Visual Analysis of Patterns in Multiple Amino Acid Mutation Graphs
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Fig. 1. The problem and the proposed solution for the visual analysis of patterns in mutation graphs: Top: A set of input mutation
graphs. ltis difficult to compare them and to identify common patterns. Middle: Visualization of the number of found patterns grouped
by their structure. Bottom: User-selected relevant patterns can be examined in detail both in the input graph and in the 3D structure.

Abstract— Proteins are essential parts in all living organisms. They consist of sequences of amino acids. An interaction with reactive
agent can stimulate a mutation at a specific position in the sequence. This mutation may set off a chain reaction, which effects other
amino acids in the protein. Chain reactions need to be analyzed, as they may invoke unwanted side effects in drug treatment.

A mutation chain is represented by a directed acyclic graph, where amino acids are connected by their mutation dependencies. As
each amino acid may mutate individually, many mutation graphs exist. To determine important impacts of mutations, experts need to
analyze and compare common patterns in these mutations graphs. Experts, however, lack suitable tools for this purpose.

We present a new system for the search and the exploration of frequent patterns (i.e., motifs) in mutation graphs. We present a fast
pattern search algorithm specifically developed for finding biologically relevant patterns in many mutation graphs (i.e., many labeled
acyclic directed graphs). Our visualization system allows an interactive exploration and comparison of the found patterns. It enables
locating the found patterns in the mutation graphs and in the 3D protein structures. In this way, potentially interesting patterns can be
discovered. These patterns serve as starting point for a further biological analysis.

In cooperation with biologists, we use our approach for analyzing a real world data set based on multiple HIV protease sequences.

Index Terms— Biologic Visualization, Graph Visualization, Motif Search, Motif Visualization, Biology, Mutations, Pattern Visualization
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1 INTRODUCTION
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Pharmaceutical drug development strives to find effective drugs with
high impact and low side effects. These drugs interact with a targeted
protein (i.e., a sequence of amino acids) at specific positions of the
amino acid chain. The interactions with the amino acid chain may
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induce indirect changes, e.g., induced mutations. The induced muta-
tions may in turn induce further derived mutations, creating numerous
evolutionary linked mutation events. These events may have a strong
effect on large parts of a protein causing unwanted side effects, such
as diminishing effectiveness of the drug. Therefore, the investigation
of such evolutionary linked chain mutations plays an important role in
drug development. Drug developers need to avoid addressing protein’s
positions with strong co-evolutionary dependencies [17].

The analysis of mutation chain events can also lead to new insights
not only in drug development, but also in other fields of research, such
as phylogenetic studies of our evolutionary history [4]. In this paper,
we focus on the analysis of chained mutation events in evolutionary
research. With this novel approach, biologists try to detect important
patterns within mutation chain events of the HIV protease.

The mutation chain events can be represented by so-called “muta-
tion graphs” (MGs) (see Fig. 2). Mutation graphs are labeled directed
acyclic graphs, in which the nodes are amino acids located at particu-
lar protein’s positions, e.g., G18: glycid at position 18. The directed
edges reflect the mutation dependencies of the amino acids, i.e., in-
ducing or repressing further mutations. Each mutation graph shows
how the mutation of one amino acid (the root node on the top) in-
duces a chain of the following mutations. As each amino acid in a
protein might mutate individually, many mutation graphs per protein
can emerge (see Fig. 1 top).

The biologists need to analyze all the mutation graphs in order to
identify important mutation patterns. Patterns are parts of evolution-
ary chain reactions (subgraphs of MGs), which occur often or have a
specific form or size (see Fig. 2). For example, large patterns can af-
fect many positions in the protein. They imply a large influence on the
protein. Thus, detecting patterns in the mutation graphs could allow
biologists and drug developers to detect “evasive” mutations and can
provide knowledge for new drug design strategies and target sites.

Many visual interactive tools have been developed for analyzing
various types of data like genome or protein data [6, 7, 26, 30]. How-
ever, examining patterns in mutation graphs is a relatively novel field
of research, therefore biologists and pharmacologists currently lack
proper analytical tools. Especially, the available tools do not allow for
visual analysis of patterns in multiple mutation graphs simultaneously.

We present a new approach for finding and exploring patterns in
many mutation graphs. Our contributions and application benefits are:

e We present a fast pattern search algorithm, which finds frequent
biologically relevant patterns in multiple mutation graphs (i.e.,
labeled directed acyclic graphs).

e We propose a novel interactive visualization system for the ex-
ploration of found patters from various perspectives: a global
overview of the found patterns, a view on selected types of found
patterns with additional information, as well as a view on lo-
cations of the found patterns in both mutation graphs and 3D
protein structures. Note, the global overview is a new way of
visualizing a large number of the found patterns.

e Our approach identifies frequent mutation patterns and key
amino acids which are involved in multiple mutation chains.
This helps the pharmacologist to estimate the side effects caused
by a potential drug treatment.

Our software has been developed in close cooperation with biolo-
gists performing research in this field. We apply our new system on
real-world data from the life science domain and evaluate its advan-
tages for analyzing mutation chain events for an important protein in
biomedicine (the HIV protease). The system extension and adaptation
to biological use case and the evaluation have been conducted together
with biological experts co-authoring the paper.

