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Abstract—This paper presents a new approach to flow mapping that extracts inherent patterns from massive geographic mobility 
data and constructs effective visual representations of the data for the understanding of complex flow trends. This approach 
involves a new method for origin-destination flow density estimation and a new method for flow map generalization, which together 
can remove spurious data variance, normalize flows with control population, and detect high-level patterns that are not discernable 
with existing approaches. The approach achieves three main objectives in addressing the challenges for analyzing and mapping 
massive flow data. First, it removes the effect of size differences among spatial units via kernel-based density estimation, which 
produces a measurement of flow volume between each pair of origin and destination. Second, it extracts major flow patterns in 
massive flow data through a new flow sampling method, which filters out duplicate information in the smoothed flows. Third, it 
enables effective flow mapping and allows intuitive perception of flow patterns among origins and destinations without bundling or 
altering flow paths. The approach can work with both point-based flow data (such as taxi trips with GPS locations) and area-based 
flow data (such as county-to-county migration). Moreover, the approach can be used to detect and compare flow patterns at 
different scales or in relatively sparse flow datasets, such as migration for each age group. We evaluate and demonstrate the new 
approach with case studies of U.S. migration data and experiments with synthetic data.  

 
Index Terms—flow mapping, kernel smoothing, generalization, multi-resolution mapping, graph drawing, spatial data mining 

 

1 INTRODUCTION

Geographic mobility data such as human daily activities, migration 
and vehicle movements have become increasingly available due to 
the wide adoption of location-aware technologies. The analysis and 
mapping of geographic mobility data is of great importance to 
advance our understanding of complex systems and their space-time 
dynamics in various domains such as transportation, demography, 
and emergency management [24, 27, 37, 38, 44]. However, it 
remains a challenging research problem to visualize large mobility 
data and understand its embedded complex patterns due to the 
constrained map space and massive connections.  

In this paper, we focus on a specific type of geographic mobility 
data, the origin-destination flow data (i.e., OD data), which concerns 
the origin and destination of each movement but ignores the actual 
trajectory route. Following are two examples of such data sets:  

¥ A taxi data set that has the origin and destination GPS points 
for millions of taxi riders (Point-based OD data); 

¥ A U.S. migration data set that has migration flows between 
origin and destination counties (Area-based OD data). 

Even a moderate-sized OD dataset, such as the county-to-county 
U.S. migration data, can easily have thousands of locations and
millions of flows. Much larger datasets have also been emerging, for 
example, cell phone calls [8], geo-tagged social media messages [22] 
[12], taxi trips in metropolitan areas [14, 21], and simulation model 
outputs for an entire country [7, 10].  

Flow map is the most common approach to present flow data, 
which visualize flows with straight or curved lines connecting origin 
and destination locations [18, 23, 26, 37, 39]. However, a flow map 
quickly becomes illegible as the data size increases due to the 
massive intersections and overlapping of flows. In a flow map, origin 
and destination locations have to be fixed to allow context-based 
interpretation. A number of new approaches have been proposed to 
address the cluttering problem [2, 5, 11, 41].  

Nevertheless, flow mapping remains a research challenge and 
several major problems remain to be addressed, including:   

(1) The cluttering problem. Most existing flow mapping 
approaches are only effective for mapping small datasets due to the 
visual cluttering problem. There are a number of recent researches 
that aim to reduce the cluttering problem through intelligent re-
routing [26], edge bundling [15], and matrices of multiple maps [42]. 
These approaches, however, suffer from significant information loss 
in the rendered map, either missing the visual connections or relying 
heavily on user interaction (such as selection and filtering) to 
interpret patterns. For example, the edge-bundling approach partially 
merges flow lines based on their geometric closeness, which makes it 
difficult to perceive the actual connection and flow volume between 
two locations unless the flow is selected or has a unique color. 

(2) The modifiable area unit problem (MAUP). Another type of 
approach for flow mapping is through location aggregation, such as 
spatial clustering [2] and graph partitioning [11], or simply using 
high-level administrative units (e.g., states or provinces) to aggregate 
the original locations to a small set of regions, based on which flow 
maps are generated. These methods suffer from the modifiable area 
unit problem (MAUP) [25], i.e., different aggregations may present 
different (or even wrong) patterns. Excessive and arbitrary 
aggregation may also cause a severe loss in spatial resolution and 
missing major patterns. Moreover, such approaches do not support a 
smooth transition between scales, since flow maps based on different 
aggregations are very different and not comparable to each other.  

(3) The normalization (or size-difference) problem. Existing 
approaches often use the default geographic units in the data (e.g., 
counties) to analyze the data. However, the given units or 
aggregations are often dramatically different in size, in terms of 
population or area, and therefore the flows among them are not 
directly comparable. For example, Los Angeles is the largest county 
in the U.S. with a population of over 9,000,000 while the smallest 
county, Loving County (Texas), has less than 100 residents. Without 
proper normalization, a flow map based on these units will give 
wrong understanding of patterns. Fig. 1 shows the original county-
to-county migration data in the U.S., where the flows between large 
counties in metropolitan areas are inevitably larger than others. As 
such, this flow map (and further visual improvements based it) offers 
little insight on the true migration patterns. A related problem in this 
regard is the small-area problem, where the flow count between 
small areas is unstable since the involved population is very small.  
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This paper presents a new approach to flow mapping that 
addresses the above three problems. It extracts inherent patterns from 
massive geographic flow data and constructs a generalized, 
schematic flow map that faithfully represent the major flow patterns. 
The approach consists of a flow-based density estimation method
and a flow map generalization method to remove spurious data 
variance, normalize and smooth flows with controlled neighborhood 
size, and detect high-level patterns in the data.  

The approach can work with both point-based flow data (such as 
taxi trips with GPS locations) and area-based flow data (such as 
county-to-county migration). Area-based flows will be converted to 
point-based flows using the centroids of areas. The approach can be 
used to compare flow patterns at different scales or in different data 
subsets, such as stratified migration for each age group. In addition 
to enabling effective flow mapping, the results of our approach can 
also be used for further visual improvements (such as intelligent flow 
layout), integration with other visualizations (such as matrix view or 
multidimensional visualization), and mobility modeling.  

2 BACKGROUND AND RELATED WORK 
Flow mapping has long been used in a wide range of applications 
such as human migration [36, 39], transportation [9], commodity 
flow [40], and commuting [4]. There are several challenges for flow 
mapping: the visual cluttering problem, the modifiable area unit 
(MAUP) problem, the normalization problem (i.e., size difference 
among geographic units), and the salience bias (i.e., patterns in flow 
maps tend to be dominated by flows over longer geographic 
distances). Although origin-destination flow data is a special type of 
graph (with locations as nodes), graph-drawing methods in non-
spatial domains [3, 6, 17, 20, 29] are usually not directly applicable 
for flow mapping. The major difference is that nodes (locations) 
have to be fixed in a flow map since locations carry significant 
meaning and are of critical importance for interpreting patterns. With 
this limitation, a flow map can quickly become cluttered even for a 
small data set. 

To address the visual cluttering problem, a number of approaches 
have been proposed with point clustering [1, 2], graph partitioning 
[11], surface generation [39], edge rerouting [26], and edge bundling 
[5, 16, 41]. These methods can be classified into three types: location 
aggregation, surface generation, and edge rerouting.  

The first type aggregates locations into larger regions and then 
aggregates flows based on the new regions, which significantly 
reduces the number of flows for mapping. A review of aggregation 
methods for movement data can be found in [1]. However, 
aggregation will inevitably cause a significant loss of information, 

skip flow patterns at local scales, and suffer from the modifiable 
areal unit problem (MAUP).  

The second type aims to resolve cluttering by producing a vector 
flow surface that only maps movements between geographically 
adjacent places [39]. Similarly, a recent development for mapping 
large mobility data [2] partitions the geographic area to small regions 
and only show movements between adjacent places. The limitation 
of these approaches is that the origin and destination information of 
each particular movement is lost in the map.  

The third type focuses on minimizing edge crossing in flow maps 
through edge rerouting [26] or edge bundling [5, 16, 41], which 
reroute or bundle edges to improve the visual clarity of flow maps. 
These methods are effective in producing aesthetic representation of 
flow data, especially for small data sets. On the other hand, the main 
limitation of this type of approach is that bundled or re-routed edges 
make it difficult to perceive the actual connection between specific 
pairs of origin and destination unless each connection (analogous to 
an electronic wire) is uniquely identifiable, e.g., with a unique color 
or being highlighted. 

There are also a variety of methods for spatial flow visualization 
based on non-spatial views, such as ordered matrices [10], or 
combinations of maps, matrices and other methods, such as Map2

[13], interactive OD maps [42], and exploratory visualization [42, 
43]. Normally, interactive visualization systems do not intend to 
summarize the entire data set in a single flow map. Instead, they 
provide a non-spatial view (such as a matrix) and rely on user 
interactions to select data to map, examine patterns from different 
perspectives, and make sense of data through an iterative process. 
These non-spatial approaches to a certain degree avoid the visual 
cluttering problem and do not have the salience bias. However, they 
cannot provide an overview of spatial flow patterns.  

There are also methodologies for summarizing flow properties for 
each location using graph measures such as net migration ratio [14], 
centrality, and flow density (the number of flows passing a pixel) 
[28]. Kernel based smoothing and density estimation has long been 
used in analyzing geographic data [33, 34]. Recently, kernel density 
estimation has also been applied to spatial mobility data. For 
example, a flow density map is produced in [28], which is a raster 
data output with the cell value representing the total number of flow 
lines passing through the raster cell. Koylu and Guo [14] introduce a 
kernel-based approach to smooth locational measures of spatial 
mobility. Other density-based approaches for analyzing mobility data 
are introduced in [30-32], which are also a raster-based.  

Different from the above raster-based or location-based density 
estimation methods in analyzing mobility data, we propose a vector-
based or flow-based density model. The key difference is that our 
approach does not estimate the flow density at a pixel or location. 
Instead, it estimates the flow for each pair of locations. In other 
words, the output of our approach is a set of smoothed flows (or flow 
densities) for pairs of origin and destination. This new approach is 
also different from the flow clustering method introduced in [45], 
which does not work with area-based flows and does not address the 
normalization problem.  

