take
measurements from one location at one point in time. Moreover, the
location of each detection is limited by the orbital path of the satel-

lite. An image of such satellite detections can be seen in Figure 13.
Gray areas in the image represent gaps in the data where no measure-
ments were taken. Datasets like these make feature tracking extremely
difficult (and in many cases impossible) using traditional techniques
since features can disappear entirely when traversing these missing
regions. Our trajectory-based approach overcomes this difficulty by
utilizing corresponding particle data to track features. In this case,
we can utilize particle trajectories from a corresponding atmospheric
simulation to identify the evolution of our features of interest. The
particle dataset also records additional information, such as the tem-
perature and pressure at that particular location. An example of the
corresponding particle data can be seen in Figure 13. Just like with the
combustion dataset, the satellite detections are sparser than the particle
data with approximately one timestep of image data for every twelve
timesteps of particle data.

In this example, we track an ash cloud produced by the Puyehue-
Cordón Caulle Volcano Complex in Chile, which erupted in June
2011. We identify and extract a feature of interest located near the
eruption site and track its evolution for four consecutive days using
the particles extracted at the first timestep. This can be seen in Fig-
ure 14. From the images, we can see that we can track our feature of
interest (shown in blue) even though it traverses several patches where
no data is available (shown in gray). This particular ash cloud travels
east over the South Atlantic Ocean and begins to dissipate just before
reaching the coast of Africa. Its trajectory can be seen in the top right
portion of the figure.

We can also use the additional data from the simulation to estimate
the internal properties of our feature. In this example, we track the
temperature and pressure of our feature of interest over the four day
period by averaging the values of each of the corresponding particles.

Fig. 13. Left: An image of satellite detections showing a sparse coverage over a twelve hour time window. Gray areas represent gaps in the data.
Volcanic ash detections can be seen in blue. Right: An image of the particle data drawn as trajectories. The color corresponds to temperature.

Fig. 14. Tracking an ash cloud from a Chilean volcano over the course of four days. The feature travels east over the South Atlantic Ocean and
begins to dissipate just before reaching the coast of Africa. Its trajectory can be seen at the top-right.
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Fig. 10. Tracking a feature that exhibits splitting and merging (A) and a feature that exhibits creation and splitting (B).

growing based on connectivity will result in a large single feature that
spans the entire domain. Instead, we use a modified version of region
growing to “pinch off” weakly connected portions [17]. This is done
by measuring the connectivity strength of voxels by counting the num-
ber of similar neighbors. Voxels are then only added to the region if
their connectivity strength exceeds a threshold. This modified region
growing is used both for the initial feature extraction and re-extraction
phases in this particular dataset. An example of an extracted feature of
interest as well as the corresponding particles can be seen in Figure 9.

We demonstrate the ability of this technique to track different types
of feature evolution in Figure 10. Features and corresponding particles
were initially extracted at time t = 25. Features were then re-extracted
at time t = 50, 75, and 100 by jumping 25, 50, and 75 timesteps from
the initial extraction timestep respectively. Feature A shows an exam-
ple of splitting and merging as it splits into two sub-features between t
= 50 and 75 which merge back together between t = 75 and 100. Fea-
ture B shows an example of creation and splitting. This feature was
created between t = 0 and 25 since tracing the particles backwards to t
= 0 results in no available seed points for growing. The splitting then
occurs between t = 75 and 100. This coarse method of re-extracting
the feature at incremental timesteps is a useful way for users to quickly
examine the general evolution of a feature. Users can then examine
the evolution in more detail by inspecting the intermediate timesteps
(if available).

We also demonstrate the ability of using the particle data to track
the internal properties of a feature. In this case we examine the aver-

Fig. 11. A graph showing the average temperature of the two features
depicted in Figure 10.

age temperature of a feature of interest by averaging the temperature
values of all corresponding particles. We discard any particles that
fall outside the feature when computing the average. The results can
be seen in Figure 11, which displays the average temperature for the
two features shown in Figure 10. From the graph we can see that the
temperature of Feature A remains relatively constant, while the tem-
perature of Feature B steadily increases. This indicates that Feature
B is entering a portion of the jet where burning is occurring, whereas
Feature A is not.

