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Visualizing 2-dimensional Manifolds with Curve Handles in 4D

Hui Zhang, Jianguang Weng, and Guangchen Ruan

Abstract— In this paper, we present a mathematical visualization paradigm for exploring curves embedded in 3D and surfaces in 4D
mathematical world. The basic problem is that, 3D figures of 4D mathematical entities often twist, turn, and fold back on themselves,
leaving important properties behind the surface sheets. We propose an interactive system to visualize the topological features of the
original 4D surface by slicing its 3D figure into a series of feature diagram. A novel 4D visualization interface is designed to allow
users to control 4D topological shapes via the collection of diagram handles using the established curve manipulation mechanism.
Our system can support rich mathematical interaction of 4D mathematical objects which is very difficult with any existing approach.
We further demonstrate the effectiveness of the proposed visualization tool using various experimental results and cases studies.

Index Terms—math visualization, 4D, deformation, Reidemeister theorem

1 INTRODUCTION

People generally learn better in a situation that resembles a past expe-
rience, and knowledge of shape comes from a combination of sight,
touch, and exploration [1]. Mathematical experience is not an ex-
ception. Mathematicians popularize unfamiliar concepts starting with
drawing familiar analogous diagrams.

Our task in this paper is to show how one can fully understand,
propose, and trace the evolution of unfamiliar 4D surfaces by decom-
posing the task into familiar 2-dimensional steps. We typically would
like to investigate 4D surfaces, which are an important class in de-
scriptive topology [18]. Surfaces in 4D play many roles analogues to
those of familiar curves in 3D; in particular, spheres are the analogs
of closed curves and knots can be generalized to “knotted surfaces”
(closed 2D surfaces embedded in 4D). We start from the implementa-
tion of a multi-cursor-enabled interface that allows us to take control
of one-dimensional curves embedded in 3D space with a set of ele-
mentary string interactions. Having established the mechanisms and
intuition of this artifice, we proceed to a novel mathematical visual-
ization interface capable of moving two-dimensional surfaces around
in 4D space by decomposing the unfamiliar 4D tasks into a sequence
of familiar string interactions. In this way, we can proceed to attack
families of significant challenges in 4D intuitive visualization such as
twisting and turning in four dimensions with feature curve handles,
canceling/adding pinch-points in topological constructions, modeling
4D “chain” structures consisting of linked spheres and ribbons, and vi-
sualizing the refinement of mathematical curves and surfaces by gen-
erating feature-aware snapshots.

2 MOTIVATION

The idea of cross-dimensional understanding has long been a subject
of fascination. Carter’s How Surfaces Intersect in Space [8] contains
numerous hand-drawn diagrams to unfold the visual secrets of the evo-
lution of 3D and 4D geometric topology with a sequence of feature di-
agrams in a time-lapse form. Figure 1 illustrates one such picture story
that starts with a set of familiar string interactions: curves in 3D can
be transformed into one another by means of such “flat” string interac-
tions applied to their 2-dimensional “knot-crossing” diagrams, math-
ematically named “Reidemeister moves” (see Figure 1 1� and [22]).
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The interesting part of the story is about the close relation between the
evolution of curves and that of surfaces in space. In Figure 1 2� a set of
hand-designed diagrams are created by cutting a curved surfaces with
parallel cutting planes. The diagrams, called a movie of the surface,
exposes cross-sections of the surface and reveals its internal features
and structure. Figure 1 3�- 4� disclose the mathematical meaning of
these curved surfaces with self-intersections: the 3D figures are used
to depict smooth topological disks in 4-dimensional space by giving
“broken” surface diagrams, and they are bounded by curves whose 2-
dimensional “knot-crossing” diagrams indicate which sheet is above
another from the projection point into 3-space. (Carter’s book thinks
of 4-dimensional space as a collection of curves in 3-dimensional
space, in a time-lapse form.) With these established mechanisms,
Carter’s picture story proceeds to indicate how surfaces in 4-space can
be evolved into one another: the unfamiliar evolution of a surface in
4D can be proposed and traced by interpolating the successive stages
of “moves-to-movies”, i.e., the more picture-friendly evolution of a
collection of “knot-crossing” diagrams. The interpolations applied to
3D figures indeed depict how surfaces interact with one another in 4-
dimensions (see e.g., Figure 1 5��→ 6�, the 4D evolution is one of the
Roseman 4D moves, which illustrates the canceling or adding branch
points through a saddle accomplished by a fairly familiar Reidemeister
move on its cross-section.)

In our work, we develop a computer realization of drawings from
Carter’s book that enhances the user’s understanding of topological
spaces, in particular, curves embedded in 3D and surfaces embedded
in 4D. The key contributions of our work are summarized below:

• This paper reports the first interactive visualization system that
naturally couples the visual metaphors of mathematical entities
and intuition-building interactions based on their geometric and
topological features. Our interface allows one to propose the evo-
lution of unfamiliar 4D surfaces by decomposing the task into
understandable 2-dimensional steps. Each step can be under-
stood and built from familiar atomic pieces. Furthermore, as the
mathematical entity changes, its topological change is traced in
a time-elapse form.

• We introduce an innovative “flat” style represenation to describe
3D-embedded curves in 2D (Section 3), and 4D-embedded sur-
faces in 3D (Section 4). Our representation is simple enough
to transform mathematical entities into understandable lower di-
mensional analogues, and still powerful enough to depict the
evolution of curves and surfaces with topology preserving de-
formations in the full dimensional space.

• Last, we investigate and implement a family of novel interaction
and exploration methods for building mathematical visualization
applications involving both static structures, such as 4D “chain”
structure, and changing structures requiring interactions, such as
reidemeister-type moves for surfaces in four-dimensional, or the
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Fig. 1. Evolving 4D surfaces illustrated by sequences of hand-drawn diagrams
(original drawing by Scott Carter, modified and re-arranged by the authors for ped-
agogical purposes). 1©: the three types of Reidemeister moves. 2©: a sequence
of diagrams are obtained by cutting the curved surface sheet with hyperplanes
parallel to the horizon; the curved surface is indeed the 3D representation of a
topological disk smoothly embedded in 4-space. 3© 4©: the underlying structure
of the topological disks is revealed by the “crossing-diagrams” of their boundary
curves. 5©�→ 6©: depicting and deforming the 4D surface by generating and ma-
nipulating the diagram collection obtained along the surface’s longitudinal axis (the
illustrated evolution of the surface in this specific example causes a hyperbolic
confluence of branch points [10].)

Roseman 4D moves (Section 5). Users can propose mathemati-
cal moves and understand the evolution of the underlying math-
ematical structures with various redundant visual cues in our in-
terface.

3 UNDERSTANDABLE 3D EXAMPLE: TOUCHABLE “FLAT”
STRINGS

In this section, we focus on an understandable and familiar 3D visual-
ization task. The aim here is to model and manipulate 3-dimensional
curves with touchable strings in 2-dimensional interaction space. We
describe the families of methods used to implement the elementary
string interaction procedures and user interface elements.

3.1 Interaction Rules

For our principal test case of curves positioned in R3, we have consid-
ered a set of interaction rules that are inspired by hand-designed topo-
logical illustrations. For example, our approach models the curves to
be infinitely malleable: once shaped they retain the shape. The length
is of no concern: sometimes in meters, and sometimes in inches. The
evolution in space respects topological constrains: it does not involve
cutting the string or passing the string through itself. The interaction
is simple and still powerful: each evolution in 3D is proposed by an
understandable 2D action. Our fundamental techniques are based on a
wide variety of prior art, including 2D Reidemeister move interface for
curve manipulation [37], sketching based interfaces focusing on math-
ematical knot construction and manipulation (see, e.g., Cohen [12],
Scharein [27], and Zhang [36]), and multi-touch variants on graph and
curve exploration (see, e.g., Schmidt [28]).

3.2 Implementation Details

Our first task is to transform a 3D curve into a hybrid structure that
can be simple enough to be represented as a 2D diagram yet power-
ful enough to extract the curve’s 3D topology information. Unlike all
previous efforts (see e.g., Scharein’s 3D dynamical model [27] and
Zhang’s 2D knot representation [37]), our representation uses a “flat”
style topological structure incorporating balanced ternary depth val-
ues [5].

3.2.1 Generating the Diagrams
An initial diagram of a 3D cruve can be obtained by projecting each
vertex from R3 (xyz−space) to R2 (xy−plane), but various parts of the
diagram appear to touch each other due to the projective collapse of
the z dimension. Let K = (V,E) represent this initial diagram of a
given smooth curve in R3, where V = {v1,v2 ...,vn} is the finite set of
vertices of the polygon and E is the set of edges {e1,e2 ...,en}. Our
method walks along the planar diagram, and restores the 3D curve’s
topology by assigning each vertex a ternary “eye-coordinate” or, depth
z: z = 1 for vertices on strands crossing over another section, z = −1
for vertices on strands crossing under another, and z = 0 for vertices
on un-interrupted strands. Consider Figure 2 for an illustration of
our algorithm. Figure 2(a) gives three pieces of smoothly embed-
ded curves in R3. Figure 2(b) shows the generated flat representation
where these curves’ salient global structures can be identified and the
original topology information is extracted. Let C = {1,2, ...,n} be the
set of indices of all vertices in V. Our ternary “eye-coordinate” repre-
sentation splits C into three representative subsets:

• C+
φ = {φ+

1 ,φ+
2 , ...,φ+

i }, the set of indices of the vertices with
positive 3D-depth;

• C−
φ = {φ−

1 ,φ−
2 , ...,φ−

i }, the set of indices of the vertices with
negative 3D-depth;

• Cθ = C−C+
φ −C−

φ , the set of indices of the vertices with zero
3D-depth.

In Figure 2(b) we draw those vertices in C+
φ in blue, C−

φ in red,
and Cθ in grey (selectively). Meanwhile, the diagram is rendered in
a pen-and-ink style to create the classical “knot-crossing diagrams”
by attaching a thickened curve segment in background color behind
each of the curve segments in foreground color [35], or, with more
difficulty, using a two-pass gap rendering approach [21]. In this way,
we render a two-dimensional projected curve that is broken each time
it is occluded by a piece of the whole curve that is nearer to the 3D
projection point (e.g., the pieces between vertices in red are occluded
by those in blue.)

(a) (b)

Fig. 2. Turning smoothly embedded curves into flat style diagrams with ternary
depth values. (a) Examples of mathematical braids embedded in 3D, though
there are obviously many other shapes that could be used. (b) Diagrams in
2-dimensional space, where each vertex’s z−coordinates is mapped to a color-
coded balanced ternary value (blue is over, red is under, and grey is flat).

3.2.2 Topology-aware Diagram Evolution
In this section we implement the types of elementary string interac-
tions on the generated diagrams to depict 3D curves’ evolution. The
fundamental idea of the proposed paradigm is based on a clever but
simple geometric construction: the three Reidemeister moves (see e.g.,
Figure 1 1�). In our implementation we propose an algorithm which
consists of three main steps: the determination of the evolved string
segment (region of interest, or ROI), string deformation in the least
square sense, and topology reconstruction.

