
1803

1077-2626 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Visual Analytics for Complex Engineering Systems:
Hybrid Visual Steering of Simulation Ensembles

Krešimir Matković, Member, IEEE CS, Denis Gračanin, Senior Member, IEEE, Rainer Splechtna, Member, IEEE CS,
Mario Jelović, Benedikt Stehno, Helwig Hauser, Member, IEEE CS, Werner Purgathofer, Member, IEEE CS

Abstract—In this paper we propose a novel approach to hybrid visual steering of simulation ensembles. A simulation ensemble is a
collection of simulation runs of the same simulation model using different sets of control parameters. Complex engineering systems
have very large parameter spaces so a naı̈ve sampling can result in prohibitively large simulation ensembles. Interactive steering of
simulation ensembles provides the means to select relevant points in a multi-dimensional parameter space (design of experiment).
Interactive steering efficiently reduces the number of simulation runs needed by coupling simulation and visualization and allowing a
user to request new simulations on the fly. As system complexity grows, a pure interactive solution is not always sufficient. The new
approach of hybrid steering combines interactive visual steering with automatic optimization. Hybrid steering allows a domain expert
to interactively (in a visualization) select data points in an iterative manner, approximate the values in a continuous region of the
simulation space (by regression) and automatically find the “best” points in this continuous region based on the specified constraints
and objectives (by optimization). We argue that with the full spectrum of optimization options, the steering process can be improved
substantially. We describe an integrated system consisting of a simulation, a visualization, and an optimization component. We also
describe typical tasks and propose an interactive analysis workflow for complex engineering systems. We demonstrate our approach
on a case study from automotive industry, the optimization of a hydraulic circuit in a high pressure common rail Diesel injection system.

Index Terms—Interactive Visual Analysis, Integrated Design Environment, Simulation, Visual Steering, Automatic Optimization

1 INTRODUCTION

Recent advances in computation technologies provide an opportunity
to compute large simulation ensembles — multiple simulation runs
of the same simulation model using different sets of control parame-
ters. Parameter spaces of complex engineering systems, if not care-
fully sampled, can result in prohibitively large simulation ensembles.

Current emission regulations and efficiency goals are great chal-
lenges for automotive systems designers. In order to meet strict time
constraints and reduce the time to market, system designers of mod-
ern automotive systems need powerful design tools to understand the
systems, their behavior, and their responses to changes of the design
parameters. In this paper, we present a case study dealing with an in-
jection system, i.e., one of the key components of modern car engines.
Target users of the proposed solution are designers of complex sys-
tems that are based on simulation ensembles. This paper is a result of a
long-term collaboration between visualization and simulation experts.
We, a team of visualization, simulation, and injection experts, devel-
oped the proposed approach, inspired by the actual application in the
automotive industry. Our collaboration included numerous interviews
and common sessions. We had regular meetings on a weekly basis for
more than six months. One of the injection experts with more then 15

• Krešimir Matković is with VRVis Research Center, Vienna, Austria.
E-mail: Matkovic@VRVis.at.

• Denis Gračanin is with Virginia Tech, Blacksburg, VA USA. E-mail:
gracanin@vt.edu.

• Mario Jelović is with AVL-AST Zagreb, Croatia. E-mail:
mario.jelovic@avl.com.

• Rainer Splechtna is with VRVis Research Center, Vienna, Austria. E-mail:
Splechtna@VRVis.at.

• Benedikt Stehno is with VRVis Research Center, Vienna, Austria. E-mail:
Stehno@VRVis.at.

• Helwig Hauser is with University of Bergen, Norway. E-mail:
Helwig.Hauser@uib.no.

• Werner Purgathofer is with Vienna University of Technology, Austria.
E-mail: wp@cg.tuwien.ac.at.

For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

years experience in simulation, also coauthors the paper. Additionally
we observed and interviewed four more simulation experts. Hence,
when we say we throughout the paper, we mean the whole team, the
visualization and the simulation experts. In our opinion, neither group
alone could come to such a solution. The new approach is the result of
a long-term research effort to address and overcome the described ob-
stacles in the design of a complex system. Although we developed the
newly proposed approach with experts from the automotive industry
we are confident that the proposed approach can be used in other do-
mains where complex simulation data in high dimensional parameter
spaces have to be explored and understood.

Properly specifying the simulation parameters is a tedious task, and,
at the same time, crucial for the effective utilization of simulation.
There is an inherent trade-off between the simulation accuracy and
its speed. Better accuracy requires more simulation points (i.e., sim-
ulation runs) to better cover the parameter space. More simulation
runs increase the simulation time and lengthen the design process.
A system designer needs help to navigate the simulation space and
explore the most promising combinations of simulation parameters.
With proper support, the designer can be more efficient and produc-
tive.

Simulation results often have a complex structure and a simplified
representation. A common workflow includes the extraction of certain
scalar features prior to the analysis. These features are then studied
in the automatic and interactive analysis. Current state of the art tech-
niques also support the consideration of complex data in interactive
studies [17], but these techniques do not support an automatic anal-
ysis at the same time. Our work targets the interactive hybrid visual
steering of a simulation ensemble which combines simulation and op-
timization with interactive visual steering to provide an integrated de-
sign environment.

The identified tasks for an integrated, hybrid steering environment
are summarized in Table 1. These tasks are abstractions of the ob-
served real-world practices and concrete tasks/activities in the auto-
motive design workflow. Supporting these tasks is the key require-
ment that guided the development of our integrated, hybrid steering
environment and our hybrid visual steering approach.

The main contributions of this paper are: (1) A case study demon-
strating Hybrid Visual Steering, a novel simulation ensembles steering
and exploration approach. This approach combines interactive explo-

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014 ate of
publication 2014; date of current version 2014.11 Aug. 9 Nov.

D.

Digital Object Identifier 10.1109/TVCG.2014.2346744

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 1 , C BER 20142 DE EM

1804 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

Table 1. Hybrid steering tasks abstractions.
A Explore and Analyze the Ensemble

A1 Parameters’
Sensitivity

Identify simulation results for certain
control parameters and explore the
parameters’ sensitivity.

A2 Model
Reconstruction

Identify control parameters for a
desired output.

A3 Comparison Compare output results related to
different areas of the parameter space.

R Compute the Regression Model
R1 Model

Validation
Show the model accuracy across the
parameter space.

R2 Model
Definition

Partition the parameter space and define
relevant parts for the regression model
building.

R3 Automatic
Optimization

Automatic optimization using the
regression model.

D Generate the Data
D1 Initial

Parameter
Space Sampling

Select regions in the parameter space to
be initially sampled.

D2 Interactive
Refinement

Select regions in parameter space which
have to be resampled.

D3 Automatic
Optimization
Refinement

Choose refinement regions based on
automatic optimization.

ration and analysis with automatic optimization based on regression
models; (2) The task abstractions (Table 1) and the supporting visual-
ization system, including two improved views, the Parameters Explo-
ration View and Regression Exploration View. (3) The tight integra-
tion of all relevant components in an interactive workflow; and (4) An
evaluation of the proposed approach based on a case study from the
automotive industry including user feedback.

We build on our previous work [17, 18, 19, 21, 20] which integrates
multiple simulation runs and visualization and focuses exclusively on
the interactive exploration and steering. Here we introduce the adap-
tive exploration of the simulation space, based on regression modeling
and the use of optimization to find an optimum within a subset of the
simulation space. This new approach covers the spectrum between a
fully automatic simulation and the manual adjustment of simulation
parameters.

2 RELATED WORK

Simulations are usually computationally intensive and are often com-
bined with interpolation for sensitivity analysis and optimization. An
example is the Kriging interpolator, representing a global metamodel
that covers the whole experimental area [40]. However, we can also
iteratively refine the simulation model, in addition to the refinement of
the simulation parameter values.

If data analysis is a postprocessing step after a simulation batch
is completed, errors invalidating the results of the entire simulation
may be detected too late [25]. Computational steering and interac-
tive visualization started in 1980s and 1990s as useful visualization
paradigms for the computational sciences [11] enabling users to in-
teractively steer computations, change simulation parameters and in-
stantly see the simulation results. The simulation results are usually
presented using scientific visualization methods [14].

Computational steering integrates modeling, computation, data
analysis, visualization, and data management components of a sim-
ulation [25]. However, integrating simulation within computational
steering can be a very difficult problem. We need to address four facets
of the problem [15]: control structures, data distribution, data presen-
tation, and user interfaces. Since computational steering is a highly in-
teractive process, the user interface is a critical component [23]. This
early simulation steering approaches usually deal with a single simula-

tion run which lasts for a long time. The idea is to monitor simulation
execution and to change some parameters if preliminary results seem
to be wrong. We do rely on basic simulation steering principles, but we
deal with simulation ensemble steering. Our simulation can be com-
puted relatively fast, and we steer the ensemble creation, not a single
simulation run.

In each iteration of computational steering the user can define a re-
gion of interest in the parameter space that should be explored in more
detail. Additional simulation runs are needed to cover that region,
constituting a new “simulation experiment”. The design of such an
experiment, i.e., the selection of the simulation points in the region of
interest, is very important since we would like to reduce the number
of simulation runs while providing a good coverage of the region of
interest [16, 24].

While the support for a user controlled simulation is at the very core
of computational steering, there is very limited support for user con-
trolled optimization [3]. Very often there is no clear or unique optimal
solution. A user has to analyze, in an interactive fashion, trade-offs and
interdependencies between objectives [29, 32, 34]. Using an analytical
representation of the objective function the user can explore the values
of the objective function in the region of interest [22]. Such values can
be dynamically updated in all views and brushes (selections) [28]. All
these solutions are not integrated in an interactive steering environ-
ment. They focus on optimization based on a batch of precomputed
simulation runs. In our case, we use optimization as a guideline in
interactive steering in a fully integrated workflow.

The simulation data consists of discrete simulation points while the
region of interest is usually a continuous space. We can use the simu-
lation points to “span” that space using a surrogate (regression) model
that approximates simulation results over the entire region of inter-
est. The number of grid points in full grid methods depends expo-
nentially on the number of dimensions. However, using sparse grids
can reduce the dimensionality problem under some smoothness con-
ditions. The sparse grid method, originally developed for the solution
of partial differential equations [42], is also used for interpolation and
approximation. The properties of the hierarchical representation and
approximation properties of sparse grids are discussed by Bungartz
and Griebel [9]. Improvements over the classical sparse grid approach
include spatially adaptive refinement, modified ansatz functions, and
efficient regularization techniques [26].

Simulation steering and dealing with ensemble simulations require
control over multiple heterogeneous simulation runs. World lines [41]
integrate simulation, visualization and computational steering to deal
with the extended solution space by representing simulation runs as
causally connected tracks that share a common time axis. The user has
to select parameter combinations for new runs, there is no automatic
support in selection of the new design points. Konyha et al. [17] and
Matkovic et al. [19, 21] use interactive visual analysis for engineering
problems with large parameter spaces. This is a purely interactive so-
lution without an automatic support for steering. Berger et al. [2] em-
ploy statistical learning methods to predict results in real-time at any
user-defined point and its neighborhood. The user is guided to poten-
tially interesting parameter regions and the uncertainty of predictions
is shown using 2D scatterplots and parallel coordinates. Booshehrian
et al. [7] present a parameter space exploration approach from the fish-
ery domain. These systems are not coupled with simulation, they op-
erate on a set of predefined simulation runs. Engel et al. [13] describe
a novel interactive visual framework for dimensionality reduction of
high-dimensional single particle mass spectrometry data. Bergner et
al. [4] present ParaGlide, a visualization system designed for interac-
tive exploration of parameter spaces of multidimensional simulation
models. They do initiate new data generation from the visualization,
but the selection of points is based solely on user input, there is no
support from automatic methods.

