
An Incremental Layout Method
for Visualizing Online Dynamic Graphs

Tarik Crnovrsanin, Jacqueline Chu, and Kwan-Liu Ma

University of California, Davis, USA
{tecrnovr,sjchu}@ucdavis.edu,ma@cs.ucdavis.edu

Abstract. Graphs provide a visual means for examining relation data and force-
directed methods are often used to lay out graphs for viewing. Making sense of a
dynamic graph as it evolves over time is challenging, and previous force-directed
methods were designed for static graphs. In this paper, we present an incremental
version of a multilevel multi-pole layout method with a refinement scheme incor-
porated, which enables us to visualize online dynamic networks while maintain-
ing a mental map of the graph structure. We demonstrate the effectiveness of our
method and compare it to previous methods using several network data sets.

Keywords: · Dynamic graphs · Streaming data · Graph layout

1 Introduction

In many fields of study, from biology to chemistry to sociology, software engineering
and cyber security, an essential task is to identify and understand relationships of in-
terest among different entities. Graphs in the form of nodes and links are commonly
used to represent such relations. Graph drawing is an indispensable tool for visually
studying the relationships. Many techniques have been introduced for aesthetically and
efficiently laying out static graphs [11, 13, 14, 16, 17], but a large class of real-world
applications involve graphs that change over time [8].

Visualizing dynamic graphs is often done by animating over the sequence of graphs [3,
9, 10, 22] or by displaying selected ones side-by-side as small multiples [25]. Finding
the best way to visualize dynamic graphs remains a challenging research topic. When
laying out dynamic graphs for visual analysis, the primary goal is to ensure the stability
of the layout [5, 10, 15, 18] and preserve the mental map [1, 21–23].

Most previous dynamic graph algorithms address the problem of laying out offline
graphs consisting of the entire sequence of graphs. With prior knowledge of the com-
plete time sequence, we can best optimize the layout for animation and specific analysis
goals [4, 8, 9, 19]. For online, real-time monitoring or analysis applications, however,
the graph is constantly updated and how the graph might change over time cannot be
predicted. Making optimal layouts for such evolving graphs is an even more challenging
problem, which has received limited attention in existing research [6, 10, 12, 19]. One
reason is that online dynamic graph data were not readily available, but the situation
has begun to change with the rapid growth of mobile, online, and real-time monitoring
applications. Consequently, demands for the ability to understand online dynamic graph
data have arisen in various fields.



Fig. 1: An undesirable limitation. A graph has many disconnected components (a), and a
node is introduced linking two components together (b). One layout method [10] allows
the new node (in orange) and its neighbors to move after the new node is added. If these
nodes cannot reach their ideal position in a single time step, they are affixed to the same
positions (c) until new nodes or edges are later introduced into the same neighborhood.

We have examined previous online dynamic graph layout methods and found they
have some undesirable limitations in layout quality or the connectivity of the graph.
Some are too expensive to use for real-time applications. In order to speed up the pro-
cess of laying out an online dynamic graph, a commonly employed approach is to an-
chor large portions of the graph and allow only a small subset of the graph to move;
nevertheless, this speedup comes with several tradeoffs. One tradeoff is that when a new
node or an edge is introduced, only that node and its neighbors are allowed to move at
that instance. In most cases, nodes are placed near their ideal spots. If two disconnected
components merge, the nodes usually cannot reach their ideal spots at once, as depicted
in Figure 1. In addition, linking disconnected graphs may lead to edge crossings. Parts
of the graph would stay in suboptimal positions, unless new nodes or edges are added
to the same neighborhood to allow the layout algorithm to fix this problem.

In this paper, we present an incremental version of the multilevel multi-pole layout
method that is suitable for visualizing online dynamic graphs. Our work makes the
following contributions to online dynamic graph drawing:

– The incremental layout method reduces the computation cost while best character-
izing inherent network structure and maintaining graph readability.

– Our refinement technique reduces edge crossings and long edges by using the
nodes’ energy to determine correct placement.

– The refinement technique can be applied independently or in tandem with an exist-
ing force-directed layout method.

– The layout is fast because our implementation for both the layout and refinement
calculations are GPU-accelerated.

We evaluated our methods using several dynamic graph data sets, including ones from
real-world online applications, and compared the layouts with those produced by previ-
ous methods. The test results demonstrate the effectiveness and usability of our method.