The paper is structured as follows. Section 2 provides details about
the biological background and the tasks. Section 3 presents related
work including pattern search and visual exploration of event propa-
gation in networks. Section 4 gives a brief overview of our approach.
Section 5 presents our pattern search algorithm, while Section 6 de-
scribes the interactive interface for pattern exploration. Section 7
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demonstrates the approach in an use case with real world data. Sec-
tion 8 concludes and outlines of possible future extensions.

2 BIOLOGIC BACKGROUND AND TASKS

Biologists wish to analyze the direct and implied effects of a mutation
of amino acids in a protein using the so-called mutation graphs (MGs).

Mutation graphs are composed of amino-acids (nodes) connected
by directed edges representing their co-evolutionary relationships.
These relationships are of two types: inducing and repressing. This
means, that an amino acid at one position in the protein can increase
or decrease the occurrence of other amino acids at other positions (see
blue (inducing) and red (repressing) edges in Fig. 2). Figure 2 shows
a small example of several mutation graphs. On the left, Glycine on
position 16 (G16) would induce a mutation to Lysin on position 70
(K70). This again would induce mutations to Argenine at the same
position (R70) and Threonine at position 39 (T39).

Such inducing/repressing mutation reactions are calculated for each
amino acid in a protein independently. This results in a set of mutation
graphs (see Fig. 1 top). Thus, the biologists need to analyze hundreds
of mutation graphs (see Sec. 7 as example of 246 MGs). The number
of analyzed mutation graphs N corresponds to the number of amino
acids in a protein starting the mutation chain. As each amino acid can
set off a mutation chain possibly affecting all amino acids in a protein,
the analyzed mutation graphs can then altogether contain up to N2
nodes.

The analyzed mutation graphs contain possibly interesting patterns
(i.e., subgraphs or motifs), which need to be extracted and analyzed. A
pattern is a subgraph of MG, which has specific meaning or occurs of-
ten in a dataset (see the highlighted areas in Fig. 2). Biologically, these
patterns describe often occurring dependency routes corresponding to
evolutionary trails and bottlenecks. Finding and analyzing of these
patterns is in the focus of our co-authors from biology and, thus, also
of this paper. Note that this kind of analysis is novel also in biologic
research. Therefore, no ready to use tools are available to help finding
and analyzing these patterns.

oo ¢

Fig. 2. Toy-example of four mutation graphs with potential patterns high-
lighted (colored background). The nodes represent amino acids, where
the labels reflect their type and position. These graphs are calculated
for each amino acid in the protein independently.

When analyzing patterns in mutation graphs, the following biolog-
ically relevant tasks emerge:

T1 Distribution of all patterns
Examining the distribution of all patterns is necessary for assess-
ing of the magnitude of effects in mutation graphs. It summarizes
which kinds of patterns were found in the data set and thus shows
whether large or small patterns are present.

T2 Identification of most prominent patterns
Prominent patterns appear in many different mutation graphs.
Highlighting frequent patterns is of special interest for the bi-
ologists. The frequent patterns give insight into “bottlenecks” of
evolutionary events.

T3 Identification of very complex or simple patterns
Complex patterns explain higher order interdependencies. The
analysis of complex patterns allows to inspect dependencies af-
fecting large portions of the protein. While these large chain



reactions should be considered in drug development, targeting
amino acids within these patterns can imply unfavorable results
such as faster drug resistance mutations.
T4 Structural localization of patterns

The found patterns should not only be analyzed in isolation, but
with respect to their location within the mutation graph and to
their positions in the 3D representation of the protein as a physi-
cal object. Spatial position of the affected sites and their respec-
tive structural organization can give insight on the rationale be-
hind the pattern. Position in mutation graphs allows researchers
to identify patterns serving, e.g., as evolutionary bottleneck or as
an entry to numerous subsequent mutations.

These tasks are the pivotal elements for the design and development
of the analysis software described in the following section.

3 RELATED WORK

There are many different publications and examples for visual inter-
active tools in the field of biology like [6, 7, 26, 30]. They focus on
different areas then our paper (e.g., on genome). We present works
closely related to our work: visual analysis of mutation chains (a kind
of event propagation in networks). We reviews methods for finding
patterns in networks and their visualization. We also discuss visual
comparison of multiple graphs for identifying common subgraphs.

3.1 Pattern Search in Graphs

An exhaustive search for patterns (i.e., motifs) in a network is an NP-
hard problem [8]. There are several algorithms for finding patterns in
directed and undirected graphs. Recent reviews [37, 51] summarize
and compare them. The available algorithms search for all unlabeled
patterns in a network, which have pre-defined size k£ (k = number of
nodes in a pattern). These tools include FANMOD [50], Mavisto [40],
MFinder [27], [21], [24], MODA [16, 33]).

Available strategies for a speed-up the pattern search are: 1) bet-
ter ways of building up larger patterns from previously found smaller
subgraphs [24] 2) symmetry breaking, which eliminates the need for
isomorphism checking [16, 33], or 3) sampling — heuristic approach
[27, 50]. The above-mentioned algorithms find only patterns with a
certain number of nodes or edges. They would not find all possible
patterns with different sizes (esp., larger). This is a restriction for an
exploratory analysis, which assumes no apriori knowledge about the
dataset and its structure.

