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Genotet: An Interactive Web-based Visual Exploration Framework
to Support Validation of Gene Regulatory Networks
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Fig. 1. An overview of Genotet interface. Genotet supports multiple views, where each view presents a different visualization metaphor
for different types of gene regulation data. A powerful visual query interface achieved through dynamic linking / grouping of views
enables an integrated visualization environment which significantly reduces the overhead involved during the analysis of this data.

Abstract— Elucidation of transcriptional regulatory networks (TRNs) is a fundamental goal in biology, and one of the most important
components of TRNs are transcription factors (TFs), proteins that specifically bind to gene promoter and enhancer regions to alter
target gene expression patterns. Advances in genomic technologies as well as advances in computational biology have led to
multiple large regulatory network models (directed networks) each with a large corpus of supporting data and gene-annotation.
There are multiple possible biological motivations for exploring large regulatory network models, including: validating TF-target gene
relationships, figuring out co-regulation patterns, and exploring the coordination of cell processes in response to changes in cell state
or environment. Here we focus on queries aimed at validating regulatory network models, and on coordinating visualization of primary
data and directed weighted gene regulatory networks. The large size of both the network models and the primary data can make such
coordinated queries cumbersome with existing tools and, in particular, inhibits the sharing of results between collaborators. In this
work, we develop and demonstrate a web-based framework for coordinating visualization and exploration of expression data (RNA-
seq, microarray), network models and gene-binding data (ChIP-seq). Using specialized data structures and multiple coordinated
views, we design an efficient querying model to support interactive analysis of the data. Finally, we show the effectiveness of our
framework through case studies for the mouse immune system (a dataset focused on a subset of key cellular functions) and a model
bacteria (a small genome with high data-completeness).

Index Terms—Web-based visualization, gene regulatory network

1 INTRODUCTION

Regulation of gene expression underlies all cellular behaviors. Various
types of regulatory rewiring allow the same set of genetic material (e.g.
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genes) to function in a spatially and temporally coordinated manner,
giving rise to diverse phenotypes on both molecular and organismal
levels. Transcription factors (TFs), proteins that bind to gene promot-
ers and enhancers (gene-specific regulatory loci in the DNA) to alter
gene expression, constitute a class of most-proximal regulators of gene
expression. A network view of the regulatory dynamics involving TFs
is essential in understanding how regulatory coordination takes place
and how network components interconnect with each other as part of
the dynamic system.

Recent breakthroughs in biotechnology have dramatically increased
the scale (while reducing the cost) of collecting genome-wide datasets
and have resulted in datasets large enough to allow for the automatic
learning of regulatory networks from data. RNA-seq [32] and microar-
ray [25] technologies enable global measurement of gene expression
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levels, while ChIP-seq technology enables one to determine the bind-
ing of specific TFs across the genome. In addition, chromatin accessi-
bility measurements [7, 13, 18] can measure what parts of the genome
are actively bound by factors such as TFs. When paired with TF bind-
ing motifs (models of sequences of DNA patterns that specific TFs
bind) these accessibility data and gene expression data can provide
constraints on network structure (with each experiment providing sev-
eral thousand priors on network structure). As input into mathematical
modeling frameworks, these genome-scale datasets of TF binding and
gene expression patterns provide an excellent opportunity to learn TF-
target-gene regulatory networks requiring the need for visualization
tools that can scale with these new experiments and the large network
models that result from their analyses.

Several groups have used computational approaches to infer gene
regulatory networks on global scales in a variety of organisms and cel-
lular contexts, and subsets of these networks have been validated ex-
perimentally. Although thousands of TF-target gene relationships are
inferred with statistical confidence, computationally inferred gene reg-
ulatory networks remain overwhelmingly experimentally unvalidated
prior to publication. This is essentially due to limitations on time, re-
sources, and scale of the experiments used to validate said networks.
Integrated data and network visualization is a key element of work-
flows aimed at selecting the subset of predicted networks to be val-
idated by costly biology experiments. Experimental biologists inter-
ested in model predictions generally access gene regulatory networks
via multiple tools – one to visualize the gene regulatory networks, and
another to visualize the primary data (gene expression and TF binding
data). Analysis of this primary data in support of the various TF-target-
gene relationships is crucial to motivating further model-hypothesis-
driven experiments. While network visualization can be accomplished
efficiently [26], visualization of primary data is performed through a
genome browser [23], which is slow due to the size of the datasets.
Note that the typical size of primary data corresponding to a rela-
tively small network is usually larger than 100 GB. Also, since these
tools require data to be stored locally, sharing data among biologists
is difficult and further impedes post-publication experimental valida-
tion and utility of gene regulatory networks. Moreover, synchroniza-
tion between the network and the primary data across different tools
is non-trivial. Tools such as Gaggle [27] were developed to help per-
form this synchronization, and to allow connectivity between multi-
ple tools. However, different datasets have different kinds of primary
data, which makes it difficult to seamlessly use these tools. Several
challenges make the use and maintenance of these tools problematic
including: 1) reliance on client side active memory and computation
that makes the tools cumbersome as datasets and network sizes in-
crease, 2) difficulty in setting up these data-integration frameworks,
and 3) the need to modify and use third party codes with mismatches
in user interface functionality and modality.

1.1 Contributions

In this work, we develop Genotet (Figure 1), an interactive web-based
framework to address the problems faced by biologists in validating
gene regulatory networks. The software was the result of ten months
of collaboration between three visualization researchers and six biol-
ogists (all co-authors) of the paper. Genotet is designed to specifically
address the visualization tasks posed by the biologists. In particular,
Genotet has the following properties:

• It visualizes the gene regulation network, their associated pri-
mary data including the gene expression and TF binding data,
and supports queries driven by both genes (nodes) and regula-
tory interactions (directed edges).

• It provides interactive linking between different types of visual-
izations so as to provide seamless coordination across the visu-
alizations of all data types.

• It is light weight and runs out-of-the-box on modern web
browsers. Both, the memory and computational burdens of pro-
cessing large gene regulation data is handled on the server-side.

• It uses level of detail rendering techniques together with a cus-
tom indexing scheme to help support interactive visualization
and query execution over large binding data.

Finally, we demonstrate the utility of Genotet through several use
cases attached to active genomics research efforts aimed at under-
standing regulatory networks in bacteria (B. subtilis) and mouse (Th17
cells, immune system).

2 RELATED WORK

In this section, we first survey existing tools used by biologists for vi-
sualizations and analyses of gene regulation networks. We then briefly
introduce other visualization systems developed to study other types
of genomics data.
Biology tools for gene regulation data. The study of biochemical
networks relies on iterating observation and experimentation, with bi-
ologists frequently checking and validating parts of gene regulatory
network working models derived from the primary data. At the heart
of this iterative model refinement are interactive interfaces for network
data visualization. In practice, biologists can use any of a wide variety
of existing network visualization tools, mostly local applications to vi-
sualize gene regulation data. Cytoscape [8, 11, 26] is one of the most
widely used tools for gene network visualization, which facilitates
large-scale network visualization. Many genome browsers exist for
visualizing binding data. Local genome browsers such as Integrative
Genomics Viewer (IGV) [23, 30], Ensembl [10], and GBrowse [16]
are effective tools. There are also web-based genome browsers, e.g.
the UCSC Genome Browser [24] aiming at visualizing genomics data
mapped onto the chromosome such as the ENCODE data [12]. For
expression profile data, the biologists typically run custom R scripts to
generate visualization. An alternative is to use polyline and heat map
plugins in another tool [17].

Although Cytoscape provides powerful graph visualization, it re-
quires significant experience with the tool to find a satisfying Cy-
toscape configuration. Another key aspect of the problem is that bi-
ologists need to frequently switch between the visualizations of differ-
ent data types. This can be achieved either manually or using plugins.
Manual switching is extremely laborious and time consuming, thus
plugins and automatic coordination of tools are preferred. Many plug-
ins have been developed for Cytoscape. For example, Tang et al. intro-
duced ContigScape [28] that facilitates gap closing of sequencing data
from microbial genomes by presenting contigs relationships as a graph
in Cytoscape. VistaClara [20] renders heat maps from matrix data. De-
spite the existence of those plugins, biologists find it troublesome to
install multiple plugins and deal with potential compatibility issues.
Besides plugins, bridging programs are written to provide a better
connection between multiple applications. Gaggle [27] is a bridging
framework that connects multiple biology tools that enables Cytoscape
to communicate with other tools running locally. GenomeSpace [1] is
another web framework for coordinating several biology visualization
tools. The drawback of the bridging approach is that the user still
needs to run multiple applications locally, which can be extremely re-
source consuming. We therefore seek to have a light weight visual-
ization system that is easier to use, but is still integrative and effective
in visualizing the gene regulation data. In this work, we thus focus on
this requirement and develop a web-based framework that incorporates
multiple visualization metaphors to help visualize gene regulatory net-
works as well as their associated primary data, and provide a simple
query interface to interact between these data types which greatly re-
duces the burden on biologists.
Visual analytics systems. Advances in science and technology have
enabled the generation of a large amount of biological data. In par-
ticular, with respect to genomic research, different biologists focus on
different types of data related to genes. The diversity of these datasets
and the wide range of requirements based on biologists’ specific needs
make it extremely difficult to have a “one size fits all” solution for the
analyses of these datasets. Many visual analytics systems have been
developed in recent times that cater to specific needs of biologists. We
now list a few recent systems. Meyer et al. developed Pathline [22] and

Table 1. Summary of the gene regulatory networks together with the
corresponding primary data used in this paper.

Mizbee [21] to help biologists study the metabolic pathway and DNA
sequence comparison, respectively. Barsky et al. [4] design Cerebal
for cell network visualization based on experiment conditions. Kim
et al. [19] proposed GeneShelf that handles changing gene expression
data from public shared database and provides dynamic visual rep-
resentations of these data. However, each of these systems cater to
specific needs with respect to handling a single type of gene data, and
do not lend themselves to be extended to be used simultaneously with
multiple datasets of different types.

3 DATA AND DESIGN REQUIREMENTS

In this section, we discuss the different types of data used by the bi-
ologists to validate gene regulatory networks. We then summarize the
primary design requirements to enable efficient analysis of these data.

3.1 Gene Regulation Data

Gene regulation data consists of a gene regulatory network together
with its associated primary data. Gene regulatory networks [5] are
essentially directed weighted networks. The nodes of the network cor-
respond to genes (TF or non-TF). The edges are directed from TFs to
target genes. The weight, which is positive for an activator and nega-
tive for a repressor, denotes the influence of a TF on its target gene.

Primary data is composed of one or more of gene expression, gene
activity, and binding datasets. Gene expression data provides the ex-
pression levels of various genes for different experimental conditions
(individual experiments). It is represented as a matrix, where the rows
represent genes and columns represent experimental conditions. Each
cell value in the matrix shows the expression level with respect to the
gene of that row under the condition of that column. The gene activity
data provides the TF activity of different genes for different experi-
mental conditions, and has the same matrix format as the gene expres-
sion data. The binding data shows the binding frequency of a certain
TF to a region of the chromosome. It is in the form of (location, count)
pairs, where location refers to a coordinate on the DNA sequence for
the full organism / genome, and count is the frequency of observed
binding events. Table 1 provides a summary of the datasets used in
this paper.