2 Related Work

Online dynamic graphs are series of graphs in which time steps are not known ahead of
time. Lee et al. [19] was one of the earliest to work with online graphs. The algorithm



preserves the mental map while generating aesthetically pleasing graphs. The drawback
is that the algorithm is slow, recalculating the full layout at each time step. Brandes and
Wagner [6] instead used Bayesian decision theory to generate the graph. Their work
characterizes the tradeoff between dynamic stability and local quality using conditional
probabilities. Frishman and Tal [10] created a novel force-directed algorithm that can
handle large graphs. Their GPU implementation provides a 17 times speedup over the
CPU version. Gorochowski et al. [12] used the age of the node to stabilize the graph.
The age was calculated based on when the node appeared and how much movement it
saw through its life. Che et al. [7] proposed a novel layout algorithm that enforces graph
component shapes by using Laplacian constrained distance embedding. However, the
Gorochowski et al. and Frishman and Tal algorithms do not address the disconnected
component problem mentioned in the introduction.

Our layout method addresses this problem by using a novel refinement technique
that gradually alleviates areas of high energy. Energy is defined as the amount of force
applied to a node. In Section 4, our evaluation shows that our method produces more
aesthetic graphs at the cost of more movement in the graph. This movement is necessary
to reduce long edges and edge crossings that occur.

3 An Incremental Algorithm

Our incremental algorithm is a modified version of FM3, which is a fast, multlievel,
multi-pole, force-directed layout method. What makes FM3 fast is that it does not calcu-
late all the repulsion forces, which is the most expensive operation of any force-directed
calculation. For a single time step, given the finest level of the graph G = (V,E) = G0,
FM3 reduces computation by partitioning and collapsing G0 until reaching a prescribed
number of nodes. This subset of nodes represents the coarsest level, K. A force calcu-
lation is applied to this graph GK , where the resulting node positions are used as the
initial layout for the next finer graph, GK−1. These steps are repeated until the origi-
nal graph G0 is drawn. More details of FM3 can be found in Godiyal [11], which our
GPU-accelerated implementation is based on.

FM3 is not designed for online dynamic graphs drawing. To make it incremental,
we need to:

1. Include an initial layout construction step
2. Add a merging step, which includes placing new nodes and selecting nodes to move
3. Modify the multilevel calculation step
4. Pick a specific force model for the force calculation step
5. Add an animation step for smooth transition of the layout rendering

We do not modify the multi-pole calculation step. We describe each of these five steps
in more detail below.

Initial Layout Construction: For the initial layout, L0, we use standard FM3 layout
with a degree metric for the selection of the super nodes, which is described in the
Multilevel Calculation section.
Merging: This stage attempts to place new nodes at their ideal positions by using af-
fixed nodes from the previous layout. Initial node placement is imperative because error



(a) (b) (c) (d)

Fig. 2: The figure shows how our algorithm assigns positions to new nodes. A dashed
node and edge indicate a new node and edge, respectively. Nodes colored in orange
represent nodes that are flagged to move by our algorithm. (a) A node with no edges
is placed randomly inside the bounding box of the graph. (b) A node connected to a
positioned node is placed at a desired length, dl, from the positioned node. (c) A node
connected to at least two positioned nodes is placed at the centroid of the position nodes.
(d) When an edge is added or removed between two positioned nodes, our algorithm
flags both nodes to move.

is introduced when previously positioned nodes are at their suboptimal positions. This
error propagates across layouts, making it difficult to correct in subsequent time steps.

Our approach minimizes this error by assigning coordinates to new nodes in the
following manner. Positioned nodes from Li−1 are copied over to Li. If a new node v
is not connected to any other positioned node, v is placed in a random position within
the bounds of the graph, as shown in Figure 2a. If v is connected to one positioned
node u, v is placed randomly around u at a distance dl. dl is the desired length between
two connected nodes in our spring-based energy model, as seen in Figure 2b. If v is
connected to at least two positioned nodes, v is placed at the geometric center of all the
connected nodes, shown in Figure 2c. All affected nodes are flagged to move.