Comparing to the dominant focus on the cluttering problem in the 
literature, there is relatively little attention on the modifiable area 
unit problem) and the normalization (or size-difference) issue in flow 
mapping. Existing approaches often use the default geographic units 
in the data (e.g., counties) or derive aggregations of varying sizes. In 
this research, we specifically take into account the differences in unit 
size (e.g., population, area, or other measures) to control the 
neighborhood size and normalize flows. 

3 OVERVIEW OF METHODOLOGY  
In this section we summarize the design of our approach. Detailed 
introduction will be presented in Section 4.  

 
Fig. 1. Migration in the contiguous U.S (Census 2000), with more than 
3000 counties and over 750,000 non-zero county-to-county flows. This 
map shows flows with 100 or more migrants, which represents 13% of 
migration in the data. Due to the dramatic size differences among 
counties, the main flows visible are among large metropolitan counties. 

 

Let T ={𝑇𝑇!} be an OD flow data set, n = |T| is the total number of 
flows; 𝑇𝑇!= <𝑋𝑋!", 𝑋𝑋!"> is a directed flow that starts at an origin 
location 𝑋𝑋!"  and ends at a destination 𝑋𝑋!" . Let X = {Xi} be all 
locations involved in T, 𝑚𝑚   =    |𝑋𝑋| is the total number of locations. 
Each location 𝑋𝑋! has a non-negative size value 𝑠𝑠!, which represents 
the size of the location such as population, area, or other context-
dependent measures. The size field will be used to define the size of 
a neighborhood and subsequently to normalize the flow volume.  

Location sizes are often dramatically different from each other 
(such as the population of US counties) or very small (such as the 
size of GPS points). In either case, it is neither meaningful nor 
reliable to directly compare flows among such locations. The new 
approach addresses these issues by re-estimating flows with 
controlled neighborhood-based smoothing, which are then used to 
extract patterns and render flow maps. Our approach has two steps: 

(1) Kernel-based flow estimation and smoothing. First, given a 
neighborhood size threshold, we find the neighborhood and kernel 
bandwidth for each location in X. The weighted sizes for all locations 
inside a neighborhood should be equal to the neighborhood size 
threshold. For example, for the county-to-county migration data, we 
may use one million population as the size threshold for each county. 
Then each county will find a set of neighboring counties, whose 
weighted total of population will be exactly one million based on a 
chosen kernel model. Second, find the neighbors for each flow based 
on its origin neighborhood and destination neighborhood; re-estimate 
the flow value with its neighboring flows and its kernel model, 
which is constructed based on its origin and destination models.  

(2) Flow selection and generalization. The above smoothing step 
produces a robust estimation of flow density for pairs of locations. 
However, it does not solve the cluttering problem and even creates a 
new problem as the smoothed flows have a significant amount of 
duplicate information or correlation. This is because neighborhoods 
overlap and each original flow may be used multiple times in related 
neighborhoods (although with different weights). We develop a flow 
selection and generalization method that can select representative 
flows from the smoothing result to remove duplicate information, 
enable effective flow mapping of large data, and discover 
generalized major patterns in the data.  

4 FLOW SMOOTHING WITH KERNEL MODELS 

4.1 Flow Neighborhood Definition  
In traditional pixel-based density estimation, a neighborhood is 
defined for each pixel (or location), whose density value is estimated 
based on the data within its neighborhood. In our research, we will 
re-estimate the value for each flow 𝑇𝑇! and thus need to define a 
neighborhood for 𝑇𝑇!, which involves two locations: its origin (𝑋𝑋!") 
and destination (𝑋𝑋!"). Note that our approach is not to estimate the 

density of flow lines that pass through a location or pixel. Instead, 
we estimate the flow value for each pair of locations (i.e., an origin-
destination pair).  

There are two types of neighborhood definition in kernel density 
estimation, i.e., fixed bandwidth and adaptive bandwidth. A fixed 
bandwidth is defined with a fixed geographic distance for all 
locations. This type of kernel is useful for estimating density in 
relation to spatial area.  The other type is the adaptive bandwidth, 
which defines the bandwidth based on an attribute threshold (such as 
population or the number of units). Our approach can use either type 
of neighborhood. To define the size for the adaptive neighborhood, 
we use the size attribute Si of each location, which can be the area, 
population, or any other measurement the location. By defining a 
neighborhood size threshold p based on the chosen size measurement 
Si, we can accommodate different types of neighborhood.  

Given a positive neighborhood size threshold p, we follow two 
steps to find the neighborhood of a flow 𝑇𝑇!. First, construct a p-size 
neighborhood for each location Xi ∈ X, which is the smallest k-
nearest-neighbor neighborhood of Xi (including itself) that meets the 
size constraint p (see Definitions 1 and 2). The bandwidth 𝜎𝜎!!  of the 
neighborhood of Xi is the radius of the smallest circle centered on Xi 
that covers all points in its neighborhood (see Definition 3). Second, 
construct a p-size neighborhood for flow 𝑇𝑇!, which is a set of flows 
{Tq  ∈ T}, where the origin and destination of Tq are inside the p-size 
neighborhoods of the origin and destination of 𝑇𝑇!, respectively (see 
Definition 4). Figure 2 illustrates the neighborhood of a flow. Note 
that the p-size neighborhood of flow 𝑇𝑇! includes 𝑇𝑇!.   

Definition 1: The k-Nearest-Neighbor (KNN) Neighborhood of a 
location Xi, KNN(Xi, k) = {Xq∈  X}, is the nearest k locations 
(including Xi) to Xi  in X.  

Definition 2: The p-Size Neighborhood of a location Xi, PSN(Xi, 
p) and p > 0, is defined as the smallest KNN(Xi, k) ={Xq∈ X} that has 
a total size ∑sq ≥ p. To make sure that the total weighted size is 
exactly p, the kth neighbor (i.e., the furthest point) will be assigned a 
weight ≤1 so that 𝑤𝑤!𝑠𝑠!  = p, where 𝑤𝑤! =1 except for the kth

neighbor; 
Definition 3: The bandwidth of the p-Size Neighborhood of a 

location Xi, denoted as 𝜎𝜎!! , is the Euclidean distance of the furthest 
point in PSN(Xi, p) to Xi. In other words, bandwidth 𝜎𝜎!!  is the radius 
of the smallest circle centered on Xi that covers all points in the 
neighborhood. 

Definition 4: The p-Size Neighborhood of a flow 𝑇𝑇!, PSN(𝑇𝑇!, p) 
= {Tq ∈ T | XOq ∈ PSN(XOf, p) and XDq ∈ PSN(XDf, p)}, where XOq, XDq 
are the origins and destination locations of flow Tq, and XOf, XDf are 
the origin and destination of flow 𝑇𝑇!.  𝑇𝑇! ∈  PSN(𝑇𝑇!, p).  

4.2 Flow Kernel Model 
Given a flow 𝑇𝑇!, its origin neighborhood PSN(XOf, p), destination 
neighborhood PSN(XDf, p), and flow neighbors PSN(𝑇𝑇!, p) = {Tq}, 
we define a kernel model to calculate the weight for each flow Tq in 
relation to 𝑇𝑇! . Note that a flow may belong to multiple 
neighborhoods and its weight can be different in different 
neighborhoods. Commonly used models for kernel-based smoothing 
include the Gaussian model, Epanechnikov model and the triangular 
model. According to [35] and our experiments, the choice among 
these models do not have a significant impact on the result. In this 
research we extend the Gaussian kernel model for weighting and 
smoothing flows.  

We re-estimate the flow value for 𝑇𝑇! with three considerations: 
(1) the new flow value should be a stable measurement with a 
sufficient base population (i.e., each neighborhood should be 
sufficiently large to avoid the small-area problem); (2) the estimated 
flow value should be a normalized measurement that removes the 
effect of size difference among units; and (3) the estimation should 
give nearby flows more weights than distant ones within the flow 

 
Fig. 2: An illustration of the neighborhood of a flow AB. The two 
circular areas with gradient colors represent the neighborhoods of 
origin A and destination B (in red). Flows with origins in the 
neighborhood of A and destinations in the neighborhood of B will be 
considered neighbors of flow AB.  
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This paper presents a new approach to flow mapping that 
addresses the above three problems. It extracts inherent patterns from 
massive geographic flow data and constructs a generalized, 
schematic flow map that faithfully represent the major flow patterns. 
The approach consists of a flow-based density estimation method
and a flow map generalization method to remove spurious data 
variance, normalize and smooth flows with controlled neighborhood 
size, and detect high-level patterns in the data.  

The approach can work with both point-based flow data (such as 
taxi trips with GPS locations) and area-based flow data (such as 
county-to-county migration). Area-based flows will be converted to 
point-based flows using the centroids of areas. The approach can be 
used to compare flow patterns at different scales or in different data 
subsets, such as stratified migration for each age group. In addition 
to enabling effective flow mapping, the results of our approach can 
also be used for further visual improvements (such as intelligent flow 
layout), integration with other visualizations (such as matrix view or 
multidimensional visualization), and mobility modeling.  

2 BACKGROUND AND RELATED WORK 
Flow mapping has long been used in a wide range of applications 
such as human migration [36, 39], transportation [9], commodity 
flow [40], and commuting [4]. There are several challenges for flow 
mapping: the visual cluttering problem, the modifiable area unit 
(MAUP) problem, the normalization problem (i.e., size difference 
among geographic units), and the salience bias (i.e., patterns in flow 
maps tend to be dominated by flows over longer geographic 
distances). Although origin-destination flow data is a special type of 
graph (with locations as nodes), graph-drawing methods in non-
spatial domains [3, 6, 17, 20, 29] are usually not directly applicable 
for flow mapping. The major difference is that nodes (locations) 
have to be fixed in a flow map since locations carry significant 
meaning and are of critical importance for interpreting patterns. With 
this limitation, a flow map can quickly become cluttered even for a 
small data set. 

To address the visual cluttering problem, a number of approaches 
have been proposed with point clustering [1, 2], graph partitioning 
[11], surface generation [39], edge rerouting [26], and edge bundling 
[5, 16, 41]. These methods can be classified into three types: location 
aggregation, surface generation, and edge rerouting.  

The first type aggregates locations into larger regions and then 
aggregates flows based on the new regions, which significantly 
reduces the number of flows for mapping. A review of aggregation 
methods for movement data can be found in [1]. However, 
aggregation will inevitably cause a significant loss of information, 

skip flow patterns at local scales, and suffer from the modifiable 
areal unit problem (MAUP).  