3.2 Design Requirements

We aim to create a single tool that can be used for validating gene reg-
ulatory networks through the use of visual queries on the primary data
and the network. Multiple meetings were organized (between visual-
ization researchers and biologists) to better understand the biologists’
analyses needs. Based on these meetings, we finalized a set of tasks
that is to be accomplished to meet the biologists’ requirements. These
are summarized below:

1. Support for visualizing the gene regulatory network.

2. Support for visualizing different types of primary data. This in-
cludes binding data, gene expression data, and gene activity data.

3. Ability to query different primary data through the gene regula-
tory network. For example, it should generate and execute auto-
matic queries that are triggered by selecting directed edges in the
network (the source node selects the binding data and the target
node determines the genomic locus to be displayed in that data).
This is one of the main operations performed by biologists to
look at evidence for the presence of an edge in the network.

4. Should be able to handle multiple gene regulatory network
datasets simultaneously. This allows comparison between dif-
ferent datasets.

5. Should be capable of handling large datasets. For example, bind-
ing data corresponding to a single gene is of size at least 1 GB.
A regulatory network can have 1000s of genes.

6. Should be web-based and work in a browser. This enables biol-
ogists to have single repository for their data, which allows them
to not only share their results, but also to carry out analyses with
their collaborators.

4 GENOTET SYSTEM DESIGN

Genotet is a web-based visualization framework and uses a client-
server model that allows the computational burden of processing large
gene data to be handled by a server. The client (web browser) is
responsible only for rendering the data, and was implemented us-
ing JavaScript, predominantly with D3 [6] and jQuery [3] libraries.
As modern browsers, irrespective of the operating system, support
JavaScript, Genotet works out-of-the-box without imposing any over-
head on the user. All data / computationally intensive tasks that re-
sult from queries and interactions performed on the client are han-
dled by the server. The server-side component was implemented using
node.js [2], a server-side JavaScript platform. The communication be-
tween the client and server is accomplished through HTTP requests
and responses. In this section, we describe the design of Genotet and
discuss the various choices made during its implementation.

4.1 User Interface Design
The user interface of the system consists of multiple data views, has
the ability to dynamically link / group different views, and supports an
interactive query interface. Figure 2 illustrates the different views and
the various functionality supported by the interface.

Genotet employs a free-form layout that can be customized by the
user. Each view corresponds to the visualization of a particular type of
data. As mentioned earlier, the data consists of the gene regulatory net-
work together with a set of primary data which includes binding data
and gene expression data. The user can dynamically create, move, re-
size, and close the views so as to achieve the best desired layout. This
design not only allows multiple datasets to be loaded simultaneously
within Genotet, but it also makes it flexible to use.

The web-based client was designed using the model-view-
controller architecture. Each data view consists of two components
– data model (gene regulatory network, binding data, gene expres-
sion data) and its visualization (view). The controller is responsible
for efficiently handling the interactions between different views and
the resulting communications with the server. Two types of interac-
tions between different views are supported – linking and grouping of
views. The views are independent by default. The user can optionally
link or group different views.
Linking views. Linking views enables one visualization to respond to
the user interaction in another visualization. A link relation is defined
as an ordered pair of views (v1 → v2). The controller keeps track
of all the links between the different views. User interactions in a
view v1 triggers a link message to the controller, which communicates
this message to all the target views that are linked to v1. This could
potentially result in one or more queries originating from the target
views (see Section 4.3).
Grouping views. A view group is essentially a set of views
{v1,v2, . . . ,vn}. Grouping multiple views allows for data as well as
visual synchronization across them. Visual synchronization “snaps”
the views together, and forces the views to resize proportionally. This
allows grouped views to be moved and resized together. Data synchro-
nization, on the other hand, allows for properties of the different views
of the same type within a group to be synchronized.

Any operation on a view triggers a group message to the controller
which broadcasts it to all views in its group. This enables the cor-
responding operation to be executed on all views in that group (see
Section 4.3). Note that, if a view receives a link message causing it to
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levels, while ChIP-seq technology enables one to determine the bind-
ing of specific TFs across the genome. In addition, chromatin accessi-
bility measurements [7, 13, 18] can measure what parts of the genome
are actively bound by factors such as TFs. When paired with TF bind-
ing motifs (models of sequences of DNA patterns that specific TFs
bind) these accessibility data and gene expression data can provide
constraints on network structure (with each experiment providing sev-
eral thousand priors on network structure). As input into mathematical
modeling frameworks, these genome-scale datasets of TF binding and
gene expression patterns provide an excellent opportunity to learn TF-
target-gene regulatory networks requiring the need for visualization
tools that can scale with these new experiments and the large network
models that result from their analyses.

Several groups have used computational approaches to infer gene
regulatory networks on global scales in a variety of organisms and cel-
lular contexts, and subsets of these networks have been validated ex-
perimentally. Although thousands of TF-target gene relationships are
inferred with statistical confidence, computationally inferred gene reg-
ulatory networks remain overwhelmingly experimentally unvalidated
prior to publication. This is essentially due to limitations on time, re-
sources, and scale of the experiments used to validate said networks.
Integrated data and network visualization is a key element of work-
flows aimed at selecting the subset of predicted networks to be val-
idated by costly biology experiments. Experimental biologists inter-
ested in model predictions generally access gene regulatory networks
via multiple tools – one to visualize the gene regulatory networks, and
another to visualize the primary data (gene expression and TF binding
data). Analysis of this primary data in support of the various TF-target-
gene relationships is crucial to motivating further model-hypothesis-
driven experiments. While network visualization can be accomplished
efficiently [26], visualization of primary data is performed through a
genome browser [23], which is slow due to the size of the datasets.
Note that the typical size of primary data corresponding to a rela-
tively small network is usually larger than 100 GB. Also, since these
tools require data to be stored locally, sharing data among biologists
is difficult and further impedes post-publication experimental valida-
tion and utility of gene regulatory networks. Moreover, synchroniza-
tion between the network and the primary data across different tools
is non-trivial. Tools such as Gaggle [27] were developed to help per-
form this synchronization, and to allow connectivity between multi-
ple tools. However, different datasets have different kinds of primary
data, which makes it difficult to seamlessly use these tools. Several
challenges make the use and maintenance of these tools problematic
including: 1) reliance on client side active memory and computation
that makes the tools cumbersome as datasets and network sizes in-
crease, 2) difficulty in setting up these data-integration frameworks,
and 3) the need to modify and use third party codes with mismatches
in user interface functionality and modality.

1.1 Contributions

In this work, we develop Genotet (Figure 1), an interactive web-based
framework to address the problems faced by biologists in validating
gene regulatory networks. The software was the result of ten months
of collaboration between three visualization researchers and six biol-
ogists (all co-authors) of the paper. Genotet is designed to specifically
address the visualization tasks posed by the biologists. In particular,
Genotet has the following properties:

• It visualizes the gene regulation network, their associated pri-
mary data including the gene expression and TF binding data,
and supports queries driven by both genes (nodes) and regula-
tory interactions (directed edges).

• It provides interactive linking between different types of visual-
izations so as to provide seamless coordination across the visu-
alizations of all data types.

• It is light weight and runs out-of-the-box on modern web
browsers. Both, the memory and computational burdens of pro-
cessing large gene regulation data is handled on the server-side.

• It uses level of detail rendering techniques together with a cus-
tom indexing scheme to help support interactive visualization
and query execution over large binding data.

Finally, we demonstrate the utility of Genotet through several use
cases attached to active genomics research efforts aimed at under-
standing regulatory networks in bacteria (B. subtilis) and mouse (Th17
cells, immune system).

2 RELATED WORK

In this section, we first survey existing tools used by biologists for vi-
sualizations and analyses of gene regulation networks. We then briefly
introduce other visualization systems developed to study other types
of genomics data.
Biology tools for gene regulation data. The study of biochemical
networks relies on iterating observation and experimentation, with bi-
ologists frequently checking and validating parts of gene regulatory
network working models derived from the primary data. At the heart
of this iterative model refinement are interactive interfaces for network
data visualization. In practice, biologists can use any of a wide variety
of existing network visualization tools, mostly local applications to vi-
sualize gene regulation data. Cytoscape [8, 11, 26] is one of the most
widely used tools for gene network visualization, which facilitates
large-scale network visualization. Many genome browsers exist for
visualizing binding data. Local genome browsers such as Integrative
Genomics Viewer (IGV) [23, 30], Ensembl [10], and GBrowse [16]
are effective tools. There are also web-based genome browsers, e.g.
the UCSC Genome Browser [24] aiming at visualizing genomics data
mapped onto the chromosome such as the ENCODE data [12]. For
expression profile data, the biologists typically run custom R scripts to
generate visualization. An alternative is to use polyline and heat map
plugins in another tool [17].

Although Cytoscape provides powerful graph visualization, it re-
quires significant experience with the tool to find a satisfying Cy-
toscape configuration. Another key aspect of the problem is that bi-
ologists need to frequently switch between the visualizations of differ-
ent data types. This can be achieved either manually or using plugins.
Manual switching is extremely laborious and time consuming, thus
plugins and automatic coordination of tools are preferred. Many plug-
ins have been developed for Cytoscape. For example, Tang et al. intro-
duced ContigScape [28] that facilitates gap closing of sequencing data
from microbial genomes by presenting contigs relationships as a graph
in Cytoscape. VistaClara [20] renders heat maps from matrix data. De-
spite the existence of those plugins, biologists find it troublesome to
install multiple plugins and deal with potential compatibility issues.
Besides plugins, bridging programs are written to provide a better
connection between multiple applications. Gaggle [27] is a bridging
framework that connects multiple biology tools that enables Cytoscape
to communicate with other tools running locally. GenomeSpace [1] is
another web framework for coordinating several biology visualization
tools. The drawback of the bridging approach is that the user still
needs to run multiple applications locally, which can be extremely re-
source consuming. We therefore seek to have a light weight visual-
ization system that is easier to use, but is still integrative and effective
in visualizing the gene regulation data. In this work, we thus focus on
this requirement and develop a web-based framework that incorporates
multiple visualization metaphors to help visualize gene regulatory net-
works as well as their associated primary data, and provide a simple
query interface to interact between these data types which greatly re-
duces the burden on biologists.
Visual analytics systems. Advances in science and technology have
enabled the generation of a large amount of biological data. In par-
ticular, with respect to genomic research, different biologists focus on
different types of data related to genes. The diversity of these datasets
and the wide range of requirements based on biologists’ specific needs
make it extremely difficult to have a “one size fits all” solution for the
analyses of these datasets. Many visual analytics systems have been
developed in recent times that cater to specific needs of biologists. We
now list a few recent systems. Meyer et al. developed Pathline [22] and

Table 1. Summary of the gene regulatory networks together with the
corresponding primary data used in this paper.

Mizbee [21] to help biologists study the metabolic pathway and DNA
sequence comparison, respectively. Barsky et al. [4] design Cerebal
for cell network visualization based on experiment conditions. Kim
et al. [19] proposed GeneShelf that handles changing gene expression
data from public shared database and provides dynamic visual rep-
resentations of these data. However, each of these systems cater to
specific needs with respect to handling a single type of gene data, and
do not lend themselves to be extended to be used simultaneously with
multiple datasets of different types.

3 DATA AND DESIGN REQUIREMENTS

In this section, we discuss the different types of data used by the bi-
ologists to validate gene regulatory networks. We then summarize the
primary design requirements to enable efficient analysis of these data.

