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Fig. 1: Examples of violating (top) and respecting (bottom) our three proposed visualization design principles. The Principle of
Representation Invariance says data, not spurious details of its representation, should determine the impression of the visualization.
Permuting the countries in (a) creates different impressions in the top visualizations, but not in the bottom scatterplot. Visualizations
that respect the Principle of Unambiguous Data Depiction make large changes in the data clearly visible. To visualize tensors (b),
bas-relief ambiguity makes ellipsoid glyphs for different tensors appear similar (top); superquadric glyphs avoid the problem
(bottom). With the Principle of Visual-Data Correspondence, meaningful changes in data should produce analogously meaningful
changes in impressions, according to the mathematical structure of both data and visual spaces. In (c) the directed graph’s partial
order is unchanged by adding some edges. The force-directed placement (top) is completely re-arranged, but not a layout indicating
node rank with vertical position (bottom). All principles are consequences of Equation (1), the basis of our algebraic design process.

Abstract— We present a model of visualization design based on algebraic considerations of the visualization process. The model
helps characterize visual encodings, guide their design, evaluate their effectiveness, and highlight their shortcomings. The model has
three components: the underlying mathematical structure of the data or object being visualized, the concrete representation of the data
in a computer, and (to the extent possible) a mathematical description of how humans perceive the visualization. Because we believe
the value of our model lies in its practical application, we propose three general principles for good visualization design. We work
through a collection of examples where our model helps explain the known properties of existing visualizations methods, both good
and not-so-good, as well as suggesting some novel methods. We describe how to use the model alongside experimental user studies,
since it can help frame experiment outcomes in an actionable manner. Exploring the implications and applications of our model and its
design principles should provide many directions for future visualization research.

Index Terms—Visualization Design, Symmetries, Visualization Theory
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1 INTRODUCTION

Visualization research has made dramatic discoveries: faster algorithms,
for showing more data, and more patterns within data, in ways that are
more finely attuned to users’ needs and abilities. The resulting visu-
alization tools play a vital role in business and science. Visualization
research is continuously energized by new data types, new analysis
tasks, and new applications.

Theoretical visualization research builds a rigorous foundation for
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the field by studying fundamental properties of how visualizations
work. Such research may draw on psychological studies of vision and
cognition, but within the visualization community, theory papers often
categorize data, tasks, and methods into various taxonomies. These are
invaluable for understanding the landscape of our field, but descriptive
taxonomies offer limited insight into how to design new visualizations,
especially in the face of new data types, tasks, and applications.

Practitioners may find some guidance in the illustrative examples
of good and bad visualization design, such as those gathered by Tufte.
Tufte offers maxims like “maximize the data-ink ratio” and “show data
variation not design variation” [48]. With respect for Tufte’s eloquence
and impact, we feel such maxims work better as summaries of what
good visualizations have in common, than as concrete guidance for
how to create good visualizations, or improve bad ones.

Our work strives to be both theoretical and constructive. We present
an algebraic basis for designing data visualizations. We give practical
guidance through the three design principles illustrated by the examples
in Figs. 1 through 4, but we aim for generality by describing visual-

1077-2626 © 2014 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2182

ization design in mathematical terms. We recognize three fundamental
elements of creating and viewing visualizations:

e Mathematical structure in the underlying data. Data comes in as
many forms as there are things to model, measure, and describe. We
can distinguish different forms of data at an abstract level by charac-
terizing the mathematical types of the individual data points, their
organization, and their operational context, which we collectively
call “structure”. For hierarchies like trees, the structures includes the
partial order representing “is-children”, and order-preserving maps
between trees. For vectors in Euclidean space, the structure includes
not only the length and direction of the vectors themselves, but the
relevant linear transformations on the space and their properties.
The structure that matters for a given data source will likely vary
according to the goals and application of the visualization.
Concrete representation of data in a computer. Visualization pro-
grams start with computational representations, but representations
have properties not intrinsic to the data. A set of data points has
no intrinsic ordering, but representing it as a list or table forces one
arbitrary ordering. Eigenvectors are represented with vectors, with a
necessary but arbitrarily choice between v and —v. In distinguishing
between data and representation, we also include more complex
processes where an underlying object of interest to be visualized
(the “data”) can be accessed only through samples of it (the “rep-
resentation”); this includes statistical samples of a population, or
samples on a discrete grid of an underlying continuous field.
Mathematical structure in the perception of visualizations. The
human visual system processes visualizations and their constituent
visual encodings to form an impression of the visualization. Psychol-
ogy has produced mathematical descriptions of visual processing.
Opponent color theory, for example, defines for every color an op-
ponent color that yields gray upon their combination. This endows
perceptual color space with a negation operation.

We propose three visualization design principles in terms of these
elements, and we offer evocative names for failures of the principles.

o The Principle of Representation Invariance (or just Invariance) says
that visualizations should be invariant with respect to the choice of
data representation: changing the representation should not change
the visualization. A visualization failing this principle has a halluci-
nator: a different impression was created (hallucinated, in fact) out
of nothing but a different representation of the same data.

The Principle of Unambiguous Data Depiction (or just Unambiguity)
says that visualizations should be unambiguous: changing the un-
derlying data should produce a change in the resulting visualization.
Failing this principle, a visualization has confusers: changes in the
data that are effectively invisible to the viewer of the visualization.

The Principle of Visual-Data Correspondence (or just Correspon-
dence) says that significant changes in the data should meaningfully
correspond with noticeable changes in the visual impression and
vice versa. If an important change in data is not clearly manifested
in the visualization, it has jumbled the data. If a clear and obvious
transformation of the visualization corresponds with an unimportant
change in the data, the visualization is misleading.

We intend the principles and their failures to be understood intu-
itively, but they are grounded in an algebraic model, presented in
Section 3. Section 4 illustrates the principles with examples from
Figs. 1 through 4 and the literature. Section 5 shows how our approach
facilitates iterative and methodical examination and improvement of a
visualization, through the redesign of a visualization of the employment
gender gap in senior management across different countries. Finally,
Sections 6 and 7 suggest ways in which our proposal can be generalized,
and how it accounts for research advances (and current discussions) in
multiple areas of visualization.