The second type aims to resolve cluttering by producing a vector 
flow surface that only maps movements between geographically 
adjacent places [39]. Similarly, a recent development for mapping 
large mobility data [2] partitions the geographic area to small regions 
and only show movements between adjacent places. The limitation 
of these approaches is that the origin and destination information of 
each particular movement is lost in the map.  

The third type focuses on minimizing edge crossing in flow maps 
through edge rerouting [26] or edge bundling [5, 16, 41], which 
reroute or bundle edges to improve the visual clarity of flow maps. 
These methods are effective in producing aesthetic representation of 
flow data, especially for small data sets. On the other hand, the main 
limitation of this type of approach is that bundled or re-routed edges 
make it difficult to perceive the actual connection between specific 
pairs of origin and destination unless each connection (analogous to 
an electronic wire) is uniquely identifiable, e.g., with a unique color 
or being highlighted. 

There are also a variety of methods for spatial flow visualization 
based on non-spatial views, such as ordered matrices [10], or 
combinations of maps, matrices and other methods, such as Map2

[13], interactive OD maps [42], and exploratory visualization [42, 
43]. Normally, interactive visualization systems do not intend to 
summarize the entire data set in a single flow map. Instead, they 
provide a non-spatial view (such as a matrix) and rely on user 
interactions to select data to map, examine patterns from different 
perspectives, and make sense of data through an iterative process. 
These non-spatial approaches to a certain degree avoid the visual 
cluttering problem and do not have the salience bias. However, they 
cannot provide an overview of spatial flow patterns.  

There are also methodologies for summarizing flow properties for 
each location using graph measures such as net migration ratio [14], 
centrality, and flow density (the number of flows passing a pixel) 
[28]. Kernel based smoothing and density estimation has long been 
used in analyzing geographic data [33, 34]. Recently, kernel density 
estimation has also been applied to spatial mobility data. For 
example, a flow density map is produced in [28], which is a raster 
data output with the cell value representing the total number of flow 
lines passing through the raster cell. Koylu and Guo [14] introduce a 
kernel-based approach to smooth locational measures of spatial 
mobility. Other density-based approaches for analyzing mobility data 
are introduced in [30-32], which are also a raster-based.  

Different from the above raster-based or location-based density 
estimation methods in analyzing mobility data, we propose a vector-
based or flow-based density model. The key difference is that our 
approach does not estimate the flow density at a pixel or location. 
Instead, it estimates the flow for each pair of locations. In other 
words, the output of our approach is a set of smoothed flows (or flow 
densities) for pairs of origin and destination. This new approach is 
also different from the flow clustering method introduced in [45], 
which does not work with area-based flows and does not address the 
normalization problem.  

Comparing to the dominant focus on the cluttering problem in the 
literature, there is relatively little attention on the modifiable area 
unit problem) and the normalization (or size-difference) issue in flow 
mapping. Existing approaches often use the default geographic units 
in the data (e.g., counties) or derive aggregations of varying sizes. In 
this research, we specifically take into account the differences in unit 
size (e.g., population, area, or other measures) to control the 
neighborhood size and normalize flows. 

3 OVERVIEW OF METHODOLOGY  
In this section we summarize the design of our approach. Detailed 
introduction will be presented in Section 4.  

 
Fig. 1. Migration in the contiguous U.S (Census 2000), with more than 
3000 counties and over 750,000 non-zero county-to-county flows. This 
map shows flows with 100 or more migrants, which represents 13% of 
migration in the data. Due to the dramatic size differences among 
counties, the main flows visible are among large metropolitan counties. 

 

Let T ={𝑇𝑇!} be an OD flow data set, n = |T| is the total number of 
flows; 𝑇𝑇!= <𝑋𝑋!", 𝑋𝑋!"> is a directed flow that starts at an origin 
location 𝑋𝑋!"  and ends at a destination 𝑋𝑋!" . Let X = {Xi} be all 
locations involved in T, 𝑚𝑚   =    |𝑋𝑋| is the total number of locations. 
Each location 𝑋𝑋! has a non-negative size value 𝑠𝑠!, which represents 
the size of the location such as population, area, or other context-
dependent measures. The size field will be used to define the size of 
a neighborhood and subsequently to normalize the flow volume.  

Location sizes are often dramatically different from each other 
(such as the population of US counties) or very small (such as the 
size of GPS points). In either case, it is neither meaningful nor 
reliable to directly compare flows among such locations. The new 
approach addresses these issues by re-estimating flows with 
controlled neighborhood-based smoothing, which are then used to 
extract patterns and render flow maps. Our approach has two steps: 

(1) Kernel-based flow estimation and smoothing. First, given a 
neighborhood size threshold, we find the neighborhood and kernel 
bandwidth for each location in X. The weighted sizes for all locations 
inside a neighborhood should be equal to the neighborhood size 
threshold. For example, for the county-to-county migration data, we 
may use one million population as the size threshold for each county. 
Then each county will find a set of neighboring counties, whose 
weighted total of population will be exactly one million based on a 
chosen kernel model. Second, find the neighbors for each flow based 
on its origin neighborhood and destination neighborhood; re-estimate 
the flow value with its neighboring flows and its kernel model, 
which is constructed based on its origin and destination models.  

(2) Flow selection and generalization. The above smoothing step 
produces a robust estimation of flow density for pairs of locations. 
However, it does not solve the cluttering problem and even creates a 
new problem as the smoothed flows have a significant amount of 
duplicate information or correlation. This is because neighborhoods 
overlap and each original flow may be used multiple times in related 
neighborhoods (although with different weights). We develop a flow 
selection and generalization method that can select representative 
flows from the smoothing result to remove duplicate information, 
enable effective flow mapping of large data, and discover 
generalized major patterns in the data.  

4 FLOW SMOOTHING WITH KERNEL MODELS 

4.1 Flow Neighborhood Definition  
In traditional pixel-based density estimation, a neighborhood is 
defined for each pixel (or location), whose density value is estimated 
based on the data within its neighborhood. In our research, we will 
re-estimate the value for each flow 𝑇𝑇! and thus need to define a 
neighborhood for 𝑇𝑇!, which involves two locations: its origin (𝑋𝑋!") 
and destination (𝑋𝑋!"). Note that our approach is not to estimate the 

density of flow lines that pass through a location or pixel. Instead, 
we estimate the flow value for each pair of locations (i.e., an origin-
destination pair).  

There are two types of neighborhood definition in kernel density 
estimation, i.e., fixed bandwidth and adaptive bandwidth. A fixed 
bandwidth is defined with a fixed geographic distance for all 
locations. This type of kernel is useful for estimating density in 
relation to spatial area.  The other type is the adaptive bandwidth, 
which defines the bandwidth based on an attribute threshold (such as 
population or the number of units). Our approach can use either type 
of neighborhood. To define the size for the adaptive neighborhood, 
we use the size attribute Si of each location, which can be the area, 
population, or any other measurement the location. By defining a 
neighborhood size threshold p based on the chosen size measurement 
Si, we can accommodate different types of neighborhood.  

Given a positive neighborhood size threshold p, we follow two 
steps to find the neighborhood of a flow 𝑇𝑇!. First, construct a p-size 
neighborhood for each location Xi ∈ X, which is the smallest k-
nearest-neighbor neighborhood of Xi (including itself) that meets the 
size constraint p (see Definitions 1 and 2). The bandwidth 𝜎𝜎!!  of the 
neighborhood of Xi is the radius of the smallest circle centered on Xi 
that covers all points in its neighborhood (see Definition 3). Second, 
construct a p-size neighborhood for flow 𝑇𝑇!, which is a set of flows 
{Tq  ∈ T}, where the origin and destination of Tq are inside the p-size 
neighborhoods of the origin and destination of 𝑇𝑇!, respectively (see 
Definition 4). Figure 2 illustrates the neighborhood of a flow. Note 
that the p-size neighborhood of flow 𝑇𝑇! includes 𝑇𝑇!.   

Definition 1: The k-Nearest-Neighbor (KNN) Neighborhood of a 
location Xi, KNN(Xi, k) = {Xq∈  X}, is the nearest k locations 
(including Xi) to Xi  in X.  

Definition 2: The p-Size Neighborhood of a location Xi, PSN(Xi, 
p) and p > 0, is defined as the smallest KNN(Xi, k) ={Xq∈ X} that has 
a total size ∑sq ≥ p. To make sure that the total weighted size is 
exactly p, the kth neighbor (i.e., the furthest point) will be assigned a 
weight ≤1 so that 𝑤𝑤!𝑠𝑠!  = p, where 𝑤𝑤! =1 except for the kth

neighbor; 
Definition 3: The bandwidth of the p-Size Neighborhood of a 

location Xi, denoted as 𝜎𝜎!! , is the Euclidean distance of the furthest 
point in PSN(Xi, p) to Xi. In other words, bandwidth 𝜎𝜎!!  is the radius 
of the smallest circle centered on Xi that covers all points in the 
neighborhood. 

Definition 4: The p-Size Neighborhood of a flow 𝑇𝑇!, PSN(𝑇𝑇!, p) 
= {Tq ∈ T | XOq ∈ PSN(XOf, p) and XDq ∈ PSN(XDf, p)}, where XOq, XDq 
are the origins and destination locations of flow Tq, and XOf, XDf are 
the origin and destination of flow 𝑇𝑇!.  𝑇𝑇! ∈  PSN(𝑇𝑇!, p).  

4.2 Flow Kernel Model 
Given a flow 𝑇𝑇!, its origin neighborhood PSN(XOf, p), destination 
neighborhood PSN(XDf, p), and flow neighbors PSN(𝑇𝑇!, p) = {Tq}, 
we define a kernel model to calculate the weight for each flow Tq in 
relation to 𝑇𝑇! . Note that a flow may belong to multiple 
neighborhoods and its weight can be different in different 
neighborhoods. Commonly used models for kernel-based smoothing 
include the Gaussian model, Epanechnikov model and the triangular 
model. According to [35] and our experiments, the choice among 
these models do not have a significant impact on the result. In this 
research we extend the Gaussian kernel model for weighting and 
smoothing flows.  

