
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014 2063

1077-2626 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Nmap: A Novel Neighborhood Preservation Space-filling Algorithm

Felipe S. L. G. Duarte, Fabio Sikansi, Francisco M. Fatore, Samuel G. Fadel, and Fernando V. Paulovich

Figure 1. Nmap visual representation of ten years of scientific papes of the IEEE Infovis conference and some other papers frequently
cited by them. Each rectangle represents a group of papers with related content. Similar groups are placed close to each other and
the dissimilar ones are far apart positioned, obeying the distance-similarity metaphor. This representation allows users to browse
document collection into different levels of abstraction, starting with a high-level view and successively detailing the areas of interest
until the documents are presented, speeding-up this exploratory process.

Abstract—Space-filling techniques seek to use as much as possible the visual space to represent a dataset, splitting it into regions
that represent the data elements. Amongst those techniques, Treemaps have received wide attention due to its simplicity, reduced
visual complexity, and compact use of the available space. Several different Treemap algorithms have been proposed, however the
core idea is the same, to divide the visual space into rectangles with areas proportional to some data attribute or weight. Although
pleasant layouts can be effectively produced by the existing techniques, most of them do not take into account relationships that might
exist between different data elements when partitioning the visual space. This violates the distance-similarity metaphor, that is, close
rectangles do not necessarily represent similar data elements. In this paper, we propose a novel approach, called Neighborhood
Treemap (Nmap), that seeks to solve this limitation by employing a slice and scale strategy where the visual space is successively
bisected on the horizontal or vertical directions and the bisections are scaled until one rectangle is defined per data element. Com-
pared to the current techniques with the same similarity preservation goal, our approach presents the best results while being two
to three orders of magnitude faster. The usefulness of Nmap is shown by two applications involving the organization of document
collections and the construction of cartograms, illustrating its effectiveness on different scenarios.

Index Terms—Space-filling techniques, treemaps, distance-similarity preservation

1 INTRODUCTION

Space-filling techniques compose a family of algorithms that seek
to use as much as possible the available visual space to repre-
sent a dataset. Examples include the Sunburst [16], Quantum Bub-
blemaps [2], Voronoi Treemap [1, 9], and the rectangular Treemap [6,
14] and its variants [3, 22, 2, 24, 21, 18]. In common, all techniques
seek to split the visual space into regions that represent the data ele-
ments, with areas proportional to some attribute, or weight, associated
with them.

Amongst them, rectangular Treemaps, or simply Treemaps, have re-
ceived wide attention due to their simplicity, reduced graphical com-
plexity, and compact use of the available visual space [24]. Several

• Felipe S. L. G. Duarte, Fabio Sikansi, Francisco M. Fatore, Samuel G.
Fadel, and Fernando V. Paulovich are with the Institute of Mathematics
and Computer Science, University of São Paulo, São Carlos, SP, Brazil.
E-mail: {felipelageduarte, fhenrique, fmfatore, samuel.fadel}@usp.br and
paulovic@icmc.usp.br

different algorithms have been proposed, however the core idea is the
same, to split the visual space into rectangles following some cri-
teria. Examples of techniques that implement different criteria are
the Squarified and Cluster Treemaps [3, 22], which seek to keep as
much as possible the aspect ratio of the rectangles close to one, and
the Quantum Treemap [2], which creates rectangles with fixed sizes.
Although both criteria can successfully generate more pleasant lay-
outs if compared to the original technique, they were not designed to
take into account relationships that might exist between different ele-
ments when partitioning the visual space. This violates the distance-
similarity metaphor [24], that is, close rectangles do not necessarily
represent similar data elements which is an important aspect recog-
nized by previous work [4, 7, 24].

Some attempts have been made in order to incorporate similar-
ity relationships on the produced layouts. Most of them impose a
one-dimensional ordering to the data elements and arrange the pro-
duced rectangles based on that. Although a better preservation of
similarity relationships is attained, mapping one-dimensional informa-
tion to a two-dimensional space still violates the distance-similarity
metaphor in most cases. Currently, few rectangular Treemaps tech-
niques are capable of mapping two-dimensional ordering to the two-
dimensional visual space. Nervertheless, even those techniques violate
the distance-similarity metaphor depending on the distribution of the

For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014 ate of
publication 2014; date of current version 2014.11 Aug. 9 Nov.

D.

Digital Object Identifier 10.1109/TVCG.2014.2346276

2064 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

weights associated with the data elements.
In this paper, we introduce a novel algorithm to create rectangular

Treemaps, called Neighborhood Treemap (Nmap). Nmap is based on a
slice and scale strategy where the visual space is successively bisected
horizontally or vertically and the bisections are scaled. This process
is repeated until one rectangle is defined per data element. Our tests
demonstrate that Nmap outperforms the existing techniques in terms
of preserving the two-dimensional ordering when creating a layout,
while being two to three orders of magnitude faster.

2 RELATED WORK

Different approaches have been proposed to create rectangular
Treemaps. In this section, we focus on strategies that take similarity
relationships into account when defining and positioning the rectan-
gles.

Jigsaw [23] is one example of technique that seeks to preserve sim-
ilarity relationships. It splits the available space into a regular grid
and employs both a one-dimensional ordering based on a pivot data
element and space-filling curves to traverse the grid. Although it suc-
cessfully creates regions proportional to given weights, it defines ir-
regular shapes (non-rectangular), making it more difficult to visually
compare different areas [21]. Tak and Cockburn [18] tackle this prob-
lem by recursively splitting the visual space into quadrants, therefore
rectangular areas, which are positioned following a Hilbert or Moore
curve of level zero. The created regions are rectangular, however, one-
dimensional ordering information is lost in the process.

The Spiral Treemap [21] and the One-dimensional Ordered
Treemap (OOT) [2] present better results in terms of the one-
dimensional ordering preservation. The former technique uses a one-
dimensional ordering of the input data positioning the Treemap re-
gions from the center of the visual space to its border following a cir-
cular arrangement. The latter technique is an adaptation of the Squari-
fied Treemap technique [3] changing the order the Treemap regions are
processed, following a given one-dimensional ordering. When two-
dimensional positions associated to the Treemap regions are given as
input, the one-dimensional ordering is defined by calculating the dis-
tance from each position to the left corner of the available space and
using this to order the regions. Although the continuity of the ordering
can be preserved, the two-dimensional similarity relationships are not
guaranteed, thus violating the distance-similarity metaphor. Differ-
ently, our approach does not rely on one-dimensional orderings to pre-
serve the similarity relationships. Instead, we use two-dimensional in-
formation to define the placement of the rectangles on the final layout,
rendering a better approximation of the distance-similarity metaphor.

One of the few approaches that seek to overcome this problem is
the Spatially-Ordered Treemap (SOT) [24]. It is also an adaptation of
the Squarified Treemap [3] but that seeks to preserve two-dimensional
orderings into the two-dimensional space. This is accomplished, as in
the OOT technique, by carefully defining the order the elements are
processed. SOT processes the elements ordering them so that the next
element to be processed is the most similar element to the previously
processed one. When two-dimensional positions are associated to the
Treemap regions, this similarity is calculated considering these posi-
tions, therefore resulting on layouts that preserves the relative spatial
position of a given input. Although this renders better results in terms
of the distance-similarity relationships preservation, the quality of the
results depends on the distribution of the weights of each rectangle and
the ratio between the largest and smallest weights. The more different
from a constant distribution with small weight ratio, the worse the re-
sult. Our technique is less sensitive to this, attaining better results in
terms of preserving the given two-dimensional information, producing
less elongated rectangles in a fraction of the required time.

Other attempts on creating space-filling techniques that preserve
two-dimensional similarity relationships have been made. The Self-
Sort Map [17] is one example. It is similar to a sorting algorithm in
two dimensions, organizing the data elements into a structured lay-
out. The drawback in this case is that all regions present the same
size on the produced layout, impairing its applicability when different
weights are assigned to different data elements. The same happens

with IncBoard [12], besides wasting too much visual space on the pro-
cess of partitioning and placing the visual elements. We also seek to
preserve the similarity relationships on the produced layout in our ap-
proach. However, all the available space is used, and the rectangles
can present different areas.

3 SLICE AND SCALE TREEMAP ALGORITHM

Neighborhood Map (Nmap) tackles the problem of preserving
distance-similarity relationships when constructing a Treemap us-
ing an approach that consecutively bisects the available area and
scales the resulting bisections. Let D = {d1, . . . ,dn} be the data
elements with P : D → P a function that assigns weights P ∈
R (a selected data attribute) to each element. Let also R be the
rectangle enclosing the available area to display the Treemap and
X = {(x1,y1), . . . ,(xn,yn)} ∈R2 the Cartesian coordinates assigned
to points inside R representing the data elements. The reasoning be-
hind our algorithm is to apply this slice-scale process until one rectan-
gle is defined per element in D . These rectangles and their positions
will present areas proportional to the weights P , preserving the simi-
larity relationships in X , that is, close points in X should define near
rectangles, and far apart points should define distant rectangles on the
final layout.

