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ABSTRACT
This paper describes a visual analytics method for visual-
izing the effects of multiple anomaly detection models, ex-
ploring the complex model space of a specific type of de-
tection method, namely Query with Conditional Attributes
(QCAT), and facilitating the construction of composite mod-
els using multiple QCATs. We have developed a proto-
type system that features a browser-based interface, and
database-driven back end. We tested the system using the
“Inside Threats Dataset” provided by CMU.
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1. INTRODUCTION
Anomaly detection and visualization has been a vigorous
research topic in visual analytics, offering a crucial tech-
nique to many applications, such as cybersecurity, image
processing, financial management, text analysis, and so on
[5]. There is a very large collection of works on anomaly de-
tection, and for details readers may consult several surveys
(e.g., [5, 6, 14]). One family of anomaly detection methods
uses information-theoretic measures to determine if a data
record x is anomalous in relation to a dataset X such that
x ∈ X. Because this technique is a direct implementation of
the probabilistic definition of anomaly, the measured values
of data records represent the ground truth of the frequency
of their occurrence in the corresponding dataset. As Chan-
dola et al. pointed out, this family of techniques have a
number of advantages, including no requirement for super-
vised learning, no assumption about statistical distribution
and no influence from human perceptual biases [5].

However, it also has some shortcomings. The most criti-
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cal shortcoming is that their performance “is highly depen-
dent on the choice of the information theoretic measure”
[5]. Given a multivariate dataset, there can be numerous
information-theoretic metrics, each focusing on a subset of
variables. For example, the technique Query with Condi-
tional ATtributes (QCAT ), which was first deployed for de-
tecting anomalies in the ASA flight dataset [11], features
such a challenge. One can define a variety of metrics (re-
ferred to as QCATs) for detecting different types of anoma-
lies, e.g., anomalous delay patterns among airports, anoma-
lous patterns in weekends, anomalous patterns in relation
to Taxi-in and out, and so forth. In fact, there is nothing
fundamentally wrong to define different anomaly detection
QCATs. The challenge is for a user to know if a specific
QCAT is effective in comparison with others, or to decide
when several QCATs should be deployed jointly.

In this paper, we propose the use of a parallel coordinates
visualization to support users’ in the creation of QCATs,
selecting one or more appropriate QCATs for detecting a
specific type of anomaly and observing their performance.
This forms an effective visual analytics loop, where QCATs
are analytical models, and parallel coordinates visualization
serves as a visual interface.

In the remainder of this paper, we first give a brief overview
of anomaly detection in Section 2, highlighting the related
works on anomaly visualization. We then describe the math-
ematical concept of a QCAT in Section 3, and our implemen-
tation of a visual analytics prototype for supporting QCATs
in Section 4. This is followed by a discussion of our ex-
perience in applying multiple QCATs to the CMU CERT
dataset [4] in Section 5. We offer our concluding remarks in
Section 6.

2. RELATED WORK
The earliest work on anomaly detection is often attributed
to Edgeworth’s paper in 1887 [8]. Since then, thousands of
papers have been published, including several important sur-
veys (e.g., [5, 6, 14]). The subject overlaps significantly with
outlier detection and novelty detection, though many schol-
ars prefer to differentiate them. Techniques for anomaly
detection fall into several categories [5]:

• Classification-based Methods – This family of techniques
rely on machine learning to train a detection model
(also referred to as a classifier). Machine learning
frameworks that have been used for anomaly detection



include neural networks, Bayesian networks, support
vector machines, and rule-based reasoning.

• Nearest Neighbor-based Methods – This family of tech-
niques rely on one or a few distance or similarity met-
rics that measure the proximity among data points.
Such a technique typically judges whether or not a
data point is anomalous based on its distance to its
kth nearest neighbor, or based on the relative density
of its neighboring data points.

• Clustering-based Methods – This family of techniques
rely on a clustering algorithm to group data points
based on a distance or similarity metric. Data points
that do not belong to any clusters of an appropriate
size are considered to be anomalies.

• Statistical Methods – This family of techniques rely on
a statistical model that encodes the underlying distri-
bution of data points. Data points that occur in the
low probability region of the model are considered to
be anomalies. Machine learning is often used to train
the statistical model.