In our merging stage, the insertion or deletion of edges affects node placement. If
an edge is inserted between two new nodes, u and v, node u is randomly placed inside
the bounding box, similar to Figure 2a, and node v is placed randomly around u at
a radius of dl, equivalent to Figure 2b. Both nodes are selected to move. Also, our
method moves affixed nodes when a new edge is introduced to another node–whether
new or affixed–namely, when node u is connected and node v is not. Since it is not
restricted by other nodes, node v is randomly placed around node u at a distance dl as
if it were a new node and is marked to move. Another instance of node placement is the
change of connectivity between positioned nodes u and v. When an edge is removed,
the two affected nodes are flagged to move because their current positions are invalid
and should move closer to their respective components. After adding an edge, we flag
both nodes to move, shown in Figure 2d, to minimize overlapping edges in case these
components are distant from one another.
Multilevel Calculation: In FM3, the process of picking a super node–a single node
that represents a large set of nodes from the finer levels–is done randomly or by in-
dexing [11]. When dealing with multiple levels from the coarsening of G0, our method
is more deterministic when selecting a super node than FM3’s multilevel approach. A
super node is selected by having the highest degree. A new node will have a low chance
of becoming a super node, but the likelihood increases when its degree increases.



(a) (b)

Fig. 3: Energy levels are mapped from yellow to red, where red represents high energy.
Refinement allows only nodes with high energy (a) to move until they reach a low
energy state, which is represented in yellow (b).

Having a multilevel representation of the graph alleviates the computation time. In
incremental layout methods, including ours, only nodes within a certain vicinity have
their forces calculated. Also, coarser graph levels have cheaper computation compared
to the original graph because force calculations are done on the super nodes. Starting
from the coarsest level, the super node’s resulting movement is used to interpolate the
movement of its adjacent nodes at the next finer graph level, until the finest level G0 is
reached. In our method, when we calculate Li, we compute the layout 250 times at the
coarsest level. The number of iterations to compute the layout linearly decays per level
until we reach the finest level. At the finest level, we compute the layout 30 times.

Our method uses a contribution factor to restrict the super nodes’ range of move-
ment. This solves the problem of nodes at coarser levels of the graph having greater
range of movement than those at finer levels. Without the contribution factor, large dis-
parities of movement occur due to simulated annealing. This causes suboptimal node
positioning, which ultimately degrades the final graph level at G0. The contribution fac-
tor is determined by how many nodes are allowed to move under the super node. For
instance, if there is only one node that is allowed to move under a super node, then the
super node will only move slightly.
Force Calculation: Our repulsive forces are modeled as

Frep =
C ∗ (u− v)

‖u− v‖3 (1)

to achieve a greater spreading of disconnected graph components. Our spring forces can
be modeled as [11]

Fspring = ‖u− v‖∗ log
(
‖u− v‖

dl

)
∗ (u− v) (2)

where C is the repulsive constant and dl is the desired length between two nodes. In
practice, we found that C as 4.0 and dl as 0.055 works best with our implementation.

Animation: Animation is employed to display the graph changes between Li−1 to Li.
Existing nodes smoothly transition into their new positions from Li−1 to Li. New nodes
do not exist in Li−1 and must be introduced into Li.



By default, we use Graph Diaries [2], an animation mode that uses different stages
to emphasize graph changes, such as deletion, movement, and addition.

3.1 Refinement Method

Our method allows nodes to reposition themselves if high energy, which is characterized
by long edges and edge crossings, exists between their components. This occurrence is
not adequately addressed by previous methods. We minimize this effect by refining a
subset of the graph which not only reduces the cost of refinement, but shortens long
edges–a result of minimizing the total energy in these components.

We expect that refinement is best used when it runs independently from the layout
method. However, a layout method may not have a sufficient time window to apply
refinement in between time steps. A possible option is to incorporate refinement directly
into the layout method. However, such integrated refinement has limited opportunities
to fix the graph as it is only called once before the main layout algorithm is executed.

We describe our implementation, which makes refinement a viable option for exist-
ing layout methods. In our refinement technique, we compute the layout for the finest
level of the graph. Although the original graph, G0, does not leverage the multilevel
algorithm, we run the layout step for a subset of the graph that has been marked to have
high energy. In addition, refinement runs the layout step for a set number of iterations.
This is an adjustable parameter, in which reducing the number of steps trades quality
for speed. In our implementation, we have set this number to 20. We modify the tem-
perature factor, defined in FM3, to “anneal” nodes to their final positions. This factor
affects the mental map’s quality [24] and complements our force model. In our system,
we set temperature to 1.0.