Machine learning techniques such as support vector machines [8,
12, 33] or relevance vector machines [36] can be used to create linear,
quadratic or nonlinear surrogate models. The validation of a surro-
gate model is difficult in general [27]. We assume that our regression
models are validated.

Figure 1. Overview of the proposed approach. Standard simulation: A collection of control parameter values is used for a single simulation
run to determine and visualize simulation results (extracted scalar features). Ensemble simulation: Design of experiment methods are used to
create several collections of control parameters. The resulting output values are aggregated and visualized together with the control parameter
values. Automatic optimization: Aggregated parameter values are used to create a regression model which is used for optimization using the
defined optimization constraints. This approach is usually decoupled from visual analysis, or visualization is used to show optimization results
only. Complex simulation results: All complex simulation results are visualized. Ensemble steering: During visual exploration additional
control parameter values for new simulation runs are selected by means of visualization. Hybrid steering: A unified approach which enables the
exploration of parameters, complex results, extracted features and optimization results. Furthermore, it uses results from automatic optimization
to guide the user during interactive visual steering. The hybrid steering also supports regression model building and optimization constraints and
goals specification, all within the same framework.

Figure 2. Simulation ensemble data model: control data points, output data points and features. For each output data point yi, there can be an
output value yi

j that is a time series (a curve). The time series is replaced by one or more scalar values (feature f) in the feature space.

Although the related work covers parts of our proposed solution,
none of these approaches, according to our best knowledge, integrates
all components in a unified framework.

3 SIMULATION AND VISUALIZATION

Figure 1 illustrates our Hybrid Visual Steering approach and its evo-
lution. The basic workflow in simulation includes model definition,
setting of control parameters, simulation, feature extraction from com-
plex simulation results, and the visualization of the extracted features.
Feature extraction is necessary if the simulation produces complex
data that is not suitable for standard direct visualization. The blue
parts in Figure 1 correspond to such a traditional procedure. Advances
in computation make it possible to compute many runs for the same
simulation model with different sets of control parameters — a simu-
lation ensemble.

In this case the parameter space has to be sampled and different
combinations of control parameters have to be chosen. This is a well-
known problem (design of experiment) for which there are several
available techniques. A simulation ensemble results in a combina-
tion of multiple complex simulation results and multiple scalar fea-
tures (red parts in Figure 1). If an automatic optimization is desired,
a regression model can be computed based on the control parameters
and the extracted scalar features. This step is usually decoupled from
the visualization (light red parts in Figure 1). In our previous work we
have demonstrated that also complex simulation results can be inte-

grated in the visual analysis [17, 19] (green parts in Figure 1). Ensem-
ble steering makes it possible to select new sets of control parameters
from the visualization [20] (purple parts in Figure 1) in an iterative,
interactive manner.

When the simulation space is very large, the iterative design process
can be time consuming and tedious. We would like to help the domain
expert by automatizing this process as much as possible. Therefore,
we couple automatic optimization with the visualization in a hybrid
visual steering environment (orange parts in Figure 1). Our framework
supports all identified tasks for a complex system design.

Integrated design environments are not readily available for indus-
trial design. Tools are used separately or as partially integrated tools
which significantly reduces efficiency. The integrated design environ-
ment we developed for the common rail injection design resulted, ac-
cording to the domain expert, in a speed up factor of at least ten com-
pared to the conventional approach where all tools are used separately.
We also talked with four more domain experts at the AVL company
working on optimization, timing drive, hybrid vehicle, and crankshaft
design. They informally evaluated our integrated design environment
prototypes and estimated a similar potential for speed up.

3.1 Formal Background

We often model the simulation process as a function S that maps the
control parameters x = (x1, . . . ,xm) (a control data point in Rm) to the
output values y = (y1, . . . ,yn) (an output data point in Rn) where m is

MATKOVIĆ ET AL.: VISUAL ANALYTICS FOR COMPLEX ENGINEERING SYSTEMS: HYBRID VISUAL STEERING OF SIMULATION ENSEMBLES 1805

Table 1. Hybrid steering tasks abstractions.
A Explore and Analyze the Ensemble
A1 Parameters’

Sensitivity
Identify simulation results for certain
control parameters and explore the
parameters’ sensitivity.

A2 Model
Reconstruction

Identify control parameters for a
desired output.

A3 Comparison Compare output results related to
different areas of the parameter space.

R Compute the Regression Model
R1 Model

Validation
Show the model accuracy across the
parameter space.

R2 Model
Definition

Partition the parameter space and define
relevant parts for the regression model
building.

R3 Automatic
Optimization

Automatic optimization using the
regression model.

D Generate the Data
D1 Initial

Parameter
Space Sampling

Select regions in the parameter space to
be initially sampled.

D2 Interactive
Refinement

Select regions in parameter space which
have to be resampled.

D3 Automatic
Optimization
Refinement

Choose refinement regions based on
automatic optimization.

ration and analysis with automatic optimization based on regression
models; (2) The task abstractions (Table 1) and the supporting visual-
ization system, including two improved views, the Parameters Explo-
ration View and Regression Exploration View. (3) The tight integra-
tion of all relevant components in an interactive workflow; and (4) An
evaluation of the proposed approach based on a case study from the
automotive industry including user feedback.

We build on our previous work [17, 18, 19, 21, 20] which integrates
multiple simulation runs and visualization and focuses exclusively on
the interactive exploration and steering. Here we introduce the adap-
tive exploration of the simulation space, based on regression modeling
and the use of optimization to find an optimum within a subset of the
simulation space. This new approach covers the spectrum between a
fully automatic simulation and the manual adjustment of simulation
parameters.

2 RELATED WORK

Simulations are usually computationally intensive and are often com-
bined with interpolation for sensitivity analysis and optimization. An
example is the Kriging interpolator, representing a global metamodel
that covers the whole experimental area [40]. However, we can also
iteratively refine the simulation model, in addition to the refinement of
the simulation parameter values.

If data analysis is a postprocessing step after a simulation batch
is completed, errors invalidating the results of the entire simulation
may be detected too late [25]. Computational steering and interac-
tive visualization started in 1980s and 1990s as useful visualization
paradigms for the computational sciences [11] enabling users to in-
teractively steer computations, change simulation parameters and in-
stantly see the simulation results. The simulation results are usually
presented using scientific visualization methods [14].

Computational steering integrates modeling, computation, data
analysis, visualization, and data management components of a sim-
ulation [25]. However, integrating simulation within computational
steering can be a very difficult problem. We need to address four facets
of the problem [15]: control structures, data distribution, data presen-
tation, and user interfaces. Since computational steering is a highly in-
teractive process, the user interface is a critical component [23]. This
early simulation steering approaches usually deal with a single simula-

tion run which lasts for a long time. The idea is to monitor simulation
execution and to change some parameters if preliminary results seem
to be wrong. We do rely on basic simulation steering principles, but we
deal with simulation ensemble steering. Our simulation can be com-
puted relatively fast, and we steer the ensemble creation, not a single
simulation run.

In each iteration of computational steering the user can define a re-
gion of interest in the parameter space that should be explored in more
detail. Additional simulation runs are needed to cover that region,
constituting a new “simulation experiment”. The design of such an
experiment, i.e., the selection of the simulation points in the region of
interest, is very important since we would like to reduce the number
of simulation runs while providing a good coverage of the region of
interest [16, 24].

While the support for a user controlled simulation is at the very core
of computational steering, there is very limited support for user con-
trolled optimization [3]. Very often there is no clear or unique optimal
solution. A user has to analyze, in an interactive fashion, trade-offs and
interdependencies between objectives [29, 32, 34]. Using an analytical
representation of the objective function the user can explore the values
of the objective function in the region of interest [22]. Such values can
be dynamically updated in all views and brushes (selections) [28]. All
these solutions are not integrated in an interactive steering environ-
ment. They focus on optimization based on a batch of precomputed
simulation runs. In our case, we use optimization as a guideline in
interactive steering in a fully integrated workflow.

The simulation data consists of discrete simulation points while the
region of interest is usually a continuous space. We can use the simu-
lation points to “span” that space using a surrogate (regression) model
that approximates simulation results over the entire region of inter-
est. The number of grid points in full grid methods depends expo-
nentially on the number of dimensions. However, using sparse grids
can reduce the dimensionality problem under some smoothness con-
ditions. The sparse grid method, originally developed for the solution
of partial differential equations [42], is also used for interpolation and
approximation. The properties of the hierarchical representation and
approximation properties of sparse grids are discussed by Bungartz
and Griebel [9]. Improvements over the classical sparse grid approach
include spatially adaptive refinement, modified ansatz functions, and
efficient regularization techniques [26].

Simulation steering and dealing with ensemble simulations require
control over multiple heterogeneous simulation runs. World lines [41]
integrate simulation, visualization and computational steering to deal
with the extended solution space by representing simulation runs as
causally connected tracks that share a common time axis. The user has
to select parameter combinations for new runs, there is no automatic
support in selection of the new design points. Konyha et al. [17] and
Matkovic et al. [19, 21] use interactive visual analysis for engineering
problems with large parameter spaces. This is a purely interactive so-
lution without an automatic support for steering. Berger et al. [2] em-
ploy statistical learning methods to predict results in real-time at any
user-defined point and its neighborhood. The user is guided to poten-
tially interesting parameter regions and the uncertainty of predictions
is shown using 2D scatterplots and parallel coordinates. Booshehrian
et al. [7] present a parameter space exploration approach from the fish-
ery domain. These systems are not coupled with simulation, they op-
erate on a set of predefined simulation runs. Engel et al. [13] describe
a novel interactive visual framework for dimensionality reduction of
high-dimensional single particle mass spectrometry data. Bergner et
al. [4] present ParaGlide, a visualization system designed for interac-
tive exploration of parameter spaces of multidimensional simulation
models. They do initiate new data generation from the visualization,
but the selection of points is based solely on user input, there is no
support from automatic methods.

Machine learning techniques such as support vector machines [8,
12, 33] or relevance vector machines [36] can be used to create linear,
quadratic or nonlinear surrogate models. The validation of a surro-
gate model is difficult in general [27]. We assume that our regression
models are validated.

Figure 1. Overview of the proposed approach. Standard simulation: A collection of control parameter values is used for a single simulation
run to determine and visualize simulation results (extracted scalar features). Ensemble simulation: Design of experiment methods are used to
create several collections of control parameters. The resulting output values are aggregated and visualized together with the control parameter
values. Automatic optimization: Aggregated parameter values are used to create a regression model which is used for optimization using the
defined optimization constraints. This approach is usually decoupled from visual analysis, or visualization is used to show optimization results
only. Complex simulation results: All complex simulation results are visualized. Ensemble steering: During visual exploration additional
control parameter values for new simulation runs are selected by means of visualization. Hybrid steering: A unified approach which enables the
exploration of parameters, complex results, extracted features and optimization results. Furthermore, it uses results from automatic optimization
to guide the user during interactive visual steering. The hybrid steering also supports regression model building and optimization constraints and
goals specification, all within the same framework.

Figure 2. Simulation ensemble data model: control data points, output data points and features. For each output data point yi, there can be an
output value yi

j that is a time series (a curve). The time series is replaced by one or more scalar values (feature f) in the feature space.