• Information-theoretic Methods – This family of tech-
niques rely on one or a few information-theoretic met-
rics to analyze the information content of a data point
in relation to a data set. The more information con-
tent a data point contains, the more anomalous it is.

• Spectral Methods – This family of techniques rely on
the discovery of a lower dimensional embedding of the
original dataset. In such an embedding, normal and
anomalous data points appear to be significantly dif-
ferent, hence easily detectable using a simple classifier.
The commonly used techniques for discovering such
an embedding include Principal Component Analysis
(PCA), Compact Matrix Decomposition (CMD) and
other dimensionality reduction techniques.

The work featured in this paper belongs to the family of
information-theoretic methods. Chandola et al. provided
a detailed comparison of this family and others [5]. In
short, information-theoretic methods do not require anno-
tated training datasets and can be used in an unsupervized
situation. They make no assumption about statistical dis-
tribution, or semantically sensitive distance metrics and pa-
rameters (such as weight). In general, they are not influ-
enced by human perceptual biases through annotation, dis-
tance metrics and weighting functions. As stated in [5], “A
key challenge of such techniques is to find the optimal size of
the substructure that would result in detecting anomalies.”
Part of this work is to address this challenge by allowing mul-
tiple QCATs, each representing a different “substructure”.

Information-theoretic methods have been used for anomaly
detection in a variety of datasets, including: multivariate
sequence data (anonymous ftp records, shuttle-landing data,
echocardiogram data) [2], time series data [10], spatial data
(criminal incidents records) [12], text data [1], graph data
[13]; network traffic data [19]; imagery data [16] and so on.

In recent years, more research effort has been channeled to-
wards anomaly visualization. Much of the focus has been

placed on depicting anomaly detection results in conjunc-
tion with one or a few visual representations. The visual
representations features in the existing works on anomaly
visualization include: radial tree layout [17], network vi-
sualization [17], bar charts [3], geospatial visualization [18,
15] and pixel-based visualization [9]. In addition, numer-
ous papers in anomaly detection featured time series plots
and scatter plots. In this work, we use parallel coordinates
plots to visualize multivariate data records. In addition to
depicting anomalies detected by each QCAT, we map the
detection results of multiple QCATs to different axes, facili-
tating interactive exploration of different QCAT models and
creation of composite QCATs.

3. QCAT MEASUREMENT

3.1 Introductory Overview
A QCAT, which stands for a Query with Conditional AT-
tributes, is a metric that measures the surprisal level of a
data record in relation to other data records in the same
dataset. It is based on information-theoretic measurement
about information content of a data record, that is, the rarer
the record occurs, the more surprise it brings when it occurs,
and the more information content it carries [7].

Given an n-dimensional multivariate dataset, D, if the prob-
ability of occurrence of every record R ∈ D is known, it is
trivial to obtain the surprisal level of R. One can simply
make a judgement based on the probability p(R) itself. Al-
ternatively one can use the information-theoretic measure-
ment of self-information, I(R) = − log2(p(R)), which has a
unit of bit. However, in practice, it is rare for most people,
if not all, to know the probability of a record describing a
complex event. For example, on a sunny day, at 12:00noon,
a female bus driver, in Oxford, drove a No.2 bus, passing
Magdalen Bridge, in the company of 14 passengers (3 elderly
ladies, 2 elderly gentlemen, 3 female students, 1 male stu-
dent, and 1 middle-age lady with 2 boys and 2 girls). It is
obvious that such a record, R, is most likely to be unique
among a large collection of records of this nature, i.e., D.

There are many different questions that could be posed in
this scenario. Each would lead to a different estimation of
probability and a different assessment of normality. For ex-
ample, how common is to have a female bus driver in Ox-
ford? How common is it to have four students on a No.2 bus
at 12:00noon? How common is it to have sunny weather at
Oxford around noon? How common is for a No.2 bus to pass
Magdalen Bridge with 14 passengers?