The rectangles can be vertically or horizontally split. On the hori-
zontal bisection, a vertical segment bv is defined splitting R into two
rectangles RA and RB so that RA∪RB =R and RA∩RB = /0. Weights pA
and pB are associated to RA and RB computed as the summation of the
weights of the elements in each rectangle, that is, pA = ∑di∈RA

P(di)
and pB = ∑di∈RB

P(di). Based on that, RA and RB are horizontally
rescaled in order to present areas proportional to pA and pB, respec-
tively.

Let wRA and wRB be the widths of RA and RB, the widths of the
transformed rectangles R′

A and R′
B can be computed as a function of

pA and pB and the total weight of R (pA + pB)

wR′
A
= pA

pA+pB
·wR

wR′
B
= pB

pA+pB
·wR

(1)

where wR is the width of R. Using this information and considering
(xR,yR) the Cartesian coordinates of the top left corner of R, the non-
rotational rigid transformation in homogeneous coordinates to trans-
form RA and RB into R′

A and R′
B horizontally rescaling each area ac-

cording to their weights are

HRA =

wR′A
wRA

0 xR(1−
wR′A
wRA

)

0 1 0
0 0 1

HRB =

wR′B
wRB

0 (xR +wR)(1−
wR′B
wRB

)

0 1 0
0 0 1

(2)

Since these are linear transformations, the similarity relationships
between the points inside each rectangle are preserved. These matrices
are applied to the points and the rectangles, changing the x-coordinates
of them. The matrices VRA and VRB for the vertical transformation are
similarly obtained, only changing the bisector segment to be horizontal
(bh) and obtaining scale factors to change the y-coordinates.

VRA =

1 0 0

0
hR′A
hRA

yR(1−
hR′A
hRA

)

0 0 1

VRB =

1 0 0

0
hR′B
hRB

(yR +hR)(1−
hR′B
hRB

)

0 0 1

(3)

(a) (b)

(c) (d)

(e) (f)

Figure 2. Overview of the slice and scale process. (a) Initially, points
representing the data elements are positioned inside the enclosing rect-
angle. (b) Since the rectangle’s width is larger than its height, the first
bisection is horizontal. (c,d) Based on the summation of the weights of
the elements on each resulting rectangle, scales are executed so that
the rectangles present areas proportional to that. (e) This process of
bisection and scaling is executed alternating horizontal and vertical cuts
(f) until each element is assigned to one rectangle with area proportional
to its weight.

where hR, hRA , hRB , hR′
A
, and hR′

B
represent the height of R, RA, RB,

R′
A, and R′

B, respectively.
Figure 2 illustrates this process. The first step is to create one rect-

angle R enclosing the area to display the Treemap and to assign posi-
tions to the points representing the data elements (Figure 2(a)). In this
example, the dataset is composed by 5 data elements. After that, R is
bisect into two rectangles RA and RB and the weights pA and pB are
calculated (Figure 2(b)) for each rectangle. In this example, we are
performing a horizontal bisection. Next, the rectangles and the points
belonging to them are scaled (Figure 2(c)) creating new rectangles R′

A
and R′

B with areas proportional to pA and pB (Figure 2(d)). This pro-
cess is then applied to R′

A and R′
B (Figure 2(e)). This is repeated until

each rectangle contains only one point (Figure 2(f)). Algorithm 1 de-
picts the complete process.

3.1 Defining the Bisectors

Different variations of this algorithm can be attained changing the di-
rection of the bisections and the positions of the horizontal (bh) and
vertical (bv) bisectors. In this paper, we devise and evaluate two dif-
ferent strategies: Alternate Cut (Nmap-AC) and Equal-Weight (Nmap-
EW).

The Nmap-AC is the simplest one. In this strategy, the horizontal
and vertical bisections are alternated. If R is horizontally split, RA
and RB will be vertically split, and vice-versa. The direction of the
first bisection is decided based on the width (Rw) and height (Rh) of
R. If Rw > Rh the bisection is horizontal, vertical otherwise. The po-
sitions of bisectors bh and bv are defined so that RA and RB present
the same number of data elements (if the number of elements is odd,
RA will contain one more element than RB). To define these positions,
the elements are initially ordered in ascending order considering the

Algorithm 1 Nmap algorithm.
function SLICESCALE(R, R)

if |R|= 1 then � R contains one instance
R ← R ∪{R} � add R to the list of rectangles

else
dir ← DIRECTION(R) � get the direction to bisect
(RA,RB)← BISECT(R,dir) � bisect R given a direction
if dir is horizontal then

Calculate HRA and HRB � see Equation(2)
SLICESCALE(R,HRA ·RA)
SLICESCALE(R,HRB ·RB)

else
Calculate VRA and VRB � see Equation(3)
SLICESCALE(R,VRA ·RA)
SLICESCALE(R,VRB ·RB)

end if
end if

end function

x-coordinates, for the horizontal bisection, and y-coordinates, for the
vertical bisection (two orderings are created). Based on that, the first
half of the elements is assigned to RA and the remaining ones to RB.
The position of the bisector is calculated as the average of the larger
coordinate of the elements in RA and the smallest coordinate of the el-
ements in RB. Since non-rotational linear transformations are applied
to RA and RB, the order of the elements on both directions does not
change after the transformation. Thereby, the initial ordering can be
used to split RA and RB and so on.

The second strategy, the Nmap-EW, seeks to improve the aspect ra-
tio of the attained rectangles. Different from the first strategy, R is split
into RA and RB so that pA ≈ pB. The direction of each bisection is
decided based on the width and height of R. If Rw > Rh the bisection is
horizontal, vertical otherwise. To find the position of the bisector, the
elements are ordered in ascending order considering the x-coordinates,
for the horizontal bisection, and y-coordinates, for the vertical bisec-
tion (two orderings are created). Then, they are added one-by-one to
RA from the smallest coordinate to the largest one until the difference
|2 · pA − p| is minimised, where p is the weight of R. The remaining
elements are assigned to RB. The position of the bisector is calculated
as the average of the largest coordinate of the elements in RA and the
smallest coordinate of the elements in RB. Again, the initial ordering
can be used to split RA and RB and so on.

3.2 Initial Placement
The aim of our algorithm is to preserve, amongst the Treemap rect-
angles, the similarity relationships that exist between the positions
X = {(x1,y1), . . . ,(xn,yn)} assigned to the data elements inside R.
If the goal is to preserve the similarity relationships between the data
elements D = {d1, . . . ,dn}, X should reflect that. One solution is to
apply a multidimensional projection technique [19] which maps mul-
tidimensional data elements to the plane preserving, as much as possi-
ble, the similarity relationships amongst them. If δ (di,d j) represents
the distance between two data elements, and d((xi,yi),(x j,y j)) the dis-
tance between the points on the plane representing them. A projection
technique seeks to minimize |δ (di,d j)−d((xi,yi),(x j,y j))| ∀ di,d j ∈
D , such as classical scaling [20]. The choice depends on the data do-
main.

4 RESULTS AND EVALUATION

In order to evaluate Nmap, we compare the strategies depicted in this
paper against state-of-art rectangular Treemap techniques that seek to
preserve similarity relationships. One is based on one-dimensional
ordering, the One-dimensional Ordered Treemap (OOT) [24], and an-
other one is based on two-dimensional ordering, the Spatially-Ordered
Treemap (SOT) [24]. This comparison is carried-out considering
three different measures, aspect-ratio, displacement, and neighbor-
hood preservation. Aspect-ratio is the average of the aspect-ratio of all

2065DUARTE ET AL.: NMAP: A NOVEL NEIGHBORHOOD PRESERVATION SPACE-FILLING ALGORITHM

weights associated with the data elements.
In this paper, we introduce a novel algorithm to create rectangular

Treemaps, called Neighborhood Treemap (Nmap). Nmap is based on a
slice and scale strategy where the visual space is successively bisected
horizontally or vertically and the bisections are scaled. This process
is repeated until one rectangle is defined per data element. Our tests
demonstrate that Nmap outperforms the existing techniques in terms
of preserving the two-dimensional ordering when creating a layout,
while being two to three orders of magnitude faster.

2 RELATED WORK

Different approaches have been proposed to create rectangular
Treemaps. In this section, we focus on strategies that take similarity
relationships into account when defining and positioning the rectan-
gles.

Jigsaw [23] is one example of technique that seeks to preserve sim-
ilarity relationships. It splits the available space into a regular grid
and employs both a one-dimensional ordering based on a pivot data
element and space-filling curves to traverse the grid. Although it suc-
cessfully creates regions proportional to given weights, it defines ir-
regular shapes (non-rectangular), making it more difficult to visually
compare different areas [21]. Tak and Cockburn [18] tackle this prob-
lem by recursively splitting the visual space into quadrants, therefore
rectangular areas, which are positioned following a Hilbert or Moore
curve of level zero. The created regions are rectangular, however, one-
dimensional ordering information is lost in the process.