Although the related work covers parts of our proposed solution,
none of these approaches, according to our best knowledge, integrates
all components in a unified framework.

3 SIMULATION AND VISUALIZATION

Figure 1 illustrates our Hybrid Visual Steering approach and its evo-
lution. The basic workflow in simulation includes model definition,
setting of control parameters, simulation, feature extraction from com-
plex simulation results, and the visualization of the extracted features.
Feature extraction is necessary if the simulation produces complex
data that is not suitable for standard direct visualization. The blue
parts in Figure 1 correspond to such a traditional procedure. Advances
in computation make it possible to compute many runs for the same
simulation model with different sets of control parameters — a simu-
lation ensemble.

In this case the parameter space has to be sampled and different
combinations of control parameters have to be chosen. This is a well-
known problem (design of experiment) for which there are several
available techniques. A simulation ensemble results in a combina-
tion of multiple complex simulation results and multiple scalar fea-
tures (red parts in Figure 1). If an automatic optimization is desired,
a regression model can be computed based on the control parameters
and the extracted scalar features. This step is usually decoupled from
the visualization (light red parts in Figure 1). In our previous work we
have demonstrated that also complex simulation results can be inte-

grated in the visual analysis [17, 19] (green parts in Figure 1). Ensem-
ble steering makes it possible to select new sets of control parameters
from the visualization [20] (purple parts in Figure 1) in an iterative,
interactive manner.

When the simulation space is very large, the iterative design process
can be time consuming and tedious. We would like to help the domain
expert by automatizing this process as much as possible. Therefore,
we couple automatic optimization with the visualization in a hybrid
visual steering environment (orange parts in Figure 1). Our framework
supports all identified tasks for a complex system design.

Integrated design environments are not readily available for indus-
trial design. Tools are used separately or as partially integrated tools
which significantly reduces efficiency. The integrated design environ-
ment we developed for the common rail injection design resulted, ac-
cording to the domain expert, in a speed up factor of at least ten com-
pared to the conventional approach where all tools are used separately.
We also talked with four more domain experts at the AVL company
working on optimization, timing drive, hybrid vehicle, and crankshaft
design. They informally evaluated our integrated design environment
prototypes and estimated a similar potential for speed up.

3.1 Formal Background

We often model the simulation process as a function S that maps the
control parameters x = (x1, . . . ,xm) (a control data point in Rm) to the
output values y = (y1, . . . ,yn) (an output data point in Rn) where m is

1806 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

the number of control parameters and n is the number of outputs. Due
to the physical constraints of the simulated system, the set of feasible
control data points C is a subset of Rm and the set of feasible output
data points O is a subset of Rn. A simulation ensemble E is a set of
pairs of data points (x,y), x ∈C and y ∈ O.

Traditional data analysis approaches, such as statistics or OLAP
techniques [35], usually use a relatively simple multi-dimensional
model [10, 31] (simple with respect to the types of data dimensions)
using data tables to capture relations among control parameter values
for the same simulation run. While the control parameters are almost
always numerical, scalar values, the output values also often include
time/data series so O is no longer a subset of Rn.

Since simple data tables [10] are not sufficient, we need an adequate
simulation ensemble data model to deal with more complex data. Our
simulation ensemble data model uses a two-level data hierarchy for
the output data points (Figure 2).

For each output data point yi and yi
j that is a data series, we have a

separate set of “sub-points” with its own length and number of dimen-
sions (parameters). Our discussion is limited to two dimensions. We
can select one of the data series dimensions as the independent vari-
able (e.g., time) and the other dimension as the dependent variable.
Such data series can be considered a function of one variable and rep-
resented as a curve. The curve is replaced by one or more scalar values
(features f) to create a feature point zi in the feature space F , a subset
of Rn′ , n′ ≥ n.

In other words, the scalar values yi
s from yi are directly used in the

feature space as the corresponding values zi
s in zi while each data series

value yi
j from yi is replaced by one or more scalar values (features f)

in zi.

3.2 Regression Model
If we can approximate the mapping S from the control parameter val-
ues to the simulation results using a regression model, we can esti-
mate the simulation results much faster, compared to actually running
the simulation. In order to estimate S, a number of simulation runs
are executed to get a set of input-feature pairs (simulation ensemble),
{(xi,zi)} as training data. A regression model R is built from the train-
ing data as the surrogate model of the simulation.

After the regression model is trained, we can then use it to estimate
the simulation results for arbitrary input values. Or, more importantly,
it can be applied in an optimization process, of which the goal is to
obtain a set of control parameters so that the simulation results sat-
isfy a set of desired constraints, such as the maximization of a linear
combination of the output variables.

4 INTEGRATED INTERACTIVE STEERING WORKFLOW

Hybrid Visual Steering integrates simulation, optimization, and visual-
ization in a unified framework enabling the user to conduct simulation
ensemble steering. After the computation of a set of initial runs the
user explores the simulation ensemble, and detects a region of interest.
New simulation runs are conducted to adaptively increase the resolu-
tion of the simulation points in that region and augment the simulation
ensemble. Automatic optimization supports the user in identifying re-
gions of interest. However, since the proposed optimum values are
based on regression models (approximation) built based on scalar fea-
tures extracted from actually more complex simulation data (again, an
approximation), we can not rely on them. The user needs a hint on
the regression model accuracy in the detected region, and dependent
on this accuracy more or fewer additional runs will be computed. The
overall workflow can be summarized as:

• Conduct simulation runs based on the design of experiment in the
preceding iteration (for the first iteration create an initial design
of experiment).

• Integrate the new simulation runs with the existing data (if there
are any).

• Visually analyze the data and select an objective function.

• Set a regression model to explore the objective function.

• Identify a region of interest.

• Use optimization to determine (seemingly) optimal value(s).

• If the result of this optimization is not satisfactory, create a new
design of experiment with an increased resolution.

The realization of a hybrid visual steering framework also repre-
sents a technical challenge. All components do exist in current design
processes, but they are not coupled in a unified framework. Further-
more, not all of the components support the identified tasks, and they
have to be extended. The following components are needed to realize
an integrated hybrid visual steering environment:

• Design of Experiment (DOE) Component: supports the spec-
ification of a subspace of possible input values (a shape in a
multi-dimensional space) and the specification of a distribution
of points within this space.

• Simulation Component: simulates the phenomena of interest at
a comparably accurate level.

• Analysis and Exploration Component: supports feature ex-
traction, advanced interaction, and the visualization of complex
and scalar simulation results. In the case of steering, it also
supports the interactive selection of subspaces in the parameter
space, and the specification of new design points. Finally, it also
controls regression model building, evaluates it, and shows opti-
mization results.

• Regression Model Building Component: builds a regression
model from (a subset of) the already computed simulation runs.

• Automatic Optimization Component: computes an optimum
using the regression model, subject to the interactively specified
constraints.

We use AVL’s [1] Design Explorer which supports DOE definition,
regression model building, and automatic optimization and AVL’s
CruiseM for simulation. We extend the existing interactive analysis
and exploration component to support all analysis tasks listed in Ta-
ble 1. We exploit the well-known principle of coordinated multiple
views and integrate all components in a unified framework.

5 TASKS AND STEERING DESIGN

We have identified three main groups of tasks (Table 1). Each group of
tasks has specific requirements. The main questions are how to visual-
ize control parameters and simulation results, how to design the inter-
action, both for ensemble exploration and for optimization constraints
as well as goals definition, and how to specify new points in the param-
eter space. Based on our accumulated experience and the current state
of the art in exploratory visualization, we rely on the coordinated mul-
tiple views principle. The main idea is to depict multiple dimensions
using several views and to allow the user to interactively select (brush)
subsets of the data in a view. Consequently, all the corresponding data
items in all linked views will be consistently highlighted.

5.1 Control Parameters Visualization
There are several possibilities for sampling the parameter space. The
parameter space can be continuous, or discrete. However, even if the
parameter space is continuous, we only select a limited, discrete set of
parameters, resulting in a discrete parameter sample.

As we deal with a multi-dimensional parameter space, well-known
techniques from visualization can be used. In the case of a continu-
ous parameter space, parallel coordinates are often used [27]. Projec-
tions to 2D using scatterplots are also frequently used. Furthermore,
histograms and bar charts are also regularly used to show values of
different parameters [7].

We needed a view which supports the identified tasks (Table 1, tasks
A1–A3, R1–R3, D1–D3). We can abstract the tasks on a finer level
when it comes to the parameter space visualization and identify gen-
eral task requirements:

Figure 3. Parameters Exploration View: a) Histogram for one parameter. Note that bins which are shown empty might also contain just a few items
which are not visible if the display resolution is too low. b) Empty bins are shown in a different color (grey). This design was preferred by domain
experts over highlighting non-empty bins. c) Histogram showing brushed runs (red) in relation to the overall distribution (blue). d) Constraints bar
below the histogram that is used to specify optimization constraints. e) Six parameters shown in the view. f) Six parameters with constraints and
optimum values. Some items are brushed and they are shown in red.

• Show the distribution of each parameter (A1–A3, R2, D1, D2).

• Show the distribution of brushed simulation runs (A1, A2, A3).

• Support the interactive specification of optimization constraints
for the parameters (R3).

• Initiate regression model building (R2).

• Show the automatically computed optimum values (A3, R3).

• Keep track of the automatic optimization process (R3).

None of the standard views supports all these requirements. We de-
signed a new view — the Parameters Exploration View which meets
the design requirements. It is inspired by the attribute explorer [39].
We add additional bars for specifying optimization constraints and ad-
ditional interaction capabilities.

The basic idea is to show each parameter as a histogram with a user
defined bin count. Figure 3a shows the histogram for one parameter.
Basic information, like the parameter name, its range, and the maxi-
mum number of counts across all bins are shown on the left. We do
not show this information under the histogram as we stack histograms
vertically. There are five bins in the histogram in Figure 3 that seem to
be empty. As the number of runs per bin can vary, and the histograms
have a limited vertical space, some non-empty bins can occupy only
one or even less than one pixel. We realized that it is important to mark
really empty bins.

During an informal user study with five engineers at the AVL com-
pany, we presented them with two alternatives, explicitly marking
empty bins and explicitly marking non-empty bins. All engineers pre-
ferred the solution where empty bins are marked with a gray rectangle.
Figure 3b shows such a solution. We see that there are only four empty
bins. There is a bin with just a few runs, which is not marked as empty.
This information cannot be seen in Figure 3a.

The view is fully integrated in the coordinated multiple views en-
vironment and also shows the brushed runs. Figure 3c shows one his-
togram showing brushed runs (red) in addition to the overall distribu-
tion (blue).

When designing a complex system the user wants to test various
hypotheses and adjust optimization constraints. The optimization con-
straints change during the analysis process. We add a constraints bar
below the histogram (green bars in Figure 3d) to support the interac-
tive specification of constraints. The constraints bar is used to specify
constraints for each parameter. As we binned the parameters a simple
click in the constraints bar sets the constraints to the specified bin. The
user can extend the constraints bar by additional clicks or simply by
dragging one side of any rectangle in the bar. The dragging includes
additional bins per default, but it can also be set to specify ranges not
aligned with the borders of the bins.

Figure 3e shows the Parameters Exploration View for six control
parameters. The computation of a new regression model is also ini-
tiated from the Parameters Exploration View. In the left part of the
view, which we call view control (not shown in Figure 3), there are
two buttons which start the process. One initiates the use of all sim-
ulation runs and the other computes the regression model based on
the brushed runs only. The user can also choose a regression building
method.