Ideally, we want an approach that will gradually modify the graph, but only move
high energy nodes. This reduces the overall energy in the system. We calculate the
energy per node by deriving the relation F = ∇En [10]. Given two nodes, positioned at
u and v, the repulsive energy is calculated by

Enrep =
−C
‖u− v‖

(3)

The spring energy is calculated by

Enspring =
1
9
∗ (‖u− v‖3 ∗ (log

(
‖u− v‖

dl

)
−1)+dl3) (4)

The total energy for node v is computed by summing over all edges connected to v
and all v and u node pairs: En(v) = Enrep +Enspring.

En(v) = ∑
u,v∈V,u 6=v

−C
‖u− v‖

+ ∑
u:(u,v)∈E

1
9
∗ (‖u− v‖3 ∗ (log

(
‖u− v‖

dl

)
−1)+dl3) (5)

Calculating the energy for nodes takes O(N2 +E) time, where N is the number of
nodes and E is the number of edges. The cost comes from the all-pair computation.



Layout
Method

McFarland Stack Overflow-Live Stack Overflow Facebook
Energy ∆pos Time Energy ∆pos Time Energy ∆pos Time Energy ∆pos Time

Pinning 1584 2.48 0.020 137651 119 0.067 1457k 151 0.084 14803k 308 0.208
Aging 25.12 0.747 0.021 546130 272 0.061 113188k 658 0.085 186310k 1019 0.131

Our Layout 1159 0.745 0.008 24764 350 0.059 862k 658 0.084 9724k 3042 0.133
Table 1: Comparison of layout methods using energy, ∆ position, and time. Lowest
quantities are in bold. Results characterize the graphs’ state throughout the observed
session. Energy is the total energy in the system, ∆ position is the change in nodes’
position, and time is measured in seconds.

Computing a single iteration of the layout is O(N ∗ log(N)+E), making the compu-
tation of energy more expensive. In most cases, the cost of one energy computation
is cheaper than the cost of computing the entire layout. It is possible to achieve the
same cost for the energy computation by leveraging FM3′s multi-pole method to esti-
mate the energy instead. Since FM3 uses a kd-tree for traversal [11], this adds another
O(N ∗ log(N)) cost for the multi-pole estimation. The estimation will be faster with
large graphs.

Once we quantify the energy for individual nodes, we need to determine when a
node’s energy is high in relation to the entire system. Every introduced node or edge
increases the total energy of the system, making it difficult to define high energy. A
simple approach is to subtract graph Gk from Gk−1 to see which nodes have high energy.
However, this is only conclusive for the current time step and nodes that gradually
increase in energy over time will not be detected.

Instead, we take the mean of the nodes’ energy, µ , and compare it against each node,
yielding a definition of high energy. The mean scales with the total energy, UTotal , and
allows us to compare the individual nodes. Thus, we define a node to have high energy
when abs(En(v)−µ)

µ
> K, where K is a user-defined constant. In our implementation, we

define K to be 1.

4 Evaluation

In this section, we evaluate our layout method visually and use a series of metrics to
examine the stability, quality and time of our layout method for comparison against
existing methods. We apply our refinement technique to these methods to show the
benefits of relieving high energy areas when nodes are placed in suboptimal positions.
We discuss the details of the metrics used to characterize the graphs’ state. We use a
combination of real and synthesized data sets that vary in both size and the number of
time steps.

4.1 Layout Methods

The evaluation of our layout method is done by comparing it against two advanced on-
line dynamic layout methods called “pinning”, by Frishman and Tal [10], and “aging”,



Fig. 4: Visualization of the Stack Overflow-Live data using pinning, our layout method
with independent refinement, and aging at the same instance. Pinning tends to have
nodes near the center due to its central attractive force, whereas aging and our layout
have nodes spread out across the viewing space. Pinning and aging generate long edges
and edge crossings (a,b,e,f)–characteristics which degrade the graph over time. With
refinement, our method relieves this problem by shifting parts of the graph to lower the
system’s energy (c,d).

by Gorochowski et al. [12]. Pinning reduces calculation by allowing recently updated
nodes and their neighbors to move. Nodes closer to the recently updated node have
wider range of movement. Aging uses an “aging factor” that is quantified by a relation-
ship between the node’s age and how much its immediate neighborhood has changed
over time. Nodes that are younger, or experience a large amount of change around them,
have more freedom to move. We could not find existing implementation of these algo-
rithms, so we implemented them according to their respective papers. Any assumptions
made when implementing these methods can be found in the Appendix (http://
vis.cs.ucdavis.edu/papers/tarik_incremental_appendix.pdf).