In our work, we use a labeled extension if the algorithm by Ku-
ramochi [24]. We adapt this technique for labeled pattern search in
many directed acyclic graphs. Our method proposes a fast combina-
tion of patterns. As we focus on an explorative analysis, we do not
restrict the size of the patterns in advance.

3.2 Pattern Visualization in Graphs

The set of all patterns found in the network is commonly presented
as a list of node link diagrams together with patterns’ frequency as a
number [25, 27, 40, 50]. These views were mainly developed for un-
labeled patterns or patterns with few categories of nodes [25]. With
the increasing number of different patterns found, a simple pattern list
does not scale up. It requires a lot of scrolling. This problem is particu-
larly severe for labeled graphs, which are in our focus. The number of
possible labeled patterns is much larger then the number of unlabeled
patters. The number of possible labeled patterns is a combination of
the number of all possible pattern structures and the number of their
possible label combinations (see Sec. 5.1 for details).

Another possibility of pattern visualization is highlighting of user-
selected patterns in the network (e.g., [46]). For better readability of
the pattern structure, specific pattern-based layouts have been devel-
oped [18, 22]. These technique do not scale up for large graphs or
graphs with many patterns as each pattern needs to be shown individ-
ually.

Scalability of pattern exploration can be improved by pattern-based
graph aggregation of node-link diagrams [14, 38, 46], iconic pattern
presentation [25] or compression of adjacency matrices [13]. These

methods decrease network size, however the aggregation of overlap-
ping patterns, found also in our case, is problematic for all methods.
Therefore, these techniques have only limited value added.

3.3 Visual Analysis of Event Propagation in Networks

Visual Analysis of event propagation in networks is a new topic, there-
fore few dedicated tools exist. Analysts mainly employ standard sta-
tistical software tools (e.g., Matlab) and charts available in standard
visualization softwares (e.g., Pajek [3], or GraphViz [?]).

Three systems specialize on event propagation [31, 41, 45]. FNA
(Financial network analysis) [41] focuses on analysis of financial
transactions. It offers simple static visualization of networks. The
users with good programming skills can run pre-defined simulations,
however the tool does not provide methods for the exploration of re-
sults and their comparison. NBW (Network workbench tool) [31] is
developed for analysis of gene regulation models — binary processes
in networks. It offers an interface for defining model parameters and a
static visualization of the result. It is not capable of comparing several
inputs. Recently, von Landesberger et al. presented a system for visual
analysis of contagion in networks [45]. The system offers simulation
and interactive visualization of expansion processes. The resulting
graphs are shown as node-link diagrams. The user has the possibil-
ity to select one or more nodes for analyzing their occurrence across
the simulations. The system neither detects nor shows patterns. More-
over, this manual approach does not scale with the number of graphs.
It is limited to a handful of graphs.

In sum, Event propagation analysis systems do not support finding
and exploration of interesting patterns in many networks.

3.4 Visual Comparison of Multiple Graphs

Several visual comparison techniques also focus on exploration of
commonalities among graphs [48].

Two compared graphs are usually shown next to each other, where
the corresponding nodes or graph parts are highlighted. VisLink [10]
and Holten et al. [19] link the same nodes of the two graphs. This
technique does not show structural relationship (pattern) among high-
lighted nodes.

Archambault [2] identifies the common subgraphs of two graphs
and then shows only the differences between them. Tu and Shen [43]
create a unified graph of two trees and show it in a treemap. The unifi-
cation however can produce large trees if the two compared graphs are
very dissimilar. These methods are restricted only to two graphs. For
several graphs, pairwise comparison leading to a quadratic number of
comparisons would be required.

Several tree comparison techniques combine interactive visualiza-
tion with highlighting of common subgraphs (e.g., [7, ?, 29]. These
techniques are however restricted to trees with common leaves, with-
out labels in inner nodes. Therefore they are not suitable for our case.

There are techniques for multiple graph comparison [15, 32, 47].
They only analyze global similarities without subgraph matching.
They are not able to identify and show common patterns.

In general, current methods for visual graph comparison have re-
strictions (only pairwise comparison, only trees, only global similar-
ity), which are not suitable for our use case.

4 OVERVIEW OF OUR APPROACH

Our approach combines a new specific algorithm for finding biologi-
cally relevant patterns in mutation graphs (MGs) with a novel interac-
tive visual interface for pattern exploration (see Fig. 3). The interface
shows the patterns on various levels of detail, addressing the scalabil-
ity issue w.r.t. the number of patterns found and w.r.t. the number of
graphs (MGs). The approach has been developed together with experts
from biology so that it suits their analytical needs.

We first explain our pattern search algorithm (see Sec. 5) and then
describe the interactive interface (see Sec. 6).
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Fig. 3. Overview of our approach: (1) Pattern search results. (2) Overview of the number of patterns found. (3) Interesting patterns with additional
information on their occurrence. (4) The location of selected patterns is examined directly in MGs and in 3D protein structures.

5 PATTERNS IN MUTATION GRAPHS AND PATTERN SEARCH
5.1 Patterns in Mutation Graphs

Patterns are subgraphs of graphs with specific meaning or functional
property [28] (see also Fig. 2). They are building blocks of networks,
such as biological or financial networks.