The Spiral Treemap [21] and the One-dimensional Ordered
Treemap (OOT) [2] present better results in terms of the one-
dimensional ordering preservation. The former technique uses a one-
dimensional ordering of the input data positioning the Treemap re-
gions from the center of the visual space to its border following a cir-
cular arrangement. The latter technique is an adaptation of the Squari-
fied Treemap technique [3] changing the order the Treemap regions are
processed, following a given one-dimensional ordering. When two-
dimensional positions associated to the Treemap regions are given as
input, the one-dimensional ordering is defined by calculating the dis-
tance from each position to the left corner of the available space and
using this to order the regions. Although the continuity of the ordering
can be preserved, the two-dimensional similarity relationships are not
guaranteed, thus violating the distance-similarity metaphor. Differ-
ently, our approach does not rely on one-dimensional orderings to pre-
serve the similarity relationships. Instead, we use two-dimensional in-
formation to define the placement of the rectangles on the final layout,
rendering a better approximation of the distance-similarity metaphor.

One of the few approaches that seek to overcome this problem is
the Spatially-Ordered Treemap (SOT) [24]. It is also an adaptation of
the Squarified Treemap [3] but that seeks to preserve two-dimensional
orderings into the two-dimensional space. This is accomplished, as in
the OOT technique, by carefully defining the order the elements are
processed. SOT processes the elements ordering them so that the next
element to be processed is the most similar element to the previously
processed one. When two-dimensional positions are associated to the
Treemap regions, this similarity is calculated considering these posi-
tions, therefore resulting on layouts that preserves the relative spatial
position of a given input. Although this renders better results in terms
of the distance-similarity relationships preservation, the quality of the
results depends on the distribution of the weights of each rectangle and
the ratio between the largest and smallest weights. The more different
from a constant distribution with small weight ratio, the worse the re-
sult. Our technique is less sensitive to this, attaining better results in
terms of preserving the given two-dimensional information, producing
less elongated rectangles in a fraction of the required time.

Other attempts on creating space-filling techniques that preserve
two-dimensional similarity relationships have been made. The Self-
Sort Map [17] is one example. It is similar to a sorting algorithm in
two dimensions, organizing the data elements into a structured lay-
out. The drawback in this case is that all regions present the same
size on the produced layout, impairing its applicability when different
weights are assigned to different data elements. The same happens

with IncBoard [12], besides wasting too much visual space on the pro-
cess of partitioning and placing the visual elements. We also seek to
preserve the similarity relationships on the produced layout in our ap-
proach. However, all the available space is used, and the rectangles
can present different areas.

3 SLICE AND SCALE TREEMAP ALGORITHM

Neighborhood Map (Nmap) tackles the problem of preserving
distance-similarity relationships when constructing a Treemap us-
ing an approach that consecutively bisects the available area and
scales the resulting bisections. Let D = {d1, . . . ,dn} be the data
elements with P : D → P a function that assigns weights P ∈
R (a selected data attribute) to each element. Let also R be the
rectangle enclosing the available area to display the Treemap and
X = {(x1,y1), . . . ,(xn,yn)} ∈R2 the Cartesian coordinates assigned
to points inside R representing the data elements. The reasoning be-
hind our algorithm is to apply this slice-scale process until one rectan-
gle is defined per element in D . These rectangles and their positions
will present areas proportional to the weights P , preserving the simi-
larity relationships in X , that is, close points in X should define near
rectangles, and far apart points should define distant rectangles on the
final layout.

The rectangles can be vertically or horizontally split. On the hori-
zontal bisection, a vertical segment bv is defined splitting R into two
rectangles RA and RB so that RA∪RB =R and RA∩RB = /0. Weights pA
and pB are associated to RA and RB computed as the summation of the
weights of the elements in each rectangle, that is, pA = ∑di∈RA

P(di)
and pB = ∑di∈RB

P(di). Based on that, RA and RB are horizontally
rescaled in order to present areas proportional to pA and pB, respec-
tively.

Let wRA and wRB be the widths of RA and RB, the widths of the
transformed rectangles R′

A and R′
B can be computed as a function of

pA and pB and the total weight of R (pA + pB)

wR′
A
= pA

pA+pB
·wR

wR′
B
= pB

pA+pB
·wR

(1)

where wR is the width of R. Using this information and considering
(xR,yR) the Cartesian coordinates of the top left corner of R, the non-
rotational rigid transformation in homogeneous coordinates to trans-
form RA and RB into R′

A and R′
B horizontally rescaling each area ac-

cording to their weights are

HRA =

wR′A
wRA

0 xR(1−
wR′A
wRA

)

0 1 0
0 0 1

HRB =

wR′B
wRB

0 (xR +wR)(1−
wR′B
wRB

)

0 1 0
0 0 1

(2)

Since these are linear transformations, the similarity relationships
between the points inside each rectangle are preserved. These matrices
are applied to the points and the rectangles, changing the x-coordinates
of them. The matrices VRA and VRB for the vertical transformation are
similarly obtained, only changing the bisector segment to be horizontal
(bh) and obtaining scale factors to change the y-coordinates.

VRA =

1 0 0

0
hR′A
hRA

yR(1−
hR′A
hRA

)

0 0 1

VRB =

1 0 0

0
hR′B
hRB

(yR +hR)(1−
hR′B
hRB

)

0 0 1

(3)

(a) (b)

(c) (d)

(e) (f)

Figure 2. Overview of the slice and scale process. (a) Initially, points
representing the data elements are positioned inside the enclosing rect-
angle. (b) Since the rectangle’s width is larger than its height, the first
bisection is horizontal. (c,d) Based on the summation of the weights of
the elements on each resulting rectangle, scales are executed so that
the rectangles present areas proportional to that. (e) This process of
bisection and scaling is executed alternating horizontal and vertical cuts
(f) until each element is assigned to one rectangle with area proportional
to its weight.

where hR, hRA , hRB , hR′
A
, and hR′

B
represent the height of R, RA, RB,

R′
A, and R′

B, respectively.
Figure 2 illustrates this process. The first step is to create one rect-

angle R enclosing the area to display the Treemap and to assign posi-
tions to the points representing the data elements (Figure 2(a)). In this
example, the dataset is composed by 5 data elements. After that, R is
bisect into two rectangles RA and RB and the weights pA and pB are
calculated (Figure 2(b)) for each rectangle. In this example, we are
performing a horizontal bisection. Next, the rectangles and the points
belonging to them are scaled (Figure 2(c)) creating new rectangles R′

A
and R′

B with areas proportional to pA and pB (Figure 2(d)). This pro-
cess is then applied to R′

A and R′
B (Figure 2(e)). This is repeated until

each rectangle contains only one point (Figure 2(f)). Algorithm 1 de-
picts the complete process.

3.1 Defining the Bisectors

Different variations of this algorithm can be attained changing the di-
rection of the bisections and the positions of the horizontal (bh) and
vertical (bv) bisectors. In this paper, we devise and evaluate two dif-
ferent strategies: Alternate Cut (Nmap-AC) and Equal-Weight (Nmap-
EW).

The Nmap-AC is the simplest one. In this strategy, the horizontal
and vertical bisections are alternated. If R is horizontally split, RA
and RB will be vertically split, and vice-versa. The direction of the
first bisection is decided based on the width (Rw) and height (Rh) of
R. If Rw > Rh the bisection is horizontal, vertical otherwise. The po-
sitions of bisectors bh and bv are defined so that RA and RB present
the same number of data elements (if the number of elements is odd,
RA will contain one more element than RB). To define these positions,
the elements are initially ordered in ascending order considering the

Algorithm 1 Nmap algorithm.
function SLICESCALE(R, R)

if |R|= 1 then � R contains one instance
R ← R ∪{R} � add R to the list of rectangles

else
dir ← DIRECTION(R) � get the direction to bisect
(RA,RB)← BISECT(R,dir) � bisect R given a direction
if dir is horizontal then

Calculate HRA and HRB � see Equation(2)
SLICESCALE(R,HRA ·RA)
SLICESCALE(R,HRB ·RB)

else
Calculate VRA and VRB � see Equation(3)
SLICESCALE(R,VRA ·RA)
SLICESCALE(R,VRB ·RB)

end if
end if

end function

x-coordinates, for the horizontal bisection, and y-coordinates, for the
vertical bisection (two orderings are created). Based on that, the first
half of the elements is assigned to RA and the remaining ones to RB.
The position of the bisector is calculated as the average of the larger
coordinate of the elements in RA and the smallest coordinate of the el-
ements in RB. Since non-rotational linear transformations are applied
to RA and RB, the order of the elements on both directions does not
change after the transformation. Thereby, the initial ordering can be
used to split RA and RB and so on.