In addition, we compare this method to an existing feature tracking
approach to justify its accuracy. In other words, we show that the pre-
dictions made by our trajectory-based approach can extract features
similar to those generated by an approach that tracks features through
all intermediate timesteps. In this comparison, we implement a feature
tracking approach similar to the one discussed by Muelder et al. [12].
This is a predictor-corrector method which uses region growing and re-
finement to track features that physically overlap between consecutive
timesteps. The identified feature from a previous timestep is used as
a prediction. It is then corrected using region growing and refinement
to identify the feature in the current timestep. We choose this method
as a comparison as it is one of the more efficient available options for
feature tracking.

Figure 12 shows a comparison between the resulting features that
are extracted using the trajectory-based method and the predictor-
corrector method. In this example, the trajectory-based method ex-
tracts particles at t = 0 and then jumps directly to t = 150, while

Fig. 12. A comparison between the trajectory-based approach and the
predictor-corrector approach. Only subtle differences (approximately
1% of the feature) can be seen at the location of the red arrow.

the predictor-corrector method steps through all available intermedi-
ate timesteps. The figure shows that the end results for each method
are very similar, although some minor differences can be seen at the
location of the red arrow. This difference can be attributed to the lack
of available particles (seed points) to extract that sub-feature. A direct
voxel comparison between these results via a Jaccard Index indicates
that the trajectory-based method extracts a feature that is 98.9% simi-
lar to the feature determined by the predictor-corrector method.

In addition, timing results on a desktop computer (using a 3.20 GHz
Intel Core i7 processor) show that the trajectory-based method took a
total of 59 ms, while the predictor-corrector method took a total of
541 ms, almost a 10x speedup. Admittedly, this comparison can be
considered slightly biased as the trajectory-based approach has access
to extra information (the particle data). However, it demonstrates the
value of our approach in being able to greatly reduce the amount of
computation that is generally required to track features. Also, note that
the speedup will be heavily dependent on the number of timesteps that
are skipped. Of the 59 ms, 20 ms are used to build the correspondence
between the feature and the particle data. This time scales with the
number of particles in the dataset as it takes a single pass over all
particles to build the correspondence.

4.2 Atmospheric Dataset

The atmospheric dataset represents a 2D global coverage of volcanic
ash detections using infrared sensing. Unlike the combustion dataset,
the atmospheric dataset is extremely temporally and spatially sparse,
and is much smaller in size. This sparseness is inherent in the acqui-
sition method used to collect the data because a satellite can only take
measurements from one location at one point in time. Moreover, the
location of each detection is limited by the orbital path of the satel-

lite. An image of such satellite detections can be seen in Figure 13.
Gray areas in the image represent gaps in the data where no measure-
ments were taken. Datasets like these make feature tracking extremely
difficult (and in many cases impossible) using traditional techniques
since features can disappear entirely when traversing these missing
regions. Our trajectory-based approach overcomes this difficulty by
utilizing corresponding particle data to track features. In this case,
we can utilize particle trajectories from a corresponding atmospheric
simulation to identify the evolution of our features of interest. The
particle dataset also records additional information, such as the tem-
perature and pressure at that particular location. An example of the
corresponding particle data can be seen in Figure 13. Just like with the
combustion dataset, the satellite detections are sparser than the particle
data with approximately one timestep of image data for every twelve
timesteps of particle data.

In this example, we track an ash cloud produced by the Puyehue-
Cordón Caulle Volcano Complex in Chile, which erupted in June
2011. We identify and extract a feature of interest located near the
eruption site and track its evolution for four consecutive days using
the particles extracted at the first timestep. This can be seen in Fig-
ure 14. From the images, we can see that we can track our feature of
interest (shown in blue) even though it traverses several patches where
no data is available (shown in gray). This particular ash cloud travels
east over the South Atlantic Ocean and begins to dissipate just before
reaching the coast of Africa. Its trajectory can be seen in the top right
portion of the figure.