We also want to show the computed optimum values. We depict
them as a polyline, passing through all histograms, similar to a paral-
lel coordinates polyline. The line passes through the constraints bar
as well. The lines are depicted in two colors, depending if they are a
result from a regression model that was computed based on all runs
or only on a subset of all runs. As the user hovers over the optimum
line, corresponding constraints are shown in the constraints bar. The
user can also hide the optimum lines if they are not of interest. There
is a list of all computed optimum values (not shown in the figures)
with user specified names, so the user can activate hidden optima on
demand. Figure 3f shows the view for six parameters with an auto-
matically computed optimum. The view does not only show brushed
values but can be used to brush as well. A simple click on a bin selects
the corresponding parameter values.

5.2 Simulation Results Visualization
Both parameters and the simulation results have to be shown together.
As described in Section 5.1, we deal with a complex data model where
scalars and curves are considered as elementary data units. In the case
of an ensemble, this means that for each dimension we have a collec-
tion of scalars (as usual) or a collection of curves. We call all curves in
an ensemble that belong to the same dimension a family of curves [17].

When it comes to the exploration and analysis of ensemble simu-
lation data (tasks A1, A2, and A3), we have to show the simulation
results. Standard views, such as scatterplots, parallel coordinates, or
histograms are most often used during our study. For more complex
outputs, in particular for the families of curves, we use a curve view
which depicts all curves simultaneously also employing a certain den-
sity mapping, when needed. Brushing is extensively used in the explo-
ration of such ensemble simulation data. Having all complex outputs
depicted, we can easily realize the reconstruction of a model (task A2)
which is a tedious or impossible task using analytical methods only.

We use regression models that are evaluated and tuned. There are
multiple methods for evaluating and tuning a regression model (a de-
tailed description is beyond the scope of this paper). We are dealing
with a high-dimensional space and many time-dependent state vari-
ables are represented by aggregates. Although the model is tuned, it is
practically impossible to find a model which fits all simulation points.
Therefore, we also need to show the accuracy of the regression model
(task R1). If an automatically computed optimum belongs to an area

MATKOVIĆ ET AL.: VISUAL ANALYTICS FOR COMPLEX ENGINEERING SYSTEMS: HYBRID VISUAL STEERING OF SIMULATION ENSEMBLES 1807

the number of control parameters and n is the number of outputs. Due
to the physical constraints of the simulated system, the set of feasible
control data points C is a subset of Rm and the set of feasible output
data points O is a subset of Rn. A simulation ensemble E is a set of
pairs of data points (x,y), x ∈C and y ∈ O.

Traditional data analysis approaches, such as statistics or OLAP
techniques [35], usually use a relatively simple multi-dimensional
model [10, 31] (simple with respect to the types of data dimensions)
using data tables to capture relations among control parameter values
for the same simulation run. While the control parameters are almost
always numerical, scalar values, the output values also often include
time/data series so O is no longer a subset of Rn.

Since simple data tables [10] are not sufficient, we need an adequate
simulation ensemble data model to deal with more complex data. Our
simulation ensemble data model uses a two-level data hierarchy for
the output data points (Figure 2).

For each output data point yi and yi
j that is a data series, we have a

separate set of “sub-points” with its own length and number of dimen-
sions (parameters). Our discussion is limited to two dimensions. We
can select one of the data series dimensions as the independent vari-
able (e.g., time) and the other dimension as the dependent variable.
Such data series can be considered a function of one variable and rep-
resented as a curve. The curve is replaced by one or more scalar values
(features f) to create a feature point zi in the feature space F , a subset
of Rn′ , n′ ≥ n.

In other words, the scalar values yi
s from yi are directly used in the

feature space as the corresponding values zi
s in zi while each data series

value yi
j from yi is replaced by one or more scalar values (features f)

in zi.

3.2 Regression Model
If we can approximate the mapping S from the control parameter val-
ues to the simulation results using a regression model, we can esti-
mate the simulation results much faster, compared to actually running
the simulation. In order to estimate S, a number of simulation runs
are executed to get a set of input-feature pairs (simulation ensemble),
{(xi,zi)} as training data. A regression model R is built from the train-
ing data as the surrogate model of the simulation.

After the regression model is trained, we can then use it to estimate
the simulation results for arbitrary input values. Or, more importantly,
it can be applied in an optimization process, of which the goal is to
obtain a set of control parameters so that the simulation results sat-
isfy a set of desired constraints, such as the maximization of a linear
combination of the output variables.

4 INTEGRATED INTERACTIVE STEERING WORKFLOW

Hybrid Visual Steering integrates simulation, optimization, and visual-
ization in a unified framework enabling the user to conduct simulation
ensemble steering. After the computation of a set of initial runs the
user explores the simulation ensemble, and detects a region of interest.
New simulation runs are conducted to adaptively increase the resolu-
tion of the simulation points in that region and augment the simulation
ensemble. Automatic optimization supports the user in identifying re-
gions of interest. However, since the proposed optimum values are
based on regression models (approximation) built based on scalar fea-
tures extracted from actually more complex simulation data (again, an
approximation), we can not rely on them. The user needs a hint on
the regression model accuracy in the detected region, and dependent
on this accuracy more or fewer additional runs will be computed. The
overall workflow can be summarized as:

• Conduct simulation runs based on the design of experiment in the
preceding iteration (for the first iteration create an initial design
of experiment).

• Integrate the new simulation runs with the existing data (if there
are any).

• Visually analyze the data and select an objective function.

• Set a regression model to explore the objective function.

• Identify a region of interest.

• Use optimization to determine (seemingly) optimal value(s).

• If the result of this optimization is not satisfactory, create a new
design of experiment with an increased resolution.

The realization of a hybrid visual steering framework also repre-
sents a technical challenge. All components do exist in current design
processes, but they are not coupled in a unified framework. Further-
more, not all of the components support the identified tasks, and they
have to be extended. The following components are needed to realize
an integrated hybrid visual steering environment:

• Design of Experiment (DOE) Component: supports the spec-
ification of a subspace of possible input values (a shape in a
multi-dimensional space) and the specification of a distribution
of points within this space.

• Simulation Component: simulates the phenomena of interest at
a comparably accurate level.

• Analysis and Exploration Component: supports feature ex-
traction, advanced interaction, and the visualization of complex
and scalar simulation results. In the case of steering, it also
supports the interactive selection of subspaces in the parameter
space, and the specification of new design points. Finally, it also
controls regression model building, evaluates it, and shows opti-
mization results.

• Regression Model Building Component: builds a regression
model from (a subset of) the already computed simulation runs.

• Automatic Optimization Component: computes an optimum
using the regression model, subject to the interactively specified
constraints.

We use AVL’s [1] Design Explorer which supports DOE definition,
regression model building, and automatic optimization and AVL’s
CruiseM for simulation. We extend the existing interactive analysis
and exploration component to support all analysis tasks listed in Ta-
ble 1. We exploit the well-known principle of coordinated multiple
views and integrate all components in a unified framework.

5 TASKS AND STEERING DESIGN

We have identified three main groups of tasks (Table 1). Each group of
tasks has specific requirements. The main questions are how to visual-
ize control parameters and simulation results, how to design the inter-
action, both for ensemble exploration and for optimization constraints
as well as goals definition, and how to specify new points in the param-
eter space. Based on our accumulated experience and the current state
of the art in exploratory visualization, we rely on the coordinated mul-
tiple views principle. The main idea is to depict multiple dimensions
using several views and to allow the user to interactively select (brush)
subsets of the data in a view. Consequently, all the corresponding data
items in all linked views will be consistently highlighted.

5.1 Control Parameters Visualization
There are several possibilities for sampling the parameter space. The
parameter space can be continuous, or discrete. However, even if the
parameter space is continuous, we only select a limited, discrete set of
parameters, resulting in a discrete parameter sample.

As we deal with a multi-dimensional parameter space, well-known
techniques from visualization can be used. In the case of a continu-
ous parameter space, parallel coordinates are often used [27]. Projec-
tions to 2D using scatterplots are also frequently used. Furthermore,
histograms and bar charts are also regularly used to show values of
different parameters [7].

We needed a view which supports the identified tasks (Table 1, tasks
A1–A3, R1–R3, D1–D3). We can abstract the tasks on a finer level
when it comes to the parameter space visualization and identify gen-
eral task requirements:

Figure 3. Parameters Exploration View: a) Histogram for one parameter. Note that bins which are shown empty might also contain just a few items
which are not visible if the display resolution is too low. b) Empty bins are shown in a different color (grey). This design was preferred by domain
experts over highlighting non-empty bins. c) Histogram showing brushed runs (red) in relation to the overall distribution (blue). d) Constraints bar
below the histogram that is used to specify optimization constraints. e) Six parameters shown in the view. f) Six parameters with constraints and
optimum values. Some items are brushed and they are shown in red.

• Show the distribution of each parameter (A1–A3, R2, D1, D2).

• Show the distribution of brushed simulation runs (A1, A2, A3).

• Support the interactive specification of optimization constraints
for the parameters (R3).

• Initiate regression model building (R2).

• Show the automatically computed optimum values (A3, R3).

• Keep track of the automatic optimization process (R3).

None of the standard views supports all these requirements. We de-
signed a new view — the Parameters Exploration View which meets
the design requirements. It is inspired by the attribute explorer [39].
We add additional bars for specifying optimization constraints and ad-
ditional interaction capabilities.

The basic idea is to show each parameter as a histogram with a user
defined bin count. Figure 3a shows the histogram for one parameter.
Basic information, like the parameter name, its range, and the maxi-
mum number of counts across all bins are shown on the left. We do
not show this information under the histogram as we stack histograms
vertically. There are five bins in the histogram in Figure 3 that seem to
be empty. As the number of runs per bin can vary, and the histograms
have a limited vertical space, some non-empty bins can occupy only
one or even less than one pixel. We realized that it is important to mark
really empty bins.

During an informal user study with five engineers at the AVL com-
pany, we presented them with two alternatives, explicitly marking
empty bins and explicitly marking non-empty bins. All engineers pre-
ferred the solution where empty bins are marked with a gray rectangle.
Figure 3b shows such a solution. We see that there are only four empty
bins. There is a bin with just a few runs, which is not marked as empty.
This information cannot be seen in Figure 3a.

The view is fully integrated in the coordinated multiple views en-
vironment and also shows the brushed runs. Figure 3c shows one his-
togram showing brushed runs (red) in addition to the overall distribu-
tion (blue).

When designing a complex system the user wants to test various
hypotheses and adjust optimization constraints. The optimization con-
straints change during the analysis process. We add a constraints bar
below the histogram (green bars in Figure 3d) to support the interac-
tive specification of constraints. The constraints bar is used to specify
constraints for each parameter. As we binned the parameters a simple
click in the constraints bar sets the constraints to the specified bin. The
user can extend the constraints bar by additional clicks or simply by
dragging one side of any rectangle in the bar. The dragging includes
additional bins per default, but it can also be set to specify ranges not
aligned with the borders of the bins.

Figure 3e shows the Parameters Exploration View for six control
parameters. The computation of a new regression model is also ini-
tiated from the Parameters Exploration View. In the left part of the
view, which we call view control (not shown in Figure 3), there are
two buttons which start the process. One initiates the use of all sim-
ulation runs and the other computes the regression model based on
the brushed runs only. The user can also choose a regression building
method.

