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Fig. 1: Malaria cases 2010 [17] using from top to bottom, Linear bar charts, Logarithmic scale, Scale-stack bar charts, Text, Color,
and Order Of Magnitude Markers (OOMMs).

Abstract—In this paper we introduce Order of Magnitude Markers (OOMMs) as a new technique for number representation. The
motivation for this work is that many data sets require the depiction and comparison of numbers that have varying orders of magnitude.
Existing techniques for representation use bar charts, plots and colour on linear or logarithmic scales. These all suffer from related
problems. There is a limit to the dynamic range available for plotting numbers, and so the required dynamic range of the plot
can exceed that of the depiction method. When that occurs, resolving, comparing and relating values across the display becomes
problematical or even impossible for the user. With this in mind, we present an empirical study in which we compare logarithmic,
linear, scale-stack bars and our new markers for 11 different stimuli grouped into 4 different tasks across all 8 marker types.

Index Terms—Orders of magnitude, bar charts, logarithmic scale

1 INTRODUCTION

When data covers a large range of magnitudes, bar charts require a
quantization algorithm to map quantities onto a limited pixel height.
Since the dynamic range is far greater than that of the number of pix-
els available, there can be a large amount of quantization error. Many
quantities will be mapped to one pixel, or equivalently, a configura-
tion of the visual representation can represent many quantities. Fig.1
demonstrates this effect. To accommodate the largest value, the linear
bar chart representation results in many non-zero values mapping to
zero pixels.

Fig.1 also demonstrates the problem with color perception and read-
ing off number values from this single-hue color scale. Vietnam (1108)
looks to have the same color as Venezuela (19), when it has over fifty
times the number of cases. The remaining charts fare better, where it
is possible to see the difference between those two countries. Many
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visualization tasks involve comparing numbers across a 1D axis as in
Fig. 1 or across 2D representations (e.g. data represented according
to a color scale in a choropleth map). Asking questions such as How
much larger is one value compared to another add a whole new com-
plexity to the task.

Data representation using color has been the focus of prior user-
studies. The classic work of Cleveland and McGill [5] demonstrated
that color was the least effective at presenting data, and we also find
that in this work.

The most recent work in the area proposed scale-stack bar charts
[10] (also depicted in Fig. 1). A user study was carried out comparing
their novel visualization to that offered by linear and logarithmic bar
charts. In this paper we propose a set of new visual representations,
which we call Order Of Magnitude Markers (OOMMs), that visualise
the significand and exponent separately, but within a single marker
visualization.

We explore the ability of our new visual encodings to support the
significand-exponent separation in the context of high dynamic range
values. We analyze performances towards tasks requiring compari-
son and estimation of individual data values as well as tasks which
involve explicit calculation and comparison across more complex dis-
plays. Our results show this separation allows a 10× increase in the
resolving power of our markers compared to other approaches. We
present an empirical study demonstrating this effect and like the work
by Hlawatsch et al. [10], we compare it against linear and logarithmic
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bar charts. We also compare performance against text, color and other
visualization types, and introduce new tasks compared to Hlawatsch
et al.

After a study of current techniques and evaluations in Section 2,
we introduce our new Order of Magnitude Markers in Section 3. The
design and analysis of our user study are provided in Section 4 with a
discussion of the findings in Section 5.

2 LITERATURE

Approaches for presenting data with large dynamic range is an issue
discussed in the literature and on newsgroups and the blogosphere.
Here we present the current solutions to this problem:

Re-expression of data. Tukey ladder of powers [25](pp88-
90) suggests re-expressing the data using powers such as
−1,− 1

2 , log,+ 1
2 ,+1 or higher. Plotting the data on a logarith-

mic axis allows small and large magnitude values to be expressed
together. Exponential growth (e.g., population growth in the 18th

and 19th centuries) can exhibit a linear behaviour when plotted on a
logarithmic axis. This is an often used approach for scientific data,
but it is difficult to judge values and relative values on a power scale.
We explore this aspect using a logarithmic scale in our user study.