We can also use the additional data from the simulation to estimate
the internal properties of our feature. In this example, we track the
temperature and pressure of our feature of interest over the four day
period by averaging the values of each of the corresponding particles.

Fig. 13. Left: An image of satellite detections showing a sparse coverage over a twelve hour time window. Gray areas represent gaps in the data.
Volcanic ash detections can be seen in blue. Right: An image of the particle data drawn as trajectories. The color corresponds to temperature.

Fig. 14. Tracking an ash cloud from a Chilean volcano over the course of four days. The feature travels east over the South Atlantic Ocean and
begins to dissipate just before reaching the coast of Africa. Its trajectory can be seen at the top-right.
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Fig. 15. A graph showing the average temperature and pressure of the
ash cloud depicted in Figure 14.

The results can be seen in Figure 15. We can see that the temperature
of the ash cloud remains relatively constant over time, which indicates
that the ash has likely already cooled from the initial eruption event.
However, the pressure tends to decrease over our time frame as the
ash cloud diffuses into the atmosphere and dissipates. This is a useful
example of how this feature tracking approach can incorporate data
from different sources into a combined analytical result.

4.3 Discussion
The above results demonstrate the effectiveness of this trajectory-
based method in being able to track the evolution of features. There are
two major advantages to this approach as reflected in each of the tested
datasets. With high resolution datasets like the combustion dataset
we can achieve feature tracking at a fraction of the computation nor-
mally required. The trajectory-based approach can skip intermediate
timesteps because the tracking itself is done using the indexed parti-
cle data. This is especially useful towards big data applications where
computational resources and I/O play a major role. The trajectory-
based approach allows users to identify the evolution of a feature of in-
terest while only accessing two timesteps of the data: the start and end
step of a particular time window. This drastically reduces the amount
of computation and I/O normally required. The above results show
that comparing the trajectory-based approach to a traditional feature
tracking method results in the extraction of extremely similar features,
even over a large jump in time. This approach allows users to choose
their desired balance of accuracy and performance by adjusting the
number of skipped timesteps.

With low resolution datasets like the atmospheric dataset we can not
only easily track features without a physical overlap across timesteps,
but can also track features that traverse regions with missing data. By
using the particle data for tracking, users can jump to a later timestep
after features have emerged from the missing regions and re-extract the
feature. Lastly, this trajectory based approach can be applied towards
the fusion of information from multiple data sources. In many cases,
the particle data contain additional information that is not present in
the volume data. By extracting particles that correspond to a feature
of interest, we can measure additional internal properties over time,
such as the temperature or pressure of the feature.

4.3.1 Discrepancy Measure
With these numerous advantages comes the cost of accuracy. Since
this approach uses region growing to re-extract the feature, we simply
need at least one particle present in the feature (or one per sub-feature)
in order to re-extract it. This makes the likelihood of not being able
to re-extract the feature small. However, a build-up of discrepancies
between the particle and volume data can potentially trigger false pos-
itives in which stray particles wander into neighboring features. We
mitigate this using the discrepancy metric as described in Section 3.3.

Fig. 16. A graph showing the discrepancy value of an example feature in
the combustion dataset. Blue: particles are initially identified at timestep
0 and used to extract the feature at all subsequent timesteps. Green:
particles are re-identified every 25 timesteps to keep the discrepancy
value low.

In addition, users can choose to keep the discrepancy low by contin-
ually re-extracting particles every few timesteps rather than using the
initial set of extracted particles for all subsequent tracking. Figure 16
shows a graph of the computed discrepancy value for an example fea-
ture in the combustion dataset. The points in blue show the case where
particles are only identified at timestep 0 and then used to re-extract
the feature at all subsequent timesteps. The points in green show the
case where particles are re-identified every 25 timesteps in order to
“re-synchronize” the particles to our newly identified feature. In other
words, we discard any particles that have wandered outside of the fea-
ture and include any particles that have wandered into the feature in
any subsequent tracking. We can see that the discrepancy value re-
mains low in this case.