Region of Interest at “Fingertips”. We consider topological ma-
nipulation of 2D diagrams with multiple virtual mouse cursors, and
assume each contact point as a “cursor”. One value of doing this is
to interface our algorithms and implementations with an abstract input
device layer, and can later support both mouse-keyboard and multi-
touch settings. The identification of ROI starts with the initialization

R � Deformation � Reconstruction R � Deformation � Reconstruction R � Deformation � Reconstruction

(a) type I− (b) type I+ (c) type II−

R � Deformation � Reconstruction R � Deformation � Reconstruction R � Deformation � Reconstruction

(d) type II+ (e) type III (f) Δ−move

Fig. 3. The six types of elementary string interactions in a multi-cursor interface. Each string interaction is proposed by three steps: (1) ROI identification, (2)
deformation with the shape handle vertice and depth handle vertice, and (3) topology reconstruction post-deformation.

of a set of handle vertices in Cθ (see those vertices colored in grey1

in Figure 3) by matching those vertices in their geometric space to the
contact points’ pixels in the input device’s screen space. In practice,
our system recognizes 3-point and 4-point multi-touch gestures by ini-
tializing the set of indices of the handle vertices:

Cs = {s1,s2, ...,sm},
where m = 3 | 4 and Cs ∈ Cθ . When the user attempts to manip-

ulate the diagram with moves (by touch gesture or, mouse pointer),
Cs is re-ordered in place such that s2 (or s2s3, in a 4-point manip-
ulation) denotes the index of the moving handle vertex and s1s3 (or
s1s4, in a 4-point manipulation) denotes the indices of the bound-
ary (i.e., fixed) vertices. We can thus identify ROI as a polygonal
chain R, specified by a sequence of vertices (vs1 , ...,vs2 , ...,vs3) or,
(vs1 , ...,vs2 , ...,vs3 , ...,vs4) in a 4-point manipulation.

With the identified ROI, we next remember within R another set of
indices of vertices whose depth values are not zero (see e.g., Figure 3,
vertices colored in blue or red):

Cd = {d1,d2, ...,dn},
where Cd = (C+

φ ∪C−
φ )∩{s1,s1 +1, ...,sm}.

String Deformation. We have implemented an algorithm to de-
form strings using Laplacian. The string representation can be ex-
ploited to allow manipulating the diagram while having the underlying
spatial embedding adopt the topology to the deformation. The basic
idea is to construct the Laplacian matrix [29] corresponding to R’s
link-node structure and set the two types of corresponding control ver-
tices: vertices in Cs are used as the shape handle vertices, and those in
Cd as the depth handle vertices, while nodes in the rest of R are recon-
structed in the least square sense. Let x,y,z represent the n×1 vectors
containing the x,y and z coordinates of R’s vertices. Our system first
constructs the Laplacian matrix L based on the connectivity meshes
(in our case, linked nodes), and then adds the following equations of
control vertices to solve in the least-square sense in R3:

xs = xs, s ∈Cs

ys = ys, s ∈Cs

zd = zd , d ∈Cd ∪ {s1,sm} .

While our proposed diagram evolution algorithm can be applied to
general topology-preserving curve deformation scenarios, this paper
focuses on the six types of Reidemeister-style curve manipulations2

by restricting the allowed number of vertices in Cd . Figure 3 illustrates
1Note that in the Reidemeister theorem, each move starts with handle ver-

tices that are not on the crossing strands.
2The Reidemeister moves can be applied in two directions each, thus the

three Reidemeister moves can be decomposed into six elementary moves in
total.

the six elementary moves supported in our interface and highlights all
possible distribution of shape handle vertices and depth handle vertices
during the deformation.

Geometry Reconstruction. After deformation, geometry recon-
struction is executed to fix, resolve, and reconstruct the evolved curve’s
geometry to ensure mathematically valid moves being produced with
each touch. The six elementary string moves in our implementation
fall into two categories:

1. moves that have crossings resolved after deformation, includ-
ing the moves that have all crossings removed after deformation
(e.g., type I− in Figure 3(a) and type II− in Figure 3(c), whose
vertices in Cd (in blue or red) turn grey after deformation), and
the moves that preserve the same crossing signs after deforma-
tion (e.g., type III in Figure 3(e) and Δ−move in Figure 3(f),
whose vertices in Cd are moved around and adjusted to the new
locations);

2. moves that need to resolve crossings after deformation. For ex-
ample, type I+ in Figure 3(b) and type II+ in Figure 3(d) are
adding new vertices to Cd after deformation. (We note that the
illustrated type I+ and type II+ have appeared in only one of the
two possible directions that our interface allows.)

We note that it is geometry reconstruction’s task to resolve ambiguity
raised by moves in the second category by explicitly query users’ deci-
sion for a crossing sign. Geometry reconstruction process then walks
through the diagram and re-assign the ternary depth values for each
vertex involved in the deformation.

(a) multi-touching knots (b) type I− (c) type III

(d) type II− (e) typeI− (f) type II− (g) Δ−move

Fig. 4. Unknotting using a sequence of elementary string moves, supported with
multi-touch. The multi-touch interface frees the user from manually specifying the
ROI before starting deformation and makes possible various types of mathematical
evolutions of the ROI simply at fingertips.
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Fig. 1. Evolving 4D surfaces illustrated by sequences of hand-drawn diagrams
(original drawing by Scott Carter, modified and re-arranged by the authors for ped-
agogical purposes). 1©: the three types of Reidemeister moves. 2©: a sequence
of diagrams are obtained by cutting the curved surface sheet with hyperplanes
parallel to the horizon; the curved surface is indeed the 3D representation of a
topological disk smoothly embedded in 4-space. 3© 4©: the underlying structure
of the topological disks is revealed by the “crossing-diagrams” of their boundary
curves. 5©�→ 6©: depicting and deforming the 4D surface by generating and ma-
nipulating the diagram collection obtained along the surface’s longitudinal axis (the
illustrated evolution of the surface in this specific example causes a hyperbolic
confluence of branch points [10].)

Roseman 4D moves (Section 5). Users can propose mathemati-
cal moves and understand the evolution of the underlying math-
ematical structures with various redundant visual cues in our in-
terface.

3 UNDERSTANDABLE 3D EXAMPLE: TOUCHABLE “FLAT”
STRINGS

In this section, we focus on an understandable and familiar 3D visual-
ization task. The aim here is to model and manipulate 3-dimensional
curves with touchable strings in 2-dimensional interaction space. We
describe the families of methods used to implement the elementary
string interaction procedures and user interface elements.

3.1 Interaction Rules

For our principal test case of curves positioned in R3, we have consid-
ered a set of interaction rules that are inspired by hand-designed topo-
logical illustrations. For example, our approach models the curves to
be infinitely malleable: once shaped they retain the shape. The length
is of no concern: sometimes in meters, and sometimes in inches. The
evolution in space respects topological constrains: it does not involve
cutting the string or passing the string through itself. The interaction
is simple and still powerful: each evolution in 3D is proposed by an
understandable 2D action. Our fundamental techniques are based on a
wide variety of prior art, including 2D Reidemeister move interface for
curve manipulation [37], sketching based interfaces focusing on math-
ematical knot construction and manipulation (see, e.g., Cohen [12],
Scharein [27], and Zhang [36]), and multi-touch variants on graph and
curve exploration (see, e.g., Schmidt [28]).

3.2 Implementation Details

Our first task is to transform a 3D curve into a hybrid structure that
can be simple enough to be represented as a 2D diagram yet power-
ful enough to extract the curve’s 3D topology information. Unlike all
previous efforts (see e.g., Scharein’s 3D dynamical model [27] and
Zhang’s 2D knot representation [37]), our representation uses a “flat”
style topological structure incorporating balanced ternary depth val-
ues [5].

3.2.1 Generating the Diagrams
An initial diagram of a 3D cruve can be obtained by projecting each
vertex from R3 (xyz−space) to R2 (xy−plane), but various parts of the
diagram appear to touch each other due to the projective collapse of
the z dimension. Let K = (V,E) represent this initial diagram of a
given smooth curve in R3, where V = {v1,v2 ...,vn} is the finite set of
vertices of the polygon and E is the set of edges {e1,e2 ...,en}. Our
method walks along the planar diagram, and restores the 3D curve’s
topology by assigning each vertex a ternary “eye-coordinate” or, depth
z: z = 1 for vertices on strands crossing over another section, z = −1
for vertices on strands crossing under another, and z = 0 for vertices
on un-interrupted strands. Consider Figure 2 for an illustration of
our algorithm. Figure 2(a) gives three pieces of smoothly embed-
ded curves in R3. Figure 2(b) shows the generated flat representation
where these curves’ salient global structures can be identified and the
original topology information is extracted. Let C = {1,2, ...,n} be the
set of indices of all vertices in V. Our ternary “eye-coordinate” repre-
sentation splits C into three representative subsets:

• C+
φ = {φ+

1 ,φ+
2 , ...,φ+

i }, the set of indices of the vertices with
positive 3D-depth;

• C−
φ = {φ−

1 ,φ−
2 , ...,φ−

i }, the set of indices of the vertices with
negative 3D-depth;

• Cθ = C−C+
φ −C−

φ , the set of indices of the vertices with zero
3D-depth.

In Figure 2(b) we draw those vertices in C+
φ in blue, C−

φ in red,
and Cθ in grey (selectively). Meanwhile, the diagram is rendered in
a pen-and-ink style to create the classical “knot-crossing diagrams”
by attaching a thickened curve segment in background color behind
each of the curve segments in foreground color [35], or, with more
difficulty, using a two-pass gap rendering approach [21]. In this way,
we render a two-dimensional projected curve that is broken each time
it is occluded by a piece of the whole curve that is nearer to the 3D
projection point (e.g., the pieces between vertices in red are occluded
by those in blue.)

(a) (b)

Fig. 2. Turning smoothly embedded curves into flat style diagrams with ternary
depth values. (a) Examples of mathematical braids embedded in 3D, though
there are obviously many other shapes that could be used. (b) Diagrams in
2-dimensional space, where each vertex’s z−coordinates is mapped to a color-
coded balanced ternary value (blue is over, red is under, and grey is flat).

3.2.2 Topology-aware Diagram Evolution
In this section we implement the types of elementary string interac-
tions on the generated diagrams to depict 3D curves’ evolution. The
fundamental idea of the proposed paradigm is based on a clever but
simple geometric construction: the three Reidemeister moves (see e.g.,
Figure 1 1�). In our implementation we propose an algorithm which
consists of three main steps: the determination of the evolved string
segment (region of interest, or ROI), string deformation in the least
square sense, and topology reconstruction.