4.2 Data sets

We use four data sets with varying size and velocity. The first data set is taken from
McFarland’s study [20] which documents student interaction in a classroom. The visu-
alization of this graph shows clusters that expand, shrink, and split over time. This data
set is our smallest graph, with 20 nodes and 82 time steps. We use the McFarland data
set for direct comparison against pinning and aging algorithms since their results are
shown in Gorochowski et al’s work.

The second and third data sets are from Stack Overflow, a forum where individuals
post questions about programming. Users not only answer questions, but also provide
feedback to the questions and supplied answers. Users are rewarded points when they
post popular questions, answers, or comments. The first Stack Overflow data set is a
one-month trial run of the collection in November 2014. The data set starts with 304
nodes and 606 edges and expands to 4000 nodes and 5000 edges. The second data
set, Stack Overflow Live, is a live feed of the site. At the time of the measuring for



Layout
Method

McFarland Stack Oveflow-Live Stack Overflow Facebook
Energy ∆pos Time Energy ∆pos Time Energy ∆pos Time Energy ∆pos Time

Pinning 1584 2.48 0.020 138k 119 0.067 1457k 151 0.084 14803k 308 0.208
Pinning+ref 671 6.92 0.020 42.9k 294 0.082 43.8k 317 0.0124 76.6k 409 0.231
Table 2: Comparison of pinning with and without refinement, using energy, ∆ position,
and time to measure the performance. Lowest quantities are in bold. Results character-
ize the graphs’ state throughout the observed session. Energy is the total energy in the
system, ∆ position is the change in nodes’ position, and time is measured in seconds.

generating Table 1, the data set started with 80 nodes and 80 edges and ended with
638 nodes and 964 edges. Both data sets are characterized by many small, independent
components that merge together over time.

The last data set is from Facebook and is acquired from a website hosting collections
of streaming graph data sets [26]. This data set starts with 822 nodes and 1160 edges and
expands to 1268 nodes and 2004 edges. The Facebook data set focuses on connections
between individuals. The data set, an example of a small world graph, is characterized
by one large cluster and many small clusters.

4.3 Metrics

Stability is synonymous to the preservation of the mental map. Stability measures the
amount of change in a graph by quantifying the change in position for all nodes or the
distance a node moved. New nodes’ change in position is 0 at the first time step they
are introduced.

Timing is measured before and after every layout computation call. We use the
average time across layout computations to assess the speed of layout methods. The
speed of our refinement technique is difficult to measure because it runs when the layout
is waiting for new data. Therefore, it is not part of the layout step and can be considered
free as it is not taking away from the computation of the layout.

Selecting a quality metric to evaluate dynamic layouts is difficult. There have been
few studies looking at the importance of preserving the mental map in dynamic layouts
[23, 24]. We define quality as the measurement of energy, where low energy produces
aesthetically-pleasing graphs–nodes are placed at optimal edge lengths from each other,
making the graph’s structure easy to comprehend. We use the total energy of the system
to match the metrics used by Frishman and Tal [10] and Gorochowski et al.[12]. Since
our refinement technique uses our energy model to determine which nodes have high
energy, we simply sum the energy for all nodes as such

Entotal = ∑
i=1...n

En(i) (6)

where n is the total number of nodes.
To ensure fair comparisons of layout quality, all layout implementations use the

same force model. Aging naturally uses our force model, since it is built upon our
layout method. Our pinning implementation uses our spring-system force model.



Fig. 5: Visualization of the Stack Overflow data, comparing solely pinning and pinning
with independent refinement at the same instance. Many of the same trends found in
Figure 4 are observed in this visualization. Pinning suffers from long edges and edge
crossings (a,b), which are fixed when refinement is added (c,d).

4.4 Analysis of Our Layout Method

The results of our study are given in Table 1, Table 2, Figure 4, Figure 5, and http:
//vis.cs.ucdavis.edu/Videos/Incr.mp4.

The evaluation is conducted on a Macbook Pro laptop. It has an Nvidia GeForce GT
750M graphics card, a 2.3 GHz Intel Core i7 processor, and 16 gigabytes of RAM.

Quality, Stability, and Timing Comparisons: Table 1 is the quantitative comparison
amongst our layout method, pinning, and aging. Figure 4 shows a visual comparison of
the three layouts for Stack Overflow-Live data set. In the pinning results, a distinct ring
of nodes forms. The ring is a consequence of the pinning implementation, which places
new nodes with no edges around this ring. Nodes are spread out in aging and our layout
method because nodes are placed randomly inside the bounding box.