This paper focuses on finding patterns in a set of N mutation graphs
(see Fig 1 top). Each MG has up to N labeled nodes. MGs are directed
acyclic graphs (DAGs) with a single root and unique node labels (see
Fig. 2). A mutation graph has edges only between neighboring levels.
These properties constrain the set of possible patterns.

‘We consider labeled patterns with unique labels (i.e., each node has
a different label). Patterns are composed of several nodes, which can
be on two neighboring levels (basic patterns) or on several levels (com-
plex patterns). Figure 6 shows an example of a basic pattern (pink) and
a complex pattern (orange). One pattern can be found in several MGs,

5o

(a) Line (b) Fan-Out (c) Merge

(d) Double-cross

Fig. 5. Types of biologically relevant basic patterns used in our work.
Out of these 4, more complex patterns can be build.

We suppose, that the found basic patterns cannot be expanded to a
larger pattern (e.g., from a line to a merge pattern).

Complex Patterns Complex patterns are a combination of two or
more basic patterns (see Fig. 6). Two basic patterns may be combined

however in each MG only once (due to uniqueness of labels).
Pattern Labels Labellings in mutation graphs and in their patterns

are very important for the analysis, as amino acid position and type

can give rise to varying effects. Labels, however, pose a scalability

only when the labeled root nodes of one pattern match the labeled
leaves of the second pattern within the same MG. Biologically, com-
plex patterns may represent multi-level dependencies between struc-
turally distinct regions and can explain wide-spread evolutionary in-
teractions.

the same structure as

challenge to both pattern search and to the visualization. In fact, la-
bels expand the number of possible patterns exponentially compared
to unlabeled patterns. One unlabeled pattern with k vertices can have

% labeled patterns, where |N| is the

number of nodes in the original MG (see also Fig. 4).

¢>...

Fig. 4. One unlabeled pattern represents a large number of labeled
patterns with the same structure.

Basic Patterns A basic pattern is a subgraph of MG, which

stretches only between two neighboring levels (see the pink pattern in
Figure 6). We focus on basic patterns with specific biological meaning
for mutation expansion (see Fig. 5). This set was inspired by common
patterns in biology and finance [28, 46, 47].
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e Line pattern (LP, also called “single chain”): The mutation of
one amino acid impacts only one other amino acid. These ef-
fects are desirable if a target amino acid should be influenced
indirectly.

e Fan-out pattern (F'P): The mutation of one amino acid influ-
ences numerous other amino acids. This might lead to unpre-
dictable impact on the function of the whole protein.

o Merge pattern (M P): One target amino acid can be affected by
multiple other amino acids. This might reveal potentially unsta-
ble amino acids.

e Double-cross pattern (DC P) This type combines the previous
two types. Contained amino acids can have a significant influ-
ence on the mutation graph. However, as this networks are highly
interconnected, they tend to be rather small, so that the resulting
impact on the protein is limited and predictable.

Fig. 6. Combination of two basic patterns (pink, Fan-Out and purple,
Line) found in the same MG into a complex pattern (orange).

5.2 Pattern Search

In our work, we developed a special fast exhaustive pattern search
algorithm for finding labeled patterns in the set of input MGs. In line
with the requirements of biological analysis, the assumptions of the
search algorithm are:

1. Unknown pattern size: We aim for exploratory analysis with no
a priori assumption on maximum or minimum pattern size.

2. The number of graphs to analyze: The patterns need to be found
in a possibly large set of mutation graphs. In a medium-sized
data set, we need to analyze 400 MGs with up to 400 nodes each,
leading to up to 160, 000 nodes in total.

3. Special pattern types: We need to find biologically relevant pat-
terns in mutation graphs (see Sec. 5.1).

Our algorithm is composed of two steps: 1) finding basic patterns
and 2) iteratively combining them into larger complex patterns.

We first perform an exhaustive search for basic patterns (see Alg. 1)
in the set of input mutation graphs M G's. For each node v of a graph



G € MGs, we check whether it is a part of a basic pattern P. The
basic pattern search get BasicPattern() uses the algorithm by Gro-
chow et al. [16], as it has high performance for finding specific pat-
terns. We store the found patterns p in a set foundBasicPatterns.
We also store in which MGs the pattern is located (location(p) —
locBasicPattern). This information is used for building complex
patterns in the second step and for analyzing pattern occurrence.

Algorithm 1 Find basic patterns
Require: MGs
Ensure: foundBasicPatterns,locBasicPattern
foundBasicPatterns < ()
locBasicPattern + ()
for all G € MGs do
for all v € G do
forall P € {LP,MP,FP,MP,DCP} do
p + getBasicPattern(v, G, P)
if p # () then
foundBasicPatterns < foundBasicPatterns Up

locBasicPattern — locBasicPattern U

{p, location(p)}
end if
end for
end for
end for

Algorithm 2 Find complex Patterns

patterns < foundBasicPatterns
newPatterns < foundBasicPatterns
combPatterns + ()
locPatterns < locBasicPattern
for all p1 € patterns do
for all p2 € newPatterns do
if p1 # p2 A (|location(pl) N location(p2)| > 1) then
if (roots(pl) N leaves(p2) # 0)or (leaves(pl) N
roots(p2) # () then
combp = combine(pl, p2)
location(combP) <« location(pl) N location(p2)
combPatterns < combPatterns U combP
locPatterns < locPatterns U location(combP)
end if
end if
end for
for all cP € combp do
removeSubPatterns(cP)
end for
patterns < patterns — {pl}
newPatterns < newPatterns U combPatterns
end for

In the second step, the found labeled basic patterns
foundBasicPatterns are successively merged into larger and
larger complex patterns until all maximal (largest) patterns have been
found (see Alg. 2). During the search, location and frequency of all
found complex patterns is stored. For faster calculation of complex
patterns, we use the information on the location and the form of
the base patterns found. Our algorithm relies on the uniqueness of
node labels and the implied single occurrence of a pattern in a MG.
Therefore, we do not need to go recursively through the graphs.