It is not difficult for one to observe that each question con-
siders only a subset of attributes in the record. We therefore
need to query a subset of variables in D. One can also ob-
serve that many questions consider a specific condition, such
as “in Oxford”, “around noon”. Hence, it is helpful to de-
fine a specific value, or value range for some variables, when
estimating the probability distribution of other variables in
the subset. This is what is meant by the term Query with
Conditional Attributes (QCAT ). The conditional attributes
define the context of a query. The variables that are used to
estimate the probability are variants of normality (VONs).

The QCAT measurement for anomaly detection is an information-



theoretic measurement, which will be detailed in the follow-
ing subsection. Such a measurement is not a traditional
detection algorithm typically derived from a machine learn-
ing process. With an information-theoretic measurement,
anomalies are defined mathematically based on the proba-
bility of events captured by the historical data. Hence in
relation to this definition of normality vs. anomaly, the
probabilistic ranking of events derived from the measure-
ment is always correct. On the other hand, most machine
learning methods use a different definition, where an event
is anomalous if it is subjectively annotated as an anomaly.
The goal of a learned algorithm is thereby to mimic human
perception of an anomaly. For a qualitative comparison,
readers are referred to the survey by Chandola et al. [5],
where a few other approaches are also considered.

3.2 Definitions
Let A = {a1,a2, . . . ,an} be a set of n attributes (or dimen-
sions) in a dataset. Each data record, R = {v1, v2, . . . , vn}
is an n-tuple, where vi represents a valid value of attribute
ai. Here the term “attribute” is interchangeable with “vari-
able”. We use the former to help differentiate ai from vi.
In a practical scenario, an attribute, ai, may have a very
large or infinite number of valid values as the value may be
numerical with an unknown range, or a floating point range.
Therefore, a common strategy for estimating a probability
distribution is to divide a broad value range into an appro-
priate number of bins. For example, the value range of a
timestamp attribute can be divided into bins based on ev-
ery five minutes in an hour (12 bins), every hour in a day
(24 bins), every day in a week (7 bins), and so on. The ap-
propriate selection of the number of bins and the bin width
not only facilitates an accurate estimation of the probabil-
ity distribution, but also captures the normality vs. anomaly
effectively. In the following discussion, the probability dis-
tribution of an attribute, p(ai), is assumed to be estimated
in conjunction with an appropriate binning scheme.

The attribute set, A, is divided into three mutually-exclusive
subsets, Acnd for all Conditional Attributes, Avon for all
Variants of Normality (VONs), and Ains for the rest of at-
tributes in A, i.e., Ains = A− (Acnd∪Avon). For a specific
query defined by a configuration (Acnd,Avon), Ains are at-
tributes considered to be “insignificant” for this query.

As anomalies are context-sensitive, Acnd defines the context
of a type of anomaly as a particular condition, such that all
attributes in Acnd are associated with specific values, with
respect to their defined bins. For example, if an attribute ak

represents the dates of a user logging into a system, we may
divide a 24 month period into 7 bins, each representing a
day in a week. When ak is chosen as a conditional attribute,
we can estimate the probability distribution of attributes in
Avon for a specific condition, such as Mondays, or Weekends
(Saturdays and Sundays).

The attributes in Avon play the primary role in determining
an anomaly score for each record that has met the condition
defined by Acnd. Since attributes in Ains are considered
to have an “insignificant” influence on a query, they are ex-
cluded from the computation. Such a decision is usually
made based on some known factors or logical reasoning by
the user. It is obvious that decisions of this nature can be

unreliable. This leads to the need for selecting most appro-
priate queries, or QCATs, which is a long standing challenge
in the family of information-theoretic methods for anomaly
detection [5]. The objective of this work is to use a visual
analytics approach to address this challenge.

A combined configuration of Acnd and Avon in relation to
the overall attribute set A subsequently determines how
anomaly scores are estimated for each record. Given a record
R, we first retrieve all records that have the same condi-
tional attribute values as R. Let this collection of records
be R1, R2, . . . , RW , where W is usually a very large number.
We now consider only the variants of normality defined by
Avon = {x1,x2, . . . ,xj , . . . ,xs}. In conjunction with a bin-
ning scheme, each attribute, xj , may take valid values that
are mapped to a set of tj bins Bj = {bj,1, bj,2, . . . , bj,tj}. For
the s attributes in Avon, there are a total of: t1×t2× . . .×ts
different combinations of bins across different attributes.
These combinations collectively define an alphabet Z, and
each unique combination is a letter z ∈ Z.