We re-estimate the flow value for 𝑇𝑇! with three considerations: 
(1) the new flow value should be a stable measurement with a 
sufficient base population (i.e., each neighborhood should be 
sufficiently large to avoid the small-area problem); (2) the estimated 
flow value should be a normalized measurement that removes the 
effect of size difference among units; and (3) the estimation should 
give nearby flows more weights than distant ones within the flow 

 
Fig. 2: An illustration of the neighborhood of a flow AB. The two 
circular areas with gradient colors represent the neighborhoods of 
origin A and destination B (in red). Flows with origins in the 
neighborhood of A and destinations in the neighborhood of B will be 
considered neighbors of flow AB.  
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neighborhood. The first consideration concerns the choice of the p 
value, which will be discussed separately in Section 4.5. The second 
consideration requires that each neighborhood be of the exact size p. 
The third consideration can be satisfied with the Gaussian model, 
which we explain below.  The model construction involves two 
steps: location-based model and flow-based model.  

For a given location X0, and its neighborhood {Xi}, a Gaussian 
model is defined as follows (Eq. 1): 

 

𝐺𝐺 𝑋𝑋! ,𝑋𝑋!;𝜎𝜎!! =
1
2𝜋𝜋

𝑒𝑒
!    

! !! ,  !!
!

!!!!
! , 𝑖𝑖𝑖𝑖  𝑑𝑑 𝑋𝑋! ,𝑋𝑋! ≤ 𝜎𝜎!!

0, 𝑖𝑖𝑖𝑖  𝑑𝑑 𝑋𝑋! ,𝑋𝑋! > 𝜎𝜎!!

 (1) 

Where:  
      𝐺𝐺 𝑋𝑋! ,𝑋𝑋!;𝜎𝜎!!  is the Gaussian weight of 𝑋𝑋! in relation to X0; 
      X0 is the center location of a neighborhood; 
      𝜎𝜎!!   > 0 is the neighborhood bandwidth of location X0; 
      𝑋𝑋! is a location in the neighborhood; 
      d(𝑋𝑋!, 𝑋𝑋!) is the Euclidean distance between 𝑋𝑋! and X0.  
 
In Definition 2 we explained that each of the k locations {𝑋𝑋!} in 

a neighborhood has a size 𝑠𝑠!, a weight 𝑤𝑤!=1 (except for the last 
neighbor, which has a weight 𝑤𝑤! ≤  1), and the total size of the 
neighborhood 𝑤𝑤!𝑠𝑠!!

!  is exactly p. These weights will be adjusted 
here based on the Gaussian model (Eq. 1). Let 𝜃𝜃  be the total 
Gaussian weighted size of the neighborhood before adjustment (Eq. 
2). The adjusted weight for location 𝑋𝑋! in relation to 𝑋𝑋!, 𝐺𝐺(𝑋𝑋! ,𝑋𝑋!), 
is defined in Eq. 3, which ensures that 𝐺𝐺(𝑋𝑋! ,𝑋𝑋!) ∗ 𝑠𝑠!!

!  = p.  

𝜃𝜃 = 𝐺𝐺 𝑋𝑋! ,𝑋𝑋!;𝜎𝜎!!

!

!!!

𝑤𝑤!𝑠𝑠! (2) 

𝐺𝐺(𝑋𝑋! ,𝑋𝑋!) = 𝐺𝐺 𝑋𝑋! ,𝑋𝑋!;𝜎𝜎!! 𝑤𝑤!𝑝𝑝/𝜃𝜃 (3) 

 
After the location weight 𝐺𝐺(𝑋𝑋! ,𝑋𝑋!) is configured for each point 

in each neighborhood, we can construct a flow-based model to 
calculate the weight for each flow 𝑇𝑇! in the neighborhood of flow 𝑇𝑇!. 
Let 𝑋𝑋!! and 𝑋𝑋!! be the origin and destination of 𝑇𝑇!; 𝑋𝑋!" and 𝑋𝑋!" be 
the origin and destination of 𝑇𝑇!. The weight for 𝑇𝑇! in relation to 𝑇𝑇! is 
defined in Eq. 4. Essentially, the weight is a joint probability of the 
two kernels, one for the origin 𝑋𝑋!" and one for the destination 𝑋𝑋!". 

 
𝐺𝐺 𝑇𝑇! ,𝑇𝑇! = 𝐺𝐺 𝑋𝑋!" ,𝑋𝑋!! 𝐺𝐺(𝑋𝑋!" ,𝑋𝑋!!) (4) 

4.3 Flow Density Calculation 
Based on the flow model in Eq. 4 and its derived weights for flows 
in each neighborhood, each original flow can be smoothed or re-
estimated. Let T ={𝑇𝑇!} be the original flow data; 𝑇𝑇! represents a 
directed flow from location 𝑋𝑋!" to location 𝑋𝑋!"; {𝑇𝑇!} be the p-size 
neighborhood of 𝑇𝑇! , |{𝑇𝑇!}|  = k, 𝑇𝑇! ∈ {𝑇𝑇!} . The smoothed flow 
volume for 𝑇𝑇! is: 

𝑇𝑇!! = [𝐺𝐺 𝑇𝑇! ,𝑇𝑇! 𝑇𝑇!

!

!!!

] (5) 

 
As explained in the previous section, the neighborhood size p 

determines the origin bandwidth 𝜎𝜎!!"  and the destination bandwidth 
𝜎𝜎!!" , which can be considered as a scale factor. The larger the two 
bandwidths are, the more global and general patterns we are looking 
for.  Therefore, we only smooth flows of a longer geographic 
distance than (𝜎𝜎!!" + 𝜎𝜎!!") . In other words, we only calculate 
smoothed flows between non-overlapping neighborhoods. We may 
also impose an additional parameter, minDist, to skip flows that are 

shorter than minDist, which are mainly local flows and thus may not 
be necessary to include in a flow map at a large scale. For example, 
for the U.S. migration maps in Fig. 3 and Fig. 4, we set minDist = 
200km, i.e., flows shorter than 20km are relatively local and thus 
skipped on a national map.  

The smoothed flow 𝑇𝑇!!, which is the weighted total of flows in its 
neighborhood, can be interpreted as the normalized flow value from 
𝑋𝑋!" to 𝑋𝑋!", when each of them were exactly of the same size p. For 
example, if p is one million of population, a smoothed flow of 
10,000 migrants between two neighborhoods means that the flow 
density is 10,000 flows per one million of population on each side. 
With the smoothed flow values, instead of the original flow values, 
we can reliably compare and understand the magnitude of flows 
among locations, without being affected by the differences in size or 
unstable measures for small areas.   

4.4 Flow Selection and Mapping  
The above smoothing step improves and normalizes the original 
flows so that the values are robust (avoiding the small-area problem), 
comparable, and preserves spatial resolution (with each flow 
retaining its original origin and destination). However, it does not 
solve the cluttering problem since the total number of flows remains 
the same. Moreover, it adds a significant amount of redundant 
information and correlation between neighboring flows as their 
neighborhoods overlap and share neighbor flows. We developed a 
flow selection method that can address both problems 
simultaneously and render a generalized flow map that is visually 
clear, rich in information, and accurately reveals major flow patterns 
within the data.  

The essential idea is to find a subset of the smoothed flows that 
can represent the major flow patterns in the data and do not have 
duplicate information. This idea is in line with the map 
generalization concept in cartography, where only the most salient 
information is selected and represented on a map in a way that suits 
the scale of the display.  

Our flow selection algorithm is presented in Algorithm 1. It takes 
the smoothed flows and the neighborhood of each flow as inputs. All 
flows are sorted to a descending order according to smoothed flow 
values. Following the order of flows (i.e., starting from the largest 
flow), the process selects one flow at a time. There are two primary 
selection criteria: (1) selected flows do not share flow neighbors with 
each other, which is to avoid duplicate information; and (2) selected 
flows are not too close to each other, which is to achieve a more 
balanced spatial representation and to avoid the cluttering problem. 
Note that two selected flows may have overlapping origins or 
overlapping destinations but not both. The selection process stops 
when no more flow can be selected or when a specified number (l) of 
flows have been selected (which returns the top l selected flows).  
 

Algorithms 1.  Flow Selection 
 
Input:    Smoothed flows {𝑇𝑇!!};  

    Distance threshold minSpace; 
    Desired number of flows l; 

Output: A set of selected flows {𝑇𝑇!}, |{𝑇𝑇!}| <= 𝑙𝑙; 
Steps: 

  {𝑇𝑇!} = ∅;   
Sort {𝑇𝑇!!} by smoothed flow value, in descending order; 
For each flow 𝑇𝑇!! =  < 𝑋𝑋!" ,𝑋𝑋!" >:  

select = true; 
FOR each flow 𝑇𝑇! =  < 𝑋𝑋!" ,𝑋𝑋!" >  ∈ {𝑇𝑇!}: 
 IF ((EuclideanDist(𝑋𝑋!" ,𝑋𝑋!")<(𝜎𝜎!!"+𝜎𝜎!!") OR 
       (EuclideanDist(𝑋𝑋!" ,𝑋𝑋!")<(𝜎𝜎!!"+𝜎𝜎!!") OR 
       (EuclideanDist(𝑋𝑋!" ,𝑋𝑋!")<𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  OR 

      (EuclideanDist(𝑋𝑋!" ,𝑋𝑋!")<𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)) 

   select = false; 
END FOR 
IF (select  AND  |{𝑇𝑇!}| < 𝑙𝑙)  
 Add 𝑇𝑇!! to {𝑇𝑇!}; 

END FOR 
 

Comparing with existing flow mapping approaches, our approach 
has four advantages with the combination of flow smoothing and 
flow selection. First, it preserves spatial resolution and location 
information by searching for the pairs of origins and destinations that 
have the highest flow density. The selected flows maintain their 
original origin and destination locations. Second, it avoids the 
modifiable area unit problem (MAUP) by not imposing an arbitrary 
aggregation at the beginning. Instead, it evaluates each neighborhood 
and finds the “best” aggregation (if smoothing is considered a form 
of aggregation). Third, it normalizes flow values by origin and 
destination sizes so that flows are comparable and thus enables 
correct interpretation of flow patterns. Fourth, the resulted flow map 
is visually clear and yet reveals rich information. The approach can 
naturally support multi-resolution flow mapping and stratified flow 
mapping, which we will explain below.  