The second strategy, the Nmap-EW, seeks to improve the aspect ra-
tio of the attained rectangles. Different from the first strategy, R is split
into RA and RB so that pA ≈ pB. The direction of each bisection is
decided based on the width and height of R. If Rw > Rh the bisection is
horizontal, vertical otherwise. To find the position of the bisector, the
elements are ordered in ascending order considering the x-coordinates,
for the horizontal bisection, and y-coordinates, for the vertical bisec-
tion (two orderings are created). Then, they are added one-by-one to
RA from the smallest coordinate to the largest one until the difference
|2 · pA − p| is minimised, where p is the weight of R. The remaining
elements are assigned to RB. The position of the bisector is calculated
as the average of the largest coordinate of the elements in RA and the
smallest coordinate of the elements in RB. Again, the initial ordering
can be used to split RA and RB and so on.

3.2 Initial Placement
The aim of our algorithm is to preserve, amongst the Treemap rect-
angles, the similarity relationships that exist between the positions
X = {(x1,y1), . . . ,(xn,yn)} assigned to the data elements inside R.
If the goal is to preserve the similarity relationships between the data
elements D = {d1, . . . ,dn}, X should reflect that. One solution is to
apply a multidimensional projection technique [19] which maps mul-
tidimensional data elements to the plane preserving, as much as possi-
ble, the similarity relationships amongst them. If δ (di,d j) represents
the distance between two data elements, and d((xi,yi),(x j,y j)) the dis-
tance between the points on the plane representing them. A projection
technique seeks to minimize |δ (di,d j)−d((xi,yi),(x j,y j))| ∀ di,d j ∈
D , such as classical scaling [20]. The choice depends on the data do-
main.

4 RESULTS AND EVALUATION

In order to evaluate Nmap, we compare the strategies depicted in this
paper against state-of-art rectangular Treemap techniques that seek to
preserve similarity relationships. One is based on one-dimensional
ordering, the One-dimensional Ordered Treemap (OOT) [24], and an-
other one is based on two-dimensional ordering, the Spatially-Ordered
Treemap (SOT) [24]. This comparison is carried-out considering
three different measures, aspect-ratio, displacement, and neighbor-
hood preservation. Aspect-ratio is the average of the aspect-ratio of all

2066 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

(d) Configuration 4 (e) Configuration 5 (f) Configuration 6

(g) Configuration 7 (h) Configuration 8 (i) Configuration 9

Figure 3. Initial configurations used to evaluate the techniques. These
placements were designed to verify different properties of each tech-
nique, such as the ability to handle scenarios presenting non-linear
relationships, non-orthogonal directions, and with different number of
groups of elements and densities.

obtained rectangles, where the aspect-ratio of one rectangle R is cal-
culated as min(Rw/Rh,Rh/Rw). In fact this is a normalized version of
the aspect-ratio ranging on the interval]0..1]. The larger the value the
better the result. The displacement is calculated as the average of the
displacement from the original positions X = {(x1,y1), . . . ,(xn,yn)}
to the final positions of each rectangle considering their centroids. Fi-
nally, the neighborhood preservation is calculated as the average of the
k-nearest neighbor index, varying k. The k-nearest neighbor index is
calculated as the average of the percentage of the k-nearest neighbors
in X = {(x1,y1), . . . ,(xn,yn)} that are preserved on the obtained
rectangles considering their centroids. Neighborhood preservation is
the way we use to evaluate the similarity relationship preservation. All
the results were generated in an Intel R© Xeon CPU E7-2870 2.40GHz,
with 32GB of RAM. All techniques are implemented in Java. We use
the original codes, made available by the authors, of the OOT and SOT
techniques.

We have employed 9 distinct initial configurations in our experi-
ments, allowing the analysis of the techniques in scenarios with differ-
ent properties. Figure 3 shows these initial configurations. We split the
initial configurations into 3 groups. The first one (first line of Figure 3)
contains configurations to measure the capacity of the techniques to
preserve the shape of initial placements considering linear and non-
linear relationships. The second group (second line of Figure 3) con-
tains configurations to check the capacity of the techniques to keep on
the final layout the separation between two groups of elements, vary-
ing their densities and orientations. And the third group (third line of
Figure 3) is composed by configurations with more than two groups
with different densities. All configurations contain 600 points.

Figure 4 presents the results for each one of these initial config-
urations using the aforementioned techniques. In these layouts, the
weights of each data element were randomly defined following a Gaus-
sian distribution. The points’ colors of the original placement are used
to color the attained rectangles. For the group of shape preserving ver-
ification, the OOT presents good results for the configuration 1, but it
fails for configurations 2 and 3. This is caused by the one-dimensional
ordering imposed by this technique, considering the distances from the

(a) aspect-ratio

(b) neighborhood preservation

(c) displacement

Figure 5. Boxplots of aspect-ratio, neighborhood preservation, and dis-
placement measures. In all these aspects, the Nmap strategies surpass
current state-of-the-art techniques, indicating their quality on obeying
the distance-similarity metaphor.

points of the initial configuration to the layout’s left-upper corner. The
good results for the configuration 1 is attained since the color gradient
varies from the left-upper corner to the right-bottom corner, so the rect-
angles close to the diagonal are inherently one-dimensional ordered.
The SOT presents good results for configuration 1, but configurations
2 and 3 present final shapes that do not correctly match the original
positions. Nmap-AC and Nmap-EW present the best results in terms
of preserving the original shapes. The color gradient of the rectangles
match the original gradient of the points, and the highly non-linear
configurations are consistently preserved on the final layouts.

For the group of configurations that aim to evaluate different den-
sities and directions, the SOT, Nmap-AC, and Nmap-EW techniques
attained good results for configurations 4 and 5. The OOT presents the
worst results for both configurations in terms of preserving the original
shape. In fact, the OOT will always fail when the direction of largest
variance of the groups are (closely) parallel to the enclosing rectangle
axis. This is due to the one-dimensional ordering that is used which
considers the top-left corner of the enclosing rectangle. When this

Figure 4. Results of applying Nmap-AC, Nmap-EW, OOT, and SOT techniques on different initial configurations, respectively. The color of the
initial points are used to color the produced rectangles. In general, the Nmap strategies produced layouts that best preserves the shape and
neighborhoods of the initial configurations, achieving a more reliable representation of the distance-similarity metaphor.

2067DUARTE ET AL.: NMAP: A NOVEL NEIGHBORHOOD PRESERVATION SPACE-FILLING ALGORITHM

(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

(d) Configuration 4 (e) Configuration 5 (f) Configuration 6

(g) Configuration 7 (h) Configuration 8 (i) Configuration 9

Figure 3. Initial configurations used to evaluate the techniques. These
placements were designed to verify different properties of each tech-
nique, such as the ability to handle scenarios presenting non-linear
relationships, non-orthogonal directions, and with different number of
groups of elements and densities.

obtained rectangles, where the aspect-ratio of one rectangle R is cal-
culated as min(Rw/Rh,Rh/Rw). In fact this is a normalized version of
the aspect-ratio ranging on the interval]0..1]. The larger the value the
better the result. The displacement is calculated as the average of the
displacement from the original positions X = {(x1,y1), . . . ,(xn,yn)}
to the final positions of each rectangle considering their centroids. Fi-
nally, the neighborhood preservation is calculated as the average of the
k-nearest neighbor index, varying k. The k-nearest neighbor index is
calculated as the average of the percentage of the k-nearest neighbors
in X = {(x1,y1), . . . ,(xn,yn)} that are preserved on the obtained
rectangles considering their centroids. Neighborhood preservation is
the way we use to evaluate the similarity relationship preservation. All
the results were generated in an Intel R© Xeon CPU E7-2870 2.40GHz,
with 32GB of RAM. All techniques are implemented in Java. We use
the original codes, made available by the authors, of the OOT and SOT
techniques.

We have employed 9 distinct initial configurations in our experi-
ments, allowing the analysis of the techniques in scenarios with differ-
ent properties. Figure 3 shows these initial configurations. We split the
initial configurations into 3 groups. The first one (first line of Figure 3)
contains configurations to measure the capacity of the techniques to
preserve the shape of initial placements considering linear and non-
linear relationships. The second group (second line of Figure 3) con-
tains configurations to check the capacity of the techniques to keep on
the final layout the separation between two groups of elements, vary-
ing their densities and orientations. And the third group (third line of
Figure 3) is composed by configurations with more than two groups
with different densities. All configurations contain 600 points.

Figure 4 presents the results for each one of these initial config-
urations using the aforementioned techniques. In these layouts, the
weights of each data element were randomly defined following a Gaus-
sian distribution. The points’ colors of the original placement are used
to color the attained rectangles. For the group of shape preserving ver-
ification, the OOT presents good results for the configuration 1, but it
fails for configurations 2 and 3. This is caused by the one-dimensional
ordering imposed by this technique, considering the distances from the

(a) aspect-ratio

(b) neighborhood preservation

(c) displacement

Figure 5. Boxplots of aspect-ratio, neighborhood preservation, and dis-
placement measures. In all these aspects, the Nmap strategies surpass
current state-of-the-art techniques, indicating their quality on obeying
the distance-similarity metaphor.

points of the initial configuration to the layout’s left-upper corner. The
good results for the configuration 1 is attained since the color gradient
varies from the left-upper corner to the right-bottom corner, so the rect-
angles close to the diagonal are inherently one-dimensional ordered.
The SOT presents good results for configuration 1, but configurations
2 and 3 present final shapes that do not correctly match the original
positions. Nmap-AC and Nmap-EW present the best results in terms
of preserving the original shapes. The color gradient of the rectangles
match the original gradient of the points, and the highly non-linear
configurations are consistently preserved on the final layouts.