The selection of an appropriate binning scheme for each at-
tribute xj is essential for ensuring that the total number of
letters |Z| is smaller than the total number of records W .
Ideally, we have |Z| << W . We can, then, estimate the
probability of each letter z ∈ Z based on the collection of
records R1, R2, . . . , RW , resulting in a probability distribu-
tion function p(z). For the given record R, we obtain its
probability p(R) by mapping it to its corresponding letter
in Z. The level of self-information is I(R) = − log2(p(R)),
which is also called surprisal. We use this surprisal value
as the anomaly score for the given record R. The entropy
of the alphabet Z, i.e., H(Z), indicates the uncertainty of
the data space. When H(Z) is close to the maximum en-
tropy log2(|Z|), the difference between two surprisal values
is likely to be less meaningful. When it is much lower than
the maximum entropy, log2(|Z|), the difference is usually
more meaningful.

3.3 Multiple QCATs
It is necessary to emphasize that the anomaly score obtained
for R reflects only the type of anomalies encoded by the spe-
cific query configuration (Acnd,Avon). Conveniently and
metaphorically, we call each configuration a QCAT (a qu
cat). As mentioned above, a user may experiment with dif-
ferent QCATs in order to find one or a few effective query
configurations for anomaly detection. An immediate need
for conducting such an experimental process is the ability
to observe the performance of each individual QCAT, as
well as to compare different QCATs. Since the information-
theoretic measurements discussed above, namely the anomaly
scores and their uncertainty, all use“bits”as their units, they
are not particularly intuitive for ordinary users.

In order to support the user interface to be detailed in Sec-
tion 4, we introduced two more intuitive measurements that
can be used to compare different QCATs. Since each QCAT
has a different alphabet Z, a specific surprisal value (e.g.,
5.24 bits) for a record R can mean a normality in one al-
phabet, but an anomaly in another. We thus introduces a
normalized value as an alternative, namely percentile. Given
a QCAT that obtains W records, and computes a surprisal
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Figure 1: The QCAT Analytics Environment is com-
prised of a web client and a QCAT server. Interac-
tion between the two occurs via a RESTful API.

value I(R) for a record R, we map I(R) to its percentile as:

ψ(R) = 100L/W

where L is the number of records that have the same sur-
prisal value as, or a lower surprisal value than, I(R). We also
normalize the uncertainty measurement as H(Z)/ log2(|Z|),
where H(Z) is the entropy of the alphabet Z and log2(|Z|)
is its maximum entropy.

4. THE QCAT ANALYTICS SYSTEM
To support QCAT creation, result interrogation and anal-
ysis, we have developed what we call the QCAT analytics
environment. This environment, illustrated in Figure 1, is
comprised of a web-based visual analytics system built on
top of a QCAT server. In this section we describe both of
these components and how they interact.

4.1 Visual Analytics User Interface
The purpose of the visual analytics system is two-fold: 1)
to support the design of QCATs; and 2) to enable the inter-
rogation of results obtained from the QCAT server. Both
purposes are interlinked since when creating a QCAT the
user would ideally like to see the effect of changing condi-
tional variables (with their ranges and bin sizes) and VONs.
This refinement loop constitutes the visual analytics com-
ponent of our system.

Figure 2 shows a number of screenshots of our user inter-
face and the functionalities available to support the purposes
outlined above. The main interface (central to the figure)
is divided in to three panels: A) the result view panel fea-
turing a parallel coordinates view of the data; B) a QCAT
library pane to access all available QCATs and create new
QCATs in the database; and C) a QCAT builder interface
that provides the QCAT editing environment.

There are also four additional panels to support: composi-
tion of results from multiple QCATs (D); selection of data
sets to perform the analyses on (E); editing QCAT glyphs;
and viewing detailed table views of records selected in the
parallel coordinate plot. In the remainder of this section we
describe in more detail the features available for designing a
QCAT and exploring QCAT results.