3.1 Gene Regulation Data

Gene regulation data consists of a gene regulatory network together
with its associated primary data. Gene regulatory networks [5] are
essentially directed weighted networks. The nodes of the network cor-
respond to genes (TF or non-TF). The edges are directed from TFs to
target genes. The weight, which is positive for an activator and nega-
tive for a repressor, denotes the influence of a TF on its target gene.

Primary data is composed of one or more of gene expression, gene
activity, and binding datasets. Gene expression data provides the ex-
pression levels of various genes for different experimental conditions
(individual experiments). It is represented as a matrix, where the rows
represent genes and columns represent experimental conditions. Each
cell value in the matrix shows the expression level with respect to the
gene of that row under the condition of that column. The gene activity
data provides the TF activity of different genes for different experi-
mental conditions, and has the same matrix format as the gene expres-
sion data. The binding data shows the binding frequency of a certain
TF to a region of the chromosome. It is in the form of (location, count)
pairs, where location refers to a coordinate on the DNA sequence for
the full organism / genome, and count is the frequency of observed
binding events. Table 1 provides a summary of the datasets used in
this paper.

3.2 Design Requirements

We aim to create a single tool that can be used for validating gene reg-
ulatory networks through the use of visual queries on the primary data
and the network. Multiple meetings were organized (between visual-
ization researchers and biologists) to better understand the biologists’
analyses needs. Based on these meetings, we finalized a set of tasks
that is to be accomplished to meet the biologists’ requirements. These
are summarized below:

1. Support for visualizing the gene regulatory network.

2. Support for visualizing different types of primary data. This in-
cludes binding data, gene expression data, and gene activity data.

3. Ability to query different primary data through the gene regula-
tory network. For example, it should generate and execute auto-
matic queries that are triggered by selecting directed edges in the
network (the source node selects the binding data and the target
node determines the genomic locus to be displayed in that data).
This is one of the main operations performed by biologists to
look at evidence for the presence of an edge in the network.

4. Should be able to handle multiple gene regulatory network
datasets simultaneously. This allows comparison between dif-
ferent datasets.

5. Should be capable of handling large datasets. For example, bind-
ing data corresponding to a single gene is of size at least 1 GB.
A regulatory network can have 1000s of genes.

6. Should be web-based and work in a browser. This enables biol-
ogists to have single repository for their data, which allows them
to not only share their results, but also to carry out analyses with
their collaborators.

4 GENOTET SYSTEM DESIGN

Genotet is a web-based visualization framework and uses a client-
server model that allows the computational burden of processing large
gene data to be handled by a server. The client (web browser) is
responsible only for rendering the data, and was implemented us-
ing JavaScript, predominantly with D3 [6] and jQuery [3] libraries.
As modern browsers, irrespective of the operating system, support
JavaScript, Genotet works out-of-the-box without imposing any over-
head on the user. All data / computationally intensive tasks that re-
sult from queries and interactions performed on the client are han-
dled by the server. The server-side component was implemented using
node.js [2], a server-side JavaScript platform. The communication be-
tween the client and server is accomplished through HTTP requests
and responses. In this section, we describe the design of Genotet and
discuss the various choices made during its implementation.

4.1 User Interface Design
The user interface of the system consists of multiple data views, has
the ability to dynamically link / group different views, and supports an
interactive query interface. Figure 2 illustrates the different views and
the various functionality supported by the interface.

Genotet employs a free-form layout that can be customized by the
user. Each view corresponds to the visualization of a particular type of
data. As mentioned earlier, the data consists of the gene regulatory net-
work together with a set of primary data which includes binding data
and gene expression data. The user can dynamically create, move, re-
size, and close the views so as to achieve the best desired layout. This
design not only allows multiple datasets to be loaded simultaneously
within Genotet, but it also makes it flexible to use.

The web-based client was designed using the model-view-
controller architecture. Each data view consists of two components
– data model (gene regulatory network, binding data, gene expres-
sion data) and its visualization (view). The controller is responsible
for efficiently handling the interactions between different views and
the resulting communications with the server. Two types of interac-
tions between different views are supported – linking and grouping of
views. The views are independent by default. The user can optionally
link or group different views.
Linking views. Linking views enables one visualization to respond to
the user interaction in another visualization. A link relation is defined
as an ordered pair of views (v1 → v2). The controller keeps track
of all the links between the different views. User interactions in a
view v1 triggers a link message to the controller, which communicates
this message to all the target views that are linked to v1. This could
potentially result in one or more queries originating from the target
views (see Section 4.3).
Grouping views. A view group is essentially a set of views
{v1,v2, . . . ,vn}. Grouping multiple views allows for data as well as
visual synchronization across them. Visual synchronization “snaps”
the views together, and forces the views to resize proportionally. This
allows grouped views to be moved and resized together. Data synchro-
nization, on the other hand, allows for properties of the different views
of the same type within a group to be synchronized.

Any operation on a view triggers a group message to the controller
which broadcasts it to all views in its group. This enables the cor-
responding operation to be executed on all views in that group (see
Section 4.3). Note that, if a view receives a link message causing it to
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Fig. 2. Genotet views. Each view is associated with a title bar with shortcut buttons for view linking / grouping. Below the title bars are the menu
bars that support queries and visualization options. (a) Network View: The graph plot applies force-directed layout that aims at iterative network
study. (b) Table View: A table of incident edges that pops up when the user clicks a gene in the network. The table view supports filtering and
selection of edges based on their properties. The user can thus iteratively add (remove) edges to (from) the graph. (c) Expression View: The
expression view visualizes the gene expression data, with the expression matrix presented below as heat map, and selected expression profiles
plotted as polylines above. TFA profile is also shown. (d) Genome Browser View: The genome browser view renders the binding data as a typical
biology genome browser. Interactive track overview is located at the top of the view to ease navigation. Genes along with their names and exons
are rendered at the bottom. The user may conveniently locate genes using the search box in the menu. (e) Genome browser views can be grouped
to synchronize the displayed loci on the DNA sequence for comparison. Compact layout saves space for grouped views.

change its state, then it may trigger a group message where applicable
so that all views within its group are synchronized.
UI interactions. There is a common menu panel for Genotet that sup-
ports view related operations including creating, deleting, linking / un-
linking, and grouping / ungrouping views. In order to link views, the
user has the option to select the source and target views from a list of
available views. Grouping is accomplished similarly. Adding a new
view to a group is accomplished by grouping that view with any view
from the group.

Every view has a consistent layout for the title bar, supporting a
set of common functionality. Specifically, at the top-left corner of
each title bar, a set of shortcut buttons are provided that can quickly
link / group views (see Figure 2). Additionally, hovering these shortcut
buttons highlights views that are grouped or linked, which gives hints
on the current linking / grouping configuration. Each view also has
a menu bar that supports the specific functionality required by each
visualization metaphor. The title bar and menu bar can be optionally
hidden when not in use so as to construct a more compact layout (Fig-
ure 2(e)).
Extensibility. The linking and grouping behavior between various
views depend on the views. It is up to a given view to act upon the
link / group messages triggered by another view. In our design of the
UI framework, we require each view to implement the API exposed
by the controller that aids in this communication. Also, as mentioned
earlier, the data and visualization components of a data view are de-
coupled in the design. Thus, it is possible to easily incorporate more
functionality into Genotet in the future. For example, if a new visu-
alization metaphor is required for an existing (or new) data type, then
it is sufficient to just create a new view type (and data model) that
implements the exposed API, and implement its functionality. The
controller will automatically handle the communication between the

new view and existing views.

4.2 Data Views

We now describe in detail the different visualization metaphors used
to visualize the different data types along with the various options they
support.
Network view. The gene regulatory network is a directed weighted
graph that typically consists of thousands of nodes and edges. Biol-
ogists studying these networks start their analysis with a sub-network
induced by a priori subset of genes of interest, and selectively expand
the network when needed. Also, the size of the sub-network analyzed
at any point does not get too large. Therefore, we focus on displaying
small-sized graphs and improving the user experience of the biologists
for such exploration instead of trying to layout the entire network.

Figure 2(a) shows the network view for a sample sub-network. We
use a force-directed layout from D3 library to layout the sub-network
containing the genes of interest. The direction of the edges are indi-
cated by arrows, and the edges are color-encoded based on the edge
weights (positive or negative). Biologists are interested in differentiat-
ing between TF and non-TF genes when viewing the network. There-
fore nodes in the network are colored as either white or gray, depend-
ing on whether they are TF or non-TF genes, respectively. Several fil-
ters are provided to enable customization of the network visualization.
The user can filter edges based on their types, i.e. they can selectively
view only TF–TF edges, or TF–non-TF edges.

Certain nodes, especially those corresponding to TF genes have a
large out-degree, typically several hundreds. A naı̈ve method of ex-
pansion that displays all nodes adjacent to a TF node would quickly
clutter the network visualization. In order to provide a cleaner method
of exploration, we simply list the neighbors of a selected node as a
table (Figure 2(b)). The user can then selectively add neighboring

edges using this table. The use of such a table has multiple advan-
tages. It allows for showing additional attributes of these edges, such
as edge weight, based on which the user can make an informed choice
on whether to include the edge in the visualization or not. It also allows
the use of traditional table primitives such as sorting the list based on a
selected attribute, which makes it easy for the user to explore the large
number of neighbors. Additionally, the table (and the network view)
is also integrated into our query interface, which allows for users to
search for genes (nodes) and edges of interest using comparison oper-
ators on attribute values and add them into the network.

Genome browser view. The binding data is a set of (location, count)
pairs which are visualized as a histogram in the genome browser view.
The x-axis of the histogram represents the DNA sequence coordinates,
and the y-axis shows the binding frequency count (Figure 2(d)). Since
the DNA sequence is very long (its length is approximately between
[3 × 106,2 × 108]), rendering the histogram in full detail would be
inefficient. We therefore perform a level of detail (LoD) rendering to
minimize network overhead as well as rendering time. When the query
range is large, we partition the range into a uniform set of sub-ranges,
and display the most prominent peaks from each of the sub-ranges.

To assist easy exploration, an overview of the histogram is dis-
played at the top of the view. The user can then select a region to
focus along the DNA sequence by dragging a region in the overview.
The selected region is highlighted in the overview as a blue rectangle
in Figure 2(d). The reference genome track is visualized below the
x-axis of the histogram. Each gene is represented as a line segment
along the genome track, indicating its sequence position on the DNA.
The gene names are labeled below the genes. Biologists are also inter-
ested in identifying the locations of a subset of a given gene known as
exons, which are visualized as a set of boxes along the gene.

The genome browser view (like all our other views) is integrated
with the the query interface, allowing the user to efficiently search for
a gene across all chromosomes. Searching for a gene along the DNA
sequence results in automatically centering the coordinate range of the
histogram to the locus of chosen gene. The user can also dynamically
change the binding data of a genome browser view.

Expression View Recall that the gene expression data is represented
as a real number matrix where the rows and columns correspond to
genes and experiment conditions, respectively. This data is visualized
using the heat map metaphor. Figure 2(c) shows an example of the
expression view visualizing gene expression data. The biologists par-
ticularly want each cell of the matrix to be identifiable. So, instead of
opting for a continuous heat map, we choose to render the heat map as
a discrete set of rectangles for each cell.