In our work, we wish to focus on larger patterns as they are
more interesting then smaller patterns, if their have the same oc-
currence. Therefore, smaller patterns that form a larger pattern at
the same locations (so-called “complete subpatterns”) are removed
in removeSubPatterns. This also reduces the number of patterns
found for the further analysis. The constraint of same-location is im-
portant. Only if the subpattern occurs at the same locations as the

larger pattern, then the existence of the smaller pattern does not bring
any additional information to the user. An example is shown in Fig-
ure 7. The purple pattern is a complete sub-pattern of the orange pat-
tern, its occurrence is redundant to the orange pattern. However, the
pink pattern occurs more often then the orange pattern, so the removal
of the pink pattern would lead to an information loss.

Fig. 7. Example for pattern removal: The purple pattern is removed
as it is a full subpattern of the orange pattern. Both patterns occur
simultaneously. The pink pattern occurs also in other MG, then orange
pattern, so it carries extra information. Therefore, it is not removed.

Theoretic complexity The theoretic complexity of the pattern
search is composed of two parts: 1) the search for basic patterns and
2) their combination. The basic pattern search combines breadth first
search with the search for a specific basic pattern leading to the com-
plexity of O(|V| + |E|)? - N, where |V| and | E| are the maximum
number of nodes and edges in the MGs. NV is the number of MGs. The
second step has a worst case complexity of O(log(|V'|)+1log(N)+p).
This complexity is lower then that of common search algorithms

V!
O(Ek' |V‘—k'||!k'! . N) [1].

Experimental runtimes: We show the speed of our algorithm on
mutation graphs of various numbers and sizes (see Table 1). The
MGs were extracted from random inputs. We used a PC with Intel(R)

Core(TM) i7 CPU 920 @ 2.67GHz, Java32bit.

p=03 p=04 p=0.5
#MGs | #P [ T(s) #P [ T(s) #P [ T(s)
50 70 | 0.022 | 60 | 0.016 | 57 | 0.017
100 217 | 0.218 | 160 | 0.127 | 142 | 0.105
200 410 | 1.451 | 338 | 1.006 | 269 | 0.602
300 508 | 2.718 | 377 | 1.396 | 203 | 0.249
400 548 | 3.799 | 235 | 0.432 | 147 | 0.156
500 263 | 0.287 | 209 | 0.323 | 198 | 0.534
Table 1.  Experimental runtimes. Average results (10 runs of each

configuration). #P: the number of found patterns, T(s): the runtime in
seconds. These results show that the runtime depends strongly on the
number of found patterns, less then on the overall graph size.

6 VISUAL EXPLORATION OF PATTERNS

The visual interface (see Fig. 3) shows the found patterns (1) in several
interactively linked views. The views were designed in cooperation
with biologists so that they suit to their analytical needs.

The view guides the users through various levels of details (see
Fig. 3). The number of found patterns (1) by type is shown in a coarse
overview (2). Then the user explores advanced information on selected
pattern types (2) and finally, she can analyze the location of the found
patterns in the mutation graphs or in the 3D protein structure (3).

e Pattern Overview: This novel scalable view shows the number
of patterns found in the dataset. It also allows to select certain
types of patterns for further detailed inspection.
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o Detailed Pattern View: It displays the user-selected patterns with
additional analytical information (e.g., pattern’s occurrence, or
its position within MGs).

e Pattern Locations: These view show the locations of user-
selected patterns in the mutation graphs and in 3D protein struc-
tures. The user can explore in detail, in which mutation graphs
and where exactly the patterns are situated.

6.1 Pattern Overview

Pattern overview shows the number of found patterns by their compo-
sition in a compact scale-free representation (see Fig. 8). It allows the
user to get an overview of which patterns are found and how often. It
provides a first insight into the dataset.

TLTEIL

%] £ %) i)

Fig. 8. Benefit of our Pattern Overview. Top: A large number of found
patterns presented in a standard way. Patterns are difficult to com-
pare and analyze. Bottom: Our pattern overview visualizes the same
amount of information in a compact and structured way. The patterns
are grouped by their structure. The number of found patterns is indi-
cated by color from light to dark green (few to many patterns).

Design: This view was specially developed for scalability reasons,
as the traditional approaches (esp. a list of patterns), did not scale up
for our use case. It required a lot of scrolling, making a comparison of
patterns difficult and time consuming.