Designing a QCAT. As defined above, a QCAT consists
of two sets of attributes: conditional attributes; and vari-

ants of normality. The QCAT design interface as shown in
Figure 2 C presents a simple way to define a QCAT with
conditional attributes and their range, and the VONs. The
user can give the QCAT a name and a description, and can
customize a QCAT glyph to enable visual identification of a
QCAT. To support the iterative process present in analyz-
ing multiple QCATs, the interface allows users to observe
in real time how a defined QCAT performs against their
data via the results panel described below. The underlying
database also supports versioning of the QCATs, so users
can retrieve previously defined QCATs and view how they
perform against newer data.

Exploring the QCAT Results. QCATs results are dis-
played via the parallel coordinates plot (Figure 2 A) with
more detailed numerical viewed by a supplementary table
view of the data. Data can also be filtered by any of the
dimensions sent from the QCAT server described in Section
4.2. This provides the means to increase responsiveness of
the application when the full result set is hundred of thou-
sands of records in size. The interactive parallel coordinates
plot provides a single view of all the data with support for
brushing (selecting ranges of one or more dimensions) and
axis rearrangement. The default color scheme highlights in
orange those records where one or more QCATs have de-
tected an anomaly. Rules determining whether or not a
record should be highlighted are configurable via the inter-
face shown in Figure 2 D where users can: compose a rule
from one or more QCATs; set the entropy score percentile at
which records will be highlighted; and use logical AND/OR
operations to perform intersections or joins of results from
multiple QCATs.

4.2 QCAT Server
The client can query a data source via HTTP GET requests
to the server. The client can also execute QCATs on the
dataset to obtain the average entropy/surprisal discovered,
and results for each record in the form of a list of surprisal
values to insert into the parallel coordinates plot.

Our architecture is shown in Figure 1. Web-based clients
(such as the one we have developed shown in Figure 2) con-
nect to the QCAT server via asynchronous GET requests.
The requests are served via a Python Flask instance con-
nected via a Cython layer to our QCAT processing codebase
libqcat, developed in C++ for efficiency to ensure that QCAT
evaluation does not result in unworkable delays on the front
end. The API is designed to be stateless, with parameters
fed via a query string in the GET requests. Examples of
API requests include:

• /datatables: provides a list of data sources (tables/views)
available in the system;

• /datadimensions: given a data source name, pro-
vides information on the data source, such as the num-
ber, datatypes and statistics (such as range, mean, etc)
of the dimensions, as well as request a number or all
of the data rows;

• /datarows: given a data table, provides the associ-
ated data records. Results may be restricted by date
and limited to a subset of rows;
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Figure 2: The User Interface for QCAT Builder consists of three primary panes: A) - the result view panel;
B) - QCAT library panel; C) - the QCAT Builder panel; D) interface to support the composition of multiple
QCATs enabling highlight of records only when all query conditions have been met; and E) a data selection
window for selection of various data views.

• /qcatsummary: given the name of a data source and
a QCAT definition, executes the QCAT and provides
a summary of the QCAT execution such as the mean
entropy/surprisal, number of rows matching the con-
ditional, and the size of the alphabet.

• /qcatsurprisals: as above, but also provides a list of
tuples (id, surprisal) matching the data provided by
/datarows to surprisal values of this QCAT execution.

The QCAT server is standalone, and therefore runs inde-
pendently of the aforementioned visual analytics front end.
This design decision enables execution of QCATs via other
agents that can provide notifications in the form of emails for
example when anomalies have been detected by the QCAT
processing codebase.

5. CASE STUDIES
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Figure 3: Scenario 1 - includes scenarios where a user begins to work late having never done so before and
also inserts devices. We use two QCATs to capture this scenario, one for late night working, the other to
detect device insertion outside of working hours.

To validate both the effectiveness and scalability of our ap-
proach in the security domain, we tested our system using
the synthetic datasets from CMU CERT [4], which were
created as a resource to test the efficacy of detection algo-
rithms. These datasets contain insider threat events, and
have documented ground truth. Using such a public dataset
also allows for reproducibility of the results presented in this
section.

