
Interactive 3D Force-Directed Edge Bundling on Clustered Edges
Daniel Zielasko Benjamin Weyers Bernd Hentschel Torsten W. Kuhlen

Virtual Reality Group, RWTH Aachen University∗

JARA – High Performance Computing

Figure 1: Node-link diagram of an almost fully connected, bidirectional graph, originating from a NEST simulation [4]. This images depicts 32
nodes each of which resembles a brain region. The edges are the regions’ interconnectivity, whose weights are not considered here.
Left: original graph shown with 27 color-coded clusters consisting of similar edges; black edges are unclustered, i.e., not similar to any other.
Right: the same graph after edge bundling; the edges are directed from blue to red.

ABSTRACT

Graphs play an important role in data analysis. Especially, graphs
with a natural spatial embedding can benefit from a 3D visualiza-
tion. But even more then in 2D, graphs visualized as intuitively
readable 3D node-link diagrams can become very cluttered. This
makes graph exploration and data analysis difficult. For this rea-
son, we focus on the challenge of reducing edge clutter by utilizing
edge bundling. In this paper we introduce a parallel, edge cluster
based accelerator for the force-directed edge bundling algorithm
presented in [5]. This opens up the possibility for user interaction
during and after both the clustering and the bundling.

Index Terms: E.1 [Data Structures]: Graphs and networks
I.3.8 [Computing Methodologies]: Computer Graphics—
Applications

1 INTRODUCTION

Today, 2D graph visualization is very common and represents a
broad field of past and current research. In contrast, 3D graph vi-
sualization is not that widely covered, yet. Nevertheless, especially
graphs with a natural spatial embedding can benefit from a 3D vi-
sualization. One example is brain region connectivity data. But
even more then in 2D, graphs visualized as intuitively readable 3D
node-link diagrams can become very cluttered. This makes graph
exploration and data analysis difficult. In this paper, we focus on
the challenge of reducing edge clutter by utilizing edge bundling.
In addition, we want to provide the user with tools for interactive
manipulation, e.g., edge routing, parameter control and steering the
bundling in the way she needs for her analysis. Thus, the respec-
tive algorithms have to run at interactive frame rates, i.e., the delay

∗e-mail: {zielasko, weyers, hentschel, kuhlen}@vr.rwth-aachen.de

between a user input and the corresponding update of the visual
representation should be at 100ms or below.

Holten et al. introduced force-directed edge bundling (FDEB)
[5], a spring-based algorithm that is intuitive and generalizable
to 3D. This algorithm has a runtime of O(n2), as for each edge,
all other edges have to be visited. Although there are much
faster methods available, e.g., Multilevel Agglomerative Edge
Bundling (MINGEL)1 [3] or Skeleton-Based Edge Bundling
(SBEB)2 [1], we decided to use FDEB as a basis as it produces
good and comprehensible results. Moreover, it can be integrated
into a broader force-based interactive system, as it is itself spring
embedded. To speed up the calculation, we first cluster the edges
by similarity, similar to the first step of the SBEB pipeline, and
process the FDEB algorithm in parallel on these clusters.

2 METHOD

We implemented an initial, non-optimized version of FDEB with
the addition that the visual graph representation is updated during
the iterative bundling to give the user a direct feedback about the
process, in the form of a smooth animation of the edges to their final
position in a bundle. This gives the user the opportunity to follow
corresponding edges in both representations. However, the ongoing
update calculations of the visual representation further increase the
runtime, which results in an unacceptable, non-interactive delay for
a typical data set, e.g., a graph with 32 vertices and almost 600
edges (Figure 1).

Most of the delay is due to the calculations of the compatibility
for every pair of edges and the force every single edge exerts on the
current one. Notably, the compatibility and consequently the force
usually are almost zero for most of the pairs, even in a graph as
compact and dense as in the example.

1O(n log(n)) in best case
2O(C), with C cluster size



2.1 Edge Clustering

In order to alleviate these points, we preprocess the data by clus-
tering edges with high compatibility. This results in subgraphs of
similar edges, for which we can calculate FDEB in parallel. To
measure edge similarity, we define some basic edge metrics. These
metrics are inspired by the ones used to calculate the compatibil-
ity in FDEB and edge clustering in SBEB: gradient (angle), length
(scale), and position. This leads to a seven-dimensional feature vec-
tor for every edge. These vectors are inserted into an R*-tree and
clustered by DBSCAN [2], a density-based clustering algorithm,
with a minimal cluster size of 2. Figure 1 (left) shows the result of
a clustering run, where the different clusters are color-coded. The
number of clusters, or the similarity of edges necessary to form a
cluster is determined by the density parameter eps. It is a threshold
for deciding if two data points, according to their Euclidean dis-
tance in parameter space, are close enough to be assigned to a com-
mon cluster. Furthermore, the subgraphs spanned by the resulting
edge clusters are processed independently and in parallel by an un-
modified FDEB algorithm. We use a single thread for each cluster,
but share the edge position data among all of them. As every edge
is assigned to at most one cluster, this allows a master thread to con-
tinuously, i.e., with every finished iteration of each FDEB thread,
update the drawing of the graph during calculations.