For the group of configurations that aim to evaluate different den-
sities and directions, the SOT, Nmap-AC, and Nmap-EW techniques
attained good results for configurations 4 and 5. The OOT presents the
worst results for both configurations in terms of preserving the original
shape. In fact, the OOT will always fail when the direction of largest
variance of the groups are (closely) parallel to the enclosing rectangle
axis. This is due to the one-dimensional ordering that is used which
considers the top-left corner of the enclosing rectangle. When this

Figure 4. Results of applying Nmap-AC, Nmap-EW, OOT, and SOT techniques on different initial configurations, respectively. The color of the
initial points are used to color the produced rectangles. In general, the Nmap strategies produced layouts that best preserves the shape and
neighborhoods of the initial configurations, achieving a more reliable representation of the distance-similarity metaphor.

2068 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

Figure 6. Comparison between SOT, OOT and the Nmap strategies for the configuration 4. The rectangles are colored according to the dis-
placement, aspect-ratio and neighborhood preservation measures. In all these aspects the advantage of the Nmap strategies is evident, not only
producing less elongated rectangles, but also better preserving the neighborhood relationships, showing the good compromise of them with the
distance-similarity metaphor.

direction is aligned to the rectangle diagonal, the OOT can preserve
the initial shape (configuration 6). For the configuration 6, Nmap-AC
and Nmap-EW also attained good results, succeeding on presenting
some diagonal direction. For this configuration, the SOT technique
presents the worst result, almost completely losing the information
about the original diagonal placement, violating the distance-similarity
metaphor.

The tests with the last group, that seeks to evaluate the techniques
when there exist more than two groups of elements, corroborate the
quality of Nmap-AC and Nmap-EW strategies. Again, the OOT tech-
nique presents the worst results, not being able to preserve on the fi-
nal layouts the groups and structures present on the initial placement.
The SOT technique has problems when a group is surrounded by two
denser groups (configuration 8). Even the Nmap strategies being based
on consecutive bisections, multiple groups with different densities are
successfully captured on the produced layouts. In addition, the groups
arrangement is well preserved (configuration 9).

In general, Nmap-AC and Nmap-EW visually present the best re-
sults. In order to quantitatively assess that, we have changed the
weights of the data elements following a Gaussian distribution con-
sidering different ratios between the smallest and largest weights, 1/1,
1/10, 1/50, 1/100, 1/150, 1/200, and 1/250. Each technique was
executed 30 for each ratio. This allows the analysis into different sce-
narios, varying from rectangles with balanced weights until rectangles
with very dissimilar weights. Figure 5 summarizes the results in terms
of the aspect-ratio, neighborhood preservation and displacement of the
produced layouts. The Nmap strategies obtained better results in terms
of the aspect-ratio (Figure 5(a)), being closer to one than the OOT
and SOT techniques. Although a simple approach, the Nmap surpass
techniques that are adaptations of an algorithm (Squarified Treemap)
which is know to render rectangles with very good aspect-ratio. Com-
paring Nmap-EW to Nmap-AC, the first one presents better results
as expected, indicating that the produced rectangles have almost the
same aspect-ratio and that the number of elongated rectangles (poor
rectangles) is minimized by the process.

In terms of neighborhood preservation (Figure 5(b)), Nmap-AC
and Nmap-EW present the best results, while OOT, due to its one-
dimensional nature, presents the worst. In this test, we run the k-

Figure 7. Plot “datset size versus running times”. On average, the Nmap
strategies present almost the same performance, being two to three
orders of magnitude faster than the other techniques.

nearest neighbors varying k from 5 to 20. The same good results are
attained on the displacement measures (Figure 5(c)), indicating that
the Nmap strategies change their initial placements less than the other
techniques when constructing the final layouts. This clearly shows the
quality of the Nmap strategies on reliably creating layouts that obey
the distance-similarity metaphor.

Figure 6 presents a comparison between the layouts created for the
configuration 4 with the rectangles colored according to the displace-
ment, aspect-ratio and neighborhood preservation measures. As in
Figure 4, we use a Gaussian distribution to define the weights. The
first row presents the result of the displacement. The Nmap strate-
gies not only produce the best displacement on average, but also the
deviation is smaller than in the other techniques. Similar results are
obtained for the configurations with groups of elements with balanced

Figure 8. Cartograms from the city of London boroughs. The area of each rectangle indicates the district population, their colors represent the
neighborhood preservation and the arrow map the displacement. The small displacement and good neighborhood preservation attained by the
Nmap strategies are desirable properties when creating cartograms.

densities. For the configurations with groups with uneven densities,
the displacement is larger on the borders between them (configuration
5). This is expected since the points on the group with larger density
have to move more to occupy the area of the less dense group. The
second row presents the results of the aspect-ratio. The Nmap-EW
and Nmap-AC rendered the best results, producing considerably less
elongated rectangles than the OOT and SOT techniques, with a clear
advantage to the Nmap-EW. Notice that the weight ratio to produce
these layouts is 1/50. Decreasing this, the advantage of Nmap strate-
gies over OOT and SOT is even more evident. The last row of Figure 6
presents the neighborhood preservation. The Nmap strategies present
noticeably better results than OOT and SOT, not only on average but
also considering the deviation. Similar results are obtained for the
other configurations.

The computational complexity of the Nmap strategies are dictated
by the bisection phase. The process of the Nmap-AC involves to or-
der the x and y-coordinates once and split the rectangles so that each
obtained rectangle has (approximately) the same number of elements.
Therefore, it is O(n logn), where n is the number of data elements.
This is the complexity to order the initial points if the coordinates are
represented as float numbers. If integers are used, this complexity can
be reduced to O(n) using, for instance, the radix sort algorithm. The
complexity of Nmap-EW is O(n2) due to the process which involves
traversing all the data elements on a rectangle to find the bisection
position where the summation of the weights are (approximately) the
same. However, the worst case happens only in one special situation.
The weights of the points have to be ascending ordered from the left
to the right on the x-coordinate and from the top to the bottom on the
y-coordinate. In addition, in all rectangle bisections, the weight of the
last element on the ordered list should be larger than the summation of
the remaining elements belonging to the rectangles. In fact, this is a
very unusual situation, and on average Nmap-EW is much faster than
that. Figure 7 presents the plot “dataset size versus running times”. In
this test, we create randomly positioned datasets with different distri-
butions of weights, varying from 5 to 100,000 elements, and run 200
times each technique for each dataset. The thin lines indicate the av-
erage case and the shadows represent the smallest and largest running
time of each technique. Notice that, on the average, the values of the
Nmap-EW strategy are practically the same of the Nmap-AC, since
the worst case scenario is unusual to happen. However, in some cases
the Nmap-EW is slower than the Nmap-AC, and both approaches are
much faster than the OOT and SOT techniques, two to three orders the
magnitude faster.

In summary, the OOT and SOT techniques obtained better results in
terms of the aspect-ratio, an expected outcome since they are based on
a technique that is known to produced good rectangles in that sense.
For the displacement and neighborhood preservation measures, Nmap
strategies produced noticeably better results in a fraction of the re-

Figure 9. High level view of a document collection composed by scien-
tific papers on visualization. Each rectangle represents a group contain-
ing similar papers. Tag-clouds are used to support users on identifying
the content of each group.

quired time for large datasets. This demonstrates their ability on han-
dling large datasets keeping a good compromise with the distance-
similarity metaphor when placing the rectangles on the final layout.

5 APPLICATION

Taking advantage of the small displacement and good neighborhood
preservation attained by the Nmap strategies, different applications
can be devised. One example is on creating cartograms. Cartograms
are maps whose cartographic coordinate space is distorted to accom-
modate some non-geometrical property [15]. Figure 8 presents the
map of the London boroughs and the cartograms generated using the
Nmap strategies. These cartograms were generated using the centroid
of each borough as the initial placement and their populations as the
attribute used to define the rectangles areas. We use the data avail-
able at the London Datastore web site1. The color of each rectangle
represents the neighborhood preservation and the arrows indicate the
displacement from the original to the final positions (the rectangles
centroids). The local neighborhoods are well preserved, and the size
of the arrows and the reduced crossings between them indicate the
small displacement attained. This good balance between neighbor-
hood preservation and displacement gives evidences that Nmap strate-
gies are good candidates on designing cartograms.