From Table 1, we can see in most cases our layout has the lowest energy. We observe
around 1.5 to 5.5 times improvement over pinning and 19 to 133 times for aging. The
low energy is attributed to the layout gradually repairing itself. This translates visually,
where our layout method better handles merging of distant components than the other
two methods. Our layout reduces long edges or edge crossings, whereas these problems
are evident in the other two layouts due to their high energy.

The layout’s stability is analyzed using an average ∆ position. In general, the pin-
ning layout has the smallest average ∆ position because it uses pinning weights to
minimize node movement in order to produce a stable layout. Our layout has a higher
∆ position because nodes are shifting into a better position to reduce energy. Aging also



suffers from large ∆ position. This is explained by the layout attempting to shorten long
edges. In all accounts, our refinement technique increases node movement in favor of
gradually fixing the graph, evident in Figure 4.

Across the layout implementations, there are small differences in speed when com-
puting layouts. Based on our results, additional force calculations do not necessarily
increase computation time. This is likely attributed to how nodes are partitioned and
bottlenecks found in the GPU. The GPU may not be fully utilized when running the
force calculations. For each node, a GPU thread is created for each kd-tree leaf for force
calculations. Depending on the implementation, a kd-tree can have leaves that vary in
size from 4 to 20 nodes. A bottleneck occurs when the GPU is waiting for kd-tree leaf
nodes that take longer to process.
Refinement with Pinning: Table 2 shows the results of applying our refinement tech-
nique to pinning. With refinement, pinning has 3 to 200 times lower energy. As ex-
pected, the refinement version takes longer to calculate than pinning by itself. However,
this extra time is negligible, as refinement is meant to run while the layout is idle. Simi-
lar to Table 1, pinning with refinement has higher ∆ position than pinning. From Figure
5, we can see that extra movement is used to fix long edges and spread out nodes.

Figure 5 shows the benefits of our refinement technique. We can see that long edges
or edge crossings are less evident on the right figure. The added benefit is that refine-
ment helps spread out the nodes in each component, making it easier to see the structure.

The previous layout methods used in our evaluation have unique benefits. Pinning
maintains graph stability using pinning weights to restrict node movement. Aging pro-
vides an anchor point for graph exploration by moving nodes based on their evolution-
ary changes. However, our layout algorithm places nodes at their optimal positions by
considering each node’s energy. Our refinement technique identifies high energy com-
ponents in the graph and reduces the system’s energy by gradually moving nodes to
a lower energy state. Our results show that our refinement technique can be used to
improve existing layout methods with respect to both layout quality and aesthetics, cre-
ating graph drawings that best visualize the relations between involved entities.

5 Conclusion

We have presented an incremental layout method and a refinement technique for visual-
izing online dynamic graphs that is used to create stable and aesthetic layouts. First, we
have shown how to convert FM3 into an incremental multilevel multi-pole algorithm.
Second, our refinement technique is used to identify high energy nodes and move them
to a low energy state. The refinement technique can be used in tandem or separately
from the layout method. Lastly, we are able to employ a GPU to accelerate the layout
and refinement technique. An empirical evaluation with metrics shows that our method
helps improve the stability and aesthetic appeal of layouts.

Acknowledgments. This research is sponsored in part by the U.S. National Science
Foundation via grants NSF DRL-1323214 and NSF IIS-1320229, the U.S. Department
of Energy through grant DE-FC02-12ER26072, and also the UC Davis RISE program.



References

1. Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the effect of
mental map preservation in dynamic graphs. Visualization and Computer Graphics, IEEE
Transactions on 17(4), 539–552 (2011)

2. Bach, B., Pietriga, E., Fekete, J.D.: GraphDiaries: Animated Transitions and Temporal Navi-
gation for Dynamic Networks. Visualization and Computer Graphics, IEEE Transactions on
20(5), 740 – 754 (2014)

3. Boitmanis, K., Brandes, U., Pich, C.: Visualizing internet evolution on the autonomous sys-
tems level. In: Hong, S.H., Nishizeki, T., Quan, W. (eds.) Graph Drawing, LNCS, vol. 4875,
pp. 365–376. Springer, Heidelberg (2008)

4. Brandes, U., Fleischer, D., Puppe, T.: Dynamic Spectral Layout of Small Worlds. In: Healy,
P., Nikolov, N.S. (eds.) Graph Drawing, LNCS, vol. 3843, pp. 25–36 (2006)