Dual scale charts. Isenberg et al. [11] report an empirical study
on the use of dual scales within charts. They present an excellent
classification of the different types of charts through the consideration
of a transformation function (from data space to display space) with
an exploration of each type they have identified. From their user study
(15 participants) they recommend cut-out charts as the most effective.
A cut-out chart consists of a full size context chart with a zoomed
section placed below. The study focused on transforming the x-axis
rather than our study which gives regard to large magnitude data on
the y-axis. We borrow terminology from their work [11] to describe
the next two types.

Panel charts. Data is divided into two panels with two different
scales [19] (Fig. 2a). One scale is chosen to allow the smaller magni-
tude data to be compared and the larger data saturates the scale. The
other scale allows the depiction and comparison of the larger data both
intra-cluster and to the smaller magnitude data. To describe the map-
ping we borrow the terminology from Isenberg et al. [11] based on the
taxonomy by Leung and Apperley [14]. The top panel of (Fig. 2a) dis-
plays the data using a linear chart with a scale able to show the whole
data range. Fig. 2b shows the transform from input data to available
range on the y-axis (line with slope=1). The bottom panel displays a
magnified region of the data focused on the smaller values in the data.
The steeper transform of Fig. 2b is used. Values that have exceeded
the range are depicted in this case using a fade towards the top of the
bar. Panel charts still suffer from problems when large magnitude data
is used. If large values are clustered closely, it is difficult to distinguish
them in the overview panel, and they saturate the focus panel. We do
not test panel charts due to this problem.
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(a) Panel chart example.
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Fig. 2: A panel chart using a small subset of the malaria data (left,
country labels omitted to save space). The transform from data value
to position on the chart y-axis (right).

Broken axis. Broken axis charts are suitable for situations when
the data contains a clusters of high magnitude and low magnitude val-
ues that need to be compared intra-cluster. A scale can be chosen that
allows all the small values to be displayed. A gap is created in the axis
and the large values then appear above this break (Fig. 3a). Fig. 3b
shows the transformation from input data to available range on the y-
axis. Note the small break on the y-axis of the transform to account
for the white-space gap. The method is successful at intra-cluster com-
parisons when there are distinct clusters at high and low magnitude. It
fails in situations where the full range of data is present since values
will fall in the cut-out range and not be presented accurately in the
chart as in this example. It is also difficult to compare values and rela-
tionships across the axis change. Since we are using data that covers
the whole range we do not test broken charts.
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(a) Broken chart example.
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(b) Value to chart y-axis transform.

Fig. 3: A broken chart using the same small subset of the malaria data
(left, country labels omitted to save space). The transform from data
value to position on the chart y-axis (right).

Depiction as area. Using area (or volume) to represent the num-
bers can allow a wider dynamic range of values to be displayed simul-
taneously. For example, 2D scatter-plots can depict a third dimension
by mapping it to the radius of the plot points (becoming Bubble charts
– see figure 2 of the study by Heer and Bostock [9] and Gapminder
[20] for example visualizations). User studies [5, 9] demonstrate that
the apparent relationship between values is often underestimated. In
essence, this approach is largely similar to re-expressing the data using
a power and plotting against a 1D scale, often leading to better percep-
tion [5]. Since this method has already been evaluated and found to be
less effective than using a logarithmic scale, we omit it from the user
study.

Scale-stack bar charts. The approach related closest to ours
[10] represents each number at multiple scales. It differs from panel
charts in that it is not limited to two arbitrarily chosen scales, but fol-
lows a logical series (power) for each successive scale. Within each
scale the number is represented linearly. We compare our work with
scale-stack bars in our user study and report our findings in Section 5.

Apart from exploring the question about which approach to follow,
there are other ways in which charts or plots can be improved to allow
better interpretation of content. These either draw on aesthetic proper-
ties or have arisen through user studies trying to discover how people
perceive relationships within different representations.

Fink et al. [7] address the problem of selecting aspect ratios for scat-
ter plots by maximizing a measure based on Delaunay triangulation.
They derive their properties by comparing to user selected scatter plots
in an empirical study. They suggest asking users to solve certain tasks
as a future study to determine their effectiveness.