Another application that can take advantage of the Nmap features
is the browsing of document collections. In order to apply the Nmap
strategies to create this visual representation, firstly all documents are
converted into multidimensional vectors following the bag-of-words

1London Datastores web site http://data.london.gov.uk/

2069DUARTE ET AL.: NMAP: A NOVEL NEIGHBORHOOD PRESERVATION SPACE-FILLING ALGORITHM

Figure 6. Comparison between SOT, OOT and the Nmap strategies for the configuration 4. The rectangles are colored according to the dis-
placement, aspect-ratio and neighborhood preservation measures. In all these aspects the advantage of the Nmap strategies is evident, not only
producing less elongated rectangles, but also better preserving the neighborhood relationships, showing the good compromise of them with the
distance-similarity metaphor.

direction is aligned to the rectangle diagonal, the OOT can preserve
the initial shape (configuration 6). For the configuration 6, Nmap-AC
and Nmap-EW also attained good results, succeeding on presenting
some diagonal direction. For this configuration, the SOT technique
presents the worst result, almost completely losing the information
about the original diagonal placement, violating the distance-similarity
metaphor.

The tests with the last group, that seeks to evaluate the techniques
when there exist more than two groups of elements, corroborate the
quality of Nmap-AC and Nmap-EW strategies. Again, the OOT tech-
nique presents the worst results, not being able to preserve on the fi-
nal layouts the groups and structures present on the initial placement.
The SOT technique has problems when a group is surrounded by two
denser groups (configuration 8). Even the Nmap strategies being based
on consecutive bisections, multiple groups with different densities are
successfully captured on the produced layouts. In addition, the groups
arrangement is well preserved (configuration 9).

In general, Nmap-AC and Nmap-EW visually present the best re-
sults. In order to quantitatively assess that, we have changed the
weights of the data elements following a Gaussian distribution con-
sidering different ratios between the smallest and largest weights, 1/1,
1/10, 1/50, 1/100, 1/150, 1/200, and 1/250. Each technique was
executed 30 for each ratio. This allows the analysis into different sce-
narios, varying from rectangles with balanced weights until rectangles
with very dissimilar weights. Figure 5 summarizes the results in terms
of the aspect-ratio, neighborhood preservation and displacement of the
produced layouts. The Nmap strategies obtained better results in terms
of the aspect-ratio (Figure 5(a)), being closer to one than the OOT
and SOT techniques. Although a simple approach, the Nmap surpass
techniques that are adaptations of an algorithm (Squarified Treemap)
which is know to render rectangles with very good aspect-ratio. Com-
paring Nmap-EW to Nmap-AC, the first one presents better results
as expected, indicating that the produced rectangles have almost the
same aspect-ratio and that the number of elongated rectangles (poor
rectangles) is minimized by the process.

In terms of neighborhood preservation (Figure 5(b)), Nmap-AC
and Nmap-EW present the best results, while OOT, due to its one-
dimensional nature, presents the worst. In this test, we run the k-

Figure 7. Plot “datset size versus running times”. On average, the Nmap
strategies present almost the same performance, being two to three
orders of magnitude faster than the other techniques.

nearest neighbors varying k from 5 to 20. The same good results are
attained on the displacement measures (Figure 5(c)), indicating that
the Nmap strategies change their initial placements less than the other
techniques when constructing the final layouts. This clearly shows the
quality of the Nmap strategies on reliably creating layouts that obey
the distance-similarity metaphor.

Figure 6 presents a comparison between the layouts created for the
configuration 4 with the rectangles colored according to the displace-
ment, aspect-ratio and neighborhood preservation measures. As in
Figure 4, we use a Gaussian distribution to define the weights. The
first row presents the result of the displacement. The Nmap strate-
gies not only produce the best displacement on average, but also the
deviation is smaller than in the other techniques. Similar results are
obtained for the configurations with groups of elements with balanced

Figure 8. Cartograms from the city of London boroughs. The area of each rectangle indicates the district population, their colors represent the
neighborhood preservation and the arrow map the displacement. The small displacement and good neighborhood preservation attained by the
Nmap strategies are desirable properties when creating cartograms.

densities. For the configurations with groups with uneven densities,
the displacement is larger on the borders between them (configuration
5). This is expected since the points on the group with larger density
have to move more to occupy the area of the less dense group. The
second row presents the results of the aspect-ratio. The Nmap-EW
and Nmap-AC rendered the best results, producing considerably less
elongated rectangles than the OOT and SOT techniques, with a clear
advantage to the Nmap-EW. Notice that the weight ratio to produce
these layouts is 1/50. Decreasing this, the advantage of Nmap strate-
gies over OOT and SOT is even more evident. The last row of Figure 6
presents the neighborhood preservation. The Nmap strategies present
noticeably better results than OOT and SOT, not only on average but
also considering the deviation. Similar results are obtained for the
other configurations.

The computational complexity of the Nmap strategies are dictated
by the bisection phase. The process of the Nmap-AC involves to or-
der the x and y-coordinates once and split the rectangles so that each
obtained rectangle has (approximately) the same number of elements.
Therefore, it is O(n logn), where n is the number of data elements.
This is the complexity to order the initial points if the coordinates are
represented as float numbers. If integers are used, this complexity can
be reduced to O(n) using, for instance, the radix sort algorithm. The
complexity of Nmap-EW is O(n2) due to the process which involves
traversing all the data elements on a rectangle to find the bisection
position where the summation of the weights are (approximately) the
same. However, the worst case happens only in one special situation.
The weights of the points have to be ascending ordered from the left
to the right on the x-coordinate and from the top to the bottom on the
y-coordinate. In addition, in all rectangle bisections, the weight of the
last element on the ordered list should be larger than the summation of
the remaining elements belonging to the rectangles. In fact, this is a
very unusual situation, and on average Nmap-EW is much faster than
that. Figure 7 presents the plot “dataset size versus running times”. In
this test, we create randomly positioned datasets with different distri-
butions of weights, varying from 5 to 100,000 elements, and run 200
times each technique for each dataset. The thin lines indicate the av-
erage case and the shadows represent the smallest and largest running
time of each technique. Notice that, on the average, the values of the
Nmap-EW strategy are practically the same of the Nmap-AC, since
the worst case scenario is unusual to happen. However, in some cases
the Nmap-EW is slower than the Nmap-AC, and both approaches are
much faster than the OOT and SOT techniques, two to three orders the
magnitude faster.

In summary, the OOT and SOT techniques obtained better results in
terms of the aspect-ratio, an expected outcome since they are based on
a technique that is known to produced good rectangles in that sense.
For the displacement and neighborhood preservation measures, Nmap
strategies produced noticeably better results in a fraction of the re-

Figure 9. High level view of a document collection composed by scien-
tific papers on visualization. Each rectangle represents a group contain-
ing similar papers. Tag-clouds are used to support users on identifying
the content of each group.

quired time for large datasets. This demonstrates their ability on han-
dling large datasets keeping a good compromise with the distance-
similarity metaphor when placing the rectangles on the final layout.

5 APPLICATION

Taking advantage of the small displacement and good neighborhood
preservation attained by the Nmap strategies, different applications
can be devised. One example is on creating cartograms. Cartograms
are maps whose cartographic coordinate space is distorted to accom-
modate some non-geometrical property [15]. Figure 8 presents the
map of the London boroughs and the cartograms generated using the
Nmap strategies. These cartograms were generated using the centroid
of each borough as the initial placement and their populations as the
attribute used to define the rectangles areas. We use the data avail-
able at the London Datastore web site1. The color of each rectangle
represents the neighborhood preservation and the arrows indicate the
displacement from the original to the final positions (the rectangles
centroids). The local neighborhoods are well preserved, and the size
of the arrows and the reduced crossings between them indicate the
small displacement attained. This good balance between neighbor-
hood preservation and displacement gives evidences that Nmap strate-
gies are good candidates on designing cartograms.

Another application that can take advantage of the Nmap features
is the browsing of document collections. In order to apply the Nmap
strategies to create this visual representation, firstly all documents are
converted into multidimensional vectors following the bag-of-words

1London Datastores web site http://data.london.gov.uk/

2070 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 12, DECEMBER 2014

Figure 10. Expanding one group of documents of Figure 9 into sub-
groups. A more detailed view is provided upon user request.

representation [13]. Based on that, a clustering algorithm is applied,
and the cluster’s multidimensional centroids are calculated. The ini-
tial placement for the Nmap is obtained projecting these centroids
on the plane using a multidimensional projection technique (see Sec-
tion 3.2). Here, we use the least-square projection [10] since it is indi-
cated to handle document collections. Finally, to represent the content
of a rectangle we use the tag-cloud metaphor, making the size of the
words proportional to their importance. We use the algorithm pro-
posed in [11] to compute such importance and arrange the words in-
side the rectangles. Figure 9 shows the result of applying this approach
to visualize the IEEE Infovis 2004 contest dataset [5]. It is composed
by papers of ten years of the InfoVis conference and some other pa-
pers frequently cited by them. In this example, five different groups
of papers were created to compose the initial layout. This is a pa-
rameter that the user can change, according to his/her expertise about
the dataset under analysis, using some metadata information available,
or employing an algorithm to automatically estimate the number of
groups/clusters [8].