4.5 Multi-Resolution Flow Mapping  
The neighborhood size p parameter, which controls the bandwidth of 
the kernel, is a key parameter in the flow-smoothing step. Intuitively, 
one wants to set the size as small as possible so that the result 
patterns have a high spatial resolution. On the other hand, however, 
the smaller the neighborhood size is, the less robust the estimated 
flow value is due to the small-area problem. Therefore, it is a trade-
off between resolution and robustness in determining the value of p. 
Another consideration in setting p is related to scale. Different p 
values can allow us to search for flow patterns at different scales. For 
example, using a one million population threshold may be better for 
examining migration patterns at the national level (filtering out local 
details) while using a half-million or even smaller threshold one can 
see local patterns within a selected region.  

A user may start from the national level with a large 
neighborhood size, which reveals flow trends across the U.S. Then 
the user can zoom in on a local region. There can be two ways to 
allow a smooth transition from one scale to another. The first option 
is to keep the neighborhood size unchanged and show more (small) 
flows for local regions, where the number of flows to be mapped will 
be determined by visual clarity. For example, at the national level, 
the flow map may show the top 200 selected flows nationwide. 
When zoomed to Texas, the map will show the top 200 flows in the 
local area, meaning that flows ignored on the national map will 
emerge at the local level. The second option, combined with the first, 
is to produce a sequence of smoothing results based on different 
neighborhood sizes. When the map scale changes, the map will show 
the smoothing flows at an appropriate level. In Section 5.1.2 we will 
present a preliminary example of this capability.  

4.6 Flow Mapping of Stratified Data 
Another important advantage of the approach is its ability to work 
with sparse flow data. It is possible to stratify a data set based on a 
certain attribute, make a flow map for each subset of data, and 
compare their flow patterns. For example, it is well understood that 
different age groups have very distinctive migration choices and it is 
very important to be able to examine such differences. Therefore, 
instead of mapping all migration flows in one map, we can divide the 
migration data into subsets based on age groups and map the 
migration patterns for each age group using the same neighborhood 
size p. This is possible because our approach can reliably extract 
patterns for sparse flow data with smoothing and normalization, and 
has the ability to maintain spatial accuracy while searching for flow 
patterns. In Section 5.1.3 we will present results that show this 
capability.  

4.7 Computational Efficiency 
With spatial index, the search for the nearest k neighbors for m 
locations takes 𝑂𝑂 𝑚𝑚𝑚𝑚 log 𝑘𝑘  time. The smoothing of n flows, each 
having at most 𝑘𝑘!neighbor flows, takes 𝑂𝑂(𝑛𝑛𝑘𝑘!)  time. The time 
complexity for the flow selection step is also 𝑂𝑂(𝑛𝑛𝑛𝑛). Since k << m < 
n and l is a constant value, the overall time complexity of the 
approach therefore is 𝑂𝑂(𝑛𝑛𝑘𝑘!), which is scalable to process large data 
sets when k is relatively small.  

For example, the U.S. county-to-county migration data has 3075 
locations and over 720,000 flows, for which k is around 15 when p is 
set as one million of population.  On a desktop computer with a 3.2 
GHz CPU, it takes less than 30 seconds to complete all steps. 
Therefore, it is scalable to support real-time user interaction.  

For large point-based flow data, such as taxi trips with GPS 
points as locations, the needed k value (controlled by neighborhood 
size p) may be relatively large since each GPS point is unique in the 
data. In this case, we can perform a preliminary clustering of GPS 
points and select representative points (clusters) to aggregate flows 
first, which can dramatically reduce the number locations without 
significantly impacting spatial accuracy in pattern detection.  

5 EVALUATION WITH CASE STUDIES  

5.1 Migration Data Mapping  
In this case study we analyze and map the U.S. internal migration 
data set from the 2000 Census, covering the time period of 1995—
2000. Census 2000 asked where the person lived five years ago (i.e., 
April 1, 1995) and therefore the data includes migrants who moved 
within the five years (1995-2000). In this research, we focus on the 
migration within the continental U.S. including 48 states and 
Washington D.C., which has 3075 counties and 721,433 unique pairs 
of counties with a nonzero migration flow. To apply our approach, 
each county area is converted to point (i.e., the area centroid), which 
retains all the attributes of the county such as population.  

5.1.1 Net Migration Flow Map  
The neighborhood size p is set with a population of 1,000,000 (based 
on the U.S. 2000 census population data at the county level), which 
is about the size of a metropolitan area in the U.S. According to the 
size constraint, each county finds a neighborhood of one or more 
nearby counties. The background map in Fig. 3 shows the 
bandwidths of counties, which range from zero (where a single 
county has more than one million population) to about 700km, with a 
mean of 187km. In this case study, we particularly focus on the net 
migration, which is the inflow minus the outflow. Net migration 
represents the net gain or loss of migrants for each pair of counties 
and is often used to examine migration patterns. For each pair of 
counties with a non-zero migration, we re-estimate its flow value in 
each direction with our approach (with the parameter minDist = 
200km) and then calculate a new net migration value with the 
smoothed inflow and outflow values.  

From the smoothed net migration flows, we use the flow 
selection algorithm presented in Section 4.4 to select the top 200 net 
migration flows, with the parameter minSpace = 300km. The 
minSpace parameter is mainly to reduce the number of similar flows 
within local areas of high population density. The selected flows are 
shown in Fig. 3. The map reveals a variety of local and global 
migration patterns that are not visible in the original flow map (Fig. 
1) or other flow maps produced with existing approaches for the 
same data set (e.g., [15, 16]). To verify the patterns in Fig. 3, we 
overlay the flow map on top of a map of smoothed net migration 
ratio in Fig. 4. See [19] for the method that calculates the smoothed 
net migration ratios. The flow patterns discovered with the new 
approach clearly confirm and explain the overall net migration 
patterns. We can see most flows originated from bluish areas and 
move to reddish areas (hot destinations). 
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neighborhood. The first consideration concerns the choice of the p 
value, which will be discussed separately in Section 4.5. The second 
consideration requires that each neighborhood be of the exact size p. 
The third consideration can be satisfied with the Gaussian model, 
which we explain below.  The model construction involves two 
steps: location-based model and flow-based model.  

For a given location X0, and its neighborhood {Xi}, a Gaussian 
model is defined as follows (Eq. 1): 

 

𝐺𝐺 𝑋𝑋! ,𝑋𝑋!;𝜎𝜎!! =
1
2𝜋𝜋
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! , 𝑖𝑖𝑖𝑖  𝑑𝑑 𝑋𝑋! ,𝑋𝑋! ≤ 𝜎𝜎!!

0, 𝑖𝑖𝑖𝑖  𝑑𝑑 𝑋𝑋! ,𝑋𝑋! > 𝜎𝜎!!

 (1) 

Where:  
      𝐺𝐺 𝑋𝑋! ,𝑋𝑋!;𝜎𝜎!!  is the Gaussian weight of 𝑋𝑋! in relation to X0; 
      X0 is the center location of a neighborhood; 
      𝜎𝜎!!   > 0 is the neighborhood bandwidth of location X0; 
      𝑋𝑋! is a location in the neighborhood; 
      d(𝑋𝑋!, 𝑋𝑋!) is the Euclidean distance between 𝑋𝑋! and X0.  
 
In Definition 2 we explained that each of the k locations {𝑋𝑋!} in 

a neighborhood has a size 𝑠𝑠!, a weight 𝑤𝑤!=1 (except for the last 
neighbor, which has a weight 𝑤𝑤! ≤  1), and the total size of the 
neighborhood 𝑤𝑤!𝑠𝑠!!

!  is exactly p. These weights will be adjusted 
here based on the Gaussian model (Eq. 1). Let 𝜃𝜃  be the total 
Gaussian weighted size of the neighborhood before adjustment (Eq. 
2). The adjusted weight for location 𝑋𝑋! in relation to 𝑋𝑋!, 𝐺𝐺(𝑋𝑋! ,𝑋𝑋!), 
is defined in Eq. 3, which ensures that 𝐺𝐺(𝑋𝑋! ,𝑋𝑋!) ∗ 𝑠𝑠!!

!  = p.  

𝜃𝜃 = 𝐺𝐺 𝑋𝑋! ,𝑋𝑋!;𝜎𝜎!!

!
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𝑤𝑤!𝑠𝑠! (2) 

𝐺𝐺(𝑋𝑋! ,𝑋𝑋!) = 𝐺𝐺 𝑋𝑋! ,𝑋𝑋!;𝜎𝜎!! 𝑤𝑤!𝑝𝑝/𝜃𝜃 (3) 

 
After the location weight 𝐺𝐺(𝑋𝑋! ,𝑋𝑋!) is configured for each point 

in each neighborhood, we can construct a flow-based model to 
calculate the weight for each flow 𝑇𝑇! in the neighborhood of flow 𝑇𝑇!. 
Let 𝑋𝑋!! and 𝑋𝑋!! be the origin and destination of 𝑇𝑇!; 𝑋𝑋!" and 𝑋𝑋!" be 
the origin and destination of 𝑇𝑇!. The weight for 𝑇𝑇! in relation to 𝑇𝑇! is 
defined in Eq. 4. Essentially, the weight is a joint probability of the 
two kernels, one for the origin 𝑋𝑋!" and one for the destination 𝑋𝑋!". 

 
𝐺𝐺 𝑇𝑇! ,𝑇𝑇! = 𝐺𝐺 𝑋𝑋!" ,𝑋𝑋!! 𝐺𝐺(𝑋𝑋!" ,𝑋𝑋!!) (4) 

4.3 Flow Density Calculation 
Based on the flow model in Eq. 4 and its derived weights for flows 
in each neighborhood, each original flow can be smoothed or re-
estimated. Let T ={𝑇𝑇!} be the original flow data; 𝑇𝑇! represents a 
directed flow from location 𝑋𝑋!" to location 𝑋𝑋!"; {𝑇𝑇!} be the p-size 
neighborhood of 𝑇𝑇! , |{𝑇𝑇!}|  = k, 𝑇𝑇! ∈ {𝑇𝑇!} . The smoothed flow 
volume for 𝑇𝑇! is: 

𝑇𝑇!! = [𝐺𝐺 𝑇𝑇! ,𝑇𝑇! 𝑇𝑇!

!

!!!