Region of Interest at “Fingertips”. We consider topological ma-
nipulation of 2D diagrams with multiple virtual mouse cursors, and
assume each contact point as a “cursor”. One value of doing this is
to interface our algorithms and implementations with an abstract input
device layer, and can later support both mouse-keyboard and multi-
touch settings. The identification of ROI starts with the initialization

R � Deformation � Reconstruction R � Deformation � Reconstruction R � Deformation � Reconstruction

(a) type I− (b) type I+ (c) type II−

R � Deformation � Reconstruction R � Deformation � Reconstruction R � Deformation � Reconstruction

(d) type II+ (e) type III (f) Δ−move

Fig. 3. The six types of elementary string interactions in a multi-cursor interface. Each string interaction is proposed by three steps: (1) ROI identification, (2)
deformation with the shape handle vertice and depth handle vertice, and (3) topology reconstruction post-deformation.

of a set of handle vertices in Cθ (see those vertices colored in grey1

in Figure 3) by matching those vertices in their geometric space to the
contact points’ pixels in the input device’s screen space. In practice,
our system recognizes 3-point and 4-point multi-touch gestures by ini-
tializing the set of indices of the handle vertices:

Cs = {s1,s2, ...,sm},
where m = 3 | 4 and Cs ∈ Cθ . When the user attempts to manip-

ulate the diagram with moves (by touch gesture or, mouse pointer),
Cs is re-ordered in place such that s2 (or s2s3, in a 4-point manip-
ulation) denotes the index of the moving handle vertex and s1s3 (or
s1s4, in a 4-point manipulation) denotes the indices of the bound-
ary (i.e., fixed) vertices. We can thus identify ROI as a polygonal
chain R, specified by a sequence of vertices (vs1 , ...,vs2 , ...,vs3) or,
(vs1 , ...,vs2 , ...,vs3 , ...,vs4) in a 4-point manipulation.

With the identified ROI, we next remember within R another set of
indices of vertices whose depth values are not zero (see e.g., Figure 3,
vertices colored in blue or red):

Cd = {d1,d2, ...,dn},
where Cd = (C+

φ ∪C−
φ )∩{s1,s1 +1, ...,sm}.

String Deformation. We have implemented an algorithm to de-
form strings using Laplacian. The string representation can be ex-
ploited to allow manipulating the diagram while having the underlying
spatial embedding adopt the topology to the deformation. The basic
idea is to construct the Laplacian matrix [29] corresponding to R’s
link-node structure and set the two types of corresponding control ver-
tices: vertices in Cs are used as the shape handle vertices, and those in
Cd as the depth handle vertices, while nodes in the rest of R are recon-
structed in the least square sense. Let x,y,z represent the n×1 vectors
containing the x,y and z coordinates of R’s vertices. Our system first
constructs the Laplacian matrix L based on the connectivity meshes
(in our case, linked nodes), and then adds the following equations of
control vertices to solve in the least-square sense in R3:

xs = xs, s ∈Cs

ys = ys, s ∈Cs

zd = zd , d ∈Cd ∪ {s1,sm} .

While our proposed diagram evolution algorithm can be applied to
general topology-preserving curve deformation scenarios, this paper
focuses on the six types of Reidemeister-style curve manipulations2

by restricting the allowed number of vertices in Cd . Figure 3 illustrates
1Note that in the Reidemeister theorem, each move starts with handle ver-

tices that are not on the crossing strands.
2The Reidemeister moves can be applied in two directions each, thus the

three Reidemeister moves can be decomposed into six elementary moves in
total.

the six elementary moves supported in our interface and highlights all
possible distribution of shape handle vertices and depth handle vertices
during the deformation.

Geometry Reconstruction. After deformation, geometry recon-
struction is executed to fix, resolve, and reconstruct the evolved curve’s
geometry to ensure mathematically valid moves being produced with
each touch. The six elementary string moves in our implementation
fall into two categories:

1. moves that have crossings resolved after deformation, includ-
ing the moves that have all crossings removed after deformation
(e.g., type I− in Figure 3(a) and type II− in Figure 3(c), whose
vertices in Cd (in blue or red) turn grey after deformation), and
the moves that preserve the same crossing signs after deforma-
tion (e.g., type III in Figure 3(e) and Δ−move in Figure 3(f),
whose vertices in Cd are moved around and adjusted to the new
locations);

2. moves that need to resolve crossings after deformation. For ex-
ample, type I+ in Figure 3(b) and type II+ in Figure 3(d) are
adding new vertices to Cd after deformation. (We note that the
illustrated type I+ and type II+ have appeared in only one of the
two possible directions that our interface allows.)

We note that it is geometry reconstruction’s task to resolve ambiguity
raised by moves in the second category by explicitly query users’ deci-
sion for a crossing sign. Geometry reconstruction process then walks
through the diagram and re-assign the ternary depth values for each
vertex involved in the deformation.

(a) multi-touching knots (b) type I− (c) type III

(d) type II− (e) typeI− (f) type II− (g) Δ−move

Fig. 4. Unknotting using a sequence of elementary string moves, supported with
multi-touch. The multi-touch interface frees the user from manually specifying the
ROI before starting deformation and makes possible various types of mathematical
evolutions of the ROI simply at fingertips.
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3.3 Curve’s Evolution in a Time-lapse Form
With the string manipulation interface, we can now transform math-
ematical experience with knots and curves into step-by-step under-
standable pieces, and thus can afford insight of topological equiva-
lence through the entire connected interactions. Figure 4 shows an un-
knotting process where the six types of elementary string interactions
are involved in representing the manipulation of a knot. The process
begins with the uncrossing (disappearance) of twin crossings at the top
(Figure 4(b)), followed by the passage over a crossing (Figure 4(c)),
the disappearance of a pair of twin crossing (Figure 4(d)), the disap-
pearance of a small loop (Figure 4(e)), and, finally, the disappearance
of a pair of twin crossings (Figure 4(f)).

4 UNFAMILIAR 4D EXAMPLE: MOVABLE 4D TOPOLOGICAL
SURFACES

We now turn to our main objective, which is to create unique math-
ematical experience for the 4D world that can begin to make the
strange more familiar. Our principal test cases are 4D-embedded 2-
dimensional manifolds, described by (u,v) parametric space and geo-
metrically shaped to a planar quad (PQ) mesh.

The basic idea is to think of a surface in 4-dimensional space as a
collection of “flat” diagrams: we cut the 3D figures of 4D topological
surfaces with a stack of 3-dimensional “slices”, and the intersection
is a stack of diagrams that we can manipulate with the mechanisms
we just established (see Figure 1 2©- 6©). If the surface is positioned
appropriately with respect to the “slices”, the resultant diagrams for
these successive cuts will differ at most by one critical change (e.g., a
Reidemeister move, a saddle point, or a local maximum or minimum).
These cross-sectional pieces, then, are modeled as touchable diagrams
to define the evolution of the surface. We next detail the 3D represen-
tation of topological surfaces in 4D, the mechanism of positioning the
surface and placing cutting “slices”, and the interpolation algorithm
for evolving 4D surfaces.

4.1 Generating 3D Figures of 4D Topological Surfaces
We used a “flat” style 2D diagram (see Figure 2) to represent curves
in 3-space. In this section , a similar scheme will be used to describe
a class of 2-manifold deformable objects embedded in 4D. The same
“flat” style convention is now applied to these surfaces bounded by
curves to schematize surfaces in 4-dimensions.

(a)

(b)
(c)

Fig. 5. Turning smoothly embedded 4D surfaces into 3D figures with ternary 4D-
depth values. (a) A flattened 4D surface that appears just like a 3D surface. (b)
With an applied evolution, the surface appears to be self-intersecting in the 3D
projection while in fact having no actual intersection of any kind in the 4-space.
(c) Crossing diagram drawn on the 4D surface’s parametric domain, where each
vertexs w-coordinates is mapped to a color-coded balanced ternary value (blue
is “in front”, or nearer the projection point; red is “behind”, or farther from the
projection point; and grey means w = 0.)

Figure 5 shows a deformable 4D surface patch embedded in four di-
mensions. Initially the 4D surface has geometric information only in
3-space, which means the surface is flattened in the fourth dimension
initially (i.e., each vertex has a 4D “eye coordinate” or depth w = 0).
Therefore the surface behaves just like a piece of 3D surface (see Fig-
ure 5(a)). When evolved in 4-space, the surface can appear to intersect

with itself in the projected 3D space (see Figure 5(b)). However, there
are no real collisions in 4-space. The crossing-diagram on the the sur-
face’s parametric domain, which can be thought of as an unfolded view
of the 4D surface (see Figure 5(c)), illustrates the secret: the “north”
half of the intersection line is “in front” or, nearer the 4D projection
point, and the south part of the intersection line is “behind”; the two
parts have no intersections of any kind in 4-space.

Selective vertices are color-coded for 4D depth as shown in Fig-
ure 5(c) to illustrate the “flat” style represenation of 4D surfaces. We
assign each vertex a ternary “eye-coordinate,” or depth w: w = 1 for
vertices on patches that are “in front” in the fourth dimension, w =−1
for vertices that are “behind”, and w= 0 for vertices on surface patches
where there is no self-intersection. Vertices shared by a “front” patch
and a “behind” patch are assigned w = 0 (see e.g., in Figure 5(c),
the two vertices in grey near where the blue and red intersection lines
meet).

4.2 Elementary 4D-Surface Interactions
Now we extend our string interaction mechanisms to a 4D topological
surface (say M ). For pedagogical purposes, the boundary curves on
these 3D figures are planar and restricted to planes. Just as architec-
tural designers use a few curves to dominate the aesthetic characteristic
of shapes (see e.g., [38, 24]), we can prescribe a 4D surface’s boundary
curve and expect the rest of the surface to blend in.

Boundary Curves as 4D Control Handles. In order to support
such curve-based 4D manipulations, we allow the user to select and
deform one boundary curve (say K) of a 4D topological surface us-
ing the 6 elementary string interactions (see Figure 6). A similar but
revised topology reconstruction scheme is used: in 3D curve manip-
ulation scenario we removed a small under-crossing arc to indicate
which strand is “nearer” the 3D projection point, now on a 4D con-
trol handle we are going to remove a small under crossing arc on the
boundary curve to indicate which strand is “nearer” the 4D projection
point. Figure 6(a)-(d) list the four basic surface evolutions where the
familiar string interactions are being applied to the surface’s boundary
curves. After the evolution, the vertices on a 4D curve handle are as-
signed ternary 4D-depth (the blue handle vertices are “nearer” to the
4D projection point than those red are.)

Interpolating 3D Shapes and 4D Depth. Let
C = {k1,k2, ...,kn} be the set of indices of all vertices on the
boundary curve handle K that is selected and deformed. C consists of
two subsets: Cφ , the set of indices of the vertices with either positive
or negative 4D-depth; and Cθ , the set of indices of the vertices with
zero 4D-depth. The other three boundary curves are considered
fixed during 4D deformations, and we use C� = {l1, l2, ..., lm} to
represent the set of indices of their vertices. Following the same
fashion of string deformation, we construct the Laplacian matrix
[29] corresponding to M ’s mesh structure and set the two types of
corresponding handle vertices: vertices in C ∪C� are used as shape
handle vertices, and those in Cφ ∪C� are used as 4D-depth handle
vertices, while nodes in the rest of M are reconstructed in the least
square sense. Let x,y,z,w represent the n× 1 vectors containing the
x,y,z and w coordinates of M ’s vertices. Our system now constructs
the Laplacian matrix L, and then adds the following four equations of
the control vertices to solve in the least-square sense in R4:

xs = xs, s ∈ C ∪ C’
ys = ys, s ∈ C ∪ C’
zs = zs, s ∈ C ∪ C’

wd = wd , d ∈Cφ ∪ C’ .