The obtained rectangles can be refined, allowing to browse the doc-
ument collection in more details. To accomplish that, the documents
belonging to a selected rectangle are re-clustered and their centroids
are projected inside its area. This is then used as the initial placement
for the Nmap. In our application, this refinement process can be exe-
cuted by the user until a certain minimum number of documents inside
a rectangle is reached. When this happens, a list of the documents is
displayed. Although this process of creating clusters inside cluster de-
fines a hierarchy of groups and subgroups based on a clustering algo-
rithm, the Nmap strategies can also be used to represent any given hier-
archy, being independent of this cluster-based organization. Figure 10
presents the result of expanding one rectangle (cluster) of Figure 9.
This reveals the second level of the hierarchy under one node, present-
ing rectangles (clusters) with more refined tag clouds. Figure 1 shows
the result of expanding all rectangles of Figure 9, thereby presenting
the entire second level of the cluster hierarchy. The good neighbor-
hood preservation attained by Nmap ensures that similar groups of
papers are near placed on the final layout according to the the bag-of-
words representation. Every time such representation matches the user
expectation, useful visual representations are created.

Taking advantage of the formulation of the Nmap strategies, a
zoom-in operation that preserves the context can be easily done. The
way the Nmap was proposed, a binary tree of transformation matrices
in homogeneous coordinates representing the scales can be created.
Thereby, a zoom-in can be implemented increasing the weight of the
focused rectangle and updating the scale matrices on the tree. This
guarantees not only to keep the context when focusing, but also the
proportionality between the remaining rectangles (not on focus). Fig-
ure 11 presents the zoom-in of one sub-group of Figure 10 resulted
from expanding one group of Figure 9. All the words of the corre-
sponding tag-cloud is easier to read without changing the adjacencies
of the rectangles.

Figure 11. A zoom-in of a sub-group of Figure 10 to improve its read-
ability. Taking advantage of the transformation matrix formulation of the
Nmap strategies a zoom operation that preserves the context is easily
implemented only changing the weight of the focused rectangle.

Figure 12. The resulting layout when the rectangles areas are propor-
tional to the relevance of keywords “graph or graphs”. Different attributes
can be used to define the rectangles areas (weights) adding flexibility to
the process of exploring document collections.

On the previous examples (Figures 9 and 10), the areas (weights) of
the rectangles are initially defined proportional to the number of docu-
ments each group of documents contain. Nevertheless, other attributes
can be used, such as, the importance of a given keyword, the number
of documents citations and so on, adding flexibility to the process of
exploring the collection. On Figure 12 the importance of keywords
are used to define the rectangles weights. In this case the keywords
are “graph or graphs” and the weight of a rectangle is calculated con-
sidering the relevance of the keywords given by the tag-cloud.

6 CONCLUSIONS

In this paper we proposed a novel rectangular Treemap algorithm
called Neighborhood Treemap (Nmap). Nmap employs a slice and
scale approach, creating visual representations that preserve similarity
relationships amongst data elements. Considering the design goal of
“preserving neighborhood, filling all available space with rectangles of
different sizes with aspect-ratio as close as possible to one, performing
the smaller displacement, and being able to handle large datasets”, the
set of comparisons we provided shows that Nmap outperforms other
state-of-the-art rectangular Treemaps techniques in all these aspects,
being two to three orders of magnitude faster. Thereby, not only better
representing the distance-similarity metaphor and reducing problems
associated on violating that, but also being able to handle large datasets
in real time. Moreover, the flexibility and ease of implementation ren-
der Nmap one of the the most attractive Treemaps techniques to create
cartograms and visual representations of document collections.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their construc-
tive comments. This work was supported by the São Paulo Re-
search Foundation (FAPESP) (grants #2012/21022-0, #2013/14650-7
and #2011/22749-8) and CNPq-Brazil.

REFERENCES

[1] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the vi-
sualization of software metrics. In Proceedings of the 2005 ACM Sympo-
sium on Software Visualization, SoftVis ’05, pages 165–172, New York,
NY, USA, 2005. ACM.

[2] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quan-
tum treemaps: Making effective use of 2d space to display hierarchies.
ACM Transactions on Graphics, 21(4):833–854, Oct. 2002.

[3] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In In Pro-
ceedings of the Joint Eurographics and IEEE TCVG Symposium on Visu-
alization, pages 33–42. Press, 1999.

[4] K. Buchin, D. Eppstein, M. Löffler, M. Nöllenburg, and R. I. Silveira.
Adjacency-preserving spatial treemaps. In Proceedings of the 12th In-
ternational Conference on Algorithms and Data Structures, WADS’11,
pages 159–170, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] J.-D. Fekete, G. Grinstein, and C. Plaisant. Ieee infovis 2004 con-
test, the history of infovis. http://www.cs.umd.edu/hcil/
iv04contest, 2004.

[6] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to
the visualization of hierarchical information structures. In Proceedings of
the 2Nd Conference on Visualization ’91, VIS ’91, pages 284–291, Los
Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[7] F. Mansmann, D. Keim, S. North, B. Rexroad, and D. Sheleheda. Visual
analysis of network traffic for resource planning, interactive monitoring,
and interpretation of security threats. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1105–1112, Nov 2007.

[8] G. Milligan and M. Cooper. An examination of procedures for determin-
ing the number of clusters in a data set. Psychometrika, 50(2):159–179,
1985.

[9] A. Nocaj and U. Brandes. Computing Voronoi treemaps: Faster, simpler,
and resolution-independent. Computer Graphics Forum, 31(3pt1):855–
864, June 2012.

[10] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least
square projection: A fast high-precision multidimensional projection
technique and its application to document mapping. IEEE Transactions
on Visualization and Computer Graphics, 14(3):564–575, 2008.

[11] F. V. Paulovich, F. M. B. Toledo, G. P. Telles, R. Minghim, and L. G.
Nonato. Semantic wordification of document collections. Computer
Graphics Forum, 31(3pt3):1145–1153, 2012.

[12] R. Pinho, M. C. F. de Oliveira, and A. de A. Lopes. Incremental board:
A grid-based space for visualizing dynamic data sets. In Proceedings of
the 2009 ACM Symposium on Applied Computing, SAC ’09, pages 1757–
1764, New York, NY, USA, 2009. ACM.

[13] G. Salton. Developments in automatic text retrieval. Science, 253:974–
980, 1991.

[14] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling ap-
proach. ACM Transactions on Graphics, 11(1):92–99, Jan. 1992.

[15] A. Slingsby, J. Dykes, and J. Wood. Configuring hierarchical layouts
to address research questions. IEEE Transactions on Visualization and
Computer Graphics, 15(6):977–984, Nov 2009.

[16] J. Stasko and E. Zhang. Focus+context display and navigation techniques
for enhancing radial, space-filling hierarchy visualizations. In Informa-
tion Visualization, 2000. InfoVis 2000. IEEE Symposium on, pages 57–65,
2000.

[17] G. Strong and M. Gong. Self-sorting map: An efficient algorithm for
presenting multimedia data in structured layouts. IEEE Transactions on
Multimedia, 16(4):1045–1058, June 2014.

[18] S. Tak and A. Cockburn. Enhanced spatial stability with Hilbert and
Moore treemaps. IEEE Transactions on Visualization and Computer
Graphics, 19(1):141–148, 2013.

[19] E. Tejada, R. Minghim, and L. G. Nonato. On improved projection tech-
niques to support visual exploration of multidimensional data sets. Infor-
mation Visualization, 2(4):218–231, 2003.

[20] W. S. Torgeson. Multidimensional scaling of similarity. Psychometrika,
30:379–393, 1965.

[21] Y. Tu and H.-W. Shen. Visualizing changes of hierarchical data using
treemaps. IEEE Transactions on Visualization and Computer Graphics,
13(6):1286–1293, Nov 2007.

[22] M. Wattenberg. Visualizing the stock market. In CHI ’99 Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’99, pages
188–189, New York, NY, USA, 1999. ACM.

[23] M. Wattenberg. A note on space-filling visualizations and space-filling
curves. In Information Visualization, 2005. INFOVIS 2005. IEEE Sym-
posium on, pages 181–186, Oct 2005.

[24] J. Wood and J. Dykes. Spatially ordered treemaps. IEEE Transactions on
Visualization and Computer Graphics, 14(6):1348–1355, Nov. 2008.

2071DUARTE ET AL.: NMAP: A NOVEL NEIGHBORHOOD PRESERVATION SPACE-FILLING ALGORITHM

Figure 10. Expanding one group of documents of Figure 9 into sub-
groups. A more detailed view is provided upon user request.

representation [13]. Based on that, a clustering algorithm is applied,
and the cluster’s multidimensional centroids are calculated. The ini-
tial placement for the Nmap is obtained projecting these centroids
on the plane using a multidimensional projection technique (see Sec-
tion 3.2). Here, we use the least-square projection [10] since it is indi-
cated to handle document collections. Finally, to represent the content
of a rectangle we use the tag-cloud metaphor, making the size of the
words proportional to their importance. We use the algorithm pro-
posed in [11] to compute such importance and arrange the words in-
side the rectangles. Figure 9 shows the result of applying this approach
to visualize the IEEE Infovis 2004 contest dataset [5]. It is composed
by papers of ten years of the InfoVis conference and some other pa-
pers frequently cited by them. In this example, five different groups
of papers were created to compose the initial layout. This is a pa-
rameter that the user can change, according to his/her expertise about
the dataset under analysis, using some metadata information available,
or employing an algorithm to automatically estimate the number of
groups/clusters [8].