] (5) 

 
As explained in the previous section, the neighborhood size p 

determines the origin bandwidth 𝜎𝜎!!"  and the destination bandwidth 
𝜎𝜎!!" , which can be considered as a scale factor. The larger the two 
bandwidths are, the more global and general patterns we are looking 
for.  Therefore, we only smooth flows of a longer geographic 
distance than (𝜎𝜎!!" + 𝜎𝜎!!") . In other words, we only calculate 
smoothed flows between non-overlapping neighborhoods. We may 
also impose an additional parameter, minDist, to skip flows that are 

shorter than minDist, which are mainly local flows and thus may not 
be necessary to include in a flow map at a large scale. For example, 
for the U.S. migration maps in Fig. 3 and Fig. 4, we set minDist = 
200km, i.e., flows shorter than 20km are relatively local and thus 
skipped on a national map.  

The smoothed flow 𝑇𝑇!!, which is the weighted total of flows in its 
neighborhood, can be interpreted as the normalized flow value from 
𝑋𝑋!" to 𝑋𝑋!", when each of them were exactly of the same size p. For 
example, if p is one million of population, a smoothed flow of 
10,000 migrants between two neighborhoods means that the flow 
density is 10,000 flows per one million of population on each side. 
With the smoothed flow values, instead of the original flow values, 
we can reliably compare and understand the magnitude of flows 
among locations, without being affected by the differences in size or 
unstable measures for small areas.   

4.4 Flow Selection and Mapping  
The above smoothing step improves and normalizes the original 
flows so that the values are robust (avoiding the small-area problem), 
comparable, and preserves spatial resolution (with each flow 
retaining its original origin and destination). However, it does not 
solve the cluttering problem since the total number of flows remains 
the same. Moreover, it adds a significant amount of redundant 
information and correlation between neighboring flows as their 
neighborhoods overlap and share neighbor flows. We developed a 
flow selection method that can address both problems 
simultaneously and render a generalized flow map that is visually 
clear, rich in information, and accurately reveals major flow patterns 
within the data.  

The essential idea is to find a subset of the smoothed flows that 
can represent the major flow patterns in the data and do not have 
duplicate information. This idea is in line with the map 
generalization concept in cartography, where only the most salient 
information is selected and represented on a map in a way that suits 
the scale of the display.  

Our flow selection algorithm is presented in Algorithm 1. It takes 
the smoothed flows and the neighborhood of each flow as inputs. All 
flows are sorted to a descending order according to smoothed flow 
values. Following the order of flows (i.e., starting from the largest 
flow), the process selects one flow at a time. There are two primary 
selection criteria: (1) selected flows do not share flow neighbors with 
each other, which is to avoid duplicate information; and (2) selected 
flows are not too close to each other, which is to achieve a more 
balanced spatial representation and to avoid the cluttering problem. 
Note that two selected flows may have overlapping origins or 
overlapping destinations but not both. The selection process stops 
when no more flow can be selected or when a specified number (l) of 
flows have been selected (which returns the top l selected flows).  
 

Algorithms 1.  Flow Selection 
 
Input:    Smoothed flows {𝑇𝑇!!};  

    Distance threshold minSpace; 
    Desired number of flows l; 

Output: A set of selected flows {𝑇𝑇!}, |{𝑇𝑇!}| <= 𝑙𝑙; 
Steps: 

  {𝑇𝑇!} = ∅;   
Sort {𝑇𝑇!!} by smoothed flow value, in descending order; 
For each flow 𝑇𝑇!! =  < 𝑋𝑋!" ,𝑋𝑋!" >:  

select = true; 
FOR each flow 𝑇𝑇! =  < 𝑋𝑋!" ,𝑋𝑋!" >  ∈ {𝑇𝑇!}: 
 IF ((EuclideanDist(𝑋𝑋!" ,𝑋𝑋!")<(𝜎𝜎!!"+𝜎𝜎!!") OR 
       (EuclideanDist(𝑋𝑋!" ,𝑋𝑋!")<(𝜎𝜎!!"+𝜎𝜎!!") OR 
       (EuclideanDist(𝑋𝑋!" ,𝑋𝑋!")<𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)  OR 

      (EuclideanDist(𝑋𝑋!" ,𝑋𝑋!")<𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)) 

   select = false; 
END FOR 
IF (select  AND  |{𝑇𝑇!}| < 𝑙𝑙)  
 Add 𝑇𝑇!! to {𝑇𝑇!}; 

END FOR 
 

Comparing with existing flow mapping approaches, our approach 
has four advantages with the combination of flow smoothing and 
flow selection. First, it preserves spatial resolution and location 
information by searching for the pairs of origins and destinations that 
have the highest flow density. The selected flows maintain their 
original origin and destination locations. Second, it avoids the 
modifiable area unit problem (MAUP) by not imposing an arbitrary 
aggregation at the beginning. Instead, it evaluates each neighborhood 
and finds the “best” aggregation (if smoothing is considered a form 
of aggregation). Third, it normalizes flow values by origin and 
destination sizes so that flows are comparable and thus enables 
correct interpretation of flow patterns. Fourth, the resulted flow map 
is visually clear and yet reveals rich information. The approach can 
naturally support multi-resolution flow mapping and stratified flow 
mapping, which we will explain below.  

4.5 Multi-Resolution Flow Mapping  
The neighborhood size p parameter, which controls the bandwidth of 
the kernel, is a key parameter in the flow-smoothing step. Intuitively, 
one wants to set the size as small as possible so that the result 
patterns have a high spatial resolution. On the other hand, however, 
the smaller the neighborhood size is, the less robust the estimated 
flow value is due to the small-area problem. Therefore, it is a trade-
off between resolution and robustness in determining the value of p. 
Another consideration in setting p is related to scale. Different p 
values can allow us to search for flow patterns at different scales. For 
example, using a one million population threshold may be better for 
examining migration patterns at the national level (filtering out local 
details) while using a half-million or even smaller threshold one can 
see local patterns within a selected region.  

A user may start from the national level with a large 
neighborhood size, which reveals flow trends across the U.S. Then 
the user can zoom in on a local region. There can be two ways to 
allow a smooth transition from one scale to another. The first option 
is to keep the neighborhood size unchanged and show more (small) 
flows for local regions, where the number of flows to be mapped will 
be determined by visual clarity. For example, at the national level, 
the flow map may show the top 200 selected flows nationwide. 
When zoomed to Texas, the map will show the top 200 flows in the 
local area, meaning that flows ignored on the national map will 
emerge at the local level. The second option, combined with the first, 
is to produce a sequence of smoothing results based on different 
neighborhood sizes. When the map scale changes, the map will show 
the smoothing flows at an appropriate level. In Section 5.1.2 we will 
present a preliminary example of this capability.  

4.6 Flow Mapping of Stratified Data 
Another important advantage of the approach is its ability to work 
with sparse flow data. It is possible to stratify a data set based on a 
certain attribute, make a flow map for each subset of data, and 
compare their flow patterns. For example, it is well understood that 
different age groups have very distinctive migration choices and it is 
very important to be able to examine such differences. Therefore, 
instead of mapping all migration flows in one map, we can divide the 
migration data into subsets based on age groups and map the 
migration patterns for each age group using the same neighborhood 
size p. This is possible because our approach can reliably extract 
patterns for sparse flow data with smoothing and normalization, and 
has the ability to maintain spatial accuracy while searching for flow 
patterns. In Section 5.1.3 we will present results that show this 
capability.  

4.7 Computational Efficiency 
With spatial index, the search for the nearest k neighbors for m 
locations takes 𝑂𝑂 𝑚𝑚𝑚𝑚 log 𝑘𝑘  time. The smoothing of n flows, each 
having at most 𝑘𝑘!neighbor flows, takes 𝑂𝑂(𝑛𝑛𝑘𝑘!)  time. The time 
complexity for the flow selection step is also 𝑂𝑂(𝑛𝑛𝑛𝑛). Since k << m < 
n and l is a constant value, the overall time complexity of the 
approach therefore is 𝑂𝑂(𝑛𝑛𝑘𝑘!), which is scalable to process large data 
sets when k is relatively small.  

For example, the U.S. county-to-county migration data has 3075 
locations and over 720,000 flows, for which k is around 15 when p is 
set as one million of population.  On a desktop computer with a 3.2 
GHz CPU, it takes less than 30 seconds to complete all steps. 
Therefore, it is scalable to support real-time user interaction.  

For large point-based flow data, such as taxi trips with GPS 
points as locations, the needed k value (controlled by neighborhood 
size p) may be relatively large since each GPS point is unique in the 
data. In this case, we can perform a preliminary clustering of GPS 
points and select representative points (clusters) to aggregate flows 
first, which can dramatically reduce the number locations without 
significantly impacting spatial accuracy in pattern detection.  

5 EVALUATION WITH CASE STUDIES  

5.1 Migration Data Mapping  
In this case study we analyze and map the U.S. internal migration 
data set from the 2000 Census, covering the time period of 1995—
2000. Census 2000 asked where the person lived five years ago (i.e., 
April 1, 1995) and therefore the data includes migrants who moved 
within the five years (1995-2000). In this research, we focus on the 
migration within the continental U.S. including 48 states and 
Washington D.C., which has 3075 counties and 721,433 unique pairs 
of counties with a nonzero migration flow. To apply our approach, 
each county area is converted to point (i.e., the area centroid), which 
retains all the attributes of the county such as population.  

5.1.1 Net Migration Flow Map  
The neighborhood size p is set with a population of 1,000,000 (based 
on the U.S. 2000 census population data at the county level), which 
is about the size of a metropolitan area in the U.S. According to the 
size constraint, each county finds a neighborhood of one or more 
nearby counties. The background map in Fig. 3 shows the 
bandwidths of counties, which range from zero (where a single 
county has more than one million population) to about 700km, with a 
mean of 187km. In this case study, we particularly focus on the net 
migration, which is the inflow minus the outflow. Net migration 
represents the net gain or loss of migrants for each pair of counties 
and is often used to examine migration patterns. For each pair of 
counties with a non-zero migration, we re-estimate its flow value in 
each direction with our approach (with the parameter minDist = 
200km) and then calculate a new net migration value with the 
smoothed inflow and outflow values.  