As the clustering takes a large part of the edge similarity deci-
sions of the FDEB algorithm, the latter’s force calculations can be
simplified to further reduce the runtime. This is part of our cur-
rent work, although it was not factored into the first tests to get
a direct comparison. In bundling the example graph, without any
changes of our FDEB implementation and a number of 27 clusters,
the clustered variant took 18.3 seconds and was thus 12 times faster
than the basic version. Measurements were performed on an Intel
Xeon E5540 2.53GHz processor running Windows 7 with 12 GB
of RAM and a GeForce GTX480 graphics card. The used eps pa-
rameter was determined empirically by examining the visualized
clusters (Figure 1, left) and the quality of the bundling (Figure 1,
right). Although, smaller clusters lead to a lower runtime, over a
certain number of clusters the bundling rapidly drops, which is not
what we want to achieve. Finally it should be mentioned, that the
animation is running smoothly at 60fps during the computation.

A positive side effect of the clustered edge bundling is that even
if the runtime is not at interactive frame rates, the impression is
another, as small clusters are bundled very fast (25 of 27 clusters
in under a 1 second for the example) and the larger ones are just
generating small changes during the remaining time. Therefore,
the user is already able to explore a largely cleaned graph, while
the bundling is being finished. However, a large variance in cluster
sizes causes load-balancing issues in static thread-based paralleliza-
tion. Additionally, while the dense structures of the orange and blue
subgraphs (Figure 1, left) likely could not be cleaned up completely,
there seems to be potential for a better bundling. This is addressed
by interactive sub-clustering, which is described in the next section.

2.2 Interaction

We believe that user interaction is key for successful exploration
and analysis of complex data spaces. Hence, a major goal of our
work is to keep the used algorithms at interactive frame rates. An
important part of our current work is the implementation of interac-
tive tools, which enable steering, correcting, or manipulating of the
clustering and the edge bundling.

For clustering, edge metrics like gradient, length, and position
are dimensions to measure edge similarity on a structural level. De-
pending on the use case, several other semantical metrics are use-
ful, such as edge weight. Therefore, the user will be able to add
additional metrics, switch on/off each or even change the weight of
every metric in the clustering process.

Computing the ”right” density parameter for the clustering algo-
rithm is not trivial. On the one hand, it could be very different for
two graphs, on the other hand a good parameter selection strongly
depends on the current analysis task. But since the clustering is
fast, the user herself is put in the loop by choosing the value and
instantly see a suitable visual representation of the resulting clus-
ters (cf. Figure 1, (left) as a first prototype). This is supported by
precomputing an interval of reasonable values, starting with a lower
bound where most of the edges first become assigned to any cluster
and an upper bound where the result is only one cluster.

In some cases, there is not one optimal eps value for every part of
the graph, e.g., due to dense subgraphs. Therefore, the user will be
able to select the appropriate cluster and initiate a further clustering
within this subgraph.

An additional scenario is that the clustering is satisfying in prin-
ciple, but there is a single edge the user wants to be assigned to
another cluster or two clusters better be combined. Although, one
solution in these cases might be to find another suitable density pa-
rameter, this will probably lead to other inadequacies. Therefore,
the user will be equipped with the necessary tools to directly ma-
nipulate the clusters.

A common characteristic to all interaction tools described above
is that we need to find an error-tolerant selection metaphor and
a suitable visual representation of the clusters beyond the simple
color coding shown in Figure 1 (left).

3 SUMMARY AND FUTURE WORK

In this paper, we have introduced a parallel, edge cluster based ac-
celerator for the force-directed edge bundling algorithm. It opens
up the possibility for a set of user interactions during and after the
clustering, which in turn should heavily involve the user in the pro-
cess of the overall graph layout. Thus, the user should be able to
dynamically adapt the graph visualization the way she prefers for a
specific analysis. We want to finish the implementation of the inter-
active clustering and extend the interaction to the bundling process
for optimizing the parameter selection and to the bundling result by,
e.g., giving the user the tools to bend edge bundles to other positions
to optimize the result (cf. Edge Plucking [6]) or add global, local,
or meshed sources of force to, e.g., inflate the graph or carve out
structures. Furthermore, we would like to optimize the algorithm
to be able to handle larger graphs and cluster sizes. Additionally,
it could be interesting to examine the behavior of other clustering
methods. Last but not least, there will an evaluation of the usability
of the presented techniques.

ACKNOWLEDGEMENTS

The authors wish to thank the Helmholtz Portfolio – Supercom-
puting and Modeling for the Human Brain and the Human Brain
Project for funding.

REFERENCES

[1] O. Ersoy, C. Hurter, F. V. Paulovich, G. Cantareiro, and A. Telea.
Skeleton-based edge bundling for graph visualization. IEEE transac-
tions on visualization and computer graphics, 17(12):2364–73, Dec.
2011.

[2] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. KDD,
pages 226–231, 1996.

[3] E. R. Gansner, Y. Hu, S. North, and C. Scheidegger. Multilevel agglom-
erative edge bundling for visualizing large graphs. 2011 IEEE Pacific
Visualization Symposium, pages 187–194, Mar. 2011.

[4] M. Gewaltig and M. Diesmann. NEST (NEural Simulation Tool).
Scholarpedia, 2(4):1430, 2007.

[5] D. Holten and J. J. van Wijk. Force-Directed Edge Bundling for Graph
Visualization. Computer Graphics Forum, 28(3):983–990, June 2009.

[6] N. Wong and S. Carpendale. Supporting interactive graph exploration
using edge plucking. Visualization and Data Analysis, 6495, 2007.