2 RELATED WORK

As our general goal is to connect the structure of visualized data with
the structure of the perception of visualizations, the related work spans
data types, perception, and previous taxonomies and theories that con-
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nect them. Bertin’s seminal work enumerates a set of data types and
good “retinal variables” [2], which Mackinlay’s APT [28] encodes and
systematizes, which in turn drive automatic visualization generation in
Tableau [29]. Ongoing theoretical visualization work organizes data,
tasks, and methods into taxonomies [44, 46, 5].

The traditional base data types in visualization (i.e. categorical
or nominal, ordinal, interval, and ratio) are typically justified with
reference to Stevens [45, 56]. Less often discussed is how Stevens
uses the mathematics of group symmetry to give those types precise
meaning. For example, any permutation of the labels of categorical
data is an equivalent labeling, thus the group (in the abstract algebra
sense) of permutations contain the symmetries of categorical data.
Ordinal, interval, and ratio data have symmetry groups of monotonically
increasing, affine (f(x) = mx+ b), and linear (f(x) = mx) functions,
respectively. Stevens’s mathematical approach directly inspires ours:
we use “symmetry” to refer generally to invertible transformations that,
when applied to each in a set of things, map back to the same set. Our
“data symmetry” and “visualization symmetry” terms are based on this.
Stevens’s motivation was to identify the “permissible” or “invariantive”
statistics on each measure. With ordinal data, for example, one can
meaningfully compute a median because it is invariant to monotonic
transforms, while the mean is not. Our Invariance Principle expresses
the same idea: a visualization should not depend on the specifics of
how the underlying data is represented.

Previous visualization research has addressed human perception in
different ways. Much work is organized around low-level properties
of the human visual system originally described by Cleveland and
McGill [11]. Wattenberg and Fisher make Gestalt models of visualiza-
tion perception by relating the scale-space structure of the visualization
stimuli to structure at different scales in the underlying data [57], which
is a psychology-based instantiation of our Correspondence Principle.
The high-level cognitive processes used for interactive visualization are
also studied, for example in the contexts of distributed cognition [26]
or narrative story-telling [21]. A more concrete mechanism for how we
relate to visualizations is the affordance, originally described by Gibson
as something perceived in the environment to provide the possibility
of action [12]. Ware generalizes this to include properties of visualiza-
tions and interfaces, arguing that thinking in terms of affordances helps
design better visualizations [56]. We embrace this strategy, and aim
to implement it with mathematics. Specifically, our algebraic model
describes how visual affordances should match important low-level
tasks, according to our Correspondence Principle.

Other previous theories of the visualization process have used math-
ematical descriptions. Ziemkiewicz and Kosara highlight how injec-
tivity, surjectivity and bijectivity are important properties of visual-
izations [63]. Our model uses some similar ideas (in particular their
injectivity is analogous to our Unambiguity Principle), but we focus
on how visualizations are perceived generally, not how they are “read”
as a sequence of syntactic units. Bar charts, for example, require an
arbitrary choice in ordering the bars, each of which is equally surjective
in their view. We see this as an Invariance failure, however, since the
different orderings are perceptually different (Sect. 5). We also see the
space of data and of visual stimuli as supporting a richer description
than that of mere sets; our Correspondence Principle seeks to match
mathematical structure in data with that in visual perception.

Demiralp et al. suggest matching distance functions (in data space
and in perceptual space) as a unifying principle for designing and
evaluating visualizations [8]. We share interest in this promising ap-
proach, which is essentially a quantitative specialization of our Cor-
respondence Principle. The descriptive power of distance functions
and metrics does have limits, however. Partial orders, for example,
are not symmetric, so they cannot be represented in a metric space.
Psychologists know that judgments of similarity between objects can
also be asymmetric [50]. We see our work as providing a mechanism
for investigating which structures in the data are preserved and reflected
in the visualization with more generality than allowed by metric spaces.

Mackinlay’s original automated visualization tool is formulated in
terms of “Expressiveness” and “Effectiveness” criteria for evaluating
graphical languages [28]. Expressive visualizations convey all the
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Principle Name Precondition Requirement  Name for failure  Failure definition

Representation a=1p o=1ly Hallucinator H(v) ={h|ry =hor; and voh # v},
Invariance over all representations ry, 7,
Unambiguous Data =1y a=1p Confuser C(v)={alvoroa=vor}

Depiction

Visual-Data a#lp,o#£ly a=o Jumblers and (see Sec.3.3 text)

Correspondence Misleaders

Table 1: Algebraic visualization design principles for evaluating a visualization method v, expressed in terms of (1).

properties (or “facts”) of a given dataset, and nothing more. Visual-
izations that are not expressive because they fail to show important
structure in the data will violate our Unambiguity Principle. Failing
to be expressive by suggesting non-existent facts about the data can
arise either by violating our Invariance Principle (showing accidental
properties of the representation rather than the data), or by violating our
Correspondence Principle with a misleader. For Mackinlay, effective vi-
sualizations match important data attributes to readily perceived visual
attributes. If a visualization violates our Correspondence Principle with
a jumbler, it will likely also fail to be effective, but effectiveness failures
can also arise from violating our Unambiguity Principle (when impor-
tant changes in data are mapped to perturbations in the visualization
too subtle to make an impression).

Studying explanatory graphics in cognitive psychology, Tversky et
al. propose a Congruence Principle: the visual (external) structure
of an explanatory graphic should correspond to the desired structure
of the mental (internal) representation in the viewer [52, 51]. Our
Correspondence Principle essentially restates this in the context of data
visualization, but with more mathematical descriptions of how changes
in data relate to changes in the visualization, and of how visualizations
may fail. Tversky et al. also propose an Apprehension Principle [52]
by which graphics should be readily and accurately perceived and
comprehended. Like Mackinlay’s Effectiveness criteria, this relates to
both our Unambiguity and Correspondence principles.

In terms of Munzner’s nested model for visualization [33], our model
allows designers to reason about which (and how) structures from
the data/operation abstraction layer will be reflected in the encod-
ing/interaction technique layer. In this way, our theory can predict
which visualizations will be good for which tasks. Relative to Meyer
et al.’s extended nested model [31], our theory suggests mathematical
guidelines for the abstraction layer, directly from the structure of the
data. As a trivial case, we could say that if a visual encoding preserves
the metric structure of the original dataset, then it will be good for
assessing similarities between input points.