From the smoothed net migration flows, we use the flow 
selection algorithm presented in Section 4.4 to select the top 200 net 
migration flows, with the parameter minSpace = 300km. The 
minSpace parameter is mainly to reduce the number of similar flows 
within local areas of high population density. The selected flows are 
shown in Fig. 3. The map reveals a variety of local and global 
migration patterns that are not visible in the original flow map (Fig. 
1) or other flow maps produced with existing approaches for the 
same data set (e.g., [15, 16]). To verify the patterns in Fig. 3, we 
overlay the flow map on top of a map of smoothed net migration 
ratio in Fig. 4. See [19] for the method that calculates the smoothed 
net migration ratios. The flow patterns discovered with the new 
approach clearly confirm and explain the overall net migration 
patterns. We can see most flows originated from bluish areas and 
move to reddish areas (hot destinations). 
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data set is at the county level with the number  

 
Fig. 3: Top 200 smoothed net migration flows, with the size p = 1,000,000 population. Both the line width and color represent flow values. The 
background map shows bandwidth of each county.  

 

 
Fig. 4: Top 200 smoothed net migration flows are overlayed on top of a map of smoothed net migration rate for each county. Blue colors 
represent places that had more out-migration than in-migration while red areas were hot destinations. The smoothed flows clearly explain the 
patterns in the net migration rate map. We can see where the out-migration went and where in-migration came from for the red areas. 

By examining the flow map in Fig. 4, we can obtain a rich set of 
new information on the national trends and local patterns of 
migration in the U.S. For example, the net migration rate map in Fig. 
4 shows that the area around El Paso (Texas) has a strong negative 
net migration rate, indicating a significant loss of population due to 
out-migration to other areas. The flow map confirms this pattern and 
shows that its outgoing net-migration went almost in all directions to 
nearby areas. A number of metropolitan areas lose population due to 
negative net migration, such as Houston, Chicago, Boston, Detroit, 
Los Angeles, San Francisco, and Seattle. From the flow map, we can 
understand where the out-migration went. For example, it is 
surprising to see a large migration flow from Chicago to the 
Philadelphia area. Among others, one interesting trend shown in the 
map is that the net migration from the big blue band (stretching from 
El Paso, to Lubbock and to the west of Minneapolis) mostly moved 
to the east.  

5.1.2 Multi-Resolution Migration Mapping  
Our approach naturally supports a smooth transition between scales 
and enables multi-resolution flow mapping. For example, one may 
zoom in on the flow map in Fig. 4 to focus on a local area such the 
Mid-West area around the lakes (Fig. 5), which shows the selected 
flows for the local area based on a smaller neighborhood size 
(500,000 population). While major flows are still consistent with the 
national map in Fig. 4, more local flows emerge.  

The desirable feature of our approach in supporting multi-
resolution flow mapping is that the smoothing process guarantees 
that the flows with high densities will be detected and the selection 
process ensures that large flows are represented in the map, at 
different scales. The smoothing and selection process is efficient and 
can process large datasets to create flows at multiple scales either 
beforehand or in real-time. To ensure the computational efficiency 
for large point-based flows, we briefly introduce several strategies in 
Section 5.3.  

5.1.3 Stratified Migration Maps 
We can also map the migration flows of different age groups 
separately and compare their flow patterns. We partition the original 
migration data into subsets, each containing the moves of migrants 
within a certain age group.  A flow map is generated for each subset 
(i.e., age group). All maps use the same configuration, namely 
neighborhood size p = 1,000,000 population, minDist = 200km, and 
minSpace = 300km. Existing flow-mapping approaches do not work 
well in this case since the flow matrix is sparse and most flows are 
small for each data subset. Without smoothing, it is difficult to 
obtain a robust representation of patterns.  

Fig. 6 and Fig. 7 show the smoothed flow maps for age group 65-
69 and 25-29, respectively. It is obvious that young migrants (e.g., 
college graduates) and senior migrants (e.g., retirees) have very 
different preferences for destination. The migration flow map in Fig. 
6 shows that senior migrants in the east had a strong preference for 
Florida (particularly West and South Florida) while those in the west 
were more likely to move to Arizona or its surrounding area. For the 
metropolitan areas in the north (such as Minneapolis, Detroit, and 
Boston) there is also a senior migration trend towards the rural areas 
further north. On the contrary, young migrants have a strong 
tendency to converge on large cities with relatively short-distance 
moves. Atlanta, Charlotte, New York City, Dallas, Houston, Denver, 
San Francisco, and Portland attracted a large number of inflows of 
young population from surrounding regions. It also appears that San 
Francisco is particularly attractive to the young people in the 
Northeast region, who migrated over a long geographic distance to 
the Bay Area. 

With these two maps as examples, we demonstrate the flexibility 
and reliable power of our approach in analyzing origin-destination 
flow data, compare patterns in stratified data sets, which are often 
sparse and therefore demand smoothing to accentuate patterns.  

 
Fig. 5: A zoom-in migration map for the mid-west region, switched to a neighbourhood size of 500,000 (half of the size as used in Fig. 4). Flow 
patterns are consistent with those in Fig. 4 but more local flows are present in this map. See Fig. 4 for the legend of the background. 
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By examining the flow map in Fig. 4, we can obtain a rich set of 
new information on the national trends and local patterns of 
migration in the U.S. For example, the net migration rate map in Fig. 
4 shows that the area around El Paso (Texas) has a strong negative 
net migration rate, indicating a significant loss of population due to 
out-migration to other areas. The flow map confirms this pattern and 
shows that its outgoing net-migration went almost in all directions to 
nearby areas. A number of metropolitan areas lose population due to 
negative net migration, such as Houston, Chicago, Boston, Detroit, 
Los Angeles, San Francisco, and Seattle. From the flow map, we can 
understand where the out-migration went. For example, it is 
surprising to see a large migration flow from Chicago to the 
Philadelphia area. Among others, one interesting trend shown in the 
map is that the net migration from the big blue band (stretching from 
El Paso, to Lubbock and to the west of Minneapolis) mostly moved 
to the east.  

5.1.2 Multi-Resolution Migration Mapping  
Our approach naturally supports a smooth transition between scales 
and enables multi-resolution flow mapping. For example, one may 
zoom in on the flow map in Fig. 4 to focus on a local area such the 
Mid-West area around the lakes (Fig. 5), which shows the selected 
flows for the local area based on a smaller neighborhood size 
(500,000 population). While major flows are still consistent with the 
national map in Fig. 4, more local flows emerge.  

The desirable feature of our approach in supporting multi-
resolution flow mapping is that the smoothing process guarantees 
that the flows with high densities will be detected and the selection 
process ensures that large flows are represented in the map, at 
different scales. The smoothing and selection process is efficient and 
can process large datasets to create flows at multiple scales either 
beforehand or in real-time. To ensure the computational efficiency 
for large point-based flows, we briefly introduce several strategies in 
Section 5.3.  

5.1.3 Stratified Migration Maps 
We can also map the migration flows of different age groups 
separately and compare their flow patterns. We partition the original 
migration data into subsets, each containing the moves of migrants 
within a certain age group.  A flow map is generated for each subset 
(i.e., age group). All maps use the same configuration, namely 
neighborhood size p = 1,000,000 population, minDist = 200km, and 
minSpace = 300km. Existing flow-mapping approaches do not work 
well in this case since the flow matrix is sparse and most flows are 
small for each data subset. Without smoothing, it is difficult to 
obtain a robust representation of patterns.  

Fig. 6 and Fig. 7 show the smoothed flow maps for age group 65-
69 and 25-29, respectively. It is obvious that young migrants (e.g., 
college graduates) and senior migrants (e.g., retirees) have very 
different preferences for destination. The migration flow map in Fig. 
6 shows that senior migrants in the east had a strong preference for 
Florida (particularly West and South Florida) while those in the west 
were more likely to move to Arizona or its surrounding area. For the 
metropolitan areas in the north (such as Minneapolis, Detroit, and 
Boston) there is also a senior migration trend towards the rural areas 
further north. On the contrary, young migrants have a strong 
tendency to converge on large cities with relatively short-distance 
moves. Atlanta, Charlotte, New York City, Dallas, Houston, Denver, 
San Francisco, and Portland attracted a large number of inflows of 
young population from surrounding regions. It also appears that San 
Francisco is particularly attractive to the young people in the 
Northeast region, who migrated over a long geographic distance to 
the Bay Area. 

With these two maps as examples, we demonstrate the flexibility 
and reliable power of our approach in analyzing origin-destination 
flow data, compare patterns in stratified data sets, which are often 
sparse and therefore demand smoothing to accentuate patterns.  

 
Fig. 5: A zoom-in migration map for the mid-west region, switched to a neighbourhood size of 500,000 (half of the size as used in Fig. 4). Flow 
patterns are consistent with those in Fig. 4 but more local flows are present in this map. See Fig. 4 for the legend of the background. 
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Fig. 6: Smoothed net migration flows for age 65-69, with population threshold = 1,000,000.  

 

 
Fig. 7: Smoothed net migration flows for age 25-29, with population threshold = 1,000,000. The background map shows the net migration rate for 
age group 25-29.  

 

5.2 Evaluation with Synthetic Data 
To further evaluate our approach and assess its capability (and 
limitations) in detecting flow patterns, we construct a synthetic data 
set that has both random flows and clustered flows. We generate 
7000 points in a rectangular area, with two dense ‘urban’ areas (see 
the top-left map in Fig 8). Then seven flow clusters are generated 
and each cluster has 50 flows. To generate a flow cluster, we choose 
a circular area of X points as the origin and a circular area of Y 
points as the destination, randomly pick a point from X and a point 
from Y to form a flow, repeat 50 times. The clusters are as follows:  

¥ Blue cluster, |X| = 100 and |Y| = 100, 𝑋𝑋 ∩ 𝑌𝑌 = ∅  
¥ Green cluster, |X| = 100 and |Y| = 100, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Pink cluster, |X| = 200 and |Y| = 200, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Yellow cluster, |X| = 350 and |Y| = 350, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Magenta cluster, |X| = 500 and |Y| = 500, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Cyan cluster, |X| = 500 and |Y| = 500, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Red “cluster”, |X| = 500 and |Y| = 500, 𝑋𝑋 = 𝑌𝑌.  
The remaining 6300 points are randomly paired to create a set of 

3150 random flows. Therefore, only 11% of the 3500 flows are 
clustered. Note that the red “cluster” is not considered a cluster by 
our approach since the flows are random within a confined area (not 
between two separate areas). The blue and green clusters are the 
strongest while the magenta and cyan clusters are the weakest. They 
are designed to have different “ideal” scales (i.e., neighborhood 
sizes), ranging from 100 to 500 (in the order of the list above).  See 
Fig. 8 (top-center map) for the clusters. The blue cluster is on top of 
the yellow cluster and the green cluster is on top of the pink cluster.  