Our idea was to compress the view on patterns in a way that the
user still can see which patterns are found and how often. This was a
difficult challenge. We first tried group pattern by their structure. For
example, we grouped all line-line-merge patterns in one and all line-
merge-line patterns into another group. This kind of grouping, how-
ever, still resulted in a large number of data to show, which increases
exponentially with the number of basic patterns combined. Therefore,
we decided to simplify the view even more.

The final approach groups the found patterns according to the types
of combined basic patterns (see Fig. 9). We thereby disregard the order
of combined patterns and their number. For example, line-merge and
merge-line-line pattern would be together in one group line+merge.
This simplification has one important advantage: the number of such
groups is limited to 15 irrespective of the size and structure of the
found patterns. There are 4 individual, 6 double, 7 tripple and 1 four
pattern combination (see Fig. 8 bottom).
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Fig. 9. Grouping patterns by their composition. The icon (bottom) shows
the basic patterns, which are combined in the patterns (top). In this
example the icon stands for all patterns which consists only of line and
fan-out patterns. The number shows how many of this combinations
were found (in this example 12).

The presented grouping allows us to create a scale-free visualization
of the patterns. The pattern combinations are placed on the screen
according to the number of combined patterns (see Fig. 8 bottom). As
this compact representation hides inner structure of the patterns, we
decided to design specific glyphs showing the user more insight into
the structures and numbers of the found patterns (see Fig. 10).

Each glyph shows the number of found patterns in a group (icon)
as well as more detailed information on the structure of patterns in the
group (heatmap) (see Fig. 10).

e The icon shows the basic pattern types combine within a group
(see Fig. 10 right). The color denotes the number of patterns
found (light to dark green). The exact number is in the icon.
Note that the color scheme can be changed on demand.

e Pattern heatmap (see Fig. 10 left) on the top shows the number
of found patterns according to their structure. Each cell shows
the number of patterns having a particular size (column) and a
particular number of basic patterns combined (row). Green tone
shows the number of found patterns. The white cells with gray
outline show possible pattern combinations, where no patterns
were found. The outer white areas correspond to impossible pat-
tern type combinations (e.g., a larger size then the number of
basic patterns combined).

Interaction: The user can use the heatmap for selecting interesting
patterns for a detailed analysis (see Fig. 11). The user can select the
patterns with a specific structure (a cell), with a specific size (row) or
length (column). The selected patterns are shown either in the detailed
view or are highlighted directly in the MGs.

6.2 Detail Pattern View

The detailed pattern view provides the user with important information
on the exact form of the patterns as well as their distribution across the
dataset (see Fig. 12). These views are important for the biological
interpretation of the found patterns.

Design: The detailed pattern view has three linked parts:

The top left part of the detailed view shows the number of found
patterns according to their type (see Fig. 12A). This provides a brief
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Fig. 10. Glyph showing the number of found patterns. Left: Heatmap
shows the number of patterns according to their size and the number
of combined basic patterns. Background color denotes the number of
patterns found. Right: Icon shows the types of basic patterns combined
within the group. The number and the background color indicates the
number of found patterns. Color scheme: light to dark green meaning
few to many.

Fig. 11. Interaction with the overview: The user selects a set of patterns
— a row in the heatmap — for their detailed inspection. In this exam-
ple, the user selects all complex patterns, which consist of exactly three
basic patterns and have the size of 3 or 4.

information on the number of patterns, which could be seen only in
the overview.

The main part (see Fig. 12B) shows the exact form and labels of the
found patterns as node link diagrams. The background color indicates
the pattern frequency (light to dark green, few to many). This allows
the user to inspect the patterns and extract their biological meaning.
The list is sorted by user preferences: by frequency, size or number of
basic patterns combined.

The information panel on the right (see Fig. 12C) shows analytical

information on pattern occurrence and location of user-selected pat-
terns. Pattern frequency is shown on the top as a bar. The full bar
means occurrence in all MGs.
As requested by the users, we also included information on pattern lo-
cation within MGs. The distribution of pattern locations within a MGs
(hierarchy level) is shown as a histogram. It shows whether the pattern
occurs rather at the beginning or at the end of the mutation chain. The
patterns occurring at the beginning are more likely to cause multitude
of pattern unrelated subsequent mutations, whereas patterns at the end
of mutation chains can be viewed as evolutionary end points.

Interaction: The user can select one or more patterns in the main
view for a detailed inspection in additional views (see Fig. 13). The
selected patterns are highlighted by a colored border. Each pattern is
assigned a different color. The colors are kept constant in all views.
Note that we expect that the user focuses on a few patterns. If the user
wishes to analyze more patterns, she can do so sequentially.

6.3 Pattern Locations Views

The most detailed views on exact locations of selected patterns in mu-
tation graphs and in 3D protein structures were requested by the users.
These views are needed for biological analysis of the data. The users
wish to know exactly where the patterns are located in order to make
inference from the data (see Fig. 13).

The view on the pattern locations within the graphs shows the fil-
tered set of MGs — only those containing the selected patterns. This
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Fig. 12. Detailed Pattern View. A: Overview of the number of found
patterns by basic types. B: The patterns found and their frequency in-
dicated by background color. Dark green means many patterns found.
C: Information panel showing additional analytical information for user-
selected patterns.

set is usually smaller then the input set of graphs. MGs are displayed
as node-link diagrams using Sugyiama-style layout [42]. The selected
patterns are highlighted using convex hulls. The hulls are inspired by
the visualization of groups of nodes in graphs called bubble sets [11]
and groups of points in scatterplots [39, 44]. For consistency, the hulls
have the color assigned to the pattern in the detailed view.