An expression matrix contains up to tens of thousands of genes and
hundreds of conditions. In order to allow effective exploration of this
data, we allow the user to select and zoom into a region of interest in
the heat map. Biologists are sometimes interested in visualizing only
a selected set of genes and conditions. This is supported by allowing
the user to manually change the rows and columns of the heat map
through adding or removing genes and conditions. Alternatively, this
operation can also be efficiently accomplished through the use of reg-
ular expressions to select the required groups of genes or conditions
via the query interface. The latter is especially useful when the biolo-
gist already has a set of genes / conditions of interest. Again, in order
to reduce both the network traffic and the rendering overhead, we use
LoD rendering for the heat map.

When viewing only a few selected genes, the biologists prefer to
plot the gene expressions as polylines. These polyline plots, also
known as expression profiles, of the selected set of genes are rendered
above the heat map. In case a selected gene is a TF, and has activity
data associated with it, the activity profile is additionally visualized in
the TFA profile. These two profiles are shown in Figure 2(c). The con-
dition name along with the corresponding data values are displayed by
hovering different parts of the polylines, as highlighted by the orange
line and dot in Figure 2(c). Both the expression and the TFA profiles
can optionally be hidden when not needed.

4.3 Query Interface
One of the main goals of this work is to enable efficient queries of the
gene data. The linking and grouping features provide a powerful vi-
sual query interface to accomplish this. We now describe the different
possible query types supported by Genotet in detail.
Link-based queries. In the analysis of gene regulatory networks, the
most frequent queries used by the biologists are constituted of those
between different data types. Linking multiple views assists in such
queries across different data types and also provides a simple visual
query interface that greatly simplifies the analysis of the gene regula-
tory networks. The different visual queries supported depend on the
types of views that are linked together. We now discuss the possible
queries based on view linking.

1. Network view – Genome browser view. The most common op-
erations performed by the biologist are to view the binding data
corresponding to nodes / edges in the gene network. Such queries
are accomplished through the network view – genome browser
view link by allowing querying the binding data directly through
the network visualization. When the user selects a gene (node)
in the network, the genome browser view automatically centers
the DNA coordinate range to the gene’s locus. When the user se-
lects an edge in the network, the binding data of the source gene
is loaded and the locus corresponding to the target gene in the
binding data is displayed. This feature satisfies one of the main
requirements of the biologists, since it saves intensive manual ef-
fort of going back and forth between multiple tools and searching
for specific genes in them.

2. Network view – Expression view. While studying gene regulatory
networks, biologists closely observe a TF and all its regulating
genes. The expression profiles of a pair of regulator and target
are then studied and compared. In order to accomplish this, when
the user selects a gene in the network, all the genes that are tar-
gets of the selected gene are loaded as rows of the heat map in
the expression view. If an edge is selected, then the expression
profiles of the source and target genes are added to the expression
profile plot.

Group-based queries. Grouping different views will synchronize any
user interaction, such as selection, where applicable. This is especially
useful for comparisons across different datasets, where focusing on a
particular region in one of the views will automatically focus the other
views in the group as well. For example, multiple genome browser
views can be grouped together, so as to present uniform stacked layout
equivalent to a typical multi-track genome viewer. Figure 2(e) shows
an example where two genome browser views are grouped together.
When grouped, all the genome browser views within the same group
will synchronize their DNA sequence ranges. Thus, when one of the
views has its range updated, the ranges are accordingly updated in the
other views as well. This makes the comparison of different binding
tracks straightforward. Also, when the user performs any query (or
operation) on one view, then the same query is also performed on the
other view. The compact layout option is especially useful for group-
ing views.
Text-based queries. Genotet extensively employs regular expression
based searching in the various views. The biologists are interested in
having a quick method to simultaneously load data related to multiple
genes. Manual searching of these genes either through parsing a list, or
manually entering their names is a cumbersome process. Also, in most
cases, the names of genes searched for have common naming patterns.
Thus the use of regular expression greatly simplifies the search proce-
dure. Regular expression based search options are available in every
view. Each of these views have a input text box in their menu using
which the user can execute these queries. The regular expressions are
associated with a command indicating the operation to be performed
on the resulting set. For example, regular expressions are used to add /
remove nodes into the graph (with command “add / rm regexp”). Sim-
ilarly, it can be used to add / remove genes and conditions into / from
the heat map.
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Fig. 2. Genotet views. Each view is associated with a title bar with shortcut buttons for view linking / grouping. Below the title bars are the menu
bars that support queries and visualization options. (a) Network View: The graph plot applies force-directed layout that aims at iterative network
study. (b) Table View: A table of incident edges that pops up when the user clicks a gene in the network. The table view supports filtering and
selection of edges based on their properties. The user can thus iteratively add (remove) edges to (from) the graph. (c) Expression View: The
expression view visualizes the gene expression data, with the expression matrix presented below as heat map, and selected expression profiles
plotted as polylines above. TFA profile is also shown. (d) Genome Browser View: The genome browser view renders the binding data as a typical
biology genome browser. Interactive track overview is located at the top of the view to ease navigation. Genes along with their names and exons
are rendered at the bottom. The user may conveniently locate genes using the search box in the menu. (e) Genome browser views can be grouped
to synchronize the displayed loci on the DNA sequence for comparison. Compact layout saves space for grouped views.

change its state, then it may trigger a group message where applicable
so that all views within its group are synchronized.
UI interactions. There is a common menu panel for Genotet that sup-
ports view related operations including creating, deleting, linking / un-
linking, and grouping / ungrouping views. In order to link views, the
user has the option to select the source and target views from a list of
available views. Grouping is accomplished similarly. Adding a new
view to a group is accomplished by grouping that view with any view
from the group.

Every view has a consistent layout for the title bar, supporting a
set of common functionality. Specifically, at the top-left corner of
each title bar, a set of shortcut buttons are provided that can quickly
link / group views (see Figure 2). Additionally, hovering these shortcut
buttons highlights views that are grouped or linked, which gives hints
on the current linking / grouping configuration. Each view also has
a menu bar that supports the specific functionality required by each
visualization metaphor. The title bar and menu bar can be optionally
hidden when not in use so as to construct a more compact layout (Fig-
ure 2(e)).
Extensibility. The linking and grouping behavior between various
views depend on the views. It is up to a given view to act upon the
link / group messages triggered by another view. In our design of the
UI framework, we require each view to implement the API exposed
by the controller that aids in this communication. Also, as mentioned
earlier, the data and visualization components of a data view are de-
coupled in the design. Thus, it is possible to easily incorporate more
functionality into Genotet in the future. For example, if a new visu-
alization metaphor is required for an existing (or new) data type, then
it is sufficient to just create a new view type (and data model) that
implements the exposed API, and implement its functionality. The
controller will automatically handle the communication between the

new view and existing views.

4.2 Data Views

We now describe in detail the different visualization metaphors used
to visualize the different data types along with the various options they
support.
Network view. The gene regulatory network is a directed weighted
graph that typically consists of thousands of nodes and edges. Biol-
ogists studying these networks start their analysis with a sub-network
induced by a priori subset of genes of interest, and selectively expand
the network when needed. Also, the size of the sub-network analyzed
at any point does not get too large. Therefore, we focus on displaying
small-sized graphs and improving the user experience of the biologists
for such exploration instead of trying to layout the entire network.

Figure 2(a) shows the network view for a sample sub-network. We
use a force-directed layout from D3 library to layout the sub-network
containing the genes of interest. The direction of the edges are indi-
cated by arrows, and the edges are color-encoded based on the edge
weights (positive or negative). Biologists are interested in differentiat-
ing between TF and non-TF genes when viewing the network. There-
fore nodes in the network are colored as either white or gray, depend-
ing on whether they are TF or non-TF genes, respectively. Several fil-
ters are provided to enable customization of the network visualization.
The user can filter edges based on their types, i.e. they can selectively
view only TF–TF edges, or TF–non-TF edges.

Certain nodes, especially those corresponding to TF genes have a
large out-degree, typically several hundreds. A naı̈ve method of ex-
pansion that displays all nodes adjacent to a TF node would quickly
clutter the network visualization. In order to provide a cleaner method
of exploration, we simply list the neighbors of a selected node as a
table (Figure 2(b)). The user can then selectively add neighboring

edges using this table. The use of such a table has multiple advan-
tages. It allows for showing additional attributes of these edges, such
as edge weight, based on which the user can make an informed choice
on whether to include the edge in the visualization or not. It also allows
the use of traditional table primitives such as sorting the list based on a
selected attribute, which makes it easy for the user to explore the large
number of neighbors. Additionally, the table (and the network view)
is also integrated into our query interface, which allows for users to
search for genes (nodes) and edges of interest using comparison oper-
ators on attribute values and add them into the network.

Genome browser view. The binding data is a set of (location, count)
pairs which are visualized as a histogram in the genome browser view.
The x-axis of the histogram represents the DNA sequence coordinates,
and the y-axis shows the binding frequency count (Figure 2(d)). Since
the DNA sequence is very long (its length is approximately between
[3 × 106,2 × 108]), rendering the histogram in full detail would be
inefficient. We therefore perform a level of detail (LoD) rendering to
minimize network overhead as well as rendering time. When the query
range is large, we partition the range into a uniform set of sub-ranges,
and display the most prominent peaks from each of the sub-ranges.

To assist easy exploration, an overview of the histogram is dis-
played at the top of the view. The user can then select a region to
focus along the DNA sequence by dragging a region in the overview.
The selected region is highlighted in the overview as a blue rectangle
in Figure 2(d). The reference genome track is visualized below the
x-axis of the histogram. Each gene is represented as a line segment
along the genome track, indicating its sequence position on the DNA.
The gene names are labeled below the genes. Biologists are also inter-
ested in identifying the locations of a subset of a given gene known as
exons, which are visualized as a set of boxes along the gene.

The genome browser view (like all our other views) is integrated
with the the query interface, allowing the user to efficiently search for
a gene across all chromosomes. Searching for a gene along the DNA
sequence results in automatically centering the coordinate range of the
histogram to the locus of chosen gene. The user can also dynamically
change the binding data of a genome browser view.

Expression View Recall that the gene expression data is represented
as a real number matrix where the rows and columns correspond to
genes and experiment conditions, respectively. This data is visualized
using the heat map metaphor. Figure 2(c) shows an example of the
expression view visualizing gene expression data. The biologists par-
ticularly want each cell of the matrix to be identifiable. So, instead of
opting for a continuous heat map, we choose to render the heat map as
a discrete set of rectangles for each cell.

An expression matrix contains up to tens of thousands of genes and
hundreds of conditions. In order to allow effective exploration of this
data, we allow the user to select and zoom into a region of interest in
the heat map. Biologists are sometimes interested in visualizing only
a selected set of genes and conditions. This is supported by allowing
the user to manually change the rows and columns of the heat map
through adding or removing genes and conditions. Alternatively, this
operation can also be efficiently accomplished through the use of reg-
ular expressions to select the required groups of genes or conditions
via the query interface. The latter is especially useful when the biolo-
gist already has a set of genes / conditions of interest. Again, in order
to reduce both the network traffic and the rendering overhead, we use
LoD rendering for the heat map.