4D Geometry Reconstruction. After the rest of the 4D sur-
face blends in, our algorithm walks through the mesh and re-assign
the ternary 4D-depth values for each vertex involved in the deforma-
tion. Each elementary move triggered by string manipulations on the
4D surface’ boundary curve can be thought of as an evolution of the

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Fig. 6. Applying elementary string evolutions on a 4D surface’s boundary curves. First row: the evolutions in geometric space. (a1) Type I move on boundary curve,
which introduces a branch point on the annulus. (b1) Type II move on boundary curves, generating a minimum or a maximum on the double point curve that appears
on the immersed surfaces. (c1) Type III move on the boundary curves, bringing in a triple point in the surfaces. (d1) Δ−move applied on the boundary curves, altering
the intersection line. Second row ((a2)�→(d2)): the corresponding evolutions of the crossing-maps in the evolving surface’s parametric space.

crossing-map3 in the evolved surface’s parametric space (see Figure
6(a2)�→(d2)). For example, the 4D evolution in Figure 6(a1) creates a
branch point on the annulus in the geometric space. The evolution can
be visualized as an introduction of a v−shape crossing-map in the sur-
face’s parametric space. The v−shape intersection consists of a blue
north half (“in front” in 4D) and a red south half (“behind” in 4D)
which do not intersect with one another in 4-space (see Figure 6(a2).
The evolution in Figure 6(a2) involves two separate surface sheets in
geometric space, where the first surface’s evolution generates a min-
imum of the double point curve on the two immersed surfaces. The
evolution corresponds to a u−shape crossing-map in the evolved sur-
face’s parametric space, and the intersection line is completely in red.
There would be a blue counterpart in the second surface’s parametric
space if visualized. The color pattern indicates the two surfaces do
not interact with each other in 4-space, and the intersection in their 3D
figures is just an artifact of projection.

4.3 Evolving 4D Topological Surfaces
The key ideas of the overall scenario should now be clear. Our tech-
nique for moving 4D topological surfaces is to create a collection of
diagrams by cutting the object into parallel slices and then separat-
ing the slices from each other along a longitudinal axis to expose the
successive stages of its evolved features and structures. The diagrams
incorporating responsive features can help the viewer understand and
redefine the shape of the surface along the longitudinal axis. The log-
ical series of modeling steps, the problems they induce, and the ulti-
mate resolution of moving topological 4D surfaces are detailed in the
following sections.

Positioning and Slicing the 3D Figures of 4D Surfaces. Just
as viewpoint suggestion is important to improve the speed and effi-
ciency of data understanding [6, 23], it is particularly useful that the
3D figure of a 4D topological surface is oriented and sliced “appropri-
ately” so that its important features can be exposed across the gener-
ated diagrams. Two rules are adopted when we position the 3D figures:

1. Suggesting the Longitudinal Axis. As illustrated in Figure 6,
the longitudinal axis orientation is often chosen to align as much
as possible with both the direction of the longest extent capable
of producing parallel slices and the direction of the maximum ex-
posure of the intersection curves of the 3D figures. We turn the
task of choosing the longitudinal axis into a fairly familiar “view
selection” problem [6, 23]. We assume the longitudinal axis will
be aligned to the z-axis, and cutting planes parallel to the xy-
plane, and the viewpoint “goodness” measure we use takes into
account the total projected area of the 3D figure, and the total

3A crossing-map maps the surface intersection to the surface’s parametric
space.
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(c)
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(e)

Fig. 7. (a)-(b) Choosing the longitudinal axis and generating diagrams by plac-
ing cutting planes. (c)-(d) Snapping the resultant cross-sectional pieces to mesh
vertices. In the example, the cutting plane introduces 5 intersection points (c)
and thus five horizontal rows are added to the mesh structure to represent the
cross-sectional piece using mesh vertices (d). (e): Evolving a 4D surface with a
sequence of three interactive diagrams. The evolution of the feature diagram in
the middle cutting plane is shared by both the upper half and the bottom half of a
double decker set [10].

projected length of the 3D intersection lines. The measure, cor-
responding to surface S projected from a chosen angle c, is given
by

I(S,c) =
Nl

∑
i=0

(
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Lt
log
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+
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∑
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Here Li represents the projected length of curve segment i and
Lt is the total length of the knot curve embedded in 3D; Ai rep-
resents the projected area of polygon i and At is the total area
of projected 3D surface. In our implementation, the measure is
minimum, hence better.
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3.3 Curve’s Evolution in a Time-lapse Form
With the string manipulation interface, we can now transform math-
ematical experience with knots and curves into step-by-step under-
standable pieces, and thus can afford insight of topological equiva-
lence through the entire connected interactions. Figure 4 shows an un-
knotting process where the six types of elementary string interactions
are involved in representing the manipulation of a knot. The process
begins with the uncrossing (disappearance) of twin crossings at the top
(Figure 4(b)), followed by the passage over a crossing (Figure 4(c)),
the disappearance of a pair of twin crossing (Figure 4(d)), the disap-
pearance of a small loop (Figure 4(e)), and, finally, the disappearance
of a pair of twin crossings (Figure 4(f)).

4 UNFAMILIAR 4D EXAMPLE: MOVABLE 4D TOPOLOGICAL
SURFACES

We now turn to our main objective, which is to create unique math-
ematical experience for the 4D world that can begin to make the
strange more familiar. Our principal test cases are 4D-embedded 2-
dimensional manifolds, described by (u,v) parametric space and geo-
metrically shaped to a planar quad (PQ) mesh.

The basic idea is to think of a surface in 4-dimensional space as a
collection of “flat” diagrams: we cut the 3D figures of 4D topological
surfaces with a stack of 3-dimensional “slices”, and the intersection
is a stack of diagrams that we can manipulate with the mechanisms
we just established (see Figure 1 2©- 6©). If the surface is positioned
appropriately with respect to the “slices”, the resultant diagrams for
these successive cuts will differ at most by one critical change (e.g., a
Reidemeister move, a saddle point, or a local maximum or minimum).
These cross-sectional pieces, then, are modeled as touchable diagrams
to define the evolution of the surface. We next detail the 3D represen-
tation of topological surfaces in 4D, the mechanism of positioning the
surface and placing cutting “slices”, and the interpolation algorithm
for evolving 4D surfaces.

4.1 Generating 3D Figures of 4D Topological Surfaces
We used a “flat” style 2D diagram (see Figure 2) to represent curves
in 3-space. In this section , a similar scheme will be used to describe
a class of 2-manifold deformable objects embedded in 4D. The same
“flat” style convention is now applied to these surfaces bounded by
curves to schematize surfaces in 4-dimensions.

(a)

(b)
(c)

Fig. 5. Turning smoothly embedded 4D surfaces into 3D figures with ternary 4D-
depth values. (a) A flattened 4D surface that appears just like a 3D surface. (b)
With an applied evolution, the surface appears to be self-intersecting in the 3D
projection while in fact having no actual intersection of any kind in the 4-space.
(c) Crossing diagram drawn on the 4D surface’s parametric domain, where each
vertexs w-coordinates is mapped to a color-coded balanced ternary value (blue
is “in front”, or nearer the projection point; red is “behind”, or farther from the
projection point; and grey means w = 0.)

Figure 5 shows a deformable 4D surface patch embedded in four di-
mensions. Initially the 4D surface has geometric information only in
3-space, which means the surface is flattened in the fourth dimension
initially (i.e., each vertex has a 4D “eye coordinate” or depth w = 0).
Therefore the surface behaves just like a piece of 3D surface (see Fig-
ure 5(a)). When evolved in 4-space, the surface can appear to intersect

with itself in the projected 3D space (see Figure 5(b)). However, there
are no real collisions in 4-space. The crossing-diagram on the the sur-
face’s parametric domain, which can be thought of as an unfolded view
of the 4D surface (see Figure 5(c)), illustrates the secret: the “north”
half of the intersection line is “in front” or, nearer the 4D projection
point, and the south part of the intersection line is “behind”; the two
parts have no intersections of any kind in 4-space.

Selective vertices are color-coded for 4D depth as shown in Fig-
ure 5(c) to illustrate the “flat” style represenation of 4D surfaces. We
assign each vertex a ternary “eye-coordinate,” or depth w: w = 1 for
vertices on patches that are “in front” in the fourth dimension, w =−1
for vertices that are “behind”, and w= 0 for vertices on surface patches
where there is no self-intersection. Vertices shared by a “front” patch
and a “behind” patch are assigned w = 0 (see e.g., in Figure 5(c),
the two vertices in grey near where the blue and red intersection lines
meet).

4.2 Elementary 4D-Surface Interactions
Now we extend our string interaction mechanisms to a 4D topological
surface (say M ). For pedagogical purposes, the boundary curves on
these 3D figures are planar and restricted to planes. Just as architec-
tural designers use a few curves to dominate the aesthetic characteristic
of shapes (see e.g., [38, 24]), we can prescribe a 4D surface’s boundary
curve and expect the rest of the surface to blend in.

Boundary Curves as 4D Control Handles. In order to support
such curve-based 4D manipulations, we allow the user to select and
deform one boundary curve (say K) of a 4D topological surface us-
ing the 6 elementary string interactions (see Figure 6). A similar but
revised topology reconstruction scheme is used: in 3D curve manip-
ulation scenario we removed a small under-crossing arc to indicate
which strand is “nearer” the 3D projection point, now on a 4D con-
trol handle we are going to remove a small under crossing arc on the
boundary curve to indicate which strand is “nearer” the 4D projection
point. Figure 6(a)-(d) list the four basic surface evolutions where the
familiar string interactions are being applied to the surface’s boundary
curves. After the evolution, the vertices on a 4D curve handle are as-
signed ternary 4D-depth (the blue handle vertices are “nearer” to the
4D projection point than those red are.)

Interpolating 3D Shapes and 4D Depth. Let
C = {k1,k2, ...,kn} be the set of indices of all vertices on the
boundary curve handle K that is selected and deformed. C consists of
two subsets: Cφ , the set of indices of the vertices with either positive
or negative 4D-depth; and Cθ , the set of indices of the vertices with
zero 4D-depth. The other three boundary curves are considered
fixed during 4D deformations, and we use C� = {l1, l2, ..., lm} to
represent the set of indices of their vertices. Following the same
fashion of string deformation, we construct the Laplacian matrix
[29] corresponding to M ’s mesh structure and set the two types of
corresponding handle vertices: vertices in C ∪C� are used as shape
handle vertices, and those in Cφ ∪C� are used as 4D-depth handle
vertices, while nodes in the rest of M are reconstructed in the least
square sense. Let x,y,z,w represent the n× 1 vectors containing the
x,y,z and w coordinates of M ’s vertices. Our system now constructs
the Laplacian matrix L, and then adds the following four equations of
the control vertices to solve in the least-square sense in R4:

xs = xs, s ∈ C ∪ C’
ys = ys, s ∈ C ∪ C’
zs = zs, s ∈ C ∪ C’

wd = wd , d ∈Cφ ∪ C’ .