The 3D structural view on the patterns shows the pattern as addi-
tional nodes and links within the protein structure. This view allows
the biologist to examine also structural closeness of the mutated amino
acids in the protein. It shows which part of the protein is affected by
the mutation pattern and whether this pattern is compact or spreads
across wide parts of the protein. 3D structures are visualized with
VMD [20], as it is the common tool used in biological analysis. We
extended the standard VMD view with the display of the found pat-
terns. Figure 13 shows the patterns within the 3D structure as red and
blue arrows between the corresponding amino acids.

I D30
D88

‘Quantity: 2 Vertices: 2

Fig. 13. Further exploration: For one or more selected patterns (left)
in the Detailed Pattern View the pattern location can be shown in the
Pattern Location View (right).

7 APPLICATION

‘We show the application of our tool to real world data as analyzed by
biologists. The biologists were able to detect important patterns within
mutation chain events of the HIV protease.

7.1 Motivation and Analytic Goal

The human immuno-deficiency virus 1 (HIV1) targets T helper cells
of the immune system. After infection, the virus evntually destroys
the target cells leading to the acquired immuno-deficiency syndrome
(AIDS) and subsequent infection with HIV and AIDS associated dis-
eases.

Modern therapies target a variety of essential HIV proteins such as
the reverse transcriptase and the HIV protease (HIVP). While HIVP
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inhibition does not prevent infection of T helper cells, it prevents the
formation of a functional virion and, in theory, should also stop HIV
from proliferating within the infected organism. This may not be suc-
cessful due to a high variability of HIV genes. These so-called vi-
ral quasi-species are capable of adapting to additional evolutionary
pressure induced by drugs which thus leads to the evolution of drug-
resistant viruses. This eventually increases the failure rate of a treat-
ment.

A large number of HIVP data are available for analysis. The anal-
ysis based on such wide data base can lead to robust evolutionary in-
sights. Especially, the analysis of patterns in the mutation chains can
reveal causally determined evolutionary relationships beyond simple
pairwise dependencies.

The new insights on mutation patterns could enable the design of
new combined drug therapies targeting a multitude of connected resid-
ual positions to further limit HIVs elusiveness against long-term drug
treatment.

7.2 Input Data

The input data are HIVP sequences. Each sequence has exactly 99
amino acids. The data were obtained from the HIV drug resistance
database [36]. It provides data on more than 65, 000 HIVP sequences.
The data is gained from both drug treated and untreated patients. As
data curation, we omitted sequences with non-canonical amino acids,
since they might indicate imprecise or wrong sequencing results, re-
sulting in 34, 747 sequences.

The data for the analysis in this use case was pre-processed in two
steps: first calculating the initial correlated mutation graph and then
extracting the mutation chains in form of mutation graphs (MGs) for
all amino acids in the protein.

As initial step, so-called correlated mutation graphs were con-
structed. We used the protocol by [4]. The number of minimal se-
quences present in any sub-alignment was set to 2. The frequency
threshold was set to Af = 0.15. We used unweighted graphs con-
sisting of edges the revealed p-values of 0.05 or less. We then cor-
rected for multiple-testing effects. Here, we decided to use the conser-
vative Bonferroni-correction which avoids problems with dependent
hypotheses on co-evolutionary signatures among the various higher-
order correlations present in molecular evolution [49]. The number
of tests was ny := Ny - Nq - N - (N — 1), where N is the number
of amino acid positions due to the lack of symmetry in amino acid
pairs (i,7) < (J,i); and Ny = 20 is the number of naturally occur-
ring of amino acid types. Thus, n; = 3, 880, 800. We have therefore
used an effective p-value threshold of 1072 /n; ~ 108 to construct
the resulting directed unweighted graph. It contained 246 vertices and
3,233 edges.

In the second step, we extracted the dataset of mutation graphs for
the visual pattern analysis. It was calculated from the initial corre-
lated mutation graph using mutation chain algorithm provided by the
biologists. We got a set of 246 mutation graphs (MGs). The graphs
had between 1 and 203 nodes, having from 0 to 610 edges each. This
graph data set serves as input for the analysis of patterns.

Graph computation used R [35] and the iGraph [12].

7.3 Use Case

Our pattern search algorithm found 101 patterns in the input mutation
graphs. The overview of all found patterns is shown in Figure 14(a).
The most prominent group of patters is composed fan-out patterns (68,
highlighted in dark green (T1). These fan-out patterns have varying
number of levels (see green cells in the heatmap in Figure 14(a)). Mu-
tation fan-out patterns with a larger number of levels can be seen as
more complex interaction cascades, which could contain information
on long ranging relationship networks.

Figure 14(a) shows many potentially relevant patterns, which
should be analyzed in detail (T2). Due to page limitation, we show
two prominent examples selected by the biologists.

First, the expert focuses on complex patterns as they reveal an inter-
play of multiple biologically relevant interactions. Figure 14(b) high-
lights the most prominent pattern in the top left corner (see the pattern
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Fig. 14. Use Case workflow. Starting with a summary of all found pat-
terns (a), selected pattern types are shown in the detailed pattern view
(b). The user then selects most interesting patterns for exploration of
their locations both in the 3D protein structure (c) and within their re-
spective mutation graphs (d).