When viewing only a few selected genes, the biologists prefer to
plot the gene expressions as polylines. These polyline plots, also
known as expression profiles, of the selected set of genes are rendered
above the heat map. In case a selected gene is a TF, and has activity
data associated with it, the activity profile is additionally visualized in
the TFA profile. These two profiles are shown in Figure 2(c). The con-
dition name along with the corresponding data values are displayed by
hovering different parts of the polylines, as highlighted by the orange
line and dot in Figure 2(c). Both the expression and the TFA profiles
can optionally be hidden when not needed.

4.3 Query Interface
One of the main goals of this work is to enable efficient queries of the
gene data. The linking and grouping features provide a powerful vi-
sual query interface to accomplish this. We now describe the different
possible query types supported by Genotet in detail.
Link-based queries. In the analysis of gene regulatory networks, the
most frequent queries used by the biologists are constituted of those
between different data types. Linking multiple views assists in such
queries across different data types and also provides a simple visual
query interface that greatly simplifies the analysis of the gene regula-
tory networks. The different visual queries supported depend on the
types of views that are linked together. We now discuss the possible
queries based on view linking.

1. Network view – Genome browser view. The most common op-
erations performed by the biologist are to view the binding data
corresponding to nodes / edges in the gene network. Such queries
are accomplished through the network view – genome browser
view link by allowing querying the binding data directly through
the network visualization. When the user selects a gene (node)
in the network, the genome browser view automatically centers
the DNA coordinate range to the gene’s locus. When the user se-
lects an edge in the network, the binding data of the source gene
is loaded and the locus corresponding to the target gene in the
binding data is displayed. This feature satisfies one of the main
requirements of the biologists, since it saves intensive manual ef-
fort of going back and forth between multiple tools and searching
for specific genes in them.

2. Network view – Expression view. While studying gene regulatory
networks, biologists closely observe a TF and all its regulating
genes. The expression profiles of a pair of regulator and target
are then studied and compared. In order to accomplish this, when
the user selects a gene in the network, all the genes that are tar-
gets of the selected gene are loaded as rows of the heat map in
the expression view. If an edge is selected, then the expression
profiles of the source and target genes are added to the expression
profile plot.

Group-based queries. Grouping different views will synchronize any
user interaction, such as selection, where applicable. This is especially
useful for comparisons across different datasets, where focusing on a
particular region in one of the views will automatically focus the other
views in the group as well. For example, multiple genome browser
views can be grouped together, so as to present uniform stacked layout
equivalent to a typical multi-track genome viewer. Figure 2(e) shows
an example where two genome browser views are grouped together.
When grouped, all the genome browser views within the same group
will synchronize their DNA sequence ranges. Thus, when one of the
views has its range updated, the ranges are accordingly updated in the
other views as well. This makes the comparison of different binding
tracks straightforward. Also, when the user performs any query (or
operation) on one view, then the same query is also performed on the
other view. The compact layout option is especially useful for group-
ing views.
Text-based queries. Genotet extensively employs regular expression
based searching in the various views. The biologists are interested in
having a quick method to simultaneously load data related to multiple
genes. Manual searching of these genes either through parsing a list, or
manually entering their names is a cumbersome process. Also, in most
cases, the names of genes searched for have common naming patterns.
Thus the use of regular expression greatly simplifies the search proce-
dure. Regular expression based search options are available in every
view. Each of these views have a input text box in their menu using
which the user can execute these queries. The regular expressions are
associated with a command indicating the operation to be performed
on the resulting set. For example, regular expressions are used to add /
remove nodes into the graph (with command “add / rm regexp”). Sim-
ilarly, it can be used to add / remove genes and conditions into / from
the heat map.



1908 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014

Fig. 3. The workflow for handling queries on binding data. It consists of two parts – preprocessing and querying, colored purple and black
respectively. The different steps of the preprocessing stage are as follows: [P1,P2] The original data (a) is first compressed to generate the
coordinate table (c) . [P3,P4] The segment tree (e) is then computed using the coordinate table and is stored as an array in the preorder traversal
order (f). During user interaction, a range query is executed using the segment tree as follows: [Q1] We first sub-divide the query range into sample
ranges according to the number of samples needed (d). [Q2] A binary search on the coordinate table (c) identifies the new range to be queried.
[Q3,Q4] The updated range is then searched using the segment tree and the result is returned.

Additionally, the biologists are interested in studying the network
by querying common targets of TFs, which represent combined reg-
ulation. We integrate this functionality into our querying interface,
where the users can query for common targets using the search box
present in the network view. Prior to using our tool, biologists could
not perform such queries using the other genome visualization soft-
ware. They usually resorted to writing scripts in R or Matlab to per-
form the required query, followed by manually loading the results into
the network viewer. Our query interface, on the other hand, integrates
multiple such cumbersome operations in a seamless manner, easing
the burden on the user.

4.4 Handling Large Binding Data

A gene regulatory network typically consists of thousands of genes,
and the matrix representing the gene expression data is composed
of tens of thousands of genes (rows) and a few hundred conditions
(columns). These data do not occupy much disk space. Even a brute-
force linear search for a gene in these data would not impede the in-
teractivity of Genotet. The binding data, on the other hand, is much
larger in size. As mentioned earlier, it is composed of multiple binding
tracks. Tracks are identified by gene and chromosome, or sequence ID.
The length of each binding track is at least tens of millions and can be
as large as a few hundred million. This results in approximately 2 GB
of binding data per gene.

Effective handling of the binding data poses two main challenges.
First, with increasing number of experiments being performed by the
biologists, the amount of binding data becomes exceedingly large,
making its maintenance difficult. Second, as mentioned in Section 4.2,
we use LoD rendering of the histogram to avoid network overhead as
well as rendering time. In order to obtain a good approximation, the
samples should be chosen carefully so as not to miss any prominent
“peaks” of the histogram. Interactive querying and sampling of such
large data is non-trivial. Hence, it is necessary for Genotet to be able
to handle such large data.

Using traditional databases does not serve our purpose, since the
index overhead involved to support efficient queries on this data is also
large, resulting in the consumption of more disk space. Also, large
queries takes more than a second to execute. For example, a typical
range query having range length of 500,000 takes close to 2 seconds
to execute using PostgreSQL [29]. Note that, we could have queries
whose range can be as large as a 100 million. When combined with
the time taken to sample the results and transfer it back to the client,
the total query execution time is not suitable for interactivity.

In order to handle data at this scale, we resort to using a custom
storage and index data structure. We first store each binding track in a
simple compressed format that does not alter ordering of the data. A
custom index is then built directly on the compressed data. This index
allows range queries used during LoD rendering to be interactively
executed. An overview of this workflow is illustrated in Figure 3.
Data compression. The binding data is available as text wiggle
files [31]. Figure 3(a) illustrates a small example of a wiggle file,
where the data pairs are shown below the histogram. We observed a
lot of redundancies across consecutive pairs of values. Therefore, we
iterate through the entire data once and store only the necessary value-
changing points of the histogram in a coordinate table. This results
in a smaller set of (location, count) pairs whose corresponding his-
togram is exactly the same as the original histogram. This operation is
illustrated in Figures 3(b) and 3(c).
Query execution. Let k be the maximum number of sample points
that are to be returned after a DNA coordinate range update. Genotet
uses a value of k equal to the width in terms of pixels of the genome
browser view. Given a range query, we first divide the input range into
a set of k equal sub-ranges. For example, consider the example query
shown in Figure 3(d) having range [3, 14]. Let k = 3. The query range
is equally subdivided into k = 3 sub-ranges. The maximum value from
each of these sub-ranges are then returned as the result of the query.
Using the maximum value within these sub-ranges ensures that the
approximation closely matches the actual histogram without losing the
peak details. This is a typical range maximum query (RMQ) that can
be efficiently answered using the segment tree data structure [14] in
O(logn) time per query, where n is the size of the tree. In this case, n
equals to the size of the coordinate table.

The segment tree constructed for our running example is illustrated
in Figure 3(e). We use the table index to represent the ranges while
constructing the segment tree. The orange boxes of the segment tree
show the original DNA coordinate range (for reference), the brown
boxes show the table index range, and the eggplant boxes show the
maximum value stored in the tree nodes. Since the range of table in-
dex is continuous, it allows us to flatten the segment tree as a linear
array in the pre-order traversal order. The tree node number obtained
by the pre-order traversal corresponds to its index in the flattened ar-
ray (Figure 3(f)). This array stores only the maximum values. The
segment tree is thus implicitly stored in this array as follows. Element
0 of the array corresponds to the root of the segment tree, and has
range [0,n−1], where n is the size of the coordinate table. In Figure 3
we have n = 10. For element i with range [li,ri], its left child is el-
ement i+ 1 with range [li,�(li + ri)/2�] and its right child is element

i+(�(li + ri)/2�− li + 1)× 2 with range [�(li + ri)/2�+ 1,ri]. Thus,
a segment tree covering a range of length n has exactly 2n− 1 tree
nodes, which is also the length of the flattened array.

In order to query for the maximum within a sub-range, the corre-
sponding table indexes are first computed using a binary search on the
coordinate table. Then searching for this range in the segment tree
provides the result of the sub-range query.

The coordinate table and the segment tree array are both stored as
binary files. Using this custom data structure, we are not only able
to interactively execute range queries, but we also obtain orders of
magnitude saving in space. For example, close to 80G of the Th17
binding data could be stored using only 8.47G using our custom index.

4.5 Discussion
Feature choice for LoD Rendering. As mentioned earlier, we use
the maximum value within a given range to depict the value for that
range when rendering the histogram / heat map in the genome browser
/ expression view. Alternatives would have been to use the mean or
median frequency of the given range. We chose to use the maximum
value because the biologists were interested in viewing the most dom-
inating feature within a given range.
Layout choice. The process of studying the gene regulatory network
is complicated and discussions with the biologists indicated that, de-
pending on the aspect of the data they are looking at, they wanted a
different set of views with differing interaction possibilities. For ex-
ample, they sometimes wanted multiple coordinated genome browser
views, and at other times they wanted a network view with either one
or both of genome browser view and expression view. Even the num-
ber of views of each type they wanted varied depending on the ap-
plication. Having a user interface with a fixed set of views has the
disadvantage that multiple predetermined set of views have to be de-
signed. This makes the system rigid, requiring developer intervention
to add and configure newer setups in case of new requirements from
the biologists. We therefore decided to have a more flexible interface,
where the user can dynamically create and remove views and add the
required interaction between them through linking and grouping the
views.
Linking / grouping views. Currently, the user has to manually check
the links / groups of each view by using the shortcut on the view’s
tool bar. However, when there are multiple views with several con-
nections between them, it can get cumbersome to keep track of the
existing links / groups. We plan to address this in the future by explor-
ing different possibilities in which the relationship between views can
be easily inferred.
Link functionality. We currently support only one possible type of
linking between a pair of views. It is however possible for a pair of
views to have more than one possible linking functionality. For ex-
ample, when a node is selected in the network view, the user could
choose to load the binding data of clicked node instead of the current
functionality that searches for the locus of the selected gene in the
loaded binding data. We intend to support the selection of the required
functionality for view links in the future.

5 USE CASES

In this section we present three use cases that demonstrate the effec-
tiveness of Genotet in visualizing gene regulation data and helping
biologists validate their constructed gene regulatory networks.