Note that the computed discrepancy does not directly reflect the er-
ror of the resulting feature. Instead it is a measure of the possibility
of false positives. In the case where splitting occurs, we utilize this
value to reduce the possibility of falsely extracting sub-features as de-
scribed in Section 3.3. Even if the discrepancy value is high (e.g. 0.4
after a jump of 150 timesteps as seen in Figure 16), we still can extract
features that are very similar to those extracted by traditional feature
tracking methods. In the example shown in Figure 12, the extracted
feature is 98.9% similar to the feature identified by the traditional ap-
proach even though the discrepancy value is above 0.5. While keeping
the discrepancy low by continually re-identifying particles might lead
to more accurate results, in many cases this is not necessary.

As the discrepancy value can be thought of as a measure of the pos-
sibility of a false positive, it can be used to give direct feedback to users
choosing an appropriate balance between computation time (number
of skipped timesteps) and accuracy. Each feature being tracked has a
discrete discrepancy value which can be visually encoded into the vi-
sualization (by using labels, coloring the feature, etc.). In other words,
the uncertainty of the extraction result can be displayed with each
tracked feature. If this discrepancy value becomes too high for se-
lect features of interest, users can then choose to skip fewer timesteps
and obtain a more accurate result.

4.3.2 Particle Density

This method is also dependent on the density of available particles.
Since this technique uses region growing to re-extract features, we
only require one particle to remain in each feature of interest (or sub-
feature if splitting occurred). However, extreme drops in particle den-
sity could prevent this requirement from being met. For example,
this method would not be able to detect a split in feature evolution
if only one corresponding particle is associated with a feature of inter-
est. While this extreme case is highly unlikely for larger features, it

can pose a problem for smaller ones.
We study how varying the particle density in the combustion dataset

affects the accuracy of the feature tracking result for two select fea-
tures: a large features containing ∼ 500 voxels and a small feature con-
taining ∼ 10 voxels. We artificially reduce the density of the dataset
by randomly removing an increasing number of particles. Each fea-
ture was tracked by jumping 150 timesteps using the trajectory-based
approach for a number of different densities. Each feature was then
compared to the result from the predictor-corrector method (which
disregards the particle data) and a similarity measure was computed
via the Jaccard Index. The results can be seen in Figure 17. Both the
large feature (shown in blue) and small feature (shown in green) retain
a high accuracy (similarity) when the particle density is high. We see
a sharp decline in the accuracy of the large feature when the particle
density reaches 1/16th of maximum available density. This is because
there are no longer any particles associated with a major sub-feature
that has split off during the evolution. At 1/256th of maximum avail-
able density, the large feature is lost entirely. As predicted, the small
feature is more sensitive to decreases in density and is lost entirely at
1/4th of the maximum available density.

In some cases, simulations insert/remove particles to accommodate
changes in density in certain portions of the domain. Since this ap-
proach compares the particle locations at two distinct timesteps, any
particles that do not explicitly exist at both of these points in time (any
particles that were inserted or removed during skipped timesteps) need
to be ignored. This can be done by simply implementing an extra step
which removes such particles from the extracted subset whenever this
approach jumps forwards or backwards in time. Not doing so could
potentially alter the discrepancy measure and/or lead to false predic-
tions.

4.3.3 Applicable Data and Feature Types
While the approach as described in this paper focuses on tracking the
evolution of a single starting feature, tracking more complex targets
such as multiple features as once is certainly viable. In fact, this is
almost identical to tracking a group of sub-features after splitting has
occurred. Many of the example features depicted in this paper split
into several sub-components throughout their evolution and provide
evidence that tracking multiple features simultaneously is possible.
Simply assigning a distinct label or index to the group of particles
associated with each feature can allow the system to re-identify each
feature after jumping to a later timestep. However, as seen in the pre-
vious section, this approach is still limited in being able to track very
small features as they can easily be lost when not enough particles can
be associated with them.