We also want to show the computed optimum values. We depict
them as a polyline, passing through all histograms, similar to a paral-
lel coordinates polyline. The line passes through the constraints bar
as well. The lines are depicted in two colors, depending if they are a
result from a regression model that was computed based on all runs
or only on a subset of all runs. As the user hovers over the optimum
line, corresponding constraints are shown in the constraints bar. The
user can also hide the optimum lines if they are not of interest. There
is a list of all computed optimum values (not shown in the figures)
with user specified names, so the user can activate hidden optima on
demand. Figure 3f shows the view for six parameters with an auto-
matically computed optimum. The view does not only show brushed
values but can be used to brush as well. A simple click on a bin selects
the corresponding parameter values.

5.2 Simulation Results Visualization
Both parameters and the simulation results have to be shown together.
As described in Section 5.1, we deal with a complex data model where
scalars and curves are considered as elementary data units. In the case
of an ensemble, this means that for each dimension we have a collec-
tion of scalars (as usual) or a collection of curves. We call all curves in
an ensemble that belong to the same dimension a family of curves [17].

When it comes to the exploration and analysis of ensemble simu-
lation data (tasks A1, A2, and A3), we have to show the simulation
results. Standard views, such as scatterplots, parallel coordinates, or
histograms are most often used during our study. For more complex
outputs, in particular for the families of curves, we use a curve view
which depicts all curves simultaneously also employing a certain den-
sity mapping, when needed. Brushing is extensively used in the explo-
ration of such ensemble simulation data. Having all complex outputs
depicted, we can easily realize the reconstruction of a model (task A2)
which is a tedious or impossible task using analytical methods only.

We use regression models that are evaluated and tuned. There are
multiple methods for evaluating and tuning a regression model (a de-
tailed description is beyond the scope of this paper). We are dealing
with a high-dimensional space and many time-dependent state vari-
ables are represented by aggregates. Although the model is tuned, it is
practically impossible to find a model which fits all simulation points.
Therefore, we also need to show the accuracy of the regression model
(task R1). If an automatically computed optimum belongs to an area

1808 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

where the regression model is not a good approximation of the simu-
lation results, we need more simulation runs.

In order to show the model’s accuracy, we simultaneously show
simulation results and approximated results (from the regression
model) in the Regression Exploration View. The Regression Explo-
ration View uses a projection of the high-dimensional output (solu-
tion) space (simulation results and regression model results) onto a
plane determined by two selected output values (a scatter plot). Dur-
ing the design process a designer should always explore several such
projections (different pairs of output values).

There are several ways to visualize pairs of points in the scatterplot.
We showed different designs to five experts from the AVL company.
We did not end with a uniquely preferred solution, as different tasks
require different approaches. Throughout the following examples the
simulation based points are orange and the regression model based
points are blue. Of course, the user can also configure these colors.

The first idea is to show the pairs of points and connecting lines.
Figure 4a shows such a case. In an ideal case the orange and the blue
points would overlap and there would be no lines. In a realistic case
the lines depict the accuracy of the regression model. The lines help
in deciding if a computed point is a good enough approximation in a
certain region. In case of many points (Figure 4a) there is a large over-
lapping problem and the user gets just a rough impression of accuracy.
However, during a drill-down process in the analysis, the number of
relevant pairs is reduced and the view becomes more useful. Figure 4b
shows the same view for a subset of points. The lines are easier to
identify now, and there is in general less clutter.

We also enable the user to show only simulation or only approxi-
mation points, and then, to use color coding and point size to encode
the accuracy (the line length in the other solution). The view is less
cluttered as it has less points (Figures 4c and 4d). We also offer a de-
sign where only color or only point size is used, but all domain experts
preferred the combined approach. Figure 4e shows the same data as
in Figure 4c using color only. The user can turn the context on or off.
The context use was very task specific, users sometimes preferred to
see the context and sometimes they wanted no context.

Furthermore, the users are also considering the direction and mag-
nitude of the lines. Inspired by the work of Turkay et al. [38, 37],
we also show only the deviation lines. In this case all start points are
moved to the origin, and the lines and the end points are shown. In
an ideal case there would be no lines, again. With this setup, it is
easy to brush all lines that have a certain slope and/or magnitude. Fig-
ure 4f shows such a visualization. Figure 5 shows two different areas,
one where the model is more accurate (Figure 5a) and one where dif-
ferences between the simulation and the regression are much bigger
(Figure 5b). Figure 5b also shows the context.

6 CASE STUDY

We use an example from the automotive industry to evaluate our pro-
posed approach. Together with five domain experts we conducted sev-
eral analysis sessions in order to optimize a common rail Diesel injec-
tion system. All of these experts have a long (10–20 years) experience
in automotive simulation. The sessions were conducted at AVL [1],
one of the worldwide leaders in powertrain measurement and simula-
tion systems.

Modern simulation software can be used to simulate injection sys-
tems and to help engineers to understand and tune injection param-
eters. Many phenomena can not be easily measured experimentally
and the only way to get more information is through computational
simulation. We used the AVL CruiseM simulation software to simu-
late a complete injection system [1]. We simulate an injection system
consisting of four injectors. The injectors are produced by only few
manufacturers. Hence the engine manufacturers have to tune them ac-
cording to their specific needs. The whole system, including the rail
and high-pressure pipes, is also different for each engine. The simu-
lation model has more than 200 elements. Each element in the simu-
lation model has several control and state variables. In this case study
we focus on 6 parameters and explore different simulation results.

Figure 4. Regression Exploration View: A projection of the high-
dimensional data points on a plane determined by two output values,
X max and Q in j max. The simulation results are shown in orange. The
regression model results are shown in blue. a) Simulation points and
corresponding regression model points are connected by a line to make
the difference between them visually explicit. The view is cluttered due
to the large number of points. b) Only brushed points are visualized. As
there are much less points, clutter is also reduced. The context shown
in gray can be turned off. c) and d) Alternative visualizations where
only simulation points (c), or only regression points (d) are shown. The
length of the lines (inverse accuracy of the model) is coded using color
and point size at the same time. All points are shown (as in c). e) Only
color is used to code the accuracy, the view c is preferred by domain ex-
perts. f) All lines are drawn from the origin which eases to brush points
having a large deviation, or which deviate in a certain direction.

The main principle of a common rail system is the use of a high-
pressure rail, common to all cylinders. The high pressure in the rail
is used to precisely inject fuel into the cylinders. Electronically con-
trolled actuators open and close the injectors. Sometimes, in one cycle,
the main injection is preceded by a pilot injection, or even several of
them. All this happens at least several hundred times per second. A
more detailed description of common rail injection is beyond the scope
of this paper [5, 6].

Due to high pressures and quick changes in the system, a modern
common rail injection system operates in a condition which cannot be
described sufficiently precise using classical fluid mechanics. Further-

Figure 5. Two interesting areas are brushed. a) The regression model
is quite accurate here. b) A much less accurate area is identified.

Figure 6. A modern common rail injection system used in Diesel en-
gines of cars. There is one injector for each cylinder, and a common
rail which utilizes high pressure (over 1500 bar) to precisely control the
injectors’ opening and closing.

more, in a common rail system each cylinder and injector is influenced
by the others through the rail. This requires a careful rethinking of tra-
ditional system design. Figure 6 shows a modern injection system for
a four-cylinder engine.

When tuning an injection system, engineers have a set of goals they
have to meet. If the process values are not within a certain range,
the engine will either run inefficiently or not at all. These results in-
clude mass injection rates, injection pressures (for each injector and
the overall system), and the pilot and main injections time intervals.
Corresponding control parameters for the desired ranges have to be ex-
plored (task A2, model reconstruction). A poor injection automatically
leads to poor combustion, thereby increasing consumption, pollution,
and power loss. An additional challenge in the design of a common
rail injection system is to understand and prevent the appearance of
unwanted pressure oscillations. Modern systems operate at a pressure
of over 1500 bar. The oscillations can lead to amplitude jumps of over
400 bar. Such large oscillations can cause an undesirable behavior
of individual injectors and introduce differences among the injectors.
This results in a reduced efficiency and an increased emission — ex-
actly the opposite of the design goals.

In this case study, we are interested in the high-pressure pipe ge-
ometry and the common rail itself. We have studied the geometry of
the common rail and the high pressure pipes and the influence of the
common-rail pressure and the pilot injection timings on the overall
system performance.

There are four injectors with pilot and main injections, four high-
pressure pipes and the common rail. We need advanced tools to com-
prehend the behavior of such a complex system. We assume that the
individual injectors are tuned, and we study (for two pilot injections

and the main injection) the injection pressure, the amount of injected
fuel, the needle opening velocity and the needle closing velocity.

We are exploring the system at the individual cylinder level and at
the overall system level. At the cylinder level we aim at the following:

• Small differences among injection pressures of the individual pi-
lot injections.

• Small differences among the amounts of the injected fuel during
the individual pilot injections.

• Maximum possible needle opening and closing velocities for two
pilot injections and the main injection.

• Good damping of pressure oscillations that can occur within the
high-pressure pipe.

On the overall system level we are looking for minimum possible dif-
ferences among injection pressures for the individual cylinders and
among the injected amounts of fuel for the individual cylinders. Be-
sides these goals, the injection curves have to be of certain shapes,
depending on the engine operation regime.

6.1 Iterative Analysis
After creating the model we need to decide which parameters will
be varied. We focus on the six most relevant parameters: L line and
D line (the length and diameter of the high pressure pipe), V rail and
rail pressure (the volume of the rail and the pressure inside the rail),
V inlet (the volume of a junction between the rail and the high pres-
sure pipe) and pilot start (the starting time of the first pilot injection
measured in degrees of crankshaft rotation).

We vary each control parameter and compute 2700 simulation runs.
One simulation run takes approximately 200 milliseconds on a stan-
dard single core desktop PC. Several simulations can run simultane-
ously when multiple cores are available.

More than 30 output values (time series — functions of the crank
angle) are computed per run. Once the simulation values are com-
puted, more than 30 features per run are computed as well. Some of
the features are computed from one curve (e.g., its maximum), and
some are based on several curves. Table 2 shows a small subset of the
computed scalar features.

All values of each run are computed for two revolutions of the
crankshaft (720 degrees). The result is a complex data set where each
record has some scalar attributes and some time series attributes (all
state parameters). Since the computation of the regression model and
the optimization expect scalar values, extracted scalar features are used
to approximate the model.

After the computation of the initial set of runs we started the data
exploration and analysis. Not all of the runs generate feasible results.
Some the high pressure parameter combinations result in a too low
injected fuel mass, for example. Figure 7 shows the initial setup of
our analysis. The Parameters Exploration View is placed in the upper
left corner and it remained there during the whole session. The other
views are often reconfigured, depending on the current analysis goals.

Table 2. Scalar features of time series simulation values.
State parameter Explanation
P m diff Absolute difference between the maximum

pressure during the main injection for the
first and the third cylinder.

m m diff Absolute difference between the injected
fuel mass during the injection into the first
and the third cylinder.

K d 3 A damping value.
P3 pt diff Absolute difference between the maximum

pressure for the first and the second pilot in-
jection (third cylinder).

m3 pt diff Absolute difference between the injected
fuel mass during the first and the second pi-
lot injection (third cylinder).

MATKOVIĆ ET AL.: VISUAL ANALYTICS FOR COMPLEX ENGINEERING SYSTEMS: HYBRID VISUAL STEERING OF SIMULATION ENSEMBLES 1809

where the regression model is not a good approximation of the simu-
lation results, we need more simulation runs.