5.1 Validating Confirmed Regulation in the Th17 Network
The mammalian immune system is composed of many functionally
diverse cell types. In addition to being clinically relevant, the study
of immune cell types provides a good model for studying mammalian
gene regulation. In most, if not all immune cell types, the cooperative
binding of a few TFs (termed master regulators) directs distinct tran-
scriptional programs that lead to defined developmental cell fates. To
understand the principles underlying mammalian gene regulatory net-
works, biologists previously used the lineage differentiation process
of Th17, an inflammatory cell type characterized by the expression
of cytokine IL17, as a model system for studying the networks that

Fig. 4. Case 1: Validating the regulatory network found by [9]. (a) The
five core TFs are visualized in the network view. (b) Using the combined
regulation search of Genotet, the co-regulated targets of the core TFs
are added to the network (the TFs are marked in the network). (c) We
found support for FOSL2 mediated regulation at the locus by inspect-
ing the incident edges of the targets. (d) Loading the binding data of
FOSL2, BATF and IRF4 indicates that FOSL2 has competing binding
signals against BATF and IRF4.

support immune cell fate specification. In Th17 cells (cells that play
central roles in chronic inflamation), pioneer TF BATF and IRF4 bind
to regulatory DNAs that alter chromatin accessibility and predispose
regions of the chromatin for the cooperative binding of other factors
that together shape cell fate. Biologists are interested in evidence of
TF cooperativity in these cells and attempt to understand the network
architecture extending from the core TFs.

In this case study, we try to validate a previously identified reg-
ulation in the Th17 network [9]. We reconstruct a gene regulatory
network of Th17 gleaning evidence from gene expression data (RNA-
seq), TF binding data (ChIP-seq), and chromatin accessibility data
(FAIRE-seq). To find transcription regulators that function upstream
of or in parallel with core Th17 TFs, we create a sub-network cen-
tered around the five core TFs: IRF4, BATF, STAT3, RORC, and MAF
(Figure 4(a)) and look for candidate TFs that show significant target
overlap with these core TFs, using the “combined regulation” search
function (Figure 4(b)). Then, by listing the TF regulators for each tar-
get in the sub-network, we see that in addition to the five TFs, FOSL2
and HIF1A show up in the list recurringly (Figure 4(c) shows the oc-
currences of FOSL2). This suggests that FOSL2 and HIF1A regulate
the same set of genes and potentially play important roles in Th17 lin-
eage differentiation. This was later experimentally verified via gene
knock-down and ChIP-seq experiments [9].

There were speculations that FOSL2 competes with BATF for bind-
ing at some loci function as a modulator repressing the expression of
IL17A. To further investigate this we look at these common target loci
to see if there is evidence of regulatory interactions in the ChIP-seq
binding data. This is accomplished by loading and grouping the ChIP-
seq tracks for FOSL2, BATF and IRF4. We found, among a few other
examples, competing binding signals around FLOT2, a common tar-
get of the Th17 core TFs. This is shown in Figure 4(d), where FOSL2
presents a significantly lower peak where the peaks of BATF and IRF4
are high, and vice versa. FLOT2 is a gene that participates in signal
transduction pathways related to cell growth, but there has not been
many connections made between FLOT2 and Th17 specification. It
therefore motivates further research on FLOT2.

In this example, Genotet enables biologists to perform an analy-
sis that requires integration of multiple data types (network and bind-
ing data). The advantages of using Genotet in such analyses is re-
flected in the following comment from the biologist performing this
experiment: “Without Genotet, this combined regulation visualization
requires rather complicated user operations. In existing tools such
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Fig. 3. The workflow for handling queries on binding data. It consists of two parts – preprocessing and querying, colored purple and black
respectively. The different steps of the preprocessing stage are as follows: [P1,P2] The original data (a) is first compressed to generate the
coordinate table (c) . [P3,P4] The segment tree (e) is then computed using the coordinate table and is stored as an array in the preorder traversal
order (f). During user interaction, a range query is executed using the segment tree as follows: [Q1] We first sub-divide the query range into sample
ranges according to the number of samples needed (d). [Q2] A binary search on the coordinate table (c) identifies the new range to be queried.
[Q3,Q4] The updated range is then searched using the segment tree and the result is returned.

Additionally, the biologists are interested in studying the network
by querying common targets of TFs, which represent combined reg-
ulation. We integrate this functionality into our querying interface,
where the users can query for common targets using the search box
present in the network view. Prior to using our tool, biologists could
not perform such queries using the other genome visualization soft-
ware. They usually resorted to writing scripts in R or Matlab to per-
form the required query, followed by manually loading the results into
the network viewer. Our query interface, on the other hand, integrates
multiple such cumbersome operations in a seamless manner, easing
the burden on the user.

4.4 Handling Large Binding Data

A gene regulatory network typically consists of thousands of genes,
and the matrix representing the gene expression data is composed
of tens of thousands of genes (rows) and a few hundred conditions
(columns). These data do not occupy much disk space. Even a brute-
force linear search for a gene in these data would not impede the in-
teractivity of Genotet. The binding data, on the other hand, is much
larger in size. As mentioned earlier, it is composed of multiple binding
tracks. Tracks are identified by gene and chromosome, or sequence ID.
The length of each binding track is at least tens of millions and can be
as large as a few hundred million. This results in approximately 2 GB
of binding data per gene.

Effective handling of the binding data poses two main challenges.
First, with increasing number of experiments being performed by the
biologists, the amount of binding data becomes exceedingly large,
making its maintenance difficult. Second, as mentioned in Section 4.2,
we use LoD rendering of the histogram to avoid network overhead as
well as rendering time. In order to obtain a good approximation, the
samples should be chosen carefully so as not to miss any prominent
“peaks” of the histogram. Interactive querying and sampling of such
large data is non-trivial. Hence, it is necessary for Genotet to be able
to handle such large data.

Using traditional databases does not serve our purpose, since the
index overhead involved to support efficient queries on this data is also
large, resulting in the consumption of more disk space. Also, large
queries takes more than a second to execute. For example, a typical
range query having range length of 500,000 takes close to 2 seconds
to execute using PostgreSQL [29]. Note that, we could have queries
whose range can be as large as a 100 million. When combined with
the time taken to sample the results and transfer it back to the client,
the total query execution time is not suitable for interactivity.

In order to handle data at this scale, we resort to using a custom
storage and index data structure. We first store each binding track in a
simple compressed format that does not alter ordering of the data. A
custom index is then built directly on the compressed data. This index
allows range queries used during LoD rendering to be interactively
executed. An overview of this workflow is illustrated in Figure 3.
Data compression. The binding data is available as text wiggle
files [31]. Figure 3(a) illustrates a small example of a wiggle file,
where the data pairs are shown below the histogram. We observed a
lot of redundancies across consecutive pairs of values. Therefore, we
iterate through the entire data once and store only the necessary value-
changing points of the histogram in a coordinate table. This results
in a smaller set of (location, count) pairs whose corresponding his-
togram is exactly the same as the original histogram. This operation is
illustrated in Figures 3(b) and 3(c).
Query execution. Let k be the maximum number of sample points
that are to be returned after a DNA coordinate range update. Genotet
uses a value of k equal to the width in terms of pixels of the genome
browser view. Given a range query, we first divide the input range into
a set of k equal sub-ranges. For example, consider the example query
shown in Figure 3(d) having range [3, 14]. Let k = 3. The query range
is equally subdivided into k = 3 sub-ranges. The maximum value from
each of these sub-ranges are then returned as the result of the query.
Using the maximum value within these sub-ranges ensures that the
approximation closely matches the actual histogram without losing the
peak details. This is a typical range maximum query (RMQ) that can
be efficiently answered using the segment tree data structure [14] in
O(logn) time per query, where n is the size of the tree. In this case, n
equals to the size of the coordinate table.

The segment tree constructed for our running example is illustrated
in Figure 3(e). We use the table index to represent the ranges while
constructing the segment tree. The orange boxes of the segment tree
show the original DNA coordinate range (for reference), the brown
boxes show the table index range, and the eggplant boxes show the
maximum value stored in the tree nodes. Since the range of table in-
dex is continuous, it allows us to flatten the segment tree as a linear
array in the pre-order traversal order. The tree node number obtained
by the pre-order traversal corresponds to its index in the flattened ar-
ray (Figure 3(f)). This array stores only the maximum values. The
segment tree is thus implicitly stored in this array as follows. Element
0 of the array corresponds to the root of the segment tree, and has
range [0,n−1], where n is the size of the coordinate table. In Figure 3
we have n = 10. For element i with range [li,ri], its left child is el-
ement i+ 1 with range [li,�(li + ri)/2�] and its right child is element

i+(�(li + ri)/2�− li + 1)× 2 with range [�(li + ri)/2�+ 1,ri]. Thus,
a segment tree covering a range of length n has exactly 2n− 1 tree
nodes, which is also the length of the flattened array.

In order to query for the maximum within a sub-range, the corre-
sponding table indexes are first computed using a binary search on the
coordinate table. Then searching for this range in the segment tree
provides the result of the sub-range query.

The coordinate table and the segment tree array are both stored as
binary files. Using this custom data structure, we are not only able
to interactively execute range queries, but we also obtain orders of
magnitude saving in space. For example, close to 80G of the Th17
binding data could be stored using only 8.47G using our custom index.

4.5 Discussion
Feature choice for LoD Rendering. As mentioned earlier, we use
the maximum value within a given range to depict the value for that
range when rendering the histogram / heat map in the genome browser
/ expression view. Alternatives would have been to use the mean or
median frequency of the given range. We chose to use the maximum
value because the biologists were interested in viewing the most dom-
inating feature within a given range.
Layout choice. The process of studying the gene regulatory network
is complicated and discussions with the biologists indicated that, de-
pending on the aspect of the data they are looking at, they wanted a
different set of views with differing interaction possibilities. For ex-
ample, they sometimes wanted multiple coordinated genome browser
views, and at other times they wanted a network view with either one
or both of genome browser view and expression view. Even the num-
ber of views of each type they wanted varied depending on the ap-
plication. Having a user interface with a fixed set of views has the
disadvantage that multiple predetermined set of views have to be de-
signed. This makes the system rigid, requiring developer intervention
to add and configure newer setups in case of new requirements from
the biologists. We therefore decided to have a more flexible interface,
where the user can dynamically create and remove views and add the
required interaction between them through linking and grouping the
views.
Linking / grouping views. Currently, the user has to manually check
the links / groups of each view by using the shortcut on the view’s
tool bar. However, when there are multiple views with several con-
nections between them, it can get cumbersome to keep track of the
existing links / groups. We plan to address this in the future by explor-
ing different possibilities in which the relationship between views can
be easily inferred.
Link functionality. We currently support only one possible type of
linking between a pair of views. It is however possible for a pair of
views to have more than one possible linking functionality. For ex-
ample, when a node is selected in the network view, the user could
choose to load the binding data of clicked node instead of the current
functionality that searches for the locus of the selected gene in the
loaded binding data. We intend to support the selection of the required
functionality for view links in the future.

5 USE CASES

In this section we present three use cases that demonstrate the effec-
tiveness of Genotet in visualizing gene regulation data and helping
biologists validate their constructed gene regulatory networks.