Our test data, imported from the CMU CERT datasets (r1,
r4.2 and r5.2), contain information about users (name, user
id, email address and job role); login/logoff events (time, user-
name, machine id and event type (login or logoff)); email
activity (time, user, machine id, to (including cc, bcc), from,
size, number of attachments, and content); web activity (time,
user id, machine id, and url); and device insertion/removal
(time, user id, machine id, and event type (insert or remove)).
This provides a total of 2.6 million login/logout events, 1.24

million device insertion/removal events, 3.5 million web events,
and 20 million emails.

Amongst this data are events related to five scenarios rep-
resenting common forms of insider threats within an orga-
nization. Each scenario has between 10 and 30 synthetic
“insiders”. Here we detail the QCATs being used to find
insiders in a selection of those scenarios.

5.1 Scenario 1
A user who had no previous history of using removable drives
and who rarely worked after hours begins to do so, taking
the data and sending it to media sites with malicious intent.

Figure 4 illustrates this scenario where two QCATs have
been used to capture: (a) anomalous working hours (Late
Working) using the logoff hour as the conditional variable
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Figure 4: Scenario 2 - the insiders begin to use their thumb drive more often than usual with the intention
of taking files with them to their new job with a competitor.

and the userid as the VON; and (b) anomalous device in-
sertion outside of working hours (Devices) with logon hour
and day of week as conditional variables and devices as the
VON. We compose the results of both QCATs to highlight
records with anomalous working hours (as shown in A), and
device insertions (as shown in B). Selection of the top re-
sults in late night working gives rise to the output in Fig-
ure 4 C, where we can see a detailed view of the anomalous
records. Through correlating the results displayed here with
the ground truth available in the CMU CERT dataset, we
show that our approach found all five “insiders” during the
month of interest (October 2010). Across the entirety of the
dataset, we were able to identify 100% of insiders.

5.2 Scenario 2
An employee began searching for a new job, and eventually
found a position with a competitor. Before leaving the cur-
rent organization, the employee started using a thumb drive
much more than previously to steal data.

This particular case study tests the capability of the QCAT
method to detect gradual changes of behaviour. Figure 4 A
shows an example with three QCATs, devices, emails, and
late working. Because the three QCATs fail to detect any
anomalies collectively at the set threshold (95th percentile),
we interactively explore each QCAT. In Figure 4 B we choose
to focus on records that the device QCAT finds anomalous.
These records are then highlighted as orange lines. To ex-
amine how the anomalies change over time, Figure 4 C and
D show how the presence of anomalous records has changed
over time by brushing areas of the time axis on the left of
the plot. Through correlating the anomalous records high-

lighted in orange (as shown in E) with the ground truth in
the CERT dataset, each of these records is shown to corre-
spond to a known insider. Again, together with interactive
visualization, this QCAT was able to detect 100% of anoma-
lies for this scenario.

5.3 Scenario 3
A system administrator became disgruntled. He downloaded
key logging software and installed this on his supervisor’s
machine via a USB drive. The following day, he used the
information collected to log in to his supervisors machine
followed by sending an alarming email to many in the orga-
nization, causing panic.

In the CMU CERT dataset, there are ten insiders spread
throughout the dataset to represent this scenario. One such
example is given by an insider with user id BBS009 , who acts
on machine PC-5866 which belongs to her boss FAW0032 .
BBS009 proceeds to install key logging software through the
insertion of a USB thumb drive. Figure 5 shows how our
solution was able to identify anomalous activity on the part
of logging in to someone else’s machine using just one QCAT.
(Note that earlier examples showed that one QCAT is often
not sufficient.)