Borkin et al. [4] conduct a user study with Mechanical Turk to dis-
cover what makes a visualization memorable. Visualisation types are
classified (e.g., Area, Bar, Circle, Map), and a classification appears in
their supplementary material.

Kong and Agrawala [12] present a system that is able to reverse
engineer data sets from existing bar charts and then overlay additional
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(a) Negative depicted above x-axis
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Fig. 4: Two alternative methods of displaying negative exponents and
significands for the OOMM1 marker: (a) displaying sign by colour
and (b) displaying sign by colour and direction.

cues to aid reading. Cues include reference structures (e.g., gridlines),
redundant encodings (e.g., numerical labels) and summary statistics.
The key insight is that users are given control over the additional cues
to suit their current stage of processing.

Mackinlay [15], by creating a system to chose automatically good
graphical representations for data, highlights expressiveness and ef-
fectiveness as important aspects the tool must achieve. Expressive-
ness requires that all the facts in the set must be encoded, and that
no additional information is falsely imparted by the encoding. Effec-
tiveness requires ”encoding more important information more effec-
tively”. Since this is reliant on the perceiver’s capability, some notion
of the effectiveness of different visualisation techniques is required.
Mackinlay reaches for Cleveland and McGill’s [5] work that reports
that position and length are the top two representations for accuracy
of quantitative perceptual tasks with colour being one of the least ac-
curate. Cleveland and McGill [5] also refer to Weber’s law with an
example of framed bars to demonstrate they can be useful in distin-
guishing similar lengths. They include framed rectangle charts for low
dynamic range data (a US map with murder rates per state on a 0-16
range). They also report problems of shading the whole states leads to
large areas dominating, and false clustering (of large states). By using
the framed rectangle charts and exploring quantization they are able to
reduce that domination and other clusters become clearer. Speckmann
and Verbeek [21] also tackle the problem of map region size obscur-
ing data interpretation by introducing necklace maps. Symbols (e.g.,
circles) with areas representing the data for each region are located
around the map avoiding overcrowding. We use frames around our
representations throughout the user study, and it would be interesting
additional work to test our visual makers in the context of visualizing
geographical data.

There should also be considerations of ”chartjunk” [24, 6], in the
form of frames, scales and tick marks. Talbot et al. [22] address that
problem by demonstrating an improved solution for generating and la-
beling axes. Our user study is designed to test more functional aspects
of the representations such as whether numbers can be perceived and
compared correctly, rather than whether aesthetically pleasing repre-
sentations perform better or worse. Therefore we treat each repre-
sentation in a similar manner and use scales, tick marks and frames.
Our user study does not compare embellished against non-embellished
forms. Aesthetically pleasing versions of our visualisations could be
designed once effectiveness is established.
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Fig. 5: Plot of data relating to the Chernobyl accident using the
OOMM1 candidate marker: (a) half-life of each isotope and (b) ac-
tivity released by isotope.

3 MARKER DESIGN

The motivation for this work came from a need to allow the visual
comparison of numbers with a large range of magnitudes across a net-
work. Text was problematical as due to the large range they required
great effort to compare. Mapping to colour resulted in a situation
where large values would not allow the inspection and intra-cluster
comparison of low values. Cleveland and McGill [5] suggest framed
bars for such a situation, but using a linear and logarithmic mapping
still suffered from the problems detailed above. We deconstructed a
number into its significand and exponent constituents and visualised
those separately. We found that to be effective in the task of compar-
ing numbers. The effectiveness in this case was our qualitative view on
ease of use, speed of use and accuracy. This paper reports our work to
determine quantitatively just how effective this new type of visualiza-
tion is. The tasks (described later) reflect our own usage and generally
what is required from such visualizations – comparing numbers across
the visualization (ratio), determining values and locating the highest
(or lowest).

Our design aims were:

• We wanted a visual marker flexible enough to work in a lim-
ited amount of space. This meant it would be usable in both
a chart format, where lots of markers would be shown together
(see Fig. 1), and separately, for example distributed across a net-
work or map (Task B will demonstrate this).

• It should allow the viewing of all data in a set of numbers regard-
less of its order of magnitude.

• It should allow the visualization of both positive and negative
numbers.

• It should have a greater resolving power than existing techniques.