The obtained rectangles can be refined, allowing to browse the doc-
ument collection in more details. To accomplish that, the documents
belonging to a selected rectangle are re-clustered and their centroids
are projected inside its area. This is then used as the initial placement
for the Nmap. In our application, this refinement process can be exe-
cuted by the user until a certain minimum number of documents inside
a rectangle is reached. When this happens, a list of the documents is
displayed. Although this process of creating clusters inside cluster de-
fines a hierarchy of groups and subgroups based on a clustering algo-
rithm, the Nmap strategies can also be used to represent any given hier-
archy, being independent of this cluster-based organization. Figure 10
presents the result of expanding one rectangle (cluster) of Figure 9.
This reveals the second level of the hierarchy under one node, present-
ing rectangles (clusters) with more refined tag clouds. Figure 1 shows
the result of expanding all rectangles of Figure 9, thereby presenting
the entire second level of the cluster hierarchy. The good neighbor-
hood preservation attained by Nmap ensures that similar groups of
papers are near placed on the final layout according to the the bag-of-
words representation. Every time such representation matches the user
expectation, useful visual representations are created.

Taking advantage of the formulation of the Nmap strategies, a
zoom-in operation that preserves the context can be easily done. The
way the Nmap was proposed, a binary tree of transformation matrices
in homogeneous coordinates representing the scales can be created.
Thereby, a zoom-in can be implemented increasing the weight of the
focused rectangle and updating the scale matrices on the tree. This
guarantees not only to keep the context when focusing, but also the
proportionality between the remaining rectangles (not on focus). Fig-
ure 11 presents the zoom-in of one sub-group of Figure 10 resulted
from expanding one group of Figure 9. All the words of the corre-
sponding tag-cloud is easier to read without changing the adjacencies
of the rectangles.

Figure 11. A zoom-in of a sub-group of Figure 10 to improve its read-
ability. Taking advantage of the transformation matrix formulation of the
Nmap strategies a zoom operation that preserves the context is easily
implemented only changing the weight of the focused rectangle.

Figure 12. The resulting layout when the rectangles areas are propor-
tional to the relevance of keywords “graph or graphs”. Different attributes
can be used to define the rectangles areas (weights) adding flexibility to
the process of exploring document collections.

On the previous examples (Figures 9 and 10), the areas (weights) of
the rectangles are initially defined proportional to the number of docu-
ments each group of documents contain. Nevertheless, other attributes
can be used, such as, the importance of a given keyword, the number
of documents citations and so on, adding flexibility to the process of
exploring the collection. On Figure 12 the importance of keywords
are used to define the rectangles weights. In this case the keywords
are “graph or graphs” and the weight of a rectangle is calculated con-
sidering the relevance of the keywords given by the tag-cloud.

6 CONCLUSIONS

In this paper we proposed a novel rectangular Treemap algorithm
called Neighborhood Treemap (Nmap). Nmap employs a slice and
scale approach, creating visual representations that preserve similarity
relationships amongst data elements. Considering the design goal of
“preserving neighborhood, filling all available space with rectangles of
different sizes with aspect-ratio as close as possible to one, performing
the smaller displacement, and being able to handle large datasets”, the
set of comparisons we provided shows that Nmap outperforms other
state-of-the-art rectangular Treemaps techniques in all these aspects,
being two to three orders of magnitude faster. Thereby, not only better
representing the distance-similarity metaphor and reducing problems
associated on violating that, but also being able to handle large datasets
in real time. Moreover, the flexibility and ease of implementation ren-
der Nmap one of the the most attractive Treemaps techniques to create
cartograms and visual representations of document collections.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their construc-
tive comments. This work was supported by the São Paulo Re-
search Foundation (FAPESP) (grants #2012/21022-0, #2013/14650-7
and #2011/22749-8) and CNPq-Brazil.

REFERENCES

[1] M. Balzer, O. Deussen, and C. Lewerentz. Voronoi treemaps for the vi-
sualization of software metrics. In Proceedings of the 2005 ACM Sympo-
sium on Software Visualization, SoftVis ’05, pages 165–172, New York,
NY, USA, 2005. ACM.

[2] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and quan-
tum treemaps: Making effective use of 2d space to display hierarchies.
ACM Transactions on Graphics, 21(4):833–854, Oct. 2002.

[3] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In In Pro-
ceedings of the Joint Eurographics and IEEE TCVG Symposium on Visu-
alization, pages 33–42. Press, 1999.

[4] K. Buchin, D. Eppstein, M. Löffler, M. Nöllenburg, and R. I. Silveira.
Adjacency-preserving spatial treemaps. In Proceedings of the 12th In-
ternational Conference on Algorithms and Data Structures, WADS’11,
pages 159–170, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] J.-D. Fekete, G. Grinstein, and C. Plaisant. Ieee infovis 2004 con-
test, the history of infovis. http://www.cs.umd.edu/hcil/
iv04contest, 2004.

[6] B. Johnson and B. Shneiderman. Tree-maps: A space-filling approach to
the visualization of hierarchical information structures. In Proceedings of
the 2Nd Conference on Visualization ’91, VIS ’91, pages 284–291, Los
Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[7] F. Mansmann, D. Keim, S. North, B. Rexroad, and D. Sheleheda. Visual
analysis of network traffic for resource planning, interactive monitoring,
and interpretation of security threats. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1105–1112, Nov 2007.

[8] G. Milligan and M. Cooper. An examination of procedures for determin-
ing the number of clusters in a data set. Psychometrika, 50(2):159–179,
1985.

[9] A. Nocaj and U. Brandes. Computing Voronoi treemaps: Faster, simpler,
and resolution-independent. Computer Graphics Forum, 31(3pt1):855–
864, June 2012.

[10] F. V. Paulovich, L. G. Nonato, R. Minghim, and H. Levkowitz. Least
square projection: A fast high-precision multidimensional projection
technique and its application to document mapping. IEEE Transactions
on Visualization and Computer Graphics, 14(3):564–575, 2008.

[11] F. V. Paulovich, F. M. B. Toledo, G. P. Telles, R. Minghim, and L. G.
Nonato. Semantic wordification of document collections. Computer
Graphics Forum, 31(3pt3):1145–1153, 2012.

[12] R. Pinho, M. C. F. de Oliveira, and A. de A. Lopes. Incremental board:
A grid-based space for visualizing dynamic data sets. In Proceedings of
the 2009 ACM Symposium on Applied Computing, SAC ’09, pages 1757–
1764, New York, NY, USA, 2009. ACM.

[13] G. Salton. Developments in automatic text retrieval. Science, 253:974–
980, 1991.

[14] B. Shneiderman. Tree visualization with tree-maps: 2-d space-filling ap-
proach. ACM Transactions on Graphics, 11(1):92–99, Jan. 1992.

[15] A. Slingsby, J. Dykes, and J. Wood. Configuring hierarchical layouts
to address research questions. IEEE Transactions on Visualization and
Computer Graphics, 15(6):977–984, Nov 2009.

[16] J. Stasko and E. Zhang. Focus+context display and navigation techniques
for enhancing radial, space-filling hierarchy visualizations. In Informa-
tion Visualization, 2000. InfoVis 2000. IEEE Symposium on, pages 57–65,
2000.

[17] G. Strong and M. Gong. Self-sorting map: An efficient algorithm for
presenting multimedia data in structured layouts. IEEE Transactions on
Multimedia, 16(4):1045–1058, June 2014.

[18] S. Tak and A. Cockburn. Enhanced spatial stability with Hilbert and
Moore treemaps. IEEE Transactions on Visualization and Computer
Graphics, 19(1):141–148, 2013.

[19] E. Tejada, R. Minghim, and L. G. Nonato. On improved projection tech-
niques to support visual exploration of multidimensional data sets. Infor-
mation Visualization, 2(4):218–231, 2003.

[20] W. S. Torgeson. Multidimensional scaling of similarity. Psychometrika,
30:379–393, 1965.

[21] Y. Tu and H.-W. Shen. Visualizing changes of hierarchical data using
treemaps. IEEE Transactions on Visualization and Computer Graphics,
13(6):1286–1293, Nov 2007.

[22] M. Wattenberg. Visualizing the stock market. In CHI ’99 Extended Ab-
stracts on Human Factors in Computing Systems, CHI EA ’99, pages
188–189, New York, NY, USA, 1999. ACM.

[23] M. Wattenberg. A note on space-filling visualizations and space-filling
curves. In Information Visualization, 2005. INFOVIS 2005. IEEE Sym-
posium on, pages 181–186, Oct 2005.

[24] J. Wood and J. Dykes. Spatially ordered treemaps. IEEE Transactions on
Visualization and Computer Graphics, 14(6):1348–1355, Nov. 2008.