In order to show the model’s accuracy, we simultaneously show
simulation results and approximated results (from the regression
model) in the Regression Exploration View. The Regression Explo-
ration View uses a projection of the high-dimensional output (solu-
tion) space (simulation results and regression model results) onto a
plane determined by two selected output values (a scatter plot). Dur-
ing the design process a designer should always explore several such
projections (different pairs of output values).

There are several ways to visualize pairs of points in the scatterplot.
We showed different designs to five experts from the AVL company.
We did not end with a uniquely preferred solution, as different tasks
require different approaches. Throughout the following examples the
simulation based points are orange and the regression model based
points are blue. Of course, the user can also configure these colors.

The first idea is to show the pairs of points and connecting lines.
Figure 4a shows such a case. In an ideal case the orange and the blue
points would overlap and there would be no lines. In a realistic case
the lines depict the accuracy of the regression model. The lines help
in deciding if a computed point is a good enough approximation in a
certain region. In case of many points (Figure 4a) there is a large over-
lapping problem and the user gets just a rough impression of accuracy.
However, during a drill-down process in the analysis, the number of
relevant pairs is reduced and the view becomes more useful. Figure 4b
shows the same view for a subset of points. The lines are easier to
identify now, and there is in general less clutter.

We also enable the user to show only simulation or only approxi-
mation points, and then, to use color coding and point size to encode
the accuracy (the line length in the other solution). The view is less
cluttered as it has less points (Figures 4c and 4d). We also offer a de-
sign where only color or only point size is used, but all domain experts
preferred the combined approach. Figure 4e shows the same data as
in Figure 4c using color only. The user can turn the context on or off.
The context use was very task specific, users sometimes preferred to
see the context and sometimes they wanted no context.

Furthermore, the users are also considering the direction and mag-
nitude of the lines. Inspired by the work of Turkay et al. [38, 37],
we also show only the deviation lines. In this case all start points are
moved to the origin, and the lines and the end points are shown. In
an ideal case there would be no lines, again. With this setup, it is
easy to brush all lines that have a certain slope and/or magnitude. Fig-
ure 4f shows such a visualization. Figure 5 shows two different areas,
one where the model is more accurate (Figure 5a) and one where dif-
ferences between the simulation and the regression are much bigger
(Figure 5b). Figure 5b also shows the context.

6 CASE STUDY

We use an example from the automotive industry to evaluate our pro-
posed approach. Together with five domain experts we conducted sev-
eral analysis sessions in order to optimize a common rail Diesel injec-
tion system. All of these experts have a long (10–20 years) experience
in automotive simulation. The sessions were conducted at AVL [1],
one of the worldwide leaders in powertrain measurement and simula-
tion systems.

Modern simulation software can be used to simulate injection sys-
tems and to help engineers to understand and tune injection param-
eters. Many phenomena can not be easily measured experimentally
and the only way to get more information is through computational
simulation. We used the AVL CruiseM simulation software to simu-
late a complete injection system [1]. We simulate an injection system
consisting of four injectors. The injectors are produced by only few
manufacturers. Hence the engine manufacturers have to tune them ac-
cording to their specific needs. The whole system, including the rail
and high-pressure pipes, is also different for each engine. The simu-
lation model has more than 200 elements. Each element in the simu-
lation model has several control and state variables. In this case study
we focus on 6 parameters and explore different simulation results.

Figure 4. Regression Exploration View: A projection of the high-
dimensional data points on a plane determined by two output values,
X max and Q in j max. The simulation results are shown in orange. The
regression model results are shown in blue. a) Simulation points and
corresponding regression model points are connected by a line to make
the difference between them visually explicit. The view is cluttered due
to the large number of points. b) Only brushed points are visualized. As
there are much less points, clutter is also reduced. The context shown
in gray can be turned off. c) and d) Alternative visualizations where
only simulation points (c), or only regression points (d) are shown. The
length of the lines (inverse accuracy of the model) is coded using color
and point size at the same time. All points are shown (as in c). e) Only
color is used to code the accuracy, the view c is preferred by domain ex-
perts. f) All lines are drawn from the origin which eases to brush points
having a large deviation, or which deviate in a certain direction.

The main principle of a common rail system is the use of a high-
pressure rail, common to all cylinders. The high pressure in the rail
is used to precisely inject fuel into the cylinders. Electronically con-
trolled actuators open and close the injectors. Sometimes, in one cycle,
the main injection is preceded by a pilot injection, or even several of
them. All this happens at least several hundred times per second. A
more detailed description of common rail injection is beyond the scope
of this paper [5, 6].

Due to high pressures and quick changes in the system, a modern
common rail injection system operates in a condition which cannot be
described sufficiently precise using classical fluid mechanics. Further-

Figure 5. Two interesting areas are brushed. a) The regression model
is quite accurate here. b) A much less accurate area is identified.

Figure 6. A modern common rail injection system used in Diesel en-
gines of cars. There is one injector for each cylinder, and a common
rail which utilizes high pressure (over 1500 bar) to precisely control the
injectors’ opening and closing.

more, in a common rail system each cylinder and injector is influenced
by the others through the rail. This requires a careful rethinking of tra-
ditional system design. Figure 6 shows a modern injection system for
a four-cylinder engine.

When tuning an injection system, engineers have a set of goals they
have to meet. If the process values are not within a certain range,
the engine will either run inefficiently or not at all. These results in-
clude mass injection rates, injection pressures (for each injector and
the overall system), and the pilot and main injections time intervals.
Corresponding control parameters for the desired ranges have to be ex-
plored (task A2, model reconstruction). A poor injection automatically
leads to poor combustion, thereby increasing consumption, pollution,
and power loss. An additional challenge in the design of a common
rail injection system is to understand and prevent the appearance of
unwanted pressure oscillations. Modern systems operate at a pressure
of over 1500 bar. The oscillations can lead to amplitude jumps of over
400 bar. Such large oscillations can cause an undesirable behavior
of individual injectors and introduce differences among the injectors.
This results in a reduced efficiency and an increased emission — ex-
actly the opposite of the design goals.

In this case study, we are interested in the high-pressure pipe ge-
ometry and the common rail itself. We have studied the geometry of
the common rail and the high pressure pipes and the influence of the
common-rail pressure and the pilot injection timings on the overall
system performance.

There are four injectors with pilot and main injections, four high-
pressure pipes and the common rail. We need advanced tools to com-
prehend the behavior of such a complex system. We assume that the
individual injectors are tuned, and we study (for two pilot injections

and the main injection) the injection pressure, the amount of injected
fuel, the needle opening velocity and the needle closing velocity.

We are exploring the system at the individual cylinder level and at
the overall system level. At the cylinder level we aim at the following:

• Small differences among injection pressures of the individual pi-
lot injections.

• Small differences among the amounts of the injected fuel during
the individual pilot injections.

• Maximum possible needle opening and closing velocities for two
pilot injections and the main injection.

• Good damping of pressure oscillations that can occur within the
high-pressure pipe.

On the overall system level we are looking for minimum possible dif-
ferences among injection pressures for the individual cylinders and
among the injected amounts of fuel for the individual cylinders. Be-
sides these goals, the injection curves have to be of certain shapes,
depending on the engine operation regime.

6.1 Iterative Analysis
After creating the model we need to decide which parameters will
be varied. We focus on the six most relevant parameters: L line and
D line (the length and diameter of the high pressure pipe), V rail and
rail pressure (the volume of the rail and the pressure inside the rail),
V inlet (the volume of a junction between the rail and the high pres-
sure pipe) and pilot start (the starting time of the first pilot injection
measured in degrees of crankshaft rotation).

We vary each control parameter and compute 2700 simulation runs.
One simulation run takes approximately 200 milliseconds on a stan-
dard single core desktop PC. Several simulations can run simultane-
ously when multiple cores are available.

More than 30 output values (time series — functions of the crank
angle) are computed per run. Once the simulation values are com-
puted, more than 30 features per run are computed as well. Some of
the features are computed from one curve (e.g., its maximum), and
some are based on several curves. Table 2 shows a small subset of the
computed scalar features.

All values of each run are computed for two revolutions of the
crankshaft (720 degrees). The result is a complex data set where each
record has some scalar attributes and some time series attributes (all
state parameters). Since the computation of the regression model and
the optimization expect scalar values, extracted scalar features are used
to approximate the model.

After the computation of the initial set of runs we started the data
exploration and analysis. Not all of the runs generate feasible results.
Some the high pressure parameter combinations result in a too low
injected fuel mass, for example. Figure 7 shows the initial setup of
our analysis. The Parameters Exploration View is placed in the upper
left corner and it remained there during the whole session. The other
views are often reconfigured, depending on the current analysis goals.

Table 2. Scalar features of time series simulation values.
State parameter Explanation
P m diff Absolute difference between the maximum

pressure during the main injection for the
first and the third cylinder.

m m diff Absolute difference between the injected
fuel mass during the injection into the first
and the third cylinder.

K d 3 A damping value.
P3 pt diff Absolute difference between the maximum

pressure for the first and the second pilot in-
jection (third cylinder).

m3 pt diff Absolute difference between the injected
fuel mass during the first and the second pi-
lot injection (third cylinder).

1810 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

Figure 7. The initial view configuration (more than 2700 records). The Parameters Exploration View is shown in the upper left corner. The other
views depict selected state parameters studied during the analysis.

Three of the five users had experience with interactive visual anal-
ysis prior to this case study. One user reported after the study that
”Seeing all results at once, although some are not feasible, represents
a great advantage. I can see results in context now, and not each run
separately as up to now.” In order to explore how outputs change when
control parameters change (task A1) we use brushing. By moving the
brush across the parameter space all corresponding outputs are high-
lighted consistently. Another user commented ”Seeing how outputs
change when I move the brush adds additional quality to conventional
sensitivity analysis. I get a much better impression now.”

The model reconstruction task focuses on finding parameters which
result in desired values for scalar outputs, and certain curve shapes for
curve outputs. Curve shapes are crucial for an efficient injection. For
model reconstruction (task A2), we simply select the desired values
of the scalar outputs and the desired curve shapes. This is practically
impossible to do analytically becomes very intuitive now. We brush
desired shapes and undesired shapes as well. Some oscillations oc-
cur for some combinations of control parameters and it is important
to understand when this happens. We also use multiple composite
brushing. The user can select different subsets in different colors and
interactively change any selection. This proved to be perfect for vari-
ous comparisons (task A3), as stated by one user ”Comparing several
scenarios is straightforward using multiple brushes. Similar compar-
isons are simply impossible using a conventional workflow where we
analyze each run separately, and compare the results afterwards.”

We identify the area in the parameter space where a possible opti-
mum could be. Automatic optimization is used to find the optimum
instead of trying to regularly fill in the range with new design points
(which would result in many additional simulation runs). The auto-
matic optimization can be started from within the tool. The parame-
ters view is used to specify which runs are included and the regression
model is created. From now on all scalar values can be computed us-
ing the regression model. We specify the optimization constraints and
compute the optimum based on the regression model. All these steps
are performed in the integrated environment that was appreciated by a
user: ”I could never set up optimization so fast. I also see all results
together with the initial runs.”