Like scale-stack bars [10] we consider the significand and exponent
of the numbers we wish to represent, but in our design we explicitly
attribute them to different elements in the visualization. We use nor-
malised scientific notation A×10B where 1 ≤ A < 10 and B ∈ Z.

Our markers evolved over time, and ultimately we settled on
OOMM1 (see Figs. 1, 4 and 5) as satisfying all of the criteria. For
our user study we restrict consideration to positive numbers primarily
to enable fair comparison to the logarithmic scale. It also simplifies
some of the tasks. For example, if negative numbers are included,
some users may make mistakes on the ratio test even if they have suc-
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bar charts. We also compare performance against text, color and other
visualization types, and introduce new tasks compared to Hlawatsch
et al.

After a study of current techniques and evaluations in Section 2,
we introduce our new Order of Magnitude Markers in Section 3. The
design and analysis of our user study are provided in Section 4 with a
discussion of the findings in Section 5.

2 LITERATURE

Approaches for presenting data with large dynamic range is an issue
discussed in the literature and on newsgroups and the blogosphere.
Here we present the current solutions to this problem:

Re-expression of data. Tukey ladder of powers [25](pp88-
90) suggests re-expressing the data using powers such as
−1,− 1

2 , log,+ 1
2 ,+1 or higher. Plotting the data on a logarith-

mic axis allows small and large magnitude values to be expressed
together. Exponential growth (e.g., population growth in the 18th

and 19th centuries) can exhibit a linear behaviour when plotted on a
logarithmic axis. This is an often used approach for scientific data,
but it is difficult to judge values and relative values on a power scale.
We explore this aspect using a logarithmic scale in our user study.

Dual scale charts. Isenberg et al. [11] report an empirical study
on the use of dual scales within charts. They present an excellent
classification of the different types of charts through the consideration
of a transformation function (from data space to display space) with
an exploration of each type they have identified. From their user study
(15 participants) they recommend cut-out charts as the most effective.
A cut-out chart consists of a full size context chart with a zoomed
section placed below. The study focused on transforming the x-axis
rather than our study which gives regard to large magnitude data on
the y-axis. We borrow terminology from their work [11] to describe
the next two types.

Panel charts. Data is divided into two panels with two different
scales [19] (Fig. 2a). One scale is chosen to allow the smaller magni-
tude data to be compared and the larger data saturates the scale. The
other scale allows the depiction and comparison of the larger data both
intra-cluster and to the smaller magnitude data. To describe the map-
ping we borrow the terminology from Isenberg et al. [11] based on the
taxonomy by Leung and Apperley [14]. The top panel of (Fig. 2a) dis-
plays the data using a linear chart with a scale able to show the whole
data range. Fig. 2b shows the transform from input data to available
range on the y-axis (line with slope=1). The bottom panel displays a
magnified region of the data focused on the smaller values in the data.
The steeper transform of Fig. 2b is used. Values that have exceeded
the range are depicted in this case using a fade towards the top of the
bar. Panel charts still suffer from problems when large magnitude data
is used. If large values are clustered closely, it is difficult to distinguish
them in the overview panel, and they saturate the focus panel. We do
not test panel charts due to this problem.
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Fig. 2: A panel chart using a small subset of the malaria data (left,
country labels omitted to save space). The transform from data value
to position on the chart y-axis (right).

Broken axis. Broken axis charts are suitable for situations when
the data contains a clusters of high magnitude and low magnitude val-
ues that need to be compared intra-cluster. A scale can be chosen that
allows all the small values to be displayed. A gap is created in the axis
and the large values then appear above this break (Fig. 3a). Fig. 3b
shows the transformation from input data to available range on the y-
axis. Note the small break on the y-axis of the transform to account
for the white-space gap. The method is successful at intra-cluster com-
parisons when there are distinct clusters at high and low magnitude. It
fails in situations where the full range of data is present since values
will fall in the cut-out range and not be presented accurately in the
chart as in this example. It is also difficult to compare values and rela-
tionships across the axis change. Since we are using data that covers
the whole range we do not test broken charts.
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(b) Value to chart y-axis transform.