The disadvantage of this method mainly lies in the limitation of
applicable dataset types. The dataset must have some form of corre-
sponding particle (trajectory) data, and the movement of the features
we wish to track must be governed in a way similar to that of the par-
ticles (i.e., advection by a flow). While these two criteria are often
met in many scientific endeavors, this may not always be the case, re-
quiring the use of traditional feature tracking approaches. However, it
is important to note that if vector flow field data are present, we can
choose to implement our own advection scheme to generate artificial
trajectories. These trajectories can then be used as input into our fea-
ture tracking approach exactly as described in this paper.

5 CONCLUSION AND FUTURE WORK

This work presents a new trajectory-based feature tracking approach
which uses corresponding particle data to track volumetric features.
By determining a correspondence between features and sets of parti-
cles, this approach can utilize indexed particle data to jump to later
timesteps and re-identify features of interest. Eliminating the need
to track features through intermediate timesteps is extremely advanta-
geous. First, this drastically reduces the amount of computation and
I/O time required for feature tracking, which plays a major role when
analyzing large datasets. Second, this allows our approach to be able
to track features in datasets which are both spatially and temporally
sparse. Moreover, since the tracking itself is done using the particle

Fig. 17. A graph showing the accuracy of tracking a large feature (blue)
and small feature (green) as a function of varying particle density. The
accuracy is computed by comparing the result to the predictor-corrector
method.

data, this method can also track features across regions where volume
data may be missing. Our technique also compares favorably with tra-
ditional feature tracking methods in terms of accuracy. Results show
that we can extract features that are similar to those obtained by a tradi-
tional method, and at a fraction of the computation cost. Our approach
provides the groundwork for accurate and more efficient feature track-
ing in a wide variety of datasets containing both particle and volume
data.

In the future, we plan to extend this technique to be able to interpo-
late features between consecutive timesteps or within missing regions
by using the higher resolution particle data. This can be achieved by
using the characteristics of the particle based point-cloud to estimate
the size, shape, and location of the feature in these unknown regions.
In addition, we plan to integrate this tracking approach with trajec-
tory clustering techniques [25]. By clustering the trajectories of cor-
responding particles, we can also easily cluster the individual features
into groups based on the similarity of their evolution throughout the
dataset. This can also be extended to allow users to query features
based on specific trajectories.
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Fig. 15. A graph showing the average temperature and pressure of the
ash cloud depicted in Figure 14.

The results can be seen in Figure 15. We can see that the temperature
of the ash cloud remains relatively constant over time, which indicates
that the ash has likely already cooled from the initial eruption event.
However, the pressure tends to decrease over our time frame as the
ash cloud diffuses into the atmosphere and dissipates. This is a useful
example of how this feature tracking approach can incorporate data
from different sources into a combined analytical result.

4.3 Discussion
The above results demonstrate the effectiveness of this trajectory-
based method in being able to track the evolution of features. There are
two major advantages to this approach as reflected in each of the tested
datasets. With high resolution datasets like the combustion dataset
we can achieve feature tracking at a fraction of the computation nor-
mally required. The trajectory-based approach can skip intermediate
timesteps because the tracking itself is done using the indexed parti-
cle data. This is especially useful towards big data applications where
computational resources and I/O play a major role. The trajectory-
based approach allows users to identify the evolution of a feature of in-
terest while only accessing two timesteps of the data: the start and end
step of a particular time window. This drastically reduces the amount
of computation and I/O normally required. The above results show
that comparing the trajectory-based approach to a traditional feature
tracking method results in the extraction of extremely similar features,
even over a large jump in time. This approach allows users to choose
their desired balance of accuracy and performance by adjusting the
number of skipped timesteps.