3 THEORETICAL MODEL AND DESIGN PRINCIPLES

This section states our fundamental equation of algebraic visualization
design after defining some terms and variables, then examines the
equation structure with a commutative diagram [10], and finally uses
the diagram to organize the statement of our three design principles.
Our algebraic model describes relationships between the three ele-
ments of visualization identified in Section 1: the space of data to be
visualized (denoted D), the space of data representations (R), and the
space of visualizations (V). The mappings between these spaces are
captured in a single equation, shown with its commutative diagram:

rl v
D—>R—>V

“§ ., b

D—R—>V

ey

Voo =@movory

Note that lowercase r denotes a mapping from data D to representation
R, and lowercase v denotes a visualization method mapping from R to
visual stimulus V. We view visualizations as acting not on data itself
but on some concrete representation in the computer. The mappings
from D back to D (or mappings on D), are termed data symmetries,
denoted . The visualization symmetries, denoted w, are mappings
on V. We refer to data symmetries & and visualization symmetries ®
frequently throughout this paper, so we use & and w for brevity. We
chose alpha and omega to emphasize how these mappings relate to the

beginning (the data) and to the end (the visual stimulus), respectively, of
the visualization process. The identity mapping (sending each point in a
space back to itself) on D and on V is denoted 1p and 1y, respectively.

In a commutative diagram, when two nodes are connected by two
paths, the composition of functions along either path must be the same.
The equality in (1) is between two possible paths from the upper-left D
to the lower-right V. Going down then right is D > D e R—»V, orin

terms of function composition (read right to left) vor; o &, and going
right then down is D ﬁ’R Vo Virwovor).

Using our algebraic design model requires finding and understand-
ing the possible (o, @) pairs that make the diagram commute; each
such (a, w) gives a different solution to (1). In successful designs, the
o represent relevant data properties and low-level tasks, and they are
matched via (1) with @ that align with perceptual channels or visual
affordances. Visualization designers can start with an o and investi-
gating the resulting @. For a given data symmetry «, there is always
some visual symmetry o that solves (1). Specifically, for each data
symmetry o on D and x in D, computationally represented by r (x)
and visualized by v(rj(x)), we can define (v(r(x))) = (wovory)(x)
as v(ry(a(x))) = (voryoa)(x): the visualization of the representation
ra(a(x)) of the transformed data c¢(x). An @ may act locally to change
location of a dot or the color of a circle, or it may act more globally,
replacing every color in a colormapped field with another color.

We use (1) to define three algebraic visualization design principles,
and to characterize ways in which a visualization may fail the principles.
Table 1 summarizes these for reference.

3.1

Defining our Principle of Representation Invariance starts by setting
o to the identity mapping 1p on the data space D, which collapses
the left side of the commutative diagram, so that we are considering
only a single dataset. Then the right side should also collapse (that
is, ® = ly): the visualization should be the same even from two
different representations r; # r,. If not, then changes in representation
can lead to changes in the visualization, or, a single dataset maps to
many distinct visualizations. The set of erroneously consequential
changes in representation are the hallucinator H(v) of a visualization v.
Invariance is satisfied when the hallucinator is empty: H(v) = {}.

Representation Invariance: a =1p = 0 =1y

3.2 Unambiguous Data Depiction: o =1y = a=1p

The Unambiguous Data Depiction Principle is the converse of Invari-
ance. To consider a single visualization and ask how it arose, we
collapse the right side of the commutative diagram by setting @ = 1y .
Then the left side should also collapse (that is, & = 1p). If it does not,
it means there is some significant change « # 1p in the data which
leaves the visualization unchanged, or, many datasets map to a single
visualization. Changes in the data that are invisible to the viewer of
a visualization v are the confuser C(v). The Unambiguity Principle is
satisfied when the confuser is the identity on data: C(v) = {1p}. Our
definitions of Unambiguity and the confuser in Table 1 assume that
Invariance is satisfied: erroneously consequential changes in represen-
tation could confound the structure of the ambiguity.

3.3 Visual-Data Correspondence: o = ©

The Invariance and Unambiguity Principles are concerned with so-
lutions to (1) where either the data symmetry & or the visualization
symmetry o is the identity. Assuming both Invariance and Unambigu-
ity hold, the Correspondence Principle is satisfied when neither o nor
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Fig. 2: Our Invariance Principle illustrated with taxi pick-ups and drop-offs (a), two different samples from a population (b), volume renderings of
sampled 3D cubic polynomial (c), and vector glyphs in a 2D flow field (d). The upper pair of adjacent visualizations are of exactly the same
underlying data or object, but give different impressions due to arbitrary differences in representation, sometimes beyond the control of the
designer. The bottom row demonstrates the Invariance Principle with visualizations that do not depend on representation choice.

@ is the identity, and they solve (1) in a particular way. We informally
notate this “o¢ = ” to convey the desired congruence [52] between the
data and visualization symmetries. Applying the Correspondence Prin-
ciple proceeds by defining a particular symmetry of interest (either
on the data space or on the visual space), finding the symmetry on
the other side of the commutative diagram that solves (1), and then
assessing whether there is a reasonable correspondence between o
and . More so than the other two, the Correspondence Principle im-
plements the task-dependence of visualization design, since designers
can choose o to model data properties of particular value for some
application. Choosing the visualization symmetry ® is informed by
the current scientific understanding of the visual system and our basic
mechanisms of visual comprehension. Cleveland and McGill famously
determined, for example, that changes in positions along a common
scale are better distinguished than changes in length, which are in turn
better distinguished than changes in area or color saturation [11].

We suggest that two terms are appropriate for describing Correspon-
dence failures, according to whether one is judging the data symmetry
relative to the visual symmetry or vice versa. We acknowledge the
distinction between the two may not be clear cut, and that the math-
ematical vocabulary for their expression is currently lacking. When
we pick a meaningful data symmetry ¢ and find the matching visual
symmetry @ unsatisfactory, we say the visualization has a jumbler, or
that it jumbled . When a clear and readily apparent @ turns out to
correspond to a complicated or inconsequential &, we say the visual-
ization has a misleader, since @ gave a misleading interpretation of the
data. If an obvious @ maps to a visual stimulus that the visualization
v can never produce from any representation, then there is no « that
solves (1); this is an additional kind of misleader.

