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1 NOTATION

Table 1 summarizes the most relevant notation used throughout the
paper.

2 USER ESTIMATES ON INDIVIDUAL DATA SETS

Figure 1 shows average estimation errors v (n) obtained in experiments
with users for SC, and the automatic estimation onto calibrated axes,
on (a) the breakfast cereal, and (b) wine data sets.

3 MODEL SCy; AS A LINEAR PROGRAM

In practice, users estimate data values in SC through the following
convex optimization problem (denoted as SCyy):

minimize  ||Dx||;
xeR”
subjectto  V'x=p,
0=<x=1,

where D is diagonal matrix where d;; = ||v;||2. Note that ||Dx||; cor-
responds to the length of the path. Alternatively, it can be rewritten as
a linear program (LP):

minimize 17t
teR" xeR”
subject to —t<Dx <t,
Vix=p,
0<x<1.

4 SPARSE SOLUTIONS FOR SCy

Figure 2 shows distributions associated with the number of nonzero
elements of the solutions provided by SCys. The results include es-
timates on the four data sets used, where the number of variables is
a multiple of 3, over 30 random vector configurations according to
uniform distributions (% [0, 2x] for angles, and % [0.5, 1] for lengths),
and subsets of variables also chosen at random. It is apparent that most
solutions involve only two or three nonzero values, in accordance with
the users’ main strategy.
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Table 1. Notation Summary.

n Dimensionality of the data space
m Dimensionality of the observable space (2 in this paper)
v n X m matrix of axis vectors
\4 i-th axis vector (i-th row of V)
Vi i-th column vector of V
Data instance of dimensionality n
i-th data attribute of instance x
Vector of estimates of x
estimate of x;
Low m-dimensional representation of a data instance
II, Euclidean norm
I ¢} norm
“lFro Matrix Frobenious norm
Dot product
Vector of all zeros
Vector of all ones
Vector of all zeros, except a 1 for the i-th component
Identity matrix
Estimation error for a data sample
Range (i.e., column space) of V
Moore-Penrose pseudoinverse of matrix V
Orthogonal matrix for which Z(V,) = Z(V),
i.e., the result of orthonormalizing the columns of V
Uniform distribution
Vector componentwise inequality
Average estimation errors in user experiments
Average estimation errors in automatic simulations
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Fig. 1. Average estimation errors v(n) on (a) the breakfast cereal, and
(b) wine data sets.
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Fig. 2. Distributions associated with the number of nonzero elements of the solutions provided by SCy
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