With low resolution datasets like the atmospheric dataset we can not
only easily track features without a physical overlap across timesteps,
but can also track features that traverse regions with missing data. By
using the particle data for tracking, users can jump to a later timestep
after features have emerged from the missing regions and re-extract the
feature. Lastly, this trajectory based approach can be applied towards
the fusion of information from multiple data sources. In many cases,
the particle data contain additional information that is not present in
the volume data. By extracting particles that correspond to a feature
of interest, we can measure additional internal properties over time,
such as the temperature or pressure of the feature.

4.3.1 Discrepancy Measure
With these numerous advantages comes the cost of accuracy. Since
this approach uses region growing to re-extract the feature, we simply
need at least one particle present in the feature (or one per sub-feature)
in order to re-extract it. This makes the likelihood of not being able
to re-extract the feature small. However, a build-up of discrepancies
between the particle and volume data can potentially trigger false pos-
itives in which stray particles wander into neighboring features. We
mitigate this using the discrepancy metric as described in Section 3.3.

Fig. 16. A graph showing the discrepancy value of an example feature in
the combustion dataset. Blue: particles are initially identified at timestep
0 and used to extract the feature at all subsequent timesteps. Green:
particles are re-identified every 25 timesteps to keep the discrepancy
value low.

In addition, users can choose to keep the discrepancy low by contin-
ually re-extracting particles every few timesteps rather than using the
initial set of extracted particles for all subsequent tracking. Figure 16
shows a graph of the computed discrepancy value for an example fea-
ture in the combustion dataset. The points in blue show the case where
particles are only identified at timestep 0 and then used to re-extract
the feature at all subsequent timesteps. The points in green show the
case where particles are re-identified every 25 timesteps in order to
“re-synchronize” the particles to our newly identified feature. In other
words, we discard any particles that have wandered outside of the fea-
ture and include any particles that have wandered into the feature in
any subsequent tracking. We can see that the discrepancy value re-
mains low in this case.

Note that the computed discrepancy does not directly reflect the er-
ror of the resulting feature. Instead it is a measure of the possibility
of false positives. In the case where splitting occurs, we utilize this
value to reduce the possibility of falsely extracting sub-features as de-
scribed in Section 3.3. Even if the discrepancy value is high (e.g. 0.4
after a jump of 150 timesteps as seen in Figure 16), we still can extract
features that are very similar to those extracted by traditional feature
tracking methods. In the example shown in Figure 12, the extracted
feature is 98.9% similar to the feature identified by the traditional ap-
proach even though the discrepancy value is above 0.5. While keeping
the discrepancy low by continually re-identifying particles might lead
to more accurate results, in many cases this is not necessary.

As the discrepancy value can be thought of as a measure of the pos-
sibility of a false positive, it can be used to give direct feedback to users
choosing an appropriate balance between computation time (number
of skipped timesteps) and accuracy. Each feature being tracked has a
discrete discrepancy value which can be visually encoded into the vi-
sualization (by using labels, coloring the feature, etc.). In other words,
the uncertainty of the extraction result can be displayed with each
tracked feature. If this discrepancy value becomes too high for se-
lect features of interest, users can then choose to skip fewer timesteps
and obtain a more accurate result.

4.3.2 Particle Density

This method is also dependent on the density of available particles.
Since this technique uses region growing to re-extract features, we
only require one particle to remain in each feature of interest (or sub-
feature if splitting occurred). However, extreme drops in particle den-
sity could prevent this requirement from being met. For example,
this method would not be able to detect a split in feature evolution
if only one corresponding particle is associated with a feature of inter-
est. While this extreme case is highly unlikely for larger features, it

can pose a problem for smaller ones.
We study how varying the particle density in the combustion dataset

affects the accuracy of the feature tracking result for two select fea-
tures: a large features containing ∼ 500 voxels and a small feature con-
taining ∼ 10 voxels. We artificially reduce the density of the dataset
by randomly removing an increasing number of particles. Each fea-
ture was tracked by jumping 150 timesteps using the trajectory-based
approach for a number of different densities. Each feature was then
compared to the result from the predictor-corrector method (which
disregards the particle data) and a similarity measure was computed
via the Jaccard Index. The results can be seen in Figure 17. Both the
large feature (shown in blue) and small feature (shown in green) retain
a high accuracy (similarity) when the particle density is high. We see
a sharp decline in the accuracy of the large feature when the particle
density reaches 1/16th of maximum available density. This is because
there are no longer any particles associated with a major sub-feature
that has split off during the evolution. At 1/256th of maximum avail-
able density, the large feature is lost entirely. As predicted, the small
feature is more sensitive to decreases in density and is lost entirely at
1/4th of the maximum available density.