Fig. 3: A broken chart using the same small subset of the malaria data
(left, country labels omitted to save space). The transform from data
value to position on the chart y-axis (right).

Depiction as area. Using area (or volume) to represent the num-
bers can allow a wider dynamic range of values to be displayed simul-
taneously. For example, 2D scatter-plots can depict a third dimension
by mapping it to the radius of the plot points (becoming Bubble charts
– see figure 2 of the study by Heer and Bostock [9] and Gapminder
[20] for example visualizations). User studies [5, 9] demonstrate that
the apparent relationship between values is often underestimated. In
essence, this approach is largely similar to re-expressing the data using
a power and plotting against a 1D scale, often leading to better percep-
tion [5]. Since this method has already been evaluated and found to be
less effective than using a logarithmic scale, we omit it from the user
study.

Scale-stack bar charts. The approach related closest to ours
[10] represents each number at multiple scales. It differs from panel
charts in that it is not limited to two arbitrarily chosen scales, but fol-
lows a logical series (power) for each successive scale. Within each
scale the number is represented linearly. We compare our work with
scale-stack bars in our user study and report our findings in Section 5.

Apart from exploring the question about which approach to follow,
there are other ways in which charts or plots can be improved to allow
better interpretation of content. These either draw on aesthetic proper-
ties or have arisen through user studies trying to discover how people
perceive relationships within different representations.

Fink et al. [7] address the problem of selecting aspect ratios for scat-
ter plots by maximizing a measure based on Delaunay triangulation.
They derive their properties by comparing to user selected scatter plots
in an empirical study. They suggest asking users to solve certain tasks
as a future study to determine their effectiveness.

Borkin et al. [4] conduct a user study with Mechanical Turk to dis-
cover what makes a visualization memorable. Visualisation types are
classified (e.g., Area, Bar, Circle, Map), and a classification appears in
their supplementary material.

Kong and Agrawala [12] present a system that is able to reverse
engineer data sets from existing bar charts and then overlay additional
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(b) Negative depicted below x-axis

Fig. 4: Two alternative methods of displaying negative exponents and
significands for the OOMM1 marker: (a) displaying sign by colour
and (b) displaying sign by colour and direction.

cues to aid reading. Cues include reference structures (e.g., gridlines),
redundant encodings (e.g., numerical labels) and summary statistics.
The key insight is that users are given control over the additional cues
to suit their current stage of processing.

Mackinlay [15], by creating a system to chose automatically good
graphical representations for data, highlights expressiveness and ef-
fectiveness as important aspects the tool must achieve. Expressive-
ness requires that all the facts in the set must be encoded, and that
no additional information is falsely imparted by the encoding. Effec-
tiveness requires ”encoding more important information more effec-
tively”. Since this is reliant on the perceiver’s capability, some notion
of the effectiveness of different visualisation techniques is required.
Mackinlay reaches for Cleveland and McGill’s [5] work that reports
that position and length are the top two representations for accuracy
of quantitative perceptual tasks with colour being one of the least ac-
curate. Cleveland and McGill [5] also refer to Weber’s law with an
example of framed bars to demonstrate they can be useful in distin-
guishing similar lengths. They include framed rectangle charts for low
dynamic range data (a US map with murder rates per state on a 0-16
range). They also report problems of shading the whole states leads to
large areas dominating, and false clustering (of large states). By using
the framed rectangle charts and exploring quantization they are able to
reduce that domination and other clusters become clearer. Speckmann
and Verbeek [21] also tackle the problem of map region size obscur-
ing data interpretation by introducing necklace maps. Symbols (e.g.,
circles) with areas representing the data for each region are located
around the map avoiding overcrowding. We use frames around our
representations throughout the user study, and it would be interesting
additional work to test our visual makers in the context of visualizing
geographical data.