4 EXPLAINING PRINCIPLES AND FAILURES BY EXAMPLE

This section describes the principles and their failures by reference to
the examples in Figs. 1, 2, 3, 4, and the literature. We hope to convey
that our principles are not a new set of rules to obey, but are tools for
investigating and describing how a visualization does or does not depict
data, and for improving visualizations in an informed way.

41

Figures 1 and 2 show examples of hallucinators. The hallucinators
in Figs. 1(a) and 2(a) are permutations of a list representing a set.
Considered as samples from a population, sets of countries (or taxi pick-
up and drop-off locations) have no intrinsic ordering, but representing
the set as a list necessarily picks some order. Note that in Fig. 1(a),

Representation Invariance

the scatterplot does not have a hallucinator, while in Fig. 2(a), the
scatterplot does. This happens because the hallucinator in Fig. 2(a)
arises from the non-commutativity of the “over” operator when different
colors overdraw each other, even with low opacity [37].

Figure 2(b) illustrates an Invariance Principle failure that may occur
in statistical visualization. Two samples drawn from a single underlying
population are plotted with the hope of getting a sense of that population.
But the most visually prominent differences in peaks and valleys in
the top two plots are features of the sample (the representation), not
of the population (the data). In the bottom of Fig. 2(b), the same
shape of the underlying population is revealed from both samples by
the application of kernel density estimation [35] and an appropriate
bandwidth (Gaussian kernel width), producing two plots that can be
considered visually equivalent (i.e. @ = 1y).

Figures 2(c) and (d) have hallucinators associated with the different
grids that sample the same underlying continuous field. The volume
renderings in Fig. 2(c) depict the Cayley cubic polynomial f(x,y,z) =
¥ +y? — 2% + 29> 4+ 22 — 1, for which isosurface f(x,y,z) = 0 has
zero Gaussian curvature [58]. Renderings with the Catmull-Rom filter,
with insufficient continuity and accuracy (in the Taylor-series sense),
visually emphasize the sampling grid and show shapes with non-zero
Gaussian curvature. Moller et al. design filters (for field reconstruction
by convolution) of arbitrary continuity and accuracy, including those
that can exactly reconstruct cubics [32]. A better filter removes the
hallucinator because it leads to the same (correct) rendering regardless
of sampling grid orientation. The hedgehog plots in the top of Fig. 2(d)
visualize individual vector values with arrows at every regular grid point.
This may be good for data quality inspection, but the impression of the
smooth underlying flow pattern is unduly affected by the sampling grid.
The hallucinator is removed with a glyph placement strategy based
on reconstructing the underlying continuous vector field, such as the
image-guided placement of Turk and Banks [49].

4.2 Unambiguous Data Depiction

Recognizing and characterizing confusers (failures of Unambiguity)
provides an actionable path for visualization design. The ellipsoids
in the top of Fig. 1(b) visualize very different tensors, but the glyphs
appear very similar due to bas-relief ambiguity, for which the con-
fuser is scaling along the view direction [1]. Though it preceded
our current terminology and theory, the same confuser was used in
designing superquadric tensor glyphs [23]. Subsequent work general-
ized superquadric glyphs to a larger class of tensors, based on design
principles analogous to those of this paper [40]. Confusers also help
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Fig. 3: Demonstrating the Principle of Unambiguous Data Depiction with ambiguous visualizations in the upper row, and their disambiguations
in the lower row. Standard treemaps (a) do not clearly show hierarchy; cushion treemaps do [54]. Parallel coordinate plots (b) are ambiguous
when more than one point shares a coordinate. Line color can disambiguate (with a risk of Invariance failure). LIC (c) uses streamlines computed
on a normalized-velocity field. Modulating LIC contrast with local velocity reveals otherwise unseen velocity variation patterns.
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Fig. 4: The Correspondence Principle facilitates visual interpretation of data by ensuring that changes in data cause changes in the visualization
that are meaningfully aligned with perceptual channels or visual affordances. In (a), the negation o of elevation prior to colormapping induces
change @' in the visualization, but “negating” colors (switching with opponent hues) makes a very different change . With a diverging colormap
(b), @’ and  are the same, enabling a simple visual interpretation of negation. Even though superquadric tensor glyphs overcome the bas-relief
ambiguity of ellipsoidal glyphs, they do not permit a straightforward visual interpretation of scaling along an eigenvector. Scaling the superquadric
glyph (c) creates a different change @ than the change @’ induced by visualizing the scaled tensor. With ellipsoid glyphs (d), they are the same.

characterize another development in tensor visualization. The standard
diffusion tensor colormap assigns (R,G,B) = (||, |y|,|z|) to principal
eigenvector v = (x,y,z) [36]. This scheme appropriately assigns the
same color to both representations v and —v of a single eigenvector.
But there is a confuser: all eight distinct vectors (£x, £y, +z) map to
the same color. Recognizing that identifying antipodal points v and —v
on the sphere produces the real projective plane RP2, Demiralp et al.
propose elgenvector coloring by embedding a standard parameteriza-
tion of RP“, the Boy’s surface, into 3D perceptual colorspace [7]. This
replaces the eight-fold ambiguity with a negligible ambiguity at the
(zero-measure) self-intersection in the Boy’s surface.

The treemap in Fig. 3(a) (top) shows sixteen nodes, colored by type,
in a tree structure [43]. In this worst-case scenario, the coincidental
horizontal and vertical lines create a large confuser. The viewer cannot
determine the depth of the hierarchy, let alone sibling relationships.
Van Wijk and van de Wetering resolve this ambiguity with cushion
treemaps [54]. The differences in abstract tree structure becomes readily
perceived when rendered as directionally shaded surfaces, subdivided
according to the hierarchy (Fig. 3(a) bottom row).

Standard parallel coordinate plots (Fig. 3(b)) have a large confuser.
Specifically, if two data points share one coordinate value, there is an
o that switches the value of a neighboring coordinate between the two
points, yet gives the same resulting visualization. Assigning to each
data point a distinguishing feature, such as color (Fig. 3(b) bottom),
removes the confuser. Straightforward fixes, however, may lead to
Invariance failures. The order of data points, which determines color,
is now a hallucinator. Previous work uses curves instead of lines to
connect parallel coordinates, which also removes the confuser [13].