6. CONCLUSION
In this paper, we have demonstrated that a visual ana-
lytics approach can aid an anomaly detection method (i.e.
QCATs) that would exhibit some serious shortcomings if it
were to operate on its own. As the design space for QCATs
in relation to a high-dimensional multivariate dataset is huge,
the visual analytics approach enables a user to create differ-
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Figure 5: Scenario 3 a user, BBS0039 has become disgruntled, downloads a key logger and installs it on their
bosses machine. The User to machine QCAT is built with the userid column as the conditional variable and
the machineid as the VON.

ent QCATs, and observe and compare their performance.
When individual or composite QCATs produce false posi-
tives or false negatives, users can interactively explore the
data space, by following the hints provided by QCATs, as
well as utilizing their own background knowledge, visualiza-
tion experience and sense-making skills. Though we have
made a step forward to address the challenge of the “choice
of the information-theoretic measure” [5], this challenge is
not yet diminishing. We will continue this work to make
further advances in this direction.

7. REFERENCES
[1] S. Ando. Clustering needles in a haystack: An

information theoretic analysis of minority and outlier
detection. Data Mining, 2007. ICDM 2007. Seventh
IEEE International Conference on, pages 13–22, 2007.

[2] A. Arning, R. Agrawal, and P. Raghavan. A linear
method for deviation detection in large databases.
Proc. ACM SIGKDD International Conference of
Knowledge Discovery and Data Mining., pages
164–169, 1996.

[3] M. Celenk, T. Conley, J. Willis, and J. Graham.
Predictive network anomaly detection and
visualization. Information Forensics and Security,
IEEE Transactions on, 5(2):288–299, 2010.

[4] CERT. Insider threat tools,
http://www.cert.org/insider-threat/tools/index.cfm.

[5] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys,
41(3):15:1–15:58, July 2009.

[6] V. Chandola, A. Banerjee, and V. Kumar. Anomaly
detection for discrete sequences: A survey. IEEE
Transactions on Knowledge and Data Engineering,
24(5):823–839, 2012.

[7] T. Cover and J. Thomas. Elements of Information
Theory. Wiley, 1991.

[8] F. Edgeworth. Xli. on discordant observations. The
London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 23(143):364–375,
1887.

[9] A. Frei and M. Rennhard. Histogram matrix: Log file
visualization for anomaly detection. In Availability,
Reliability and Security, 2008. ARES 08. Third

International Conference on, pages 610–617. IEEE,
2008.

[10] E. Keogh, S. Lonardi, and B.-c. Chiu. Finding
surprising patterns in a time series database in linear
time and space. Proc. ACM SIGKDD International
Conference of Knowledge Discovery and Data Mining.,
pages 550–556, 2002.

[11] S. Ko, S. Afzal, S. Walton, Y. Yang, J. Chae,
A. Malik, Y. Jang, M. Chen, and D. Ebert. Analyzing
high-dimensional multivariate network links with
integrated anomaly detection, highlighting and
exploration. In Proc. IEEE VAST, 2014.

[12] S. Lin and D. E. Brown. An outlier-based data
association method for linking criminal incidents.
Decision Support Systems, 41(3):604–615, 2006.

[13] C. C. Noble and D. J. Cook. Graph-based anomaly
detection. Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 631–636, 2003.

[14] M. A. Rassam, A. Zainal, and M. A. Maarof.
Advancements of data anomaly detection research in
wireless sensor networks: A survey and open issues.
Sensors, 13:10087–10122, 2013.

[15] M. Riveiro. Evaluation of normal model visualization
for anomaly detection in maritime traffic. 2014.

[16] S. M. Schweizer and J. M. Moura. Hyperspectral
imagery: Clutter adaptation in anomaly detection.
Information Theory, IEEE Transactions on,
46(5):1855–1871, 2000.

[17] L. Shi, Q. Liao, Y. He, R. Li, A. Striegel, and Z. Su.
Save: Sensor anomaly visualization engine. In Visual
Analytics Science and Technology (VAST), 2011 IEEE
Conference on, pages 201–210. IEEE, 2011.

[18] D. Thom, H. Bosch, S. Koch, M. Worner, and T. Ertl.
Spatiotemporal anomaly detection through visual
analysis of geolocated twitter messages. In Pacific
Visualization Symposium (PacificVis), 2012 IEEE,
pages 41–48. IEEE, 2012.

[19] F. Xie and L. Xie. Using information theory to
measure call site information of system call in
anomaly detection. Communication Technology
(ICCT), 2013 15th IEEE International Conference on,
pages 6–10, 2013.