In some cases, simulations insert/remove particles to accommodate
changes in density in certain portions of the domain. Since this ap-
proach compares the particle locations at two distinct timesteps, any
particles that do not explicitly exist at both of these points in time (any
particles that were inserted or removed during skipped timesteps) need
to be ignored. This can be done by simply implementing an extra step
which removes such particles from the extracted subset whenever this
approach jumps forwards or backwards in time. Not doing so could
potentially alter the discrepancy measure and/or lead to false predic-
tions.

4.3.3 Applicable Data and Feature Types
While the approach as described in this paper focuses on tracking the
evolution of a single starting feature, tracking more complex targets
such as multiple features as once is certainly viable. In fact, this is
almost identical to tracking a group of sub-features after splitting has
occurred. Many of the example features depicted in this paper split
into several sub-components throughout their evolution and provide
evidence that tracking multiple features simultaneously is possible.
Simply assigning a distinct label or index to the group of particles
associated with each feature can allow the system to re-identify each
feature after jumping to a later timestep. However, as seen in the pre-
vious section, this approach is still limited in being able to track very
small features as they can easily be lost when not enough particles can
be associated with them.

The disadvantage of this method mainly lies in the limitation of
applicable dataset types. The dataset must have some form of corre-
sponding particle (trajectory) data, and the movement of the features
we wish to track must be governed in a way similar to that of the par-
ticles (i.e., advection by a flow). While these two criteria are often
met in many scientific endeavors, this may not always be the case, re-
quiring the use of traditional feature tracking approaches. However, it
is important to note that if vector flow field data are present, we can
choose to implement our own advection scheme to generate artificial
trajectories. These trajectories can then be used as input into our fea-
ture tracking approach exactly as described in this paper.

5 CONCLUSION AND FUTURE WORK

This work presents a new trajectory-based feature tracking approach
which uses corresponding particle data to track volumetric features.
By determining a correspondence between features and sets of parti-
cles, this approach can utilize indexed particle data to jump to later
timesteps and re-identify features of interest. Eliminating the need
to track features through intermediate timesteps is extremely advanta-
geous. First, this drastically reduces the amount of computation and
I/O time required for feature tracking, which plays a major role when
analyzing large datasets. Second, this allows our approach to be able
to track features in datasets which are both spatially and temporally
sparse. Moreover, since the tracking itself is done using the particle

Fig. 17. A graph showing the accuracy of tracking a large feature (blue)
and small feature (green) as a function of varying particle density. The
accuracy is computed by comparing the result to the predictor-corrector
method.

data, this method can also track features across regions where volume
data may be missing. Our technique also compares favorably with tra-
ditional feature tracking methods in terms of accuracy. Results show
that we can extract features that are similar to those obtained by a tradi-
tional method, and at a fraction of the computation cost. Our approach
provides the groundwork for accurate and more efficient feature track-
ing in a wide variety of datasets containing both particle and volume
data.

In the future, we plan to extend this technique to be able to interpo-
late features between consecutive timesteps or within missing regions
by using the higher resolution particle data. This can be achieved by
using the characteristics of the particle based point-cloud to estimate
the size, shape, and location of the feature in these unknown regions.
In addition, we plan to integrate this tracking approach with trajec-
tory clustering techniques [25]. By clustering the trajectories of cor-
responding particles, we can also easily cluster the individual features
into groups based on the similarity of their evolution throughout the
dataset. This can also be extended to allow users to query features
based on specific trajectories.
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