We run the simulation (not the regression model) for the optimum
point. The simulation tool is started automatically, a new run is com-
puted, and the simulation results are loaded in the visualization tool.
All outputs are computed by the simulation for the computed opti-
mum point. Of course, these values differ from the values computed
using the regression model. While the regression model is only an ap-

proximation we know it is precise enough to indicate the region of the
optimum in the specified subspace. However, we are aware that the
optimum is computed using an approximation, so we propose to com-
pute additional points in the neighborhood of the optimum. For each
additional point a simulation run is needed. The number of additional
points can be specified dependent on model accuracy in the optimum’s
neighborhood. In this case we generate 244 new points around the op-
timum. The points are mostly in the constrained space, but we allow a
slight deviation if the optimum is on a border. The points are generated
using the full-factorial algorithm [30].

The computed optimum point is depicted in the Parameters Explo-
ration View and in the other views. If better points exist, they are
displayed and can be selected by the user. One user commented: ”The
suggestions of where to refine the parameter space based on optimiza-
tion speeds up the steering. The model accuracy shown indicates the
quality of the optimization results. Seeing all runs all the time is simply
unmatched in a conventional workflow. I can also see all curves which
are normally not available when an optimization based on scalar fea-
tures is conducted. I would estimate a speedup of at least an order of
magnitude when designing complex systems.”

Figure 8 illustrates a typical workflow from an analysis session.

6.2 Regression Model Modification

The following example illustrates how the regression models influence
the computed optimum. At one stage, we had 3188 simulation runs in
the ensemble, as we had continuously added runs to the ensemble. We
computed an optimum and additional points in the neighborhood. We
wanted to minimize P m diff. The scatterplot in Figure 9a shows the
scatterplot where P m diff is on the x axis. The computed minimum is
dark green and all points from the optimum’s neighborhood are pink.
We clearly see that there are better points in the neighborhood. The
same data in the parallel coordinates (Figure 9b) shows two clusters
among the pink items on the first axis, P m diff. The optimum is rather
high, and it seems as if the upper cluster is attracting the optimum.

It is possible that we have a high gradient which influences the re-
gression model. A new regression model is computed based on a sub-
set of the points only. The points with high P m diff values are ex-
cluded, and new optimum is computed. The scatterplot (Figure 9c)
and parallel coordinates (Figure 9d) show the original optimum and
the new optimum in light green. The new model fits much better and
the new optimum is smaller (remember that we wanted to minimize
P m diff). We also computed the optimum using a model based on
even more neighboring points but the outcome was almost the same.

Figure 8. An example of a typical analysis iteration. 1. The Parameters Exploration View is used to set the initial ranges of the control parameters.
2. A regression model is computed based on the already computed simulation runs. Time series data are aggregated. 3. The Parameters
Exploration View shows the first computed optimum. The green poly-line connects the optimal control parameters. 4. Left: the points in the
neighborhood of the computed optimum are simulated and depicted in pink. Right: the corresponding curves. It is obvious that there are better
points than the automatically suggested one. 5. We additionally check if the curves have acceptable shapes. Left: the selected points and the
optimum are highlighted. Right: the corresponding curves.

Figure 9. a) A scatterplot showing the first optimum (P m diff), dark
green. b) The parallel coordinates showing the first optimum, dark
green. c) The scatterplot showing the first and the second optimums
(P m diff), light green. d) The parallel coordinates showing the first and
the second optimums, light green.

The curve shapes for the new optimum are examined and verified by
users: ”Hybrid steering makes us aware of automatic optimization
limits. We can easily see if results are right or not, and we can quickly
refine the model if needed. I used steering before, but the addition of
automatic optimization improves it significantly.”

7 DISCUSSION AND CONCLUSIONS

The new Hybrid Visual Steering approach represents an integrated de-
sign environment for simulation, visualization, and optimization. The
development of this approach would have been impossible without a
close collaboration with domain experts through numerous sessions
over several months. The improvements and time savings are signifi-
cant when compared to the conventional approach. The integrated de-
sign environment manages complex data (no tedious file conversions),
keeps track of the process and of all optima found during the process.

We illustrated the approach on the common rail injection system
design but the approach is not limited to the injection design only.
We talked to the domain experts working on different automotive sys-
tems (timing drive, crankshaft balancing, and overall driving comfort)

and they anticipate similar potential speed ups for their design prob-
lems. The approach can be applied whenever there is a complex sys-
tem that can be represented by a simulation model with a multidimen-
sional parameter space (either continuous or discrete), and relatively
fast simulation. The simulation could be any algorithm that computes
something based on control parameters. We are currently exploring
applying the approach to image segmentation in the medical domain.
We are also planning to extend the system for air flow simulation and
traffic simulation.

The initial discussions we had with experts from all these domains
make us confident that Hybrid Visual Steering can be applied in many
scientific and engineering domains. Of course, the individual compo-
nents of the system (simulation tool, regression model building tool,
optimization, and visualization) should be modified according to the
specific domain, but the main methodology and the workflow (see Sec-
tion 4) remains the same. The modifications should be done in con-
sultation with the domain experts as every domain has its own require-
ments, conventions and standards.

The interplay between the parameters of complex systems is so in-
tricate that the expert’s intuition and knowledge can not be represented
by an automatic system. Hence it is important to have an interactive
system. Only human experience, knowledge, and imagination, sup-
ported by automatic methods can yield the best-possible results.

In this paper we described our experiences with the injection system
design. Initially, the common rail injection system design process was
done using a number of isolated tools. It was necessary to create an
integrated design environment (Figure 1) that supports simulation, vi-
sualization and optimization. The evaluation of the proposed approach
by five domain experts demonstrates the viability of the proposed ap-
proach, advantages over the existing design practice, and its useful-
ness in everyday industrial design. The integrated design environment
which was deployed in the context of the case study is currently used
by AVL. The intent is to make it a standard part of AVL’s commercially
available software suite.

ACKNOWLEDGMENTS

Part of this work was done in the scope of the K1 program at the VRVis
Research Center.

MATKOVIĆ ET AL.: VISUAL ANALYTICS FOR COMPLEX ENGINEERING SYSTEMS: HYBRID VISUAL STEERING OF SIMULATION ENSEMBLES 1811

Figure 7. The initial view configuration (more than 2700 records). The Parameters Exploration View is shown in the upper left corner. The other
views depict selected state parameters studied during the analysis.

Three of the five users had experience with interactive visual anal-
ysis prior to this case study. One user reported after the study that
”Seeing all results at once, although some are not feasible, represents
a great advantage. I can see results in context now, and not each run
separately as up to now.” In order to explore how outputs change when
control parameters change (task A1) we use brushing. By moving the
brush across the parameter space all corresponding outputs are high-
lighted consistently. Another user commented ”Seeing how outputs
change when I move the brush adds additional quality to conventional
sensitivity analysis. I get a much better impression now.”

The model reconstruction task focuses on finding parameters which
result in desired values for scalar outputs, and certain curve shapes for
curve outputs. Curve shapes are crucial for an efficient injection. For
model reconstruction (task A2), we simply select the desired values
of the scalar outputs and the desired curve shapes. This is practically
impossible to do analytically becomes very intuitive now. We brush
desired shapes and undesired shapes as well. Some oscillations oc-
cur for some combinations of control parameters and it is important
to understand when this happens. We also use multiple composite
brushing. The user can select different subsets in different colors and
interactively change any selection. This proved to be perfect for vari-
ous comparisons (task A3), as stated by one user ”Comparing several
scenarios is straightforward using multiple brushes. Similar compar-
isons are simply impossible using a conventional workflow where we
analyze each run separately, and compare the results afterwards.”

We identify the area in the parameter space where a possible opti-
mum could be. Automatic optimization is used to find the optimum
instead of trying to regularly fill in the range with new design points
(which would result in many additional simulation runs). The auto-
matic optimization can be started from within the tool. The parame-
ters view is used to specify which runs are included and the regression
model is created. From now on all scalar values can be computed us-
ing the regression model. We specify the optimization constraints and
compute the optimum based on the regression model. All these steps
are performed in the integrated environment that was appreciated by a
user: ”I could never set up optimization so fast. I also see all results
together with the initial runs.”

We run the simulation (not the regression model) for the optimum
point. The simulation tool is started automatically, a new run is com-
puted, and the simulation results are loaded in the visualization tool.
All outputs are computed by the simulation for the computed opti-
mum point. Of course, these values differ from the values computed
using the regression model. While the regression model is only an ap-

proximation we know it is precise enough to indicate the region of the
optimum in the specified subspace. However, we are aware that the
optimum is computed using an approximation, so we propose to com-
pute additional points in the neighborhood of the optimum. For each
additional point a simulation run is needed. The number of additional
points can be specified dependent on model accuracy in the optimum’s
neighborhood. In this case we generate 244 new points around the op-
timum. The points are mostly in the constrained space, but we allow a
slight deviation if the optimum is on a border. The points are generated
using the full-factorial algorithm [30].

The computed optimum point is depicted in the Parameters Explo-
ration View and in the other views. If better points exist, they are
displayed and can be selected by the user. One user commented: ”The
suggestions of where to refine the parameter space based on optimiza-
tion speeds up the steering. The model accuracy shown indicates the
quality of the optimization results. Seeing all runs all the time is simply
unmatched in a conventional workflow. I can also see all curves which
are normally not available when an optimization based on scalar fea-
tures is conducted. I would estimate a speedup of at least an order of
magnitude when designing complex systems.”

Figure 8 illustrates a typical workflow from an analysis session.

6.2 Regression Model Modification

The following example illustrates how the regression models influence
the computed optimum. At one stage, we had 3188 simulation runs in
the ensemble, as we had continuously added runs to the ensemble. We
computed an optimum and additional points in the neighborhood. We
wanted to minimize P m diff. The scatterplot in Figure 9a shows the
scatterplot where P m diff is on the x axis. The computed minimum is
dark green and all points from the optimum’s neighborhood are pink.
We clearly see that there are better points in the neighborhood. The
same data in the parallel coordinates (Figure 9b) shows two clusters
among the pink items on the first axis, P m diff. The optimum is rather
high, and it seems as if the upper cluster is attracting the optimum.

It is possible that we have a high gradient which influences the re-
gression model. A new regression model is computed based on a sub-
set of the points only. The points with high P m diff values are ex-
cluded, and new optimum is computed. The scatterplot (Figure 9c)
and parallel coordinates (Figure 9d) show the original optimum and
the new optimum in light green. The new model fits much better and
the new optimum is smaller (remember that we wanted to minimize
P m diff). We also computed the optimum using a model based on
even more neighboring points but the outcome was almost the same.

Figure 8. An example of a typical analysis iteration. 1. The Parameters Exploration View is used to set the initial ranges of the control parameters.
2. A regression model is computed based on the already computed simulation runs. Time series data are aggregated. 3. The Parameters
Exploration View shows the first computed optimum. The green poly-line connects the optimal control parameters. 4. Left: the points in the
neighborhood of the computed optimum are simulated and depicted in pink. Right: the corresponding curves. It is obvious that there are better
points than the automatically suggested one. 5. We additionally check if the curves have acceptable shapes. Left: the selected points and the
optimum are highlighted. Right: the corresponding curves.

Figure 9. a) A scatterplot showing the first optimum (P m diff), dark
green. b) The parallel coordinates showing the first optimum, dark
green. c) The scatterplot showing the first and the second optimums
(P m diff), light green. d) The parallel coordinates showing the first and
the second optimums, light green.

The curve shapes for the new optimum are examined and verified by
users: ”Hybrid steering makes us aware of automatic optimization
limits. We can easily see if results are right or not, and we can quickly
refine the model if needed. I used steering before, but the addition of
automatic optimization improves it significantly.”