Figure 3(c) depicts flow by Line Integral Convolution (LIC), which
convolves an underlying noise texture with streamlines computed with
normalized velocity [6]. Changing flow magnitude while preserving
direction is a confuser since the computed streamlines will be the
same. Modulating the LIC contrast with a monotonic function of vector
magnitude (Fig. 3(c) bottom) removes the confuser, as does convolving
with multi-frequency noise textures [24]. Though generally unwelcome,
confusers can be ignored in certain application areas. Vector field
topology, for example, creates depictions that are invariant to changes
in flow magnitude [17], in which case this confuser is intentional.
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Fig. 5: Correspondence Principle (¢, @) symmetry pairs. Correspondence asks that significant changes ¢ in data are meaningfully matched with
significant changes @ in the visual stimulus. In (a), translating one scatterplot dot is directly matched to an additive update of the corresponding
data point. In (b), a mental rotation of the glyph shape is matched with a mathematical rotation of the tensor.

4.3 Visual-Data Correspondence

The design of an elemental visualization ingredient, the arrow, can be
understood in terms of our Correspondence Principle. Just as vectors
v and —v are mathematically related by negation, we expect glyphs
visualizing these vectors (such as — and <—) to also be perceptually
related by something akin to negation or flipping. In fact, in consid-
ering a perceptual theory of flow visualization, Ware describes how
arrow shape and arrangement may be designed to trigger asymmetric
responses in particular neurons in our visual cortex [55].

Failures of the Correspondence Principle are relative to particular
data or visual transformations. For example, the visualizations of di-
rected acyclic graphs in Fig. 1(c) use color to indicate node rank. The
data symmetry « of interest here is adding redundant (rank-preserving)
edges to the graph. Force-directed node placement (Fig. 1(c) top) fails
the Correspondence Principle with this o because the layout changes
significantly (despite the rank being unchanged), with a complex vi-
sual symmetry . Directly visualizing rank with vertical position
(Fig. 1(c) bottom) solves this problem, since adding the edges cannot
change the layout significantly.

Figs. 4(a) and (b) illustrate the Correspondence Principle with two
different colormaps of elevation x relative to sea level. An interesting
data symmetry ¢ is negation ¢t (x) = —x; it preserves the coastline and
flips being above or below water. Based on opponent color theory [61],
we also define visual symmetry @ as mapping each hue to its opponent
hue (i.e. mapping blue to yellow and vice versa, while preserving
luminance). A colormap satisfies the Correspondence Principle when
the two kinds of negation in fact correspond, i.e., o and @ satisfy our
design equation (1). With the hue-and-luminance colormap in Fig. 4(a),
negating elevation and then colormapping creates (via (1)) a compli-
cated visual symmetry @’ very different than the intended ®. But with
the diverging colormap in Fig. 4(b), the symmetry @’ found by negat-
ing then colormapping is the same as the symmetry o that “negates”
hues. This (o, ®) pair solves (1) and Correspondence is satisfied. Our
theory is providing a precise mathematical demonstration of what had
been known from experience about designing diverging colormaps:
opponent hues offer a visual affordance for negating values [56]. In
particular, grays are particularly good for depicting zero because if
v(0) = gray and o(0) = 0, then w(gray) = gray.

The data symmetry o in Fig. 4(c) and (d) is scaling along a single
eigenvector, specifically scaling a large eigenvalue down to match two
smaller and equal eigenvalues. Although better than ellipsoids relative
to the Unambiguity Principle (Fig. 1(b)), the superquadric glyph in
Fig. 4(c) fails Correspondence for this scaling o. The symmetry @’
that solves (1) is not the symmetry @ that intuitively corresponds to o:
scaling the glyph by the same amount as & along the same eigenvector.
Ellipsoid glyphs (Fig. 4(d)), however, provide a visual affordance that
superquadrics lack: to see a scaled glyph and interpret it as a scaled
tensor. But the Correspondence failure is o-specific; for a different & of
possible interest, scaling equally along all eigenvectors, both ellipsoid
and superquadric glyphs satisfy Correspondence.

Figure 5 shows two more Correspondence examples. Fig. 5(a) high-
lights a single data point in a scatterplot, with which we define a
visualization symmetry @ of interest: translating the point to some-
where else in the visualization. Applying Correspondence amounts to

wp(ve(d))

ve(d)

Wp Wp = O w?

Fig. 6: A Correspondence Principle misleader of ordinal data. A
collection of hues appropriate for colormapping categorical data permits
a visual symmetry @), of permutation (left). This is misleading, since
the corresponding data permutation @, is not actually a symmetry on
the category of ordinal data. This is evident with a grayscale colormap
suited for ordinal data (right).

asking, “what change o in data corresponds to moving this point?” In
a scatterplot, & is simply an additive coordinate change. In a principal
component analysis (PCA), however, the « is harder to reason about,
since it involves the rotation induced by PCA. For this particular @, then,
we say that scatterplots better conform to the Correspondence Principle
than does PCA, and that PCA has a misleader.

Note that solving (1) with translations & and @ includes a larger
class of visualization designs than scatterplots. For example, Trumbo’s
“Rows and Columns” principle for bivariate colormaps preserves the
univariate components by encoding each axis with an independent per-
ceptual color channel [47]. The o and w involved are then translations
in the 2-D data space and in a 2-D slice of perceptual color space.

In Fig. 5(b), a tensor glyph is shown with a shaded 3D shape. A data
symmetry ¢ that rotates the tensor corresponds with a visual symmetry
o of mentally rotating the glyph geometry. The use of such a visual
symmetry is justified by knowledge of our abilities to perform mental
rotations [42] and to perceive shape from shading [20].

Most of the Correspondence failures in previous figures are jum-
blers. Figure 6 shows a misleader in displaying unemployment data
binned to create ordinal data. A collection of roughly isoluminant hues
(appropriate for categorical data [15]) affords the visual symmetry of
permutation: each image in the left pair creates an equivalent impres-
sion, and the visual symmetry @, maps between them. Solving (1)
finds the corresponding data transform j, but permutation is not a
symmetry of ordinal data [45], as is obvious with a more appropri-
ate grayscale colormap (Fig. 6 right). The isoluminant hue colormap
misled us into thinking the data was symmetric under permutation.