There should also be considerations of ”chartjunk” [24, 6], in the
form of frames, scales and tick marks. Talbot et al. [22] address that
problem by demonstrating an improved solution for generating and la-
beling axes. Our user study is designed to test more functional aspects
of the representations such as whether numbers can be perceived and
compared correctly, rather than whether aesthetically pleasing repre-
sentations perform better or worse. Therefore we treat each repre-
sentation in a similar manner and use scales, tick marks and frames.
Our user study does not compare embellished against non-embellished
forms. Aesthetically pleasing versions of our visualisations could be
designed once effectiveness is established.
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Fig. 5: Plot of data relating to the Chernobyl accident using the
OOMM1 candidate marker: (a) half-life of each isotope and (b) ac-
tivity released by isotope.

3 MARKER DESIGN

The motivation for this work came from a need to allow the visual
comparison of numbers with a large range of magnitudes across a net-
work. Text was problematical as due to the large range they required
great effort to compare. Mapping to colour resulted in a situation
where large values would not allow the inspection and intra-cluster
comparison of low values. Cleveland and McGill [5] suggest framed
bars for such a situation, but using a linear and logarithmic mapping
still suffered from the problems detailed above. We deconstructed a
number into its significand and exponent constituents and visualised
those separately. We found that to be effective in the task of compar-
ing numbers. The effectiveness in this case was our qualitative view on
ease of use, speed of use and accuracy. This paper reports our work to
determine quantitatively just how effective this new type of visualiza-
tion is. The tasks (described later) reflect our own usage and generally
what is required from such visualizations – comparing numbers across
the visualization (ratio), determining values and locating the highest
(or lowest).

Our design aims were:

• We wanted a visual marker flexible enough to work in a lim-
ited amount of space. This meant it would be usable in both
a chart format, where lots of markers would be shown together
(see Fig. 1), and separately, for example distributed across a net-
work or map (Task B will demonstrate this).

• It should allow the viewing of all data in a set of numbers regard-
less of its order of magnitude.

• It should allow the visualization of both positive and negative
numbers.

• It should have a greater resolving power than existing techniques.

Like scale-stack bars [10] we consider the significand and exponent
of the numbers we wish to represent, but in our design we explicitly
attribute them to different elements in the visualization. We use nor-
malised scientific notation A×10B where 1 ≤ A < 10 and B ∈ Z.

Our markers evolved over time, and ultimately we settled on
OOMM1 (see Figs. 1, 4 and 5) as satisfying all of the criteria. For
our user study we restrict consideration to positive numbers primarily
to enable fair comparison to the logarithmic scale. It also simplifies
some of the tasks. For example, if negative numbers are included,
some users may make mistakes on the ratio test even if they have suc-
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Fig. 6: The five tested markers.

cessfully identified values from their visualization. Therefore, when
deciding on markers for the user study (OOMM2-OOMM5) we did
not design them with negative significands or exponents in mind, but
they could be extended in a similar way to OOMM1. In future user
studies we would recommend using OOMM1 only, and testing both
variants of representing negative values (Fig. 4).

We developed software to experiment with different marker de-
signs. We privileged designs which favoured pre-attentive process-
ing [8] by either using minimum number of colors (e.g. min 2, max 3),
guaranteeing color and/or shape distinctiveness, associating different
colors to different shapes. We also favoured designs with low visual
complexity, where complexity was defined as the amount of detail and
intricacy in the marker visual representation [16], and computed as the
number of distinct geometrical features and colors plus the number of
overlapping graphical elements [5].

A number of prototype markers were implemented to explore differ-
ent designs showing the two-dimensional scientific number notation.
The final five marker designs developed for the user study are shown
in Fig. 6.

The first marker design OOMM1 displays the integer exponent, B,
using a stack of B coloured slabs. The real significand, A, is shown
using a narrow grey bar which is on a linear scale from 0 to 10 from
bottom to top of the marker. The aim is to provide an overview of the
size of the number using the wide blue bars and then provide detail
on demand with the narrow significand bar. Throughout we follow the
big effect/small effect convention so that the exponent which has the
biggest effect on the size of the number is represented by the wider
blue bars, and the significand by the smaller bars.

The second marker design OOMM2 uses a stack of wide blue slabs,
with intra-slab spacing, to represent order of magnitude. The signifi-
cand is embedded in the top bar as a row of coloured blocks. The total
number of blocks in the horizontal row is equal to the significand. If
the last segment is not complete then it represents the fractional part of
the significand. OOMM4 was derived from this and is identical except
that the horizontal row for the significand has taller blocks overlapping
the intra-slab spacing.