7 DISCUSSION AND CONCLUSIONS

The new Hybrid Visual Steering approach represents an integrated de-
sign environment for simulation, visualization, and optimization. The
development of this approach would have been impossible without a
close collaboration with domain experts through numerous sessions
over several months. The improvements and time savings are signifi-
cant when compared to the conventional approach. The integrated de-
sign environment manages complex data (no tedious file conversions),
keeps track of the process and of all optima found during the process.

We illustrated the approach on the common rail injection system
design but the approach is not limited to the injection design only.
We talked to the domain experts working on different automotive sys-
tems (timing drive, crankshaft balancing, and overall driving comfort)

and they anticipate similar potential speed ups for their design prob-
lems. The approach can be applied whenever there is a complex sys-
tem that can be represented by a simulation model with a multidimen-
sional parameter space (either continuous or discrete), and relatively
fast simulation. The simulation could be any algorithm that computes
something based on control parameters. We are currently exploring
applying the approach to image segmentation in the medical domain.
We are also planning to extend the system for air flow simulation and
traffic simulation.

The initial discussions we had with experts from all these domains
make us confident that Hybrid Visual Steering can be applied in many
scientific and engineering domains. Of course, the individual compo-
nents of the system (simulation tool, regression model building tool,
optimization, and visualization) should be modified according to the
specific domain, but the main methodology and the workflow (see Sec-
tion 4) remains the same. The modifications should be done in con-
sultation with the domain experts as every domain has its own require-
ments, conventions and standards.

The interplay between the parameters of complex systems is so in-
tricate that the expert’s intuition and knowledge can not be represented
by an automatic system. Hence it is important to have an interactive
system. Only human experience, knowledge, and imagination, sup-
ported by automatic methods can yield the best-possible results.

In this paper we described our experiences with the injection system
design. Initially, the common rail injection system design process was
done using a number of isolated tools. It was necessary to create an
integrated design environment (Figure 1) that supports simulation, vi-
sualization and optimization. The evaluation of the proposed approach
by five domain experts demonstrates the viability of the proposed ap-
proach, advantages over the existing design practice, and its useful-
ness in everyday industrial design. The integrated design environment
which was deployed in the context of the case study is currently used
by AVL. The intent is to make it a standard part of AVL’s commercially
available software suite.

ACKNOWLEDGMENTS

Part of this work was done in the scope of the K1 program at the VRVis
Research Center.

1812 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

REFERENCES

[1] AVL. AVL List GmbH. http://www.avl.com/, 2013. [last ac-
cessed 25 June 2014].

[2] W. Berger, H. Piringer, P. Filzmoser, and E. Gröller. Uncertainty-aware
exploration of continuous parameter spaces using multivariate prediction.
Computer Graphics Forum, 30(3):911–920, June 2011.

[3] W. Berger and H. Pringer. Interactive visual analysis of multiobjective
optimizations. In Proceedings of the 2010 IEEE Symposium on Visual
Analytics Science and Technology, pages 215–216, 24–29 Oct. 2010.

[4] S. Bergner, M. Sedlmair, T. Möller, S. N. Abdolyousefi, and A. Saad.
ParaGlide: Interactive parameter space partitioning for computer simu-
lations. IEEE Transactions on Visualization and Computer Graphics,
19(9):1499–1512, Sept. 2013.

[5] F. Boecking, U. Dohle, J. Hammer, and S. Kampmann. Passenger car
common rail systems for future emissions standards. MTZ worldwide,
66(7–8):552–557, 2005.

[6] W. Boehner and K. Hummel. Common Rail Injection System for Com-
mercial Diesel Vehicles. SAE Transactions, (SAE 970345), 1997.

[7] M. Booshehrian, T. Möller, R. M. Peterman, and T. Munzner. Vis-
mon: Facilitating analysis of trade-offs, uncertainty, and sensitivity in
fisheries management decision making. Computer Graphics Forum,
31(3pt3):1235–1244, June 2012.

[8] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual Workshop
on Computational Learning Theory (COLT ’92), pages 144–152, New
York, 1992. ACM.

[9] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–
269, 2004.

[10] S. K. Card, J. Mackinlay, and B. Shneiderman, editors. Readings in In-
formation Visualization: Using Vision to Think. Interactive Technologies.
Morgan Kaufmann, 1999.

[11] J. X. Chen, D. Rine, and H. D. Simon. Advancing interactive visualiza-
tion and computational steering. IEEE Computational Science & Engi-
neering, 3(4):13–17, Winter 1996.

[12] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995.

[13] D. Engel, K. Greff, C. Garth, K. Bein, A. Wexler, B. Hamann, and H. Ha-
gen. Visual steering and verification of mass spectrometry data factor-
ization in air quality research. IEEE Transactions on Visualization and
Computer Graphics, 18(12):2275–2284, Dec. 2012.

[14] H. Hagen, A. Ebert, R. H. van Lengen, and G. Scheuermann. Scien-
tific visualization: methods and applications. In Proceedings of the 19th
spring conference on Computer graphics (SCCG ’03), pages 23–33, New
York, NY, USA, 2003. ACM.

[15] C. Johnson, S. G. Parker, C. Hansen, G. L. Kindlmann, and Y. Livnat.
Interactive simulation and visualization. IEEE Computer, 32(12):59–65,
Dec. 1999.

[16] J. P. C. Kleijnen. Design and Analysis of Simulation Experiments. Inter-
national Series in Operations Research & Management Science. Springer,
New York, 2007.

[17] Z. Konyha, K. Matković, D. Gračanin, M. Jelović, and H. Hauser. Inter-
active visual analysis of families of function graphs. IEEE Transactions
on Visualization and Computer Graphics, 12(6):1373–1385, Nov./Dec.
2006.

[18] K. Matković, M. Djuras, D. Gračanin, R. Splechtna, B. Stehno, and
H. Hauser. Interactive visual analysis in the concept stage of a hybrid-
vehicle design. In Proceedings of the EuroVA 2013 - EuroVis Workshop
on Visual Analytics, 17–18 June 2013.

[19] K. Matković, D. Gračanin, M. Jelović, A. Ammer, A. Lež, and H. Hauser.
Interactive visual analysis of multiple simulation runs using the simu-
lation model view: Understanding and tuning of an electronic unit in-
jector. IEEE Transactions on Visualization and Computer Graphics,
16(6):1449–1457, Nov.-Dec. 2010.

[20] K. Matković, D. Gračanin, M. Jelović, and H. Hauser. Interactive vi-
sual steering — rapid visual prototyping of a common rail injection
system. IEEE Transactions on Visualization and Computer Graphics,
14(6):1699–1706, Nov.-Dec. 2008.

[21] K. Matković, D. Gračanin, M. Jelović, and H. Hauser. Interactive vi-
sual analysis supporting design, tuning, and optimization of diesel engine
injection. In VisWeek 2011: Discovery Exhibition, 23–28 Oct. 2011.

[22] K. Miettinen and M. M. Mäkelä. Synchronous approach in interactive
multiobjective optimization. European Journal of Operational Research,

170(3):909–922, May 2006.
[23] J. D. Mulder, J. J. van Wijk, and R. van Liere. A survey of computational

steering environments. Future Generation Computer Systems, 15(1):119–
129, 1999.

[24] L. C. Onyiah. Design and Analysis of Experiments: Classical and Re-
gression Approaches with SAS. Statistics: Textbooks and Monographs.
CRC Press, Boca Raton, FL, 2009.

[25] S. G. Parker, C. J. Johnson, and D. Beazley. Computational steering:
Software systems and strategies. IEEE Computational Science & Engi-
neering, 4(4):50–59, Oct.-Dec. 1997.

[26] D. Pflüger, B. Peherstorfer, and H.-J. Bungartz. Spatially adaptive sparse
grids for high-dimensional data-driven problems. Journal of Complexity,
26(5):508–522, Oct. 2010.

[27] H. Piringer, W. Berger, and J. Krasser. HyperMoVal: Interactive vi-
sual validation of regression models for real-time simulation. Computer
Graphics Forum, 29(3):983–992, June 2010.

[28] H. Piringer, C. Tominski, P. Muigg, and W. Berger. A multi-threading
architecture to support interactive visual exploration. IEEE Transactions
on Visualization and Computer Graphics, 15(6):1113–1120, Nov.–Dec.
2009.

[29] H. Pirkul, R. Gupta, and E. Rolland. VisOpt: a visual interactive
optimization tool for P-median problems. Decision Support Systems,
26(3):209–223, Sept. 1999.

[30] F. Pukelsheim. Optimal Design of Experiments, volume 50 of Classics in
Applied Mathematics. SIAM, Philadelphia, 2006.

[31] H. Samet. Foundations of Multidimensional and Metric Data Structures.
Elsevier, Amsterdam, 2006.

[32] J. Seo, M. Bakay, Y.-W. Chen, S. Hilmer, B. Shneiderman, and E. P. Hoff-
man. Interactively optimizing signal-to-noise ratios in expression profil-
ing: project-specific algorithm selection and detection p-value weighting
in Affymetrix microarrays. Bioinformatics, 20(16):2534–2544, 2004.

[33] A. J. Smola and B. Schölkopf. A tutorial on support vector regression.
Statistics and Computing, 14(3):199–222, 2004.

[34] S. Tarkkanen, K. Miettinen, and J. Hakanen. Interactive poster: Inter-
active multiobjective optimization — a new application area for visual
analytics. In Proceedings of the 2009 IEEE Symposium onVisual Analyt-
ics Science and Technology (VAST 2009), pages 237–238, Oct. 2009.

[35] E. Thomsen. OLAP Solutions: Building Multidimensional Information
Systems. John Wiley & Sons, Inc., New York, 1997. CD-ROM included.

[36] M. E. Tipping. Sparse bayesian learning and the relevance vector ma-
chine. Journal of Machine Learning Research, 1:211–244, June 2001.

[37] C. Turkay, A. Lundervold, A. Lundervold, and H. Hauser. Hypothe-
sis generation by interactive visual exploration of heterogeneous medical
data. In Human-Computer Interaction and Knowledge Discovery in Com-
plex, Unstructured, Big Data, volume 7947 of Lecture Notes in Computer
Science, pages 1–12. Springer, 2013.

[38] C. Turkay, J. Parulek, and H. Hauser. Dual analysis of DNA microarrays.
In Proceedings of the 12th International Conference on Knowledge Man-
agement and Knowledge Technologies, pages 26:1–8, New York, 2012.
ACM.

[39] L. Tweedie, B. Spence, D. Williams, and R. Bhogal. The attribute ex-
plorer. In Conference Companion on Human Factors in Computing Sys-
tems (CHI’94), pages 435–436, New York, 1994. ACM.

[40] W. C. M. van Beers and J. P. C. Kleijnen. Kriging interpolation in sim-
ulation: a survey. In WSC ’04: Proceedings of the 36th conference on
Winter simulation, pages 113–121. Winter Simulation Conference, 2004.

[41] J. Waser, R. Fuchs, H. Ribičić, B. Schindler, G. Blöschl, and M. E.
Gröller. World lines. IEEE Transactions on Visualization and Computer
Graphics, 16(6):1458–1467, Nov.–Dec. 2010.

[42] C. Zenger. Sparse grids. In W. Hackbush, editor, Parallel Algorithms for
Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar,
Kiel, 1990, volume 31 of Notes on Numerical Fluid Mechanics, pages
241–251. Vieweg-Verlag, 1991.