5 A WORKED EXAMPLE

We use our theory to reason about a sequence of design improvements
in a simple visualization, shown from left to right in Fig. 7. We start
with Jonathan Schwabish’s study and redesign [41] of a visualization
by Catherine Rampell in the New York Times [39] of the percentage
of men versus women employed as senior managers in various coun-
tries. Design #1 is due to Rampell, and Designs #2 and #3 are due
to Schwabish. Within the rest of this section, “rate” always refers to
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Correspondence failure: mismatched gap symmetry Matched gap symmetry, still invariant

#4: Plain Scatterplot #5: Decorated Scatterplot

Fig. 7: Visualizations of gender gaps (in rates of employment as senior managers) in designs #1, #2, and #3 fail the Invariance Principle by
sensitivity to permutations of countries. The scatterplot in #4 respects Invariance but lacks a clear (in the sense of Cleveland and McGill) visual
symmetry for the important employment gap data symmetry. This is remedied with annotations in the decorated scatterplot #5.

“rate of employment as senior management”. In Design #1, red bars
show the female rate, while blue dots show the male rate. For clarity in
our discussion, we use only the 14 countries with highest percentage
women employed in 2008 as senior managers.

5.1 Data symmetries model low-level tasks

We start on the left side of the commutative diagram of (1) with data
symmetries, the transformations o of data space. The o model ques-
tions and properties of the data space important for the visualization.
We think of these as a formal implementation of “low-level abstract”
operations in Munzner’s nested model [33], or like the “manipulate”
nodes in Brehmer and Munzner’s recent typology [5]. We describe
each symmetry ¢ first with words and then with equations, in which
xp and xy denote the rates for men and women, respectively.

1. ap: What if the rate was different for just one gender?
Either x}, = xw + k and x},; = xy, or, X}, = xp + k and xj,, = xw.

2. op: What if the rates for men and women were switched?
xjy = xw and xj, = xp.

3. a3: What if the gender gap in the rate was different?
Xy =xp +k and xj, = xw —k.

4. o What if the overall rate was different (the same gender gap)?

Xy =xp +k and xj, = xw +k.

An important step of our process is figuring out zow to model a low-
level operation with a specific data symmetry. Although a systematic
treatment of how to express low-level tasks as data symmetries is
beyond the scope of this paper, we offer the following as general
guidance. Starting from the description of the input data, we consider
the simplest features of interest. In this case, we want to investigate the
gender gap and total employment, in addition to specific rates. From
that, we find operations that change those features while leaving the
rest of the dataset intact, to isolate specific effects in the visualization.

We incrementally grow the set of data symmetries until we are satisfied.

Finally, we note that an incremental design based on reducing the
confuser set would naturally expose the new “visible” data symmetries
(those no longer belonging to a confuser) as a natural candidate for
interpretation as a low-level operation.

While the redesign strategy here works from data symmetries o to
visual symmetries ® to find jumblers, one can also imagine working
the other way, finding misleaders by checking if the clearest visual
symmetries @ correspond to the most important data symmetries .

5.2 Design iterations

5.2.1 Design #1: bars and dots

Shown left-most in Fig. 7, this design matches data symmetry 1 with
changes in distance between the dot and the axis (for changing x,s) or
changes of length of the bar (for changing in xy ). Distance and length

are not the same, but both rank highly with Cleveland and McGill, so we
consider these ws to respect our Correspondence Principle. Swapping
male and female employment rates with data symmetry 2 corresponds
to swapping impressions of length with impressions of distance from a
common axis, which in our case means that a dot will be placed inside
the bar. Some means of maintaining the visual contrast of dots inside
bars (as compared to the dots against the white background) may be
needed for legibility, but this does not itself violate Correspondence.
However, changing the gender gap with data symmetry 3 is not directly
matched with any element of the visual encoding, except perhaps the
gap between the dot and the top of the bar, via some Gestalt consid-
eration of negative space. This suggests a Correspondence failure:
the design does not support visually investigating the gap itself. Data
symmetry 4 reveals a similar Correspondence failure, as changes in
the overall rate of management employment are at best matched to the
midpoint between the dot and top of the bar, for which the visualization
offers no direct support.

5.2.2 Design #2: two sets of bars, different scales

Side-by-side bar charts, one for each gender, replace the overlaid bar
and dot plots. By using the same encoding for each gender, this design
displays for data symmetry 2 (swapping x3; and xy ) a straightforward
@: swap the two bars. Data symmetries 3 and 4 remain unresolved.

5.2.3 Design #3: dots with line segments, same scale

This replaces bars by dots, improving the visual symmetry matched to
data symmetries 1 and 2. We argue that with respect to these particular
data symmetries, this design respects Correspondence in the best way
known: distance from a common scale. The simple addition of a gray
line drawn between the two dots dramatically remedies the previous
problems with data symmetry 3: changing the gender gap changes the
length of the line, in addition to moving the two dots. Data symmetry
4 corresponds to moving an entire dot-line-dot assembly left or right,
which is not a simple visual affordance.

5.2.4 Design #4: Plain Scatterplot

Failures of Correspondence were identified for particular data symme-
tries in previous designs, but they all fail the Invariance Principle: the
visual impression of the data is changed by permuting the country order.
The scatterplot, however, is by nature invariant to list ordering, so it
respects Invariance with respect to permutation hallucinators. Note
that Designs #3 and #4 seem comparable in terms of Tufte’s notion of
chartjunk. In other words, the presence or absence of a hallucinator is
unrelated to the amount of unnecessary decoration on the plot. We agree
that removing chartjunk generally improves visualizations, but solving
Invariance failures involves the structure of a visualization rather than
its embellishments. The scatterplot also offers good visual symmetries
for data symmetry 1. Changing xj; or xy moves a dot horizontally
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or vertically; in either case, the position along a common scale is the
highest-ranking affordance from Cleveland and McGill. The other data
symmetries show weakness with respect to Correspondence, however,
because they correspond to moving a dot along either line xyy = —xpy
or xy = xyy, for which the design offers no clear visual help.