(b) Graph pattern localization

Fig. 15. (a): Structural view of line pattern connecting position 88 to 30.
(b) Position of a fan out pattern within a mutation graph.

highlighted with an orange rectangle). This pattern is composed of a
fan-out and a line pattern. Interestingly this pattern occurs solely in
the middle of mutation graphs (T4), neither at the beginning nor at the
end of the mutation chain (see the orange histogram of occurrences on
the right of the image). This implies that this mutation pattern can be
thought as an evolutionary bottleneck for 2.85%, i.e. 7 out of 246, of
all mutation graphs (see the relative number of pattern’s occurences
shown in Fig. 14(b), top right).

Biologically, the complex pattern highlighted in Figure 14(d) de-
scribes the influence of the occurrence of glutamine at position 61.
This GIn61 is responsible for two different effects on three positions
in the HIV protease (positions 57, 65 and 72) (T3). Hereby the first
level influence on each of the three positions is both inductive and in-
hibitive. In detail, this means that at position 72 the occurrence of
the hydrophobic isoleucine is positively influenced whereas the polar
threonine is inhibited. Therefore, the polar uncharged Gln61 increases
hydrophobicity at this position.

At position 57, a quite different effect can be observed. Here, GIn61
increases the probability of arginine and reduces the emergence of ly-
sine. Since both arginine and lysine are positively charged, no change
in net surface charge and polarity arises. Nevertheless, arginine with
its guanidinium group can form more H-bonds than lysine and serves
to increase the stability of the protein via additional salt bridge in-
teractions [5] (T4). A similar effect can be observed at position 65
where the occurrence of the negatively charged glutamic acid is fa-
vored while also negatively charged aspartic acid can be observed less
frequent. The only difference between these two amino acids is the
length of the side chain. Furthermore, the bulkier side chain group of
glutamic acid has a slightly smaller pKa value than aspartic acid. This
could lead to altering responses to solvent interactions. Interestingly,
second level effects are induced by the Arg57 which in turn influences
position 61 by reducing the occurrence of serine and thus leading to
mutual dependencies on both sites.

Altogether, GIn61 influences residues in the cantilever region (po-

sition 65 and 72) and the flaps of HIVP (position 57) hence forming
an evolutionary pattern connecting these two regions. This region has
already been shown to be functionally involved in the opening and
closing of the flaps by the means of compression and extension [34]
(T4). More recently, this unique property of the exo region near GIn61
has been used for HIVP inhibitor design [9, 23], further emphasizing
the importance of understanding possible evolutionary dependencies.

The second biologically relevant example, is the most frequently
observed pattern (see the pattern highlighted with an orange rectan-
gle in Fig. 12). This pattern is observed in over 58% of all mutation
graphs (see Fig. 12 top right) (T2). A detailed view on 3D structure
in Figure 15(a) shows that asparagine at position 88 is located in an
a-helical structure. This residue exerts an inhibitory and an enhancing
evolutionary effect on position 30 (see Fig. 15) (T4). More exactly, the
probability to find aspartic acid is increased, while structurally highly
similar asparagine is disfavored. Due to the change in net charge at
this site, the flexibility of the loop region connecting the HIVP active
site (Asp25 — Thr26 — Gly27) with the subsequent 3-sheet could be
directly affected.

The above described patterns — the most frequent fan-out and com-
plex patterns — serve as selected examples from the multitude of iden-
tified patterns. More patterns, which could not be shown due to space
limitations could lead to further insights into how and why specific
drug resistances arise, which drug interactions can be easily avoided
by the HIVP or on general evolutionary dynamics in HIVP. In this
way, our approach may enable researchers to dissect evolutionary de-
pendencies in regions with high mutual information [17] and study
future drug therapy approaches.

8 CONCLUSIONS AND FUTURE WORK

We presented a new approach for the visual analysis of patterns in mu-
tation graphs, which represent mutation chain reactions of amino acids
in proteins. Many such graphs result from modifications of individual
amino acids, e.g., through drug treatment. The finding and exploration
of often occurring patterns in the mutation graphs is an important part
of pharmacological drug development or evolutionary research.

Our approach combines an adapted algorithm for pattern search in
multiple mutation graphs and an interactive interface for pattern ex-
ploration in several linked views. As the number of patterns can be
large, we presented a novel overview of the number of found patterns
grouped by structure. In this view, the user can select interesting pat-
tern types for their detailed analysis and for the exploration of their
locations in the mutation graphs and in 3D protein structures.

We have evaluated our system on real world data of HIV protease
mutations. The results show interesting insights into mutations of this
protein. These insights initiate future biological investigations.

In the future, we would like to extend our approach in several ways.
The biologists would be interested in new ways of comparing pat-
terns across several datasets. It would be also interesting to include
additional biological meta-information (e.g., charge, secondary struc-
ture information, positions affected by drug application) in the anal-
ysis. From visualization point of view, we would like to develop an
extended pattern-centric graph layout, which emphasizes the patterns
found in acyclic directed graphs. Our approach could be applied to
further application areas, which analyze chain reactions in networks,
such as information cascades or disease spreading.
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