5.1 Validating Confirmed Regulation in the Th17 Network
The mammalian immune system is composed of many functionally
diverse cell types. In addition to being clinically relevant, the study
of immune cell types provides a good model for studying mammalian
gene regulation. In most, if not all immune cell types, the cooperative
binding of a few TFs (termed master regulators) directs distinct tran-
scriptional programs that lead to defined developmental cell fates. To
understand the principles underlying mammalian gene regulatory net-
works, biologists previously used the lineage differentiation process
of Th17, an inflammatory cell type characterized by the expression
of cytokine IL17, as a model system for studying the networks that

Fig. 4. Case 1: Validating the regulatory network found by [9]. (a) The
five core TFs are visualized in the network view. (b) Using the combined
regulation search of Genotet, the co-regulated targets of the core TFs
are added to the network (the TFs are marked in the network). (c) We
found support for FOSL2 mediated regulation at the locus by inspect-
ing the incident edges of the targets. (d) Loading the binding data of
FOSL2, BATF and IRF4 indicates that FOSL2 has competing binding
signals against BATF and IRF4.

support immune cell fate specification. In Th17 cells (cells that play
central roles in chronic inflamation), pioneer TF BATF and IRF4 bind
to regulatory DNAs that alter chromatin accessibility and predispose
regions of the chromatin for the cooperative binding of other factors
that together shape cell fate. Biologists are interested in evidence of
TF cooperativity in these cells and attempt to understand the network
architecture extending from the core TFs.

In this case study, we try to validate a previously identified reg-
ulation in the Th17 network [9]. We reconstruct a gene regulatory
network of Th17 gleaning evidence from gene expression data (RNA-
seq), TF binding data (ChIP-seq), and chromatin accessibility data
(FAIRE-seq). To find transcription regulators that function upstream
of or in parallel with core Th17 TFs, we create a sub-network cen-
tered around the five core TFs: IRF4, BATF, STAT3, RORC, and MAF
(Figure 4(a)) and look for candidate TFs that show significant target
overlap with these core TFs, using the “combined regulation” search
function (Figure 4(b)). Then, by listing the TF regulators for each tar-
get in the sub-network, we see that in addition to the five TFs, FOSL2
and HIF1A show up in the list recurringly (Figure 4(c) shows the oc-
currences of FOSL2). This suggests that FOSL2 and HIF1A regulate
the same set of genes and potentially play important roles in Th17 lin-
eage differentiation. This was later experimentally verified via gene
knock-down and ChIP-seq experiments [9].

There were speculations that FOSL2 competes with BATF for bind-
ing at some loci function as a modulator repressing the expression of
IL17A. To further investigate this we look at these common target loci
to see if there is evidence of regulatory interactions in the ChIP-seq
binding data. This is accomplished by loading and grouping the ChIP-
seq tracks for FOSL2, BATF and IRF4. We found, among a few other
examples, competing binding signals around FLOT2, a common tar-
get of the Th17 core TFs. This is shown in Figure 4(d), where FOSL2
presents a significantly lower peak where the peaks of BATF and IRF4
are high, and vice versa. FLOT2 is a gene that participates in signal
transduction pathways related to cell growth, but there has not been
many connections made between FLOT2 and Th17 specification. It
therefore motivates further research on FLOT2.

In this example, Genotet enables biologists to perform an analy-
sis that requires integration of multiple data types (network and bind-
ing data). The advantages of using Genotet in such analyses is re-
flected in the following comment from the biologist performing this
experiment: “Without Genotet, this combined regulation visualization
requires rather complicated user operations. In existing tools such
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Fig. 5. Case 2.1: The regulators of SOCS3 are displayed with color-
coded edges in the network view (top-right corner). The heat map and
the profile plot show correlation between SOCS3 and its predicted reg-
ulators. Note that each gene’s expression profile is normalized to that
gene’s maximum value so that correlations can be easily identified.

as Cytoscape it is not possible to execute such query without writing
script to parse the data into a new network, which is laborious and
time-consuming.”

5.2 Exploring the Regulation of Single Gene in the Th17
Network

Biologists are often interested in studying only a subset of the gene
regulatory network or even just the transcriptional regulation of a sin-
gle gene. The difficulty of performing such analyses using existing
software is reflected in the following comment by the biologist: “Prior
to using Genotet, much effort would have been required to, for exam-
ple, find and evaluate network predictions about the regulation of a
single gene.” The advantages of using Genotet for such analyses is
demonstrated in this case study, where we focus on a specific gene –
SOCS3. Specifically, we would like to study the Th17 network and
use Genotet to assess: 1) whether SOCS3 plays a role in Th17 differ-
entiation and any TFs are predicted to regulate its transcription, 2) the
confidence in predictions by evaluating primary data, 3) the quality of
the expression data through looking at the raw RNA-seq experiment
data with timestamps.

If SOCS3 is in the Th17 network, it is likely to be involved in Th17
differentiation. To check whether SOCS3 is in the Th17 network, we
first try to load the gene of interest, SOCS3, into the network view by
querying for it. We find that SOCS3 is indeed present in the Th17 net-
work. To check whether any TFs are predicted to regulate SOCS3’s
expression, we look at the other genes incident to SOCS3 in the net-
work via the incident edge list table. Four predicted regulators of
SOCS3 expression (RORC, STAT3, FOSL2, HIF1A) are then selected
and added into the network for visualization. The edges are color-
coded by weights so that the predicted type of regulatory interaction
(positive or negative) can be easily identified. The resulting network
is shown at the top-right corner of Figure 5.

In order to gain confidence in the regulatory predictions, we need
to examine the primary data. For the Th17 network, two types of
data were used to inform the computational network inference pro-
cedure: RNA-seq gene expression data and ChIP-seq binding data.
First, we examine the gene expression data for evidence of an interac-
tion. Specifically, we expect to see a correlation between regulator and
target expression. To accomplish this, we load this data into an expres-
sion view, and limit the genes visualized in the heat map to SOCS3,
STAT3, FOSL2, HIF1A, RORC. The heat map displays gene expres-
sion levels, and there appears to be some correlation between SOCS3
and its regulators. To further analyze this correlation, we add these five
genes into the profile plot. The correlation becomes more apparent in
the profile plot, as shown in Figure 5.

Next, we examine the binding evidence (ChIP-seq data) by creating

Fig. 6. Case 2.2: Finding evidence for SOCS3 regulatory predictions in
the Th17 primary data by grouping the genome browser views. The four
tracks are centered on the gene locus of SOCS3, showing the binding
data of RORC, STAT3, FOSL2 and HIF1A respectively. Binding peaks
at SOCS3’s promoter, gene body, and 3’ end provide evidence for all
four regulatory predictions.

Fig. 7. Case 2.3: Assessing the quality of the binding data by loading the
raw RNA-seq expression data with timestamps. It can be seen that the
RNA-seq signals cover the entire gene (SOCS3 locus), which indicates
that the gene’s expression is well reflected in the experiment.

four genome browser views in Genotet and load the binding data cor-
responding to RORC, STAT3, FOSL2, and HIF1A. To gain confidence
in the regulation interactions of those TFs with SOCS3, we check if
there exists ChIP evidence for binding of these factors near SOCS3.
The linking and grouping features of Genotet is convenient and effec-
tive in this analysis. After grouping the four genome browser views,
all the tracks can be searched simultaneously. We search for SOCS3
to synchronize the ranges of the genome browser views around the
SOCS3 locus. There is evidence displayed in the visualizations that
all the four TFs bind to the promoter region of SOCS3 and also some
binding downstream (Figure 6).

In addition to producing informative visualizations of gene expres-
sion data, it is also possible to assess the quality of the expression
data by accessing the raw gene-expression RNA-seq files. Therefore
the results of RNA-seq experiments corresponding to six timestamps
are loaded (Figure 7). We see that the RNA-seq reads map across the
entire gene, a quality-control hallmark that verifies the gene’s expres-
sion. We could thus conveniently verify the raw data across multiple
experiments for the time course of Th17 development.

5.3 Verifying the Regulation of Sporulation in Bacillus
Subtilis

Bacteria are unicellular organisms widely studied for their key role in
health and disease, and as model systems for learning new biology
that is applicable to all systems. Bacteria have smaller genomes than
plants and animals and both computationally (scale) and experimen-
tally (genetics, lab protocol, cost) tractable systems for systems biol-
ogy (genome-wide) studies of cellular regulation. Bacillus Subtilis (B.
Subtilis) is the main model organism for Gram-positive bacteria. One
of the most studied process in this species is sporulation. Through
sporulation a cell is able to differentiate into a spore [15] that is resis-

(a)

(b)

(c)
Fig. 8. Case 3: Using Genotet to study the regulation of sporulation in
B. Subtilis. (a) fabL, a known spoVT’s target, was not identified in the
predicted network. An existing edge from spoVT to yizC is highlighted.
(b) The missing edge between spoVT and fabL can be explained by
the low correlation observed between the expression of the two genes.
(c) Presence of the edge between spoVT and yizC is verified through
the observed correlation between their expression profile.

tant to hostile environmental conditions. Sporulation is an important
survival strategy for B. Subtilis, and contributes to the persistence, an-
tibiotic resistance, and spread of several pathogens. When the environ-
ment improves, the spore germinates producing a viable cell. In this
case study, we would like to understand how the cell coordinates this
process, with transcriptional regulation being one key layer of regula-
tion for sporulation.

First a sporulation related gene spoVT is selected and displayed in
the network view. The genes that are regulated by spoVT are listed and
added into the network view (Figure 8(a)). By looking at the network,
we realize that a known target gene, named fabL, is missing in the net-
work. We therefore attempt to identify the reason behind it. To do this,
it is necessary to observe the expression profile of spoVT and fabL,
and check whether there exists a relationship between them under the
sporulation-related experiment conditions (conditions containing the
abbreviation “spo”). Using the linking feature of Genotet, the profile
plot for spoVT is automatically generated by selecting spoVT in the
network. In order to compare this plot with that of fabL, we search and
add fabL into the gene expression view. To select all the sporulation
related conditions, a regular expression search using “spo.*” comes in
handy. The result of this operation is shown in Figure 8(b). It can be
seen that there is no correlation between the profile of spoVT and fabL,
which gives the reason for fabL missing in the constructed B. Subtilis
network. Thus the missing edge of the network is verified. The diffi-

culty of performing this analysis prior to using Genotet is indicated in
the following comment by the biologist: “Without the functionality of
Genotet, performing the above experiment would require us to export
the expression profile data for spoVT and fabL and either use a custom
R script to plot them, or load the expression matrix in Cytoscape by
installing extra plugins.”

We would also like to verify known regulatory interactions in light
of the above observation. We find an unexpected target yizC in the
network, of which the regulation is unknown. To check if this edge
is correctly included by the network, we add the expression profile of
yizC to the expression view. Again, due to the linking functionality,
the comparison of the profile plot can be easily achieved with a single
click on the edge from spoVT to yizC (highlighted in Figure 8(a)). We
observe a correlation between spoVT and yizC in the profile plot as
shown in Figure 8(c). The expression profile of spoVT shows a strong
up and down trend with the profile of yizC, under a set of conditions
with continuous timestamps (from Spo1 T3.5 FG to Spo1 T7.0 FG).
Thus, the existence of this edge in the network is verified. The ease of
using Genotet for such analyses is reflected in the following comment
by the biologist performing this experiment: “It is a friendly approach
to explore the network while users can also evaluate how good addi-
tional information supports the novel edges.”