4D Geometry Reconstruction. After the rest of the 4D sur-
face blends in, our algorithm walks through the mesh and re-assign
the ternary 4D-depth values for each vertex involved in the deforma-
tion. Each elementary move triggered by string manipulations on the
4D surface’ boundary curve can be thought of as an evolution of the

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

Fig. 6. Applying elementary string evolutions on a 4D surface’s boundary curves. First row: the evolutions in geometric space. (a1) Type I move on boundary curve,
which introduces a branch point on the annulus. (b1) Type II move on boundary curves, generating a minimum or a maximum on the double point curve that appears
on the immersed surfaces. (c1) Type III move on the boundary curves, bringing in a triple point in the surfaces. (d1) Δ−move applied on the boundary curves, altering
the intersection line. Second row ((a2)�→(d2)): the corresponding evolutions of the crossing-maps in the evolving surface’s parametric space.

crossing-map3 in the evolved surface’s parametric space (see Figure
6(a2)�→(d2)). For example, the 4D evolution in Figure 6(a1) creates a
branch point on the annulus in the geometric space. The evolution can
be visualized as an introduction of a v−shape crossing-map in the sur-
face’s parametric space. The v−shape intersection consists of a blue
north half (“in front” in 4D) and a red south half (“behind” in 4D)
which do not intersect with one another in 4-space (see Figure 6(a2).
The evolution in Figure 6(a2) involves two separate surface sheets in
geometric space, where the first surface’s evolution generates a min-
imum of the double point curve on the two immersed surfaces. The
evolution corresponds to a u−shape crossing-map in the evolved sur-
face’s parametric space, and the intersection line is completely in red.
There would be a blue counterpart in the second surface’s parametric
space if visualized. The color pattern indicates the two surfaces do
not interact with each other in 4-space, and the intersection in their 3D
figures is just an artifact of projection.

4.3 Evolving 4D Topological Surfaces
The key ideas of the overall scenario should now be clear. Our tech-
nique for moving 4D topological surfaces is to create a collection of
diagrams by cutting the object into parallel slices and then separat-
ing the slices from each other along a longitudinal axis to expose the
successive stages of its evolved features and structures. The diagrams
incorporating responsive features can help the viewer understand and
redefine the shape of the surface along the longitudinal axis. The log-
ical series of modeling steps, the problems they induce, and the ulti-
mate resolution of moving topological 4D surfaces are detailed in the
following sections.

Positioning and Slicing the 3D Figures of 4D Surfaces. Just
as viewpoint suggestion is important to improve the speed and effi-
ciency of data understanding [6, 23], it is particularly useful that the
3D figure of a 4D topological surface is oriented and sliced “appropri-
ately” so that its important features can be exposed across the gener-
ated diagrams. Two rules are adopted when we position the 3D figures:

1. Suggesting the Longitudinal Axis. As illustrated in Figure 6,
the longitudinal axis orientation is often chosen to align as much
as possible with both the direction of the longest extent capable
of producing parallel slices and the direction of the maximum ex-
posure of the intersection curves of the 3D figures. We turn the
task of choosing the longitudinal axis into a fairly familiar “view
selection” problem [6, 23]. We assume the longitudinal axis will
be aligned to the z-axis, and cutting planes parallel to the xy-
plane, and the viewpoint “goodness” measure we use takes into
account the total projected area of the 3D figure, and the total

3A crossing-map maps the surface intersection to the surface’s parametric
space.
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Fig. 7. (a)-(b) Choosing the longitudinal axis and generating diagrams by plac-
ing cutting planes. (c)-(d) Snapping the resultant cross-sectional pieces to mesh
vertices. In the example, the cutting plane introduces 5 intersection points (c)
and thus five horizontal rows are added to the mesh structure to represent the
cross-sectional piece using mesh vertices (d). (e): Evolving a 4D surface with a
sequence of three interactive diagrams. The evolution of the feature diagram in
the middle cutting plane is shared by both the upper half and the bottom half of a
double decker set [10].

projected length of the 3D intersection lines. The measure, cor-
responding to surface S projected from a chosen angle c, is given
by

I(S,c) =
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∑
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Here Li represents the projected length of curve segment i and
Lt is the total length of the knot curve embedded in 3D; Ai rep-
resents the projected area of polygon i and At is the total area
of projected 3D surface. In our implementation, the measure is
minimum, hence better.
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(a) Geometry space (b) Diagram space (c) 4D evolution in time-lapse form

Fig. 8. Screen images of our interactive 4D visualization interface. The illustrated evolutions that correspond to optimal or saddle critical points of the 1-dimensional
double point set of the deformable surfaces. 1©�→ 2©: a pair of double point arcs in which the top has a minimal point and the bottom has a maximal point are replaced
by a pair of parallel double point arcs that bound two strips. 3©�→ 4©: the removal of a closed loop of double points when two surface sheets are pull apart from each
other. Both are found in Roseman’s list of moves to knotted surfaces [26]. The apparent depth order of the evolved arcs indicates which surface sheet is “in front” or
“behind” in the fourth dimension.

2. Generating the Feature Diagrams. As pointed out by Carter
[8], the cutting planes should be placed along the longitudinal
axis so that the resultant diagrams for these successive cuts will
differ at most by one critical change (e.g., a Reidemeister move,
a saddle point, or a local maximum or minimum). Our ba-
sic implementation is inspired by Karpenko and Li’s exploded
view diagram generation [17, 20]: we identify all the change
points — i.e., the points where the number of connected compo-
nents, self-intersections, or sharp curvature extrema of the sur-
face cross-section changes (Figure 7(a)); we then place cutting
planes halfway between each pair of adjacent change points (Fig-
ure 7(b)).

Representing Feature Diagrams using Mesh Vertices. Now
the 4D surface is described as a sequence of feature diagrams such
that successive terms in the sequence differ at most by a critical point.
Each feature diagram is the intersection of the surface with a non-
critical plane, and typically consists of a number of intersection points
(see Figure 7(c)) along the cross-sectional curve meeting the polygon
edges on the mesh. Before we manipulate the feature diagram, the
feature diagram is turned into a representation using the mesh vertices:
if an intersection point is close enough to an existing vertex on the
mesh, we replace the intersection with the mesh vertex; otherwise, we
re-sample the mesh by adding new rows (or columns) so that we can
“link” the intersection to the vertex (see Figure 7(d)).

Evolving 4D Surfaces by Manipulating Feature Diagrams.
Now we can evolve the 4D surface by applying the elementary string
manipulations on these diagrams along the longitudinal axis, one at
each time (see Figure 7(e)). One important key to a successful 4D
evolution is that “the breaks (of the diagrams along the longitudinal
axis) match up” [8]. Our paradigm can ensure each break match up
the rest of cross-sectional pieces to produce a mathematically correct
4D evolution:

1. Type I−, type II−, type III, and Δ− moves on a feature dia-
gram will guarantee to match up the other breaks, (there is indeed
only one allowed “break” choice for these moves.) Examples in-
clude the elementary moves illustrated in Figure 6(c1) and Figure
6(d1).

2. Type I+ and type II+ moves introduce two possible “break”
choices at the diagram level, however the topology information
defined in the neighboring cross-sectional pieces may reduce the
uncertainty. In our given example shown in Figure 7(e), the
Reidemeister-style interaction on the feature diagram in the mid-
dle cutting-plane (labeled as 2©) will automatically conform to
the topological constraint showing the correct “break”: the shape

manipulation on the feature diagram will deform the correspond-
ing vertices on the surface mesh, and the rest of the surface will
just blend in, adopting the correct topology defined in the top
and bottom cutting planes (see the “breaks” in Figure 7(e) 1© 3©);
thus the interpolation produces the correct “break” for the feature
diagram being manipulated.

3. If two possible “break” choices do arise when type I+ and type
II+ moves are applied to a feature diagram, our interface will
explicitly query the user’s decision to resolve the evolving fea-
ture diagram’s crossing sign which, in turn, defines the 4D sur-
face’s topological structure. Examples include, e.g., the elemen-
tary moves illustrated in Figure 6(a1) and Figure 6(b1).

The proposed evolutions to our 4D double decker example are summa-
rized and illustrated in Figure 8(c). The evolutions illustrated involve
a saddle and a bubble move applied on the double decker set. The evo-
lution from Figure 8(c) 1© to Figure 8(c) 2© concerns a type II+ move
applied to the feature diagram in the middle cutting plane; on the im-
mersed surfaces, this diagram manipulation replaces a pair of double
point arcs in which the top has a minimal point and the bottom has a
maximal point with a pair of parallel double point arcs that bound two
strips. Figure 8(c) 3© �→ 4© shows the removal of a closed loop of dou-
ble points when two surface sheets are pulled apart from each other by
a fairly familiar type II− move on the feature diagram in the middle
cutting plane.

5 IMPLEMENTATION ENVIRONMENT AND EXPERIMENTAL RE-
SULTS

Our user interface (Figure 8) is based on OpenGL and Windows Win-
Form API. The software runs on a Dell PC desktop with 3.2GHz Intel
Pentium 4 CPU, and can be configured to take multi-touch input to
control the virtual cursors with local support of PQ Labs Multi-Touch
libraries (see e.g., Figure 4(a)). In Figure 8(b) we show the regular
mouse-keyboard input setting for manipulating feature diagrams in a
4D evolution task. The user can place virtual cursors in our diagram
interface using a mouse device. Double clicking on a virtual cursor
places a push pin to fix the cursor, much as we long press the cursors
to indicate the boundary cursors with a multi-touch gesture.

5.1 4D Surface’s Evolution in a 2-Dimensional Time-lapse
Form

For the user’s point, our 4D surface editing interface exploits a 2-
dimensional time-lapse form: in one dimension, the 4D entity itself
is evolved and tracked in a gallery panel of our interface (see e.g.,
the blue panel in Figure 8(a)); in the other dimension, each entity at

each time point is represented using a collection of feature diagrams,
obtained from cutting planes placed along the surface’s longitudinal
axis.

The user can interactively refine the orientation of 4D surfaces, the
placement of cutting planes in the “Geometry space” panel (see e.g.,
Figure 8(a)), and swtich to the “Diagram space” panel where the inter-
face allows interactive manipulation of the selected feature diagrams
(Figure 8(b)). In addition, our interface provides a visual-analysis
view to summarize the evolution of a 4D surface using a 2-dimensional
time-lapse form (see Figure 8(c)) where the understanding of a 4D
surface can be transformed into the analysis based on a 2-dimensional
array of feature diagrams.

5.2 Experimental Results

We next introduce a family of use scenarios and application results
that have originally motivated and later refined the design of our user
interface as well as the kernel implementation. Interacting with 4D
surfaces using touchable diagrams can help users to develop a correct
interactive experience with the intuitive nature of unfamiliar 4D ge-
ometry.