5.2.5 Design #5: Decorated Scatterplot

Data symmetries 2, 3 and 4 correspond to changing coordinates along
a new set of axes, namely xy = x37 and xy = —xjy. Our final design
creates explicit visual symmetries for these data symmetries by adding
support lines along those coordinates. Cleveland and McGill predict
that adding such support lines facilitates interpretation. Indeed, this
design exposes the relationships, hidden by any single ranking, that
permit informed comparisons between countries. USA and GBR dif-
fer in their gender gap, while USA and ITA differ in the total rate of
employment in management. Our design does not include a second
perpendicular set of support lines to the xy = —x) axis, but a mean-
ingful visual symmetry still encodes data symmetry 4: the position of
the intersection between the per-country support lines and the xy = xys
line. Though perhaps more subtle than the other visual symmetries, we
consider this use of position as satisfying Correspondence.

This example illustrates how our algebraic process helps decompose
the visualization evaluation and design challenge into smaller problems
of reconciling specific data symmetries (low-level tasks) with visual
symmetries (visual affordances), in a manner that requires less inspira-
tion and more mechanistic attention to detail. On the other hand, we
do not claim that the final design is superior to all possible alternatives:
our improvements are relative to the choice of low-level tasks (and
hence of data symmetries). Requiring different data symmetries, or
prioritizing them differently, can lead to different designs. For example,
one data symmetry not matched by any design above is changing the
relative gap size (xp —xw)/(xp +xw ).

6 DISCUSSION AND LIMITATIONS

This section relates our principles to similar ideas in the literature,
and discusses design decisions that strictly speaking lie outside of our
principles, but which nevertheless affect the algebraic design process.
We also discuss situations where the principles are too limiting or not
powerful enough to explain or guide current designs.

6.1 Distinctions and tradeoffs in applying the theory

Applying our design principles relies on distinguishing the data D
from the representation R, and understanding the differences between
mappings on different spaces. Carefully making these specifications
for a given design challenge is in a sense outside our principles: these
decisions define the setting in which the principles operate. In the same
way that & and @ model tasks and visual affordances, the description of
D becomes a model for the problem domain. The value of thoughtfully
characterizing these notions has been argued before with different
terminology, most notably by Munzner [33].

Consider visualizing temperatures across the globe with a colormap.
The colormap legend shows the colors ranging from the minimum to
the maximum temperature, but suppose there is no numeric scale. The
visualization is unchanged by multiplying the temperatures by a positive
non-zero constant, or adding an offset. We could say the visualization
fails Unambiguity, with the confusers just described. Or, we could
interpret the given temperature values as numbers on some arbitrarily
chosen scale (degrees Fahrenheit or Celsius). Then the visualization
satisfies the Invariance Principle with respect the arbitrariness of the
temperature scale, rather than failing Unambiguity. The difference lies
in how the given numeric values should be understood. Considering
representations of a set, we used sensitivity with respect to reordering to
exemplify Invariance failure (Fig. 1(a)), but for methods like the LineUp
system of Gratzl et al. for studying rankings [14], showing the ordering
is the goal of the visualization rather than an Unambiguity failure.

By encouraging a designer to explicitly consider data symmetries,
representation mappings and visual symmetries, we hope to understand
and inform how designers choose algorithmic elements, or innovate
new ones, when creating visualization methods. For example, faced
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with a need to blend colors and opacities, a default choice might be
the ubiquitous “over” operator [37]. Seeing that in scatterplots its
non-commutativity causes Invariance failures (Fig. 2(a) top), our so-
lution (Fig. 2(a) bottom) accumulates color separately from opacity,
then combines the average opacity and color in a separate pass. The
commutativity of addition erases ordering information from the visual-
ization. For their Splatterplots method, Mayorga and Gleicher render
overplotting results with a commutative color blending in perceptual
color space [30]. Zheng et al., on the other hand, develop an order-
enhancing variant of the over operator for volume rendering [62] to
remove a specific confuser: shuffling voxels along the viewing ray. Our
theory reconciles the contrasting choices of blending operations in the
different domains, and describes them in a uniform way.

The issue of data features and intentional confusers is raised by the
Line Integral Convolution (LIC) flow visualization in Fig. 3(c). We
removed a confuser by modifying LIC to indicate flow velocity, but
this creates a hallucinator for flow field topologists, for whom velocity
is a representation detail, and the interesting data symmetries ¢ include
changing the location and type of critical points (where the velocity is
zero). Design goals in the general area of “feature-based visualization”
are sometimes more concisely defined in terms of their intentional
confusers — the data transformations that should leave unchanged the
features of interest — than in terms of the o that might influence the
resulting visualization. In this setting, one could consider extracting two
different kinds of features from a single flow field. A strict application
of our theory might then say there are actually two different underlying
“data”, both represented by the same field, which could be confusing.

Even with clear distinctions between data and representation, the
aims of our principles may require tradeoffs. Unambiguity of the par-
allel coordinate plot (Fig. 3(b)) was achieved by adding colors to the
individual lines, at the cost of some Invariance. Similarly, while the
Correspondence Principle describes how abstract tasks on the data o
should be shown with visual changes ®, there may be many equiva-
lently effective (o, @) pairs. Our model cannot by itself resolve such
tensions, but we suggest that addressing them should be an explicit
rather an incidental part of visualization design. The tunable abstrac-
tion of Bottger et al. [4] is especially interesting in this light, in which
the user can select different visual symmetries, morphing between a
topology-centric and a geography-centric map layout. This lets the user
“choose their confuser”, a workable compromise when all desired data
symmetries cannot be simultaneously satisfied.

6.2 Generalizations of the design equation (1)

As defined, (1) is a strict equality, so any small change in a visualization
is sufficient to trigger a failure of Invariance, or adherence to Unam-
biguity. This is impractical, so we explore here some alternatives that
hinge on relaxing the notion of equality between two visualizations.
Consider using our model to design visualizations for users with
color-deficient vision. In (1), we can include composition with the
projection p to the color-deficient perceptual color space, giving

povoroo=@opovory. 2)

We implicitly used a similar idea in describing ellipsoid glyphs and their
Unambiguity failure (Fig. 1(b)). The ellipsoid glyph renderings are
exactly equal when projected onto the subspace of outlines and shad-
ows (one way of modeling bas-relief ambiguity [1]). As our models of
perception become more detailed, more sophisticated notions of equiv-
alence may be used. Using computational models of change blindness,
for example, may help designers avoid ambiguous visualizations [27].