5. Brandes, U., Mader, M.: A quantitative comparison of stress-minimization approaches for
offline dynamic graph drawing. In: Kreveld, M.v., Speckmann, B. (eds.) Graph Drawing.
LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2012)

6. Brandes, U., Wagner, D.: A bayesian paradigm for dynamic graph layout. In: DiBattista, G.
(ed.) Graph Drawing, LNCS, vol. 1353, pp. 236–247 (1997)

7. Che, L., Liang, J., Yuan, X., Shen, J., Xu, J., Li, Y.: Laplacian-based dynamic graph visual-
ization. In: Visualization Symposium (PacificVis), 2015 IEEE Pacific. pp. 69–73 (2015)

8. Diehl, S., Görg, C.: Graphs, They Are Changing. In: Graph Drawing. LNCS, vol. 2528, pp.
23–31. Springer, Heidelberg (2002)

9. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.V.: Graphael: Graph anima-
tions with evolving layouts. In: Liotta, G. (ed.) Graph Drawing. LNCS, vol. 2912, pp. 98–
110. Springer, Heidelberg (2003)

10. Frishman, Y., Tal, A.: Online dynamic graph drawing. Visualization and Computer Graphics,
IEEE Transactions on 14(4), 727–740 (2008)

11. Godiyal, A., Hoberock, J., Garland, M., Hart, J.C.: Rapid multipole graph drawing on the
gpu. In: Tollis, I.G., Patrignani, M. (eds.) Graph Drawing. LNCS, vol. 5417, pp. 90–101
(2008)

12. Gorochowski, T., di Bernardo, M., Grierson, C.: Using aging to visually uncover evolution-
ary processes on networks. Visualization and Computer Graphics, IEEE Transactions on
18(8), 1343–1352 (2012)

13. Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for drawing general
large graphs. In: Healy, P., Nikolov, N.S. (eds.) Graph Drawing, LNCS, vol. 3843, pp. 235–
250 (2006)

14. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. In: Journal of
Graph Algorithms and Applications. pp. 183–196. Springer, Heidelberg (2000)

15. Hu, Y., Kobourov, S.G., Veeramoni, S.: Embedding, clustering and coloring for dynamic
maps. In: Visualization Symposium (PacificVis), 2012 IEEE Pacific. pp. 33–40 (2012)

16. Khoury, M., Hu, Y., Krishnan, S., Scheidegger, C.: Drawing large graphs by low-rank stress
majorization. Computer Graphics Forum 31(3pt1), 975–984 (2012)

17. Koren, Y., Carmel, L., Harel, D.: Drawing huge graphs by algebraic multigrid optimization.
Multiscale Modeling and Simulation 1, 645–673 (2003)

18. Kumar, G., Garland, M.: Visual exploration of complex time-varying graphs. Visualization
and Computer Graphics, IEEE Transactions on 12(5), 805–812 (2006)

19. Lee, Y.Y., Lin, C.C., Yen, H.C.: Mental map preserving graph drawing using simulated an-
nealing. In: Proceedings of the 2006 Asia-Pacific Symposium on Information Visualisation
- Volume 60. pp. 179–188. APVis ’06 (2006)



20. Mcfarland, D.: Student Resistance: How the Formal and Informal Organization of Class-
rooms Facilitate Everyday Forms of Student Defiance. American Journal of Sociology
107(3), 612–678 (2001)

21. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal
of Visual Languages Computing 6(2), 183 – 210 (1995)

22. North, S.C.: Incremental layout in dynadag. In: Brandenburg, F.J. (ed.) Graph Drawing.
LNCS, vol. 1027, pp. 409–418. Springer, Heidelberg (1996)

23. Purchase, H.C., Hoggan, E., Görg, C.: How important is the mental map? —an empirical
investigation of a dynamic graph layout algorithm. In: Kaufmann, M., Wagner, D. (eds.)
Graph Drawing, LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg (2007)

24. Purchase, H.C., Samra, A.: Extremes are better: Investigating mental map preservation in
dynamic graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrammatic Representation
and Inference. LNCS, vol. 5223, pp. 60–73. Springer, Heidelberg (2008)

25. Tufte, E.R.: Envisioning information. Graphic Press (1990)
26. Yao, Y.: Collection and streaming of graph datasets. http://www.eecs.wsu.edu/

˜yyao/StreamingGraphs.html