5.2.1 Implementing the Roseman 4D Moves

Our first case scenario concerns a group of “elementary” but rather
complicated 4D moves, often referred to as the Roseman 4D moves.
Dennis Roseman [26] showed that seven moves are sufficient to move
embedded surfaces around in 4-dimensional space. These moves
are like the Reidemeister moves for knot diagrams. If two surfaces
can be deformed in 4-space into one another and they have given 3-
dimensional diagrams that are different, then their diagrams can be
transformed into one another by a sequence of the seven Roseman
moves.

(a) (b)

Fig. 9. An interactive visualization implementation of Carter’s pictorial analogues
shown in Figure 1. Adding ((a)�→(b) or canceling ((b)�→(a) branch points through
a saddle move, modeled and implemented by a type I move on the second cross-
sectional diagram.

Even though the seven Roseman moves are considered as “ele-
mentary moves” for evolving 4D topological surfaces, they are in-
deed rather complicated and involve non-rigid deformations applied
to curved surface sheets. Visualizing and implementing the Roseman
moves is very difficult with any existing 4D visualization approach
and thus has only existed in the mathematical drawing’s imagina-
tion (see Figure 1). By transforming the 4D evolution into a set of
Reidemeister-style diagrams, we can begin to appreciate the Roseman
moves. In Figure 9 we show one of the seven Roseman moves that
can be modeled and implemented in our interface: the move adds or
cancels branch points through a saddle move on the immersed surface,
using a type I+ move on the second cross-sectional diagram obtained
with our interface.

5.2.2 Visualizing 4D Structures with Diagrammetric Analogues

The rigors of the higher dimensional worlds are encapsulated within
equations, but our intuition is encapsulated in the much simpler fig-
ures. Often in topology, we use lower dimensional diagrams to de-
pict phenomena in higher dimensional space. Some lower dimensional
analogues can be used to depict 4D structures in an intuitive way.

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Fig. 10. Visualizing the 4D “chain” structure with lower dimensional diagrammet-
ric analogues.

In Figure 10 we show how diagrammetric analogues can be used
to visualize and manipulate the interactions of surfaces in 4D. Figure
10(a) is a “fake” chain structure by threading a ribbon “in front of”
a closed 2-sphere embedded in the fourth dimension (the two objects
are color-coded for 4D depth); there is no real interaction between
the ribbon and the sphere (the ribbon, colored in blue, is “in front” of
the 2-sphere, colored in red). The diagrammetric analog shows their
structural relationship which is a circle well on top of another one, and
of course can be fully de-attached from each other with a type II−
move (see e.g., Figure 10(b)). A real 4D chain structure can be con-
structed by threading a ribbon into the 2-sphere, first going “above” in
4D, pulling under, and finally coming out the other side “below” (see
e.g., Figure 10(c), the ribbon goes inside one side the sphere “blue”,
and comes out the other side “red”; the “green” sphere remains in the
middle in the fourth dimension.) In Figure 10 a Δ−move is applied to
the diagrammetric analogues, much as we physically lift the ribbon in
four dimensions [33].

5.2.3 Mathematically Deforming 4D Torus

Our third case scenario concerns the 4D embedded torus, an object
of fundamental interest in 4D visualization (see e.g., [15, 33]). The
4D torus is the product of two circles, technically written as T 2 with
a standard model given by x(u,v) = (cosu,sinu,cosv,sinv). One in-
teresting feature of the 4D torus is the conflict between its two lines
of self-intersection on the orthogonal 3D graphics projection, and its
actual smooth topological structure in four dimensions.

In [33], Zhang et al. suggest vertex-based manipulation where the
4D physically based modeling moves the free vertices to restrict the
final 4D mesh to the correct topology. However such physically based
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(a) Geometry space (b) Diagram space (c) 4D evolution in time-lapse form

Fig. 8. Screen images of our interactive 4D visualization interface. The illustrated evolutions that correspond to optimal or saddle critical points of the 1-dimensional
double point set of the deformable surfaces. 1©�→ 2©: a pair of double point arcs in which the top has a minimal point and the bottom has a maximal point are replaced
by a pair of parallel double point arcs that bound two strips. 3©�→ 4©: the removal of a closed loop of double points when two surface sheets are pull apart from each
other. Both are found in Roseman’s list of moves to knotted surfaces [26]. The apparent depth order of the evolved arcs indicates which surface sheet is “in front” or
“behind” in the fourth dimension.

2. Generating the Feature Diagrams. As pointed out by Carter
[8], the cutting planes should be placed along the longitudinal
axis so that the resultant diagrams for these successive cuts will
differ at most by one critical change (e.g., a Reidemeister move,
a saddle point, or a local maximum or minimum). Our ba-
sic implementation is inspired by Karpenko and Li’s exploded
view diagram generation [17, 20]: we identify all the change
points — i.e., the points where the number of connected compo-
nents, self-intersections, or sharp curvature extrema of the sur-
face cross-section changes (Figure 7(a)); we then place cutting
planes halfway between each pair of adjacent change points (Fig-
ure 7(b)).

Representing Feature Diagrams using Mesh Vertices. Now
the 4D surface is described as a sequence of feature diagrams such
that successive terms in the sequence differ at most by a critical point.
Each feature diagram is the intersection of the surface with a non-
critical plane, and typically consists of a number of intersection points
(see Figure 7(c)) along the cross-sectional curve meeting the polygon
edges on the mesh. Before we manipulate the feature diagram, the
feature diagram is turned into a representation using the mesh vertices:
if an intersection point is close enough to an existing vertex on the
mesh, we replace the intersection with the mesh vertex; otherwise, we
re-sample the mesh by adding new rows (or columns) so that we can
“link” the intersection to the vertex (see Figure 7(d)).

Evolving 4D Surfaces by Manipulating Feature Diagrams.
Now we can evolve the 4D surface by applying the elementary string
manipulations on these diagrams along the longitudinal axis, one at
each time (see Figure 7(e)). One important key to a successful 4D
evolution is that “the breaks (of the diagrams along the longitudinal
axis) match up” [8]. Our paradigm can ensure each break match up
the rest of cross-sectional pieces to produce a mathematically correct
4D evolution:

1. Type I−, type II−, type III, and Δ− moves on a feature dia-
gram will guarantee to match up the other breaks, (there is indeed
only one allowed “break” choice for these moves.) Examples in-
clude the elementary moves illustrated in Figure 6(c1) and Figure
6(d1).

2. Type I+ and type II+ moves introduce two possible “break”
choices at the diagram level, however the topology information
defined in the neighboring cross-sectional pieces may reduce the
uncertainty. In our given example shown in Figure 7(e), the
Reidemeister-style interaction on the feature diagram in the mid-
dle cutting-plane (labeled as 2©) will automatically conform to
the topological constraint showing the correct “break”: the shape

manipulation on the feature diagram will deform the correspond-
ing vertices on the surface mesh, and the rest of the surface will
just blend in, adopting the correct topology defined in the top
and bottom cutting planes (see the “breaks” in Figure 7(e) 1© 3©);
thus the interpolation produces the correct “break” for the feature
diagram being manipulated.

3. If two possible “break” choices do arise when type I+ and type
II+ moves are applied to a feature diagram, our interface will
explicitly query the user’s decision to resolve the evolving fea-
ture diagram’s crossing sign which, in turn, defines the 4D sur-
face’s topological structure. Examples include, e.g., the elemen-
tary moves illustrated in Figure 6(a1) and Figure 6(b1).

The proposed evolutions to our 4D double decker example are summa-
rized and illustrated in Figure 8(c). The evolutions illustrated involve
a saddle and a bubble move applied on the double decker set. The evo-
lution from Figure 8(c) 1© to Figure 8(c) 2© concerns a type II+ move
applied to the feature diagram in the middle cutting plane; on the im-
mersed surfaces, this diagram manipulation replaces a pair of double
point arcs in which the top has a minimal point and the bottom has a
maximal point with a pair of parallel double point arcs that bound two
strips. Figure 8(c) 3© �→ 4© shows the removal of a closed loop of dou-
ble points when two surface sheets are pulled apart from each other by
a fairly familiar type II− move on the feature diagram in the middle
cutting plane.

5 IMPLEMENTATION ENVIRONMENT AND EXPERIMENTAL RE-
SULTS

Our user interface (Figure 8) is based on OpenGL and Windows Win-
Form API. The software runs on a Dell PC desktop with 3.2GHz Intel
Pentium 4 CPU, and can be configured to take multi-touch input to
control the virtual cursors with local support of PQ Labs Multi-Touch
libraries (see e.g., Figure 4(a)). In Figure 8(b) we show the regular
mouse-keyboard input setting for manipulating feature diagrams in a
4D evolution task. The user can place virtual cursors in our diagram
interface using a mouse device. Double clicking on a virtual cursor
places a push pin to fix the cursor, much as we long press the cursors
to indicate the boundary cursors with a multi-touch gesture.

5.1 4D Surface’s Evolution in a 2-Dimensional Time-lapse
Form

For the user’s point, our 4D surface editing interface exploits a 2-
dimensional time-lapse form: in one dimension, the 4D entity itself
is evolved and tracked in a gallery panel of our interface (see e.g.,
the blue panel in Figure 8(a)); in the other dimension, each entity at

each time point is represented using a collection of feature diagrams,
obtained from cutting planes placed along the surface’s longitudinal
axis.

The user can interactively refine the orientation of 4D surfaces, the
placement of cutting planes in the “Geometry space” panel (see e.g.,
Figure 8(a)), and swtich to the “Diagram space” panel where the inter-
face allows interactive manipulation of the selected feature diagrams
(Figure 8(b)). In addition, our interface provides a visual-analysis
view to summarize the evolution of a 4D surface using a 2-dimensional
time-lapse form (see Figure 8(c)) where the understanding of a 4D
surface can be transformed into the analysis based on a 2-dimensional
array of feature diagrams.

5.2 Experimental Results

We next introduce a family of use scenarios and application results
that have originally motivated and later refined the design of our user
interface as well as the kernel implementation. Interacting with 4D
surfaces using touchable diagrams can help users to develop a correct
interactive experience with the intuitive nature of unfamiliar 4D ge-
ometry.

5.2.1 Implementing the Roseman 4D Moves

Our first case scenario concerns a group of “elementary” but rather
complicated 4D moves, often referred to as the Roseman 4D moves.
Dennis Roseman [26] showed that seven moves are sufficient to move
embedded surfaces around in 4-dimensional space. These moves
are like the Reidemeister moves for knot diagrams. If two surfaces
can be deformed in 4-space into one another and they have given 3-
dimensional diagrams that are different, then their diagrams can be
transformed into one another by a sequence of the seven Roseman
moves.

(a) (b)

Fig. 9. An interactive visualization implementation of Carter’s pictorial analogues
shown in Figure 1. Adding ((a)�→(b) or canceling ((b)�→(a) branch points through
a saddle move, modeled and implemented by a type I move on the second cross-
sectional diagram.