Adding a projection step is a sensible choice whenever justified by
mathematical models of perception. Still, many interesting properties
of visualizations are not so easily captured by mathematical models. In
that case, user studies may provide evidence of distinguishability (or
invariance). Recently, Wickham, Hofmann and co-authors have started
investigating user studies as direct methods for collecting statistical
evidence [60, 18]. Combining our model with the lineup protocol, for
example, could give a direct way for testing perceptual distinguishabil-
ity of data transformation symmetries o. If the original untransformed
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Fig. 8: Hues have no intrinsic order, so the rainbow map on ordered
discrete data causes permutation misleaders @), (left). Smooth functions
on connected domains have no permutation misleaders (right).

data cannot be identified when hiding amidst the transformed versions,
then the data symmetries are effectively confusers of the visualization.

Our model can also leverage previous work on preattentiveness [16].
By explicitly matching basic data symmetries to preattentive visual stim-
uli (and other data symmetries to stimuli that are not), a designer can
create a visualization that, though static, obeys the mantra of “overview
first, details on demand”. We can also use a weaker notion of equality,
as suggested above, by defining equality of visualizations by “cannot be
distinguished in a small amount of time”. Preattentive visual channels
are the most likely to produce visualizations that satisfy Unambiguity.
A good example of this approach is Holten and van Wijk’s study of
different depictions of directed edges [19].

Our model gives a decomposition of user interaction with a visualiza-
tion in terms of (a2, @) pairs. Because these decompositions can also be
used to design visualizations that are almost equal to one another, the
model can also suggest user studies to compare the efficacy of different
visual symmetries, controlling for the other visual symmetries exist-
ing in the visualization. These examples highlight how a qualitative,
mathematical description of visualization design is not meant to replace
experimental studies, but rather to complement them, and perhaps to
provide a bridge between the majority of the visualization papers that
do not provide quantitative evaluations and the few that do [22].

6.3 Generalizations of Representation Invariance

The presence in (1) of two different representation functions | and
o models how visualization designers generally cannot control which
particular representation they are given. We now explore some ways in
which the same idea may apply more generally.

Uncertainty visualization and representation is an increasingly ac-
tive area of research [38]. If we model uncertainty with a probability
distribution and consider datasets as noisy samples from a population,
then the goal of uncertainty visualization could be understood as in-
variance under different samplings. In other words, if we model the
population of interest as the input data, and the sampling process as
a “representation mapping”, then visualizations with no depiction of
uncertainty will fail to indicate the possible range of representative
samplings, and thus risk Invariance failure. Bandwidth selection in
kernel density estimation (Fig. 2(b)) provides a specific example of this
phenomenon, in which choosing the bandwidth is a tradeoff between
too narrow (Invariance failure) and too wide (Unambiguity failure).

Similarly, many visualization techniques depend on parameters for
computation or random seeds for initialization. If we consider these
processes as analogous to representation mappings, then Invariance can
generalize the basic idea that visualizations should be robust to changes
in parameters and initialization. Finally, concepts which operate at a
higher level than visual stimuli offer a range of interesting possibilities
for resolving Invariance. An interesting recent example of this is how
Lin et al. select semantically-resonant colors to remove the arbitrariness
of mapping categories to colors [25].

6.4 Reconsidering the rainbow colormap

Despite warnings [3], the rainbow colormap remains ubiquitous. Our
theory offers a possible reason (Fig. 8). While it is true that discretely
sampled hues (e.g. red, green, yellow, blue) do not enjoy a natural
perceptual ordering, the rainbow colormap in scientific visualization is
typically used for smooth functions over connected domains.

In the smooth setting, simple permutation symmetries of the data are
impossible: one cannot change a portion of a smooth dataset without
changing its neighborhood. Over smooth domains, the application of
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Fig. 9: Three evidently different 2D projections of a 500-point sample
of the diamond dataset [59]: the first two principal components (PCA)
(a), Metric MDS (MMDS) (b), and ¢-distributed stochastic neighbor
embedding (t-SNE) [53] (c). We plan to apply our model to characterize
exactly how these methods differ.

a colormap necessarily creates local copies of the colormap legend,
which disambiguate ordering. In terms of our model, the matching
(a, w) possible on smooth spaces are more restricted than those on
discrete spaces. We are not excusing the other perceptual flaws of
rainbow colormaps (such as their uncontrolled luminance variation),
but note that their continued use in scientific visualization may be
associated with the underlying smooth data domains.

7 FUTURE WORK

We have seen here how our algebraic model explains many designs in
current visualization research and practice. Longer term, our model can
be a launching point for new investigations and applications. We would
like to reconcile our theory with previous ones, both qualitative [28,
52, 33] and quantitative [8], in a comprehensive way by characterizing
exactly when and how the theories overlap in their descriptive power
or predictions. Understanding our model’s interface with the nascent
information theory of visualization [9] may be valuable, for either
algebraically constraining the large set of @ that conserve entropy but
decrease legibility, or for quantifying the information in the (o, ®)
pairs that otherwise seem comparable according to our principles.

Our approach may also help answer specific visualization questions.
For example, we hope to study concrete differences between dimen-
sionality reduction techniques (Fig. 9), by extending our model to
infinitesimal o of data values and infinitesimal @ of point positions,
to compute partial derivatives of the mappings, which may provide a
uniform way of describing what the mappings effectively minimize.
Informative precedent may be found in previous energy-minimizing
graph drawing methods that visually reveal graph clusters [34].

Because (a, @) pairs provide explicit, unambiguous descriptions,
our algebraic process could enrich visualization design pedagogy.
When evaluating visualizations, their relative advantages, limitations,
and tradeoffs would be clearer, so class discussions and project evalua-
tions can be more productive. We also intend to revisit design studies
with an eye towards the associated (&, @) pairs: the template of Sec-
tion 5 can provide richer critiques through the lens of data symmetries.
Conversely, past and future perception research in visualization can
be evaluated through the lens of visual symmetries. Finally, our work
so far does not address interaction, which is an essential part of ap-
plied data visualization. We expect that expanding our theory to model
interactions will be challenging but rewarding.
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