The neighborhood size p in this application is defined as the 
number of points in a neighborhood. We run our method with 
different p values (200, 300, 500, and 700) and their results are 
shown in Fig. 8, from which we can observe the following. First, 
with a smaller p (e.g., 200), the strongest clusters (blue and green) 
are detected first and then part of the magenta and pink clusters also 
emerge in the top flows. However, the cyan cluster is missing. By 
increasing the p value, the weaker clusters are all detected (including 
the cyan and magenta cluster) while the overlapping clusters are 
merged into larger clusters (e.g., blue merged with yellow, and green 
merged with pink). By comparing the four smoothed maps, we can 
see that the results smoothly transition between scales (i.e., p values), 
which is a desirable feature. Other than a few weak patterns out of 
the random flows, the top smoothed flows contain primary the true 
patterns with high spatial accuracy.  

5.3 Limitations 
Despite the advantages and desirable features of 
our approach introduced above, it also has several 
limitations. First, the neighborhood size p can only 
be configured with empirical knowledge. The 
approach cannot automatically find an “optimal” p 
value. Second, as shown in the experiments, the 
method cannot simultaneously discover flow 
clusters of different density or from different 
scales. One has to change the parameter to extract 
patterns at different scales. A small p value cannot 
detect patterns at higher levels while a larger p 
value may still capture patterns at lower levels, as 
the experiments show. Third, the method does not 
test the statistical significance of the discovered 
clusters (or top smoothed flows). Some of the top 
flows may be from a random pattern and therefore 
further research is needed to test the significance of 
flow patterns. Fourth, the generalized flow map 
represents the group of strong flow clusters, which 
may miss location patterns formed by many 
smaller but weaker flows.  

In this paper, we primarily focus on area-
based flows (although they are converted to point-

based flows using their area centroids). For very large and originally 
pointed-based flow data, such as millions of taxi trips with GPS 
locations, a few strategies (such as clustering and sampling) are 
needed to achieve computational scalability for real-time processing 
and user interactions.  This is beyond the scope of this paper due to 
space limitation. In general, our approach is applicable for both 
point-based flow data (such as the synthetic data) and area-based 
flow data (such as the migration data).  

6 CONCLUSION AND FUTURE DIRECTION 
This paper presents a new approach for the computational analysis 
and flow mapping of large spatial mobility data.  It extracts inherent 
patterns from massive flows and constructs visually legible flow 
maps that faithfully represent the major flow patterns. The approach 
consists a flow-based density estimation method and a flow selection 
method to normalize and smooth flows with controlled neighborhood 
size and detect high-level patterns in the data. The approach has 
three distinctive features. (1) It removes the effect of size differences 
among spatial units and produces normalized flow estimation. (2) It 
extracts major flow patterns in the smoothed flows to filter out 
duplicate information. (3) It enables effective flow mapping and 
supports multi-resolution flow mapping and stratified flow mapping.  

The approach can work with both point-based flow data (such as 
taxi trips with GPS locations) and area-based flow data (which will 
be converted point-based flows with area centroids). In addition to 
enabling effective flow mapping, the resulted flows of our approach 
can also be used for further visual improvements (such as intelligent 
flow layout), integration with other visualizations, and spatial 
modeling. The neighborhood size p is an important parameter, as it 
determines the smoothness of the result. Methods for automatically 
selection neighborhood sized have been proposed in the 
literature[35]. For most application scenarios, the neighborhood size 
has context-related meaning (such as population) and often can be 
configured with domain knowledge.  

The approach is efficient and fairly robust with the combined 
steps of flow smoothing and flow selection, which have been 
demonstrated with various applications in Section 5. Particularly, its 
ability to map data at different scales with smooth and consistent 
transition is an important feature for the mapping of large spatial 
flow data. Further research is needed to fully design and support 
possible user interactions in using the methodology, including how 

 
Fig. 8: A synthetic flow data set with flow clusters and random flows. From top-left to 
bottom-right, the six maps are (1) 7000 points; (2) 3500 flows, with 350 clustered flows 
and 3150 random flows; (3) top smoothed flows with p = 200; (4) top smoothed flows 
with p = 300; (5) smoothed flows with p = 500; and (3) smoothed flows with p = 700.  
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5.2 Evaluation with Synthetic Data 
To further evaluate our approach and assess its capability (and 
limitations) in detecting flow patterns, we construct a synthetic data 
set that has both random flows and clustered flows. We generate 
7000 points in a rectangular area, with two dense ‘urban’ areas (see 
the top-left map in Fig 8). Then seven flow clusters are generated 
and each cluster has 50 flows. To generate a flow cluster, we choose 
a circular area of X points as the origin and a circular area of Y 
points as the destination, randomly pick a point from X and a point 
from Y to form a flow, repeat 50 times. The clusters are as follows:  

¥ Blue cluster, |X| = 100 and |Y| = 100, 𝑋𝑋 ∩ 𝑌𝑌 = ∅  
¥ Green cluster, |X| = 100 and |Y| = 100, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Pink cluster, |X| = 200 and |Y| = 200, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Yellow cluster, |X| = 350 and |Y| = 350, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Magenta cluster, |X| = 500 and |Y| = 500, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Cyan cluster, |X| = 500 and |Y| = 500, 𝑋𝑋 ∩ 𝑌𝑌 = ∅ 
¥ Red “cluster”, |X| = 500 and |Y| = 500, 𝑋𝑋 = 𝑌𝑌.  
The remaining 6300 points are randomly paired to create a set of 

3150 random flows. Therefore, only 11% of the 3500 flows are 
clustered. Note that the red “cluster” is not considered a cluster by 
our approach since the flows are random within a confined area (not 
between two separate areas). The blue and green clusters are the 
strongest while the magenta and cyan clusters are the weakest. They 
are designed to have different “ideal” scales (i.e., neighborhood 
sizes), ranging from 100 to 500 (in the order of the list above).  See 
Fig. 8 (top-center map) for the clusters. The blue cluster is on top of 
the yellow cluster and the green cluster is on top of the pink cluster.  

The neighborhood size p in this application is defined as the 
number of points in a neighborhood. We run our method with 
different p values (200, 300, 500, and 700) and their results are 
shown in Fig. 8, from which we can observe the following. First, 
with a smaller p (e.g., 200), the strongest clusters (blue and green) 
are detected first and then part of the magenta and pink clusters also 
emerge in the top flows. However, the cyan cluster is missing. By 
increasing the p value, the weaker clusters are all detected (including 
the cyan and magenta cluster) while the overlapping clusters are 
merged into larger clusters (e.g., blue merged with yellow, and green 
merged with pink). By comparing the four smoothed maps, we can 
see that the results smoothly transition between scales (i.e., p values), 
which is a desirable feature. Other than a few weak patterns out of 
the random flows, the top smoothed flows contain primary the true 
patterns with high spatial accuracy.  

5.3 Limitations 
Despite the advantages and desirable features of 
our approach introduced above, it also has several 
limitations. First, the neighborhood size p can only 
be configured with empirical knowledge. The 
approach cannot automatically find an “optimal” p 
value. Second, as shown in the experiments, the 
method cannot simultaneously discover flow 
clusters of different density or from different 
scales. One has to change the parameter to extract 
patterns at different scales. A small p value cannot 
detect patterns at higher levels while a larger p 
value may still capture patterns at lower levels, as 
the experiments show. Third, the method does not 
test the statistical significance of the discovered 
clusters (or top smoothed flows). Some of the top 
flows may be from a random pattern and therefore 
further research is needed to test the significance of 
flow patterns. Fourth, the generalized flow map 
represents the group of strong flow clusters, which 
may miss location patterns formed by many 
smaller but weaker flows.  

In this paper, we primarily focus on area-
based flows (although they are converted to point-

based flows using their area centroids). For very large and originally 
pointed-based flow data, such as millions of taxi trips with GPS 
locations, a few strategies (such as clustering and sampling) are 
needed to achieve computational scalability for real-time processing 
and user interactions.  This is beyond the scope of this paper due to 
space limitation. In general, our approach is applicable for both 
point-based flow data (such as the synthetic data) and area-based 
flow data (such as the migration data).  

6 CONCLUSION AND FUTURE DIRECTION 
This paper presents a new approach for the computational analysis 
and flow mapping of large spatial mobility data.  It extracts inherent 
patterns from massive flows and constructs visually legible flow 
maps that faithfully represent the major flow patterns. The approach 
consists a flow-based density estimation method and a flow selection 
method to normalize and smooth flows with controlled neighborhood 
size and detect high-level patterns in the data. The approach has 
three distinctive features. (1) It removes the effect of size differences 
among spatial units and produces normalized flow estimation. (2) It 
extracts major flow patterns in the smoothed flows to filter out 
duplicate information. (3) It enables effective flow mapping and 
supports multi-resolution flow mapping and stratified flow mapping.  

The approach can work with both point-based flow data (such as 
taxi trips with GPS locations) and area-based flow data (which will 
be converted point-based flows with area centroids). In addition to 
enabling effective flow mapping, the resulted flows of our approach 
can also be used for further visual improvements (such as intelligent 
flow layout), integration with other visualizations, and spatial 
modeling. The neighborhood size p is an important parameter, as it 
determines the smoothness of the result. Methods for automatically 
selection neighborhood sized have been proposed in the 
literature[35]. For most application scenarios, the neighborhood size 
has context-related meaning (such as population) and often can be 
configured with domain knowledge.  

The approach is efficient and fairly robust with the combined 
steps of flow smoothing and flow selection, which have been 
demonstrated with various applications in Section 5. Particularly, its 
ability to map data at different scales with smooth and consistent 
transition is an important feature for the mapping of large spatial 
flow data. Further research is needed to fully design and support 
possible user interactions in using the methodology, including how 

 
Fig. 8: A synthetic flow data set with flow clusters and random flows. From top-left to 
bottom-right, the six maps are (1) 7000 points; (2) 3500 flows, with 350 clustered flows 
and 3150 random flows; (3) top smoothed flows with p = 200; (4) top smoothed flows 
with p = 300; (5) smoothed flows with p = 500; and (3) smoothed flows with p = 700.  
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to automatically choose an optimal detail level or neighborhood size 
given a scale or chosen region; and allow users to understand the 
original flows represented by each selected flow.  
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