Even though the seven Roseman moves are considered as “ele-
mentary moves” for evolving 4D topological surfaces, they are in-
deed rather complicated and involve non-rigid deformations applied
to curved surface sheets. Visualizing and implementing the Roseman
moves is very difficult with any existing 4D visualization approach
and thus has only existed in the mathematical drawing’s imagina-
tion (see Figure 1). By transforming the 4D evolution into a set of
Reidemeister-style diagrams, we can begin to appreciate the Roseman
moves. In Figure 9 we show one of the seven Roseman moves that
can be modeled and implemented in our interface: the move adds or
cancels branch points through a saddle move on the immersed surface,
using a type I+ move on the second cross-sectional diagram obtained
with our interface.

5.2.2 Visualizing 4D Structures with Diagrammetric Analogues

The rigors of the higher dimensional worlds are encapsulated within
equations, but our intuition is encapsulated in the much simpler fig-
ures. Often in topology, we use lower dimensional diagrams to de-
pict phenomena in higher dimensional space. Some lower dimensional
analogues can be used to depict 4D structures in an intuitive way.
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Fig. 10. Visualizing the 4D “chain” structure with lower dimensional diagrammet-
ric analogues.

In Figure 10 we show how diagrammetric analogues can be used
to visualize and manipulate the interactions of surfaces in 4D. Figure
10(a) is a “fake” chain structure by threading a ribbon “in front of”
a closed 2-sphere embedded in the fourth dimension (the two objects
are color-coded for 4D depth); there is no real interaction between
the ribbon and the sphere (the ribbon, colored in blue, is “in front” of
the 2-sphere, colored in red). The diagrammetric analog shows their
structural relationship which is a circle well on top of another one, and
of course can be fully de-attached from each other with a type II−
move (see e.g., Figure 10(b)). A real 4D chain structure can be con-
structed by threading a ribbon into the 2-sphere, first going “above” in
4D, pulling under, and finally coming out the other side “below” (see
e.g., Figure 10(c), the ribbon goes inside one side the sphere “blue”,
and comes out the other side “red”; the “green” sphere remains in the
middle in the fourth dimension.) In Figure 10 a Δ−move is applied to
the diagrammetric analogues, much as we physically lift the ribbon in
four dimensions [33].

5.2.3 Mathematically Deforming 4D Torus

Our third case scenario concerns the 4D embedded torus, an object
of fundamental interest in 4D visualization (see e.g., [15, 33]). The
4D torus is the product of two circles, technically written as T 2 with
a standard model given by x(u,v) = (cosu,sinu,cosv,sinv). One in-
teresting feature of the 4D torus is the conflict between its two lines
of self-intersection on the orthogonal 3D graphics projection, and its
actual smooth topological structure in four dimensions.

In [33], Zhang et al. suggest vertex-based manipulation where the
4D physically based modeling moves the free vertices to restrict the
final 4D mesh to the correct topology. However such physically based
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Fig. 11. Applying a mathematical move to the 4D-embedded torus helps expose
the underlying topological structure of the surface. The 3D figure of 4D torus is
color-coded for 4D depth, so the slight red bulge that remains in the middle is at
a completely different depth from the blue surface; thus we can just push the red
bulge through the blue surface with Reidemeister moves on the second cutting
plane, yielding the final toroidal shape.

interactions can be counter-intuitive and difficult to understand. In ab-
sence of visual presentations and appropriate interaction support that
can take into account the important mathematical features, the user is
often left guessing how to interact with the rather complicated mathe-
matical objects. This makes mathematical sense-making difficult.

In Figure 11(b) �→(e) we showcase our mathematically interactive
solution with which we can visualize the actual smooth structure of
4D torus using an interactive and more visually friendly method. The
middle cutting plane in Figure 11(c) reveals the visual secret under
the torus’ skin, which is a circle times a circle. The two circles are
not entangled with each other, which can be visualized clearly as a
feature diagram. Furthermore, a sequence of type II moves on the sec-
ond cross-sectional diagram (see Figure 11(d)) can transform the 4D
torus to actually eliminate the self-intersections in the 3D projection
by altering the 4D surface within allowed deformation.

6 USER FEEDBACK AND DISCUSSION

A preliminary user study was performed in order to assess our visual-
ization design and user interface implementation. The objective was to
overall evaluate the potential pedagogical usefulness of our interface
but also to receive feedback on the fulfillment of our design consider-
ations and gather opinions regarding future development.

User Experience Evaluation. The study included a predomi-
nantly qualitative user experience evaluation, complemented by a mi-
nor quantitative questionnaire. Twelve people participated in the study,
all associated with Zhejiang University of Media and Communication.
Their level of expertise and knowledge ranged from one year in grad-
uate program in mathematics to several years of research experience
in mathematical visualization and computer interface design. In the
study, a demonstration of our user interface was performed, includ-
ing a step-by-step walk-through of each interface component, and the
three major components of our visualization approach (feature dia-
gram generation, surface evolution via interactive diagrams, illustra-
tive visualization generation in a time-lapse form). Two case scenar-
ios are chosen as evaluation tasks, which the participants experimented
and interacted independently. The first task asked participants to use

our interface to visualize the 4D “chain” structure, and then tell a false
link structure from a true one. The second task asked participants to
turn the 4D-embedded torus into the more friendly doughnut-shape.
These two case scenarios were used because we would like the partic-
ipants to compare our diagram based interface and Zhang’s earlier 4D
visualization efforts using physically based approaches [33].

While carrying out the tasks the participants were encourage to
“think aloud”, and also explain what they are performing. Our main
interest was to gain as much information as possible about how the
visualization could support visual thinking when users are working
on these mathematical reasoning tasks. After the study participants
completed a subjective satisfaction questionnaire. The responses were
given on a 5-point rating scale: Strongly unfavorable (1), Unfavor-
able (2), Unsure (3), Favorable (4), and Strongly favorable (5). The
questionnaire covered the following statements:

• Overall impression: the overall impression of the mathematical visu-
alization design and implementation.

• Efficiency for interaction: whether turning 4D manipulation tasks into
a sequence of 2D interactions is effective and feasible at all.

• Learnability: ease of learning the visualization interface for a
novice user.

• Benefit over single pointer interface: whether the multi-cursor design
for such mathematical visualization task is superior to the classic
single pointer interface.

• Benefit over pure physical simulation: whether our diagram-driven
mathematical interface is superior to the previous physical simu-
lation approaches.

• Mathematical correctness: whether participants noticed non-
topology-preserving results during manipulations.

The overall assessment is that our visualization design and interface
would be useful in visual mathematics and computer interface design.
This is illustrated by the numerical ratings in the post-evaluation ques-
tionnaire (see Figure 12). Responses for the six statements have an
average score of 4.47, with each statement receiving a clearly favor-
able rating (Learnability statement received the highest rating of 4.91,
Benefit over single pointer interface statement received the lowest rating of
3.83). In addition, most participants agreed that our 4D visualiza-
tion paradigm provided a clearer interface to help understand how
materials interact with each other in the 4-dimensional mathematical
world. Several participants commented they liked the idea of control-
ling curves and strings in a computer interface supporting multi-cursor
manipulation and multi-touch interaction, as is close to the real life ex-
perience of tying shoelaces and ropes with our manual dexterity.
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Fig. 12. The quantitative results of the user study questionnaire. 5-point rating
scale is used from Strongly unfavorable (1) through Unsure (3) to Strongly favor-
able (5).

Limitations. Although our 4D visualization interface creates ef-
fective results for our principal test cases, our current approach has the
following limitations:

• We use the so-called Least-Square mesh for modeling and de-
forming 4D surfaces. Although this approach is very simple and
can be efficiently solved by using a sparse set of control points
with geometry, the results only look visually satisfactory when
the starting surface is a nice membrane or thin-plate. A potential
enhancement is to add constraint shape optimization in freeform
modeling framework [7].

• Our computational method to choose longitudinal axis and place
cutting planes is still experimental. We still rely on manual ad-
justment of the axis and planes, with domain knowledges. Fur-
thermore, one family of 4D knots consists of knotted spheres that
are formed by spinning a knotted line segment in the fourth di-
mension to sweep out the surface (an example is the 4D spun
trefoil knot.) Our current algorithms for axis finding and cutting-
plane placing do not work well for these 4D-spun entities; do-
main knowledge is again used when we manually choose knotted
line segments as feature diagrams.

7 PREVIOUS WORK ON VISUALIZING 3D CURVES AND 4D
SURFACES

Visualizing curves and surfaces in space by drawing pictures started
in the last century when mathematicians began to make special ef-
forts to convey their ideas in a highly visual manner (see e.g., Hilbert
[16], Francis [14], Carter [8, 9, 10]). Mathematics books contain many
hand-drawn illustrations and diagrams, as well as images of hand-built
models executed long before the availability of computer graphics.

The idea of making computer-generated mathematical pictures of
curves and surfaces has developed in many directions with the recent
advances in computer graphics technology. Wijk’s SeifertView [31]
visualizes the Seifert surface of knots and links for users to under-
stand their shapes and structures. Banchoff pioneers the use of 3D
computer-based projections to study 4D objects [2, 3]. Carter and
Brewer generate nicely rendered figures for many most complicated
yet beautiful examples in modern topology, such as the depiction of a
2-dimensional sphere turned inside out and manifolds embedded and
evolved in 4-dimensional space [11]. Other representative efforts in-
clude a variety of ways to render topological surfaces embedded in
4-dimensional space (see, e.g., Banks [4], Roseman [26], Egli [13], Li
[19], and Hanson [15]).

Interactive computer graphics has also been introduced to help de-
scribe the evolution of mathematical curves and surfaces in space.
Weeks’ SnapPea software displays and manipulates the over/under
crossings of mathematical knots [32]. Scharein’s Knotplot has been
widely used to construct and deform mathematical knots physically in
3D [27]. Zhang’s KnotPad suggests a computer interface to deform
mathematical knots only with Reidemeister moves [37]. Others com-
bine haptic interfaces and 3D graphics to simulate the dynamics of 3D
curves and 4D knotted surfaces (see, e.g, Phillips [25], Spillmann [30],
and Zhang [34, 33]).

While the existing efforts have produced many interesting visual-
izations, those generated mathematical figures and the proposed in-
teraction paradigms by themselves are of limited value. For exam-
ple, 3D figures of 4D mathematical entities often twist, turn, and
fold back on themselves, creating many interesting properties behind
the surface sheet [14]. On one hand, such self-intersecting surfaces
are extremely difficulty to draw and manipulate in a self-explanatory
way; on the other hand, these “hidden” properties are the keys to un-
derstand, propose, and trace the evolution of a mathematical entity
within the allowed deformation. No previous effort, to our knowledge,
has drawn into focus the natural coupling of appropriate visual repre-
sentations and rich interactions with these mathematical properties.
What is really needed is an enhancement of the existing visualization
paradigms that allows structure-aware exploration of the shape itself
and intuition-building interactions built from established understand-
able pieces. Our work presented in this paper answers this question

— “How can we code these “hidden” properties into the interactive
visualization of mathematical curves and surfaces in space?”