6 EXPERT FEEDBACK

The biologists used Genotet for over a month after which we con-
ducted informal face to face interview with them and collected their
feedback. Their response from using Genotet was encouraging, as
noted by some of their comments that are mentioned in the previous
section. They were also enthusiastic about using it in their future re-
search, and plan to use it as a effective instrument for dissemination of
knowledge among not just their collaborators, but also to the research
community. This is reflected by the following comments:

“The tool will help us share our results with biologists, who often
don’t have experience in exploring that sort of data. We also plan to
use the tool to provide an interface to supplementary data accompa-
nying publications.”

“We could use this tool for sharing our findings with the scientific
community. It is an easy way to explore the network. People can focus
on their favorite genes and cellular processes.”

While the feedback was broadly positive, they also felt that our sys-
tem needs some minor refinements so that new users can easily get
started using Genotet. One such request was to provide a user in-
terface to upload data onto the web server. Currently, users need to
manually copy the data onto the remote server, and run a script for
creating the required indexes. One of the biologists also wanted sup-
port for viewing additional meta data such as information about known
interactions and the annotation of each gene. Another request was to
support different layout options (which the users can choose) for view-
ing the network. We intend to address these requests before making
our tool public. We expect one of the significant outcomes of this
collaboration to be the adoption of Genotet by the systems biology
research community.

7 CONCLUSIONS

In this work we developed Genotet, a light weight web-based inter-
active visual exploration system for gene regulation data. A power-
ful visual query interface was achieved through dynamic linking and
grouping of different types of views. Genotet has the capability of
handling large datasets due to the use of custom index structures which
also helps support interactive queries of the data. Interactive visualiza-
tions were handled through the use of level of detail rendering of the
visualizations. In addition to making Genotet public, we will also be
working with our collaborators in several biology driven papers result-
ing form its usage.
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Fig. 5. Case 2.1: The regulators of SOCS3 are displayed with color-
coded edges in the network view (top-right corner). The heat map and
the profile plot show correlation between SOCS3 and its predicted reg-
ulators. Note that each gene’s expression profile is normalized to that
gene’s maximum value so that correlations can be easily identified.

as Cytoscape it is not possible to execute such query without writing
script to parse the data into a new network, which is laborious and
time-consuming.”

5.2 Exploring the Regulation of Single Gene in the Th17
Network

Biologists are often interested in studying only a subset of the gene
regulatory network or even just the transcriptional regulation of a sin-
gle gene. The difficulty of performing such analyses using existing
software is reflected in the following comment by the biologist: “Prior
to using Genotet, much effort would have been required to, for exam-
ple, find and evaluate network predictions about the regulation of a
single gene.” The advantages of using Genotet for such analyses is
demonstrated in this case study, where we focus on a specific gene –
SOCS3. Specifically, we would like to study the Th17 network and
use Genotet to assess: 1) whether SOCS3 plays a role in Th17 differ-
entiation and any TFs are predicted to regulate its transcription, 2) the
confidence in predictions by evaluating primary data, 3) the quality of
the expression data through looking at the raw RNA-seq experiment
data with timestamps.

If SOCS3 is in the Th17 network, it is likely to be involved in Th17
differentiation. To check whether SOCS3 is in the Th17 network, we
first try to load the gene of interest, SOCS3, into the network view by
querying for it. We find that SOCS3 is indeed present in the Th17 net-
work. To check whether any TFs are predicted to regulate SOCS3’s
expression, we look at the other genes incident to SOCS3 in the net-
work via the incident edge list table. Four predicted regulators of
SOCS3 expression (RORC, STAT3, FOSL2, HIF1A) are then selected
and added into the network for visualization. The edges are color-
coded by weights so that the predicted type of regulatory interaction
(positive or negative) can be easily identified. The resulting network
is shown at the top-right corner of Figure 5.

In order to gain confidence in the regulatory predictions, we need
to examine the primary data. For the Th17 network, two types of
data were used to inform the computational network inference pro-
cedure: RNA-seq gene expression data and ChIP-seq binding data.
First, we examine the gene expression data for evidence of an interac-
tion. Specifically, we expect to see a correlation between regulator and
target expression. To accomplish this, we load this data into an expres-
sion view, and limit the genes visualized in the heat map to SOCS3,
STAT3, FOSL2, HIF1A, RORC. The heat map displays gene expres-
sion levels, and there appears to be some correlation between SOCS3
and its regulators. To further analyze this correlation, we add these five
genes into the profile plot. The correlation becomes more apparent in
the profile plot, as shown in Figure 5.

Next, we examine the binding evidence (ChIP-seq data) by creating

Fig. 6. Case 2.2: Finding evidence for SOCS3 regulatory predictions in
the Th17 primary data by grouping the genome browser views. The four
tracks are centered on the gene locus of SOCS3, showing the binding
data of RORC, STAT3, FOSL2 and HIF1A respectively. Binding peaks
at SOCS3’s promoter, gene body, and 3’ end provide evidence for all
four regulatory predictions.

Fig. 7. Case 2.3: Assessing the quality of the binding data by loading the
raw RNA-seq expression data with timestamps. It can be seen that the
RNA-seq signals cover the entire gene (SOCS3 locus), which indicates
that the gene’s expression is well reflected in the experiment.

four genome browser views in Genotet and load the binding data cor-
responding to RORC, STAT3, FOSL2, and HIF1A. To gain confidence
in the regulation interactions of those TFs with SOCS3, we check if
there exists ChIP evidence for binding of these factors near SOCS3.
The linking and grouping features of Genotet is convenient and effec-
tive in this analysis. After grouping the four genome browser views,
all the tracks can be searched simultaneously. We search for SOCS3
to synchronize the ranges of the genome browser views around the
SOCS3 locus. There is evidence displayed in the visualizations that
all the four TFs bind to the promoter region of SOCS3 and also some
binding downstream (Figure 6).

In addition to producing informative visualizations of gene expres-
sion data, it is also possible to assess the quality of the expression
data by accessing the raw gene-expression RNA-seq files. Therefore
the results of RNA-seq experiments corresponding to six timestamps
are loaded (Figure 7). We see that the RNA-seq reads map across the
entire gene, a quality-control hallmark that verifies the gene’s expres-
sion. We could thus conveniently verify the raw data across multiple
experiments for the time course of Th17 development.

5.3 Verifying the Regulation of Sporulation in Bacillus
Subtilis

Bacteria are unicellular organisms widely studied for their key role in
health and disease, and as model systems for learning new biology
that is applicable to all systems. Bacteria have smaller genomes than
plants and animals and both computationally (scale) and experimen-
tally (genetics, lab protocol, cost) tractable systems for systems biol-
ogy (genome-wide) studies of cellular regulation. Bacillus Subtilis (B.
Subtilis) is the main model organism for Gram-positive bacteria. One
of the most studied process in this species is sporulation. Through
sporulation a cell is able to differentiate into a spore [15] that is resis-

(a)

(b)

(c)
Fig. 8. Case 3: Using Genotet to study the regulation of sporulation in
B. Subtilis. (a) fabL, a known spoVT’s target, was not identified in the
predicted network. An existing edge from spoVT to yizC is highlighted.
(b) The missing edge between spoVT and fabL can be explained by
the low correlation observed between the expression of the two genes.
(c) Presence of the edge between spoVT and yizC is verified through
the observed correlation between their expression profile.

tant to hostile environmental conditions. Sporulation is an important
survival strategy for B. Subtilis, and contributes to the persistence, an-
tibiotic resistance, and spread of several pathogens. When the environ-
ment improves, the spore germinates producing a viable cell. In this
case study, we would like to understand how the cell coordinates this
process, with transcriptional regulation being one key layer of regula-
tion for sporulation.

First a sporulation related gene spoVT is selected and displayed in
the network view. The genes that are regulated by spoVT are listed and
added into the network view (Figure 8(a)). By looking at the network,
we realize that a known target gene, named fabL, is missing in the net-
work. We therefore attempt to identify the reason behind it. To do this,
it is necessary to observe the expression profile of spoVT and fabL,
and check whether there exists a relationship between them under the
sporulation-related experiment conditions (conditions containing the
abbreviation “spo”). Using the linking feature of Genotet, the profile
plot for spoVT is automatically generated by selecting spoVT in the
network. In order to compare this plot with that of fabL, we search and
add fabL into the gene expression view. To select all the sporulation
related conditions, a regular expression search using “spo.*” comes in
handy. The result of this operation is shown in Figure 8(b). It can be
seen that there is no correlation between the profile of spoVT and fabL,
which gives the reason for fabL missing in the constructed B. Subtilis
network. Thus the missing edge of the network is verified. The diffi-

culty of performing this analysis prior to using Genotet is indicated in
the following comment by the biologist: “Without the functionality of
Genotet, performing the above experiment would require us to export
the expression profile data for spoVT and fabL and either use a custom
R script to plot them, or load the expression matrix in Cytoscape by
installing extra plugins.”

We would also like to verify known regulatory interactions in light
of the above observation. We find an unexpected target yizC in the
network, of which the regulation is unknown. To check if this edge
is correctly included by the network, we add the expression profile of
yizC to the expression view. Again, due to the linking functionality,
the comparison of the profile plot can be easily achieved with a single
click on the edge from spoVT to yizC (highlighted in Figure 8(a)). We
observe a correlation between spoVT and yizC in the profile plot as
shown in Figure 8(c). The expression profile of spoVT shows a strong
up and down trend with the profile of yizC, under a set of conditions
with continuous timestamps (from Spo1 T3.5 FG to Spo1 T7.0 FG).
Thus, the existence of this edge in the network is verified. The ease of
using Genotet for such analyses is reflected in the following comment
by the biologist performing this experiment: “It is a friendly approach
to explore the network while users can also evaluate how good addi-
tional information supports the novel edges.”

6 EXPERT FEEDBACK

The biologists used Genotet for over a month after which we con-
ducted informal face to face interview with them and collected their
feedback. Their response from using Genotet was encouraging, as
noted by some of their comments that are mentioned in the previous
section. They were also enthusiastic about using it in their future re-
search, and plan to use it as a effective instrument for dissemination of
knowledge among not just their collaborators, but also to the research
community. This is reflected by the following comments:

“The tool will help us share our results with biologists, who often
don’t have experience in exploring that sort of data. We also plan to
use the tool to provide an interface to supplementary data accompa-
nying publications.”

“We could use this tool for sharing our findings with the scientific
community. It is an easy way to explore the network. People can focus
on their favorite genes and cellular processes.”

While the feedback was broadly positive, they also felt that our sys-
tem needs some minor refinements so that new users can easily get
started using Genotet. One such request was to provide a user in-
terface to upload data onto the web server. Currently, users need to
manually copy the data onto the remote server, and run a script for
creating the required indexes. One of the biologists also wanted sup-
port for viewing additional meta data such as information about known
interactions and the annotation of each gene. Another request was to
support different layout options (which the users can choose) for view-
ing the network. We intend to address these requests before making
our tool public. We expect one of the significant outcomes of this
collaboration to be the adoption of Genotet by the systems biology
research community.

7 CONCLUSIONS

In this work we developed Genotet, a light weight web-based inter-
active visual exploration system for gene regulation data. A power-
ful visual query interface was achieved through dynamic linking and
grouping of different types of views. Genotet has the capability of
handling large datasets due to the use of custom index structures which
also helps support interactive queries of the data. Interactive visualiza-
tions were handled through the use of level of detail rendering of the
visualizations. In addition to making Genotet public, we will also be
working with our collaborators in several biology driven papers result-
ing form its usage.
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