The third marker design OOMM3 uses the same idea as OOMM2
but the previous slabs that represented the order of magnitude have
been replaced by rows of dots. The significand is shown by a hor-
izontal band of colour that overlaps a number of dots equal to the
significand. Again fractional parts of a dot overlapped indicate any
fractional part of the significand. OOMM5 is derived from OOMM3
and is identical except for the taller band of colour that represents the
significand.

The OOMM-type markers can be used to represent both positive
and negative significands and positive and negative exponents. This
is illustrated by the very large and very small positive and negative
numbers shown using two variants of the OOMM1 markers in Fig. 4.
Other representations (linear, scale-stack bars) also extend to nega-
tive ranges by extending the y-axis downwards. Our representation
can also offer a more compact approach by utilising color above the

x-axis to indicate negative values. Fig. 4a represents the sign of the
exponent and the sign of the significand by colour only, while Fig. 4b
uses colour and direction to show the same information. In this case
the range of significands that can read off the same chart ranges from
-9.99 to +9.99 for all marker types and the range of exponents visible
ranges from -10 to +10. This can be helpful when viewing real data
sets such as the half-life of isotopes from the Chernobyl accident [26]
and the total activity released by those isotopes. Both these data sets
contain numbers with a very wide range of orders of magnitude, for
example, the half-life dataset ranges from 0.867 days to 137,240,000
days. These two data sets were previously visualised using the scale-
stack Bar chart [10] to good effect, though using different units on the
y-axis in both cases. Fig. 5 displays this data using OOMM1 mark-
ers where negative exponents are indicated by colour and direction.
Both marker types allow exploration of the entire data set and compar-
ison between wide ranging values. The OOMM1 provides the entire
marker height over which to display the significand and so potentially
facilitates more exact comparisons. The OOMM1 also makes clearer
the exponent being positive or negative. Examples of all the mark-
ers and a detailed description of their construction is provided in the
supplementary material.

4 USER STUDY DESIGN

We consulted with researchers in Social Sciences to identify suitable
tasks to evaluate our new visual representations. Our aim was to
choose a set of tasks that was common during the analytical process
of chartered information [23, 1], and that would still address questions
of potential interest. We identified four major tasks: target identifi-
cation, trend detection, ratio and magnitude estimation, with the latter
task relevant for analysis involving local values estimation. During the
study the four tasks were generically referred to as: Task A (magni-
tude estimation), B (target identification), C (ratio estimation) and D
(trend analysis). For conciseness of writing the same notation is used
for the remainder of the document.

Magnitude Estimation - Task A. For a question, the user is pre-
sented with one instance of a marker type representing a stimulus. The
object of the task is to estimate the quantitative value of the marker.
The user enters their estimated value via a text box and clicks on next
at which point the time to click is stored. There are two sets of stimuli
for this task which are the same for all participants. Therefore there are
16 questions. Questions are presented to users in random order within
the task. The stimulus and question order are stored in the output file
so the particular study a user experienced could be reconstructed.

Target Identification - Task B. For a question, the user is pre-
sented with thirty instances of a marker type (three rows of ten) based
on the current stimulus. The object of the task is to pick the markers
representing the largest and second largest numbers. A stimulus with
a particular marker type is presented to the user at which point a timer
is started. The time to first click to select the largest marker is stored.
The time to second click and also the interval between clicks is also
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Fig. 7: Test phases flow-chart.

stored. There are three sets of stimuli for this task which are the same
for all participants. Therefore there are thirty questions within the
first task. Questions are presented to users in random order within the
task. Positions of the thirty markers are also randomised. The stim-
ulus, question order and positional order are all stored in the output
file so the particular study a user experienced could be reconstructed.
The aim of the task is to check whether the marker representation is
effective at allowing users to compare numbers across a 2D space.