8 CONCLUSION AND FUTURE WORK

In this work, we adopt for the most part a visualization researcher’s
perspective on the techniques and prospects of interactive visualization
in descriptive topology, emphasizing those areas of 3D curves and 4D
surfaces where interactive paradigms can transform the way of study-
ing and understanding the higher-dimensional complexity. Toward
this goal, we have introduced a family of visualization and interac-
tion methods to help understand the important features hidden behind
the surface sheets in 4D entities’ shadow images. Our interface allows
intuitively controlling the representations of 4D-embedded surfaces in
their 3D spaces, by decomposing the unfamiliar 4D manipulation task
into a sequence of understandable and familiar steps. By combining
graphics, graph visualization, sketching based interface, and multi-
touch interaction, we not only can make contributions to mathematical
visualization by revealing the visual secrets in the classes of geometric
and topological problems, but can potentially make a broader impact
by addressing the research challenges involved in exploring the space
where the flat digital world of surface computing meets the physical,
spatially complex, 3D space in which we live. Starting from this ba-
sic framework, we plan to proceed to attack more 4D visualization
problems such as the interactive manipulation of apparently knotted,
but actually unknotted, spheres in 4D. Other planned future work will
extend the range of objects for which we can support the interactive
visualization of the smooth deformation between Boy and Roman sur-
face, and the evolutions among various 3D figures of the Klein bottle
that have given the same surface in 4-space.
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Fig. 11. Applying a mathematical move to the 4D-embedded torus helps expose
the underlying topological structure of the surface. The 3D figure of 4D torus is
color-coded for 4D depth, so the slight red bulge that remains in the middle is at
a completely different depth from the blue surface; thus we can just push the red
bulge through the blue surface with Reidemeister moves on the second cutting
plane, yielding the final toroidal shape.

interactions can be counter-intuitive and difficult to understand. In ab-
sence of visual presentations and appropriate interaction support that
can take into account the important mathematical features, the user is
often left guessing how to interact with the rather complicated mathe-
matical objects. This makes mathematical sense-making difficult.

In Figure 11(b) �→(e) we showcase our mathematically interactive
solution with which we can visualize the actual smooth structure of
4D torus using an interactive and more visually friendly method. The
middle cutting plane in Figure 11(c) reveals the visual secret under
the torus’ skin, which is a circle times a circle. The two circles are
not entangled with each other, which can be visualized clearly as a
feature diagram. Furthermore, a sequence of type II moves on the sec-
ond cross-sectional diagram (see Figure 11(d)) can transform the 4D
torus to actually eliminate the self-intersections in the 3D projection
by altering the 4D surface within allowed deformation.

6 USER FEEDBACK AND DISCUSSION

A preliminary user study was performed in order to assess our visual-
ization design and user interface implementation. The objective was to
overall evaluate the potential pedagogical usefulness of our interface
but also to receive feedback on the fulfillment of our design consider-
ations and gather opinions regarding future development.

User Experience Evaluation. The study included a predomi-
nantly qualitative user experience evaluation, complemented by a mi-
nor quantitative questionnaire. Twelve people participated in the study,
all associated with Zhejiang University of Media and Communication.
Their level of expertise and knowledge ranged from one year in grad-
uate program in mathematics to several years of research experience
in mathematical visualization and computer interface design. In the
study, a demonstration of our user interface was performed, includ-
ing a step-by-step walk-through of each interface component, and the
three major components of our visualization approach (feature dia-
gram generation, surface evolution via interactive diagrams, illustra-
tive visualization generation in a time-lapse form). Two case scenar-
ios are chosen as evaluation tasks, which the participants experimented
and interacted independently. The first task asked participants to use

our interface to visualize the 4D “chain” structure, and then tell a false
link structure from a true one. The second task asked participants to
turn the 4D-embedded torus into the more friendly doughnut-shape.
These two case scenarios were used because we would like the partic-
ipants to compare our diagram based interface and Zhang’s earlier 4D
visualization efforts using physically based approaches [33].

While carrying out the tasks the participants were encourage to
“think aloud”, and also explain what they are performing. Our main
interest was to gain as much information as possible about how the
visualization could support visual thinking when users are working
on these mathematical reasoning tasks. After the study participants
completed a subjective satisfaction questionnaire. The responses were
given on a 5-point rating scale: Strongly unfavorable (1), Unfavor-
able (2), Unsure (3), Favorable (4), and Strongly favorable (5). The
questionnaire covered the following statements:

• Overall impression: the overall impression of the mathematical visu-
alization design and implementation.

• Efficiency for interaction: whether turning 4D manipulation tasks into
a sequence of 2D interactions is effective and feasible at all.

• Learnability: ease of learning the visualization interface for a
novice user.

• Benefit over single pointer interface: whether the multi-cursor design
for such mathematical visualization task is superior to the classic
single pointer interface.

• Benefit over pure physical simulation: whether our diagram-driven
mathematical interface is superior to the previous physical simu-
lation approaches.

• Mathematical correctness: whether participants noticed non-
topology-preserving results during manipulations.

The overall assessment is that our visualization design and interface
would be useful in visual mathematics and computer interface design.
This is illustrated by the numerical ratings in the post-evaluation ques-
tionnaire (see Figure 12). Responses for the six statements have an
average score of 4.47, with each statement receiving a clearly favor-
able rating (Learnability statement received the highest rating of 4.91,
Benefit over single pointer interface statement received the lowest rating of
3.83). In addition, most participants agreed that our 4D visualiza-
tion paradigm provided a clearer interface to help understand how
materials interact with each other in the 4-dimensional mathematical
world. Several participants commented they liked the idea of control-
ling curves and strings in a computer interface supporting multi-cursor
manipulation and multi-touch interaction, as is close to the real life ex-
perience of tying shoelaces and ropes with our manual dexterity.
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Fig. 12. The quantitative results of the user study questionnaire. 5-point rating
scale is used from Strongly unfavorable (1) through Unsure (3) to Strongly favor-
able (5).

Limitations. Although our 4D visualization interface creates ef-
fective results for our principal test cases, our current approach has the
following limitations:

• We use the so-called Least-Square mesh for modeling and de-
forming 4D surfaces. Although this approach is very simple and
can be efficiently solved by using a sparse set of control points
with geometry, the results only look visually satisfactory when
the starting surface is a nice membrane or thin-plate. A potential
enhancement is to add constraint shape optimization in freeform
modeling framework [7].

• Our computational method to choose longitudinal axis and place
cutting planes is still experimental. We still rely on manual ad-
justment of the axis and planes, with domain knowledges. Fur-
thermore, one family of 4D knots consists of knotted spheres that
are formed by spinning a knotted line segment in the fourth di-
mension to sweep out the surface (an example is the 4D spun
trefoil knot.) Our current algorithms for axis finding and cutting-
plane placing do not work well for these 4D-spun entities; do-
main knowledge is again used when we manually choose knotted
line segments as feature diagrams.

7 PREVIOUS WORK ON VISUALIZING 3D CURVES AND 4D
SURFACES

Visualizing curves and surfaces in space by drawing pictures started
in the last century when mathematicians began to make special ef-
forts to convey their ideas in a highly visual manner (see e.g., Hilbert
[16], Francis [14], Carter [8, 9, 10]). Mathematics books contain many
hand-drawn illustrations and diagrams, as well as images of hand-built
models executed long before the availability of computer graphics.

The idea of making computer-generated mathematical pictures of
curves and surfaces has developed in many directions with the recent
advances in computer graphics technology. Wijk’s SeifertView [31]
visualizes the Seifert surface of knots and links for users to under-
stand their shapes and structures. Banchoff pioneers the use of 3D
computer-based projections to study 4D objects [2, 3]. Carter and
Brewer generate nicely rendered figures for many most complicated
yet beautiful examples in modern topology, such as the depiction of a
2-dimensional sphere turned inside out and manifolds embedded and
evolved in 4-dimensional space [11]. Other representative efforts in-
clude a variety of ways to render topological surfaces embedded in
4-dimensional space (see, e.g., Banks [4], Roseman [26], Egli [13], Li
[19], and Hanson [15]).

Interactive computer graphics has also been introduced to help de-
scribe the evolution of mathematical curves and surfaces in space.
Weeks’ SnapPea software displays and manipulates the over/under
crossings of mathematical knots [32]. Scharein’s Knotplot has been
widely used to construct and deform mathematical knots physically in
3D [27]. Zhang’s KnotPad suggests a computer interface to deform
mathematical knots only with Reidemeister moves [37]. Others com-
bine haptic interfaces and 3D graphics to simulate the dynamics of 3D
curves and 4D knotted surfaces (see, e.g, Phillips [25], Spillmann [30],
and Zhang [34, 33]).

While the existing efforts have produced many interesting visual-
izations, those generated mathematical figures and the proposed in-
teraction paradigms by themselves are of limited value. For exam-
ple, 3D figures of 4D mathematical entities often twist, turn, and
fold back on themselves, creating many interesting properties behind
the surface sheet [14]. On one hand, such self-intersecting surfaces
are extremely difficulty to draw and manipulate in a self-explanatory
way; on the other hand, these “hidden” properties are the keys to un-
derstand, propose, and trace the evolution of a mathematical entity
within the allowed deformation. No previous effort, to our knowledge,
has drawn into focus the natural coupling of appropriate visual repre-
sentations and rich interactions with these mathematical properties.
What is really needed is an enhancement of the existing visualization
paradigms that allows structure-aware exploration of the shape itself
and intuition-building interactions built from established understand-
able pieces. Our work presented in this paper answers this question

— “How can we code these “hidden” properties into the interactive
visualization of mathematical curves and surfaces in space?”

8 CONCLUSION AND FUTURE WORK

In this work, we adopt for the most part a visualization researcher’s
perspective on the techniques and prospects of interactive visualization
in descriptive topology, emphasizing those areas of 3D curves and 4D
surfaces where interactive paradigms can transform the way of study-
ing and understanding the higher-dimensional complexity. Toward
this goal, we have introduced a family of visualization and interac-
tion methods to help understand the important features hidden behind
the surface sheets in 4D entities’ shadow images. Our interface allows
intuitively controlling the representations of 4D-embedded surfaces in
their 3D spaces, by decomposing the unfamiliar 4D manipulation task
into a sequence of understandable and familiar steps. By combining
graphics, graph visualization, sketching based interface, and multi-
touch interaction, we not only can make contributions to mathematical
visualization by revealing the visual secrets in the classes of geometric
and topological problems, but can potentially make a broader impact
by addressing the research challenges involved in exploring the space
where the flat digital world of surface computing meets the physical,
spatially complex, 3D space in which we live. Starting from this ba-
sic framework, we plan to proceed to attack more 4D visualization
problems such as the interactive manipulation of apparently knotted,
but actually unknotted, spheres in 4D. Other planned future work will
extend the range of objects for which we can support the interactive
visualization of the smooth deformation between Boy and Roman sur-
face, and the evolutions among various 3D figures of the Klein bottle
that have given the same surface in 4-space.
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