Ratio Estimation - Task C. For a question, the user is presented
with two instances α,β of a marker type (α > β ). The object of the
task is to estimate the ratio α

β . A stimulus with a particular marker
type is presented to the user at which point a timer is started. The user
enters their estimated ratio via a text box and clicks on next at which
point the time to click is stored. There are three sets of stimuli for this
task which are the same for all participants. Therefore there are thirty
questions. Questions are presented to users in random order within the
task. The stimulus and question order are stored in the output file so
the particular study a user experienced could be reconstructed.

Trends analysis - Task D. For a question, the user is presented
with five company results. Each company result is made up of a
chart of four years fictitious profits represented using the marker type.
Within each chart, the profits are rising in each year. The object of
the task is to determine the company with the highest growth of profits
over the entire four years. The user clicks on the company chart that
they determine to have the highest growth at which point the time to
click is stored. There are three sets of stimuli for this task which are
the same for all participants, each consisting of 20 numbers. Therefore
there are thirty questions. Questions are presented to users in random
order within the task. The company order is also randomised within
question. The stimulus, company order and question order are stored
in the output file so the particular study a user experienced could be
reconstructed.

4.1 Stimuli Design

The stimuli set was designed as follows: for each number a × 10b

both significand (a) and exponent (b) were created randomly with
0 ≤ a,b ≤ 10, a×10b ∈ Z and a×10b > 1. The integer check was in
place to guarantee fairness with text based representation (e.g. avoid
the additional complexity of reading floating point numbers). Zero
and one were not used so that log(a× 10b) > 0 and defined. For the
target selection task, where participants were asked to choose largest
and second largest elements, the largest element was designed as an
outstanding outlier, e.g., a number with an exponent a maximum of
four times greater in magnitude than the exponent of the distractors.
The second largest element, and all the distractors, were within two
exponent levels.

4.2 Pilot Study Design
During our pilot study the last three tasks (B, C and D) were tested
against all ten markers, namely, linear, logarithm, colour, text, scale-
stack bar and OOMM1-OOMM5. We use the following terms consis-
tently in the following. A stimulus is a set of numbers to be represented
to the user (three for each task, nine in total). A marker is one of the
ten markers just mentioned. A task is one of the three tasks described
in the following paragraphs. A question is a triple consisting of stim-
ulus, marker, task (90 in total). Questions are grouped by task. Users
had access to a calculator throughout the task if they felt it necessary.
Users were told that accuracy was of primary concern and speed would

also be measured. We conducted some training using a presentation.
Then before each task, there is a set of training questions using each
marker type and giving hints as to the correct answer to fully prepare
users for the study.

4.3 Pilot Study Analysis

The pilot study was carried out with six participants. Three were the
co-authors, two additional were PhD students, and one further was an
expert at user studies.

We had one concern that during the task it may become apparent
that the same three stimuli were being used for each marker type
within a task. The three non-author participants were unaware of
this factor. The user study expert participant confirmed this therefore
would not be a problem.

4.4 Main Study Design

The pilot study raised several issues that were addressed for the main
study. Of primary concern was the duration of the study at typically
60-75 minutes including training, leading to user fatigue. This led
us to seek ways to reduce the study time. Our analysis showed that
colour performed poorly, which agrees with previous work, e.g., see
Mackinlay [15]. It also showed that for the ratio task, it was unneces-
sary to include the text markers since users were able to read off the
two numbers and calculate the ratio (often using the calculator) reli-
ably and quickly. We also removed OOMM2 which at that point was
the poorest performing of our new markers. This left eight markers for
the trend analysis and target identification tasks (24 questions each),
and seven markers for the ratio task (21 questions). We also inserted
a fourth task, namely task A, at the start of the study as a measure
of how accurately participants understood the new visual representa-
tions. This check allowed also for the analysis of possible outliers, if
present, and unreliable data. Luckily no data were deemed unreliable,
this probably due to the participants selection process.

The final study therefore consisted of fours tasks, eleven stimuli and
eight markers. Supplementary material contains the presentation used
for participant training.

4.5 Experimental Setting

Participants. A total of 21 participants (2 females, 19 males) took
part in this experiment in return for a £10 book voucher. Participants
belonged to both the student and academic communities. Pre-requisite
to the experiment was a basic knowledge of Calculus and familiarity
with concepts such as graphs and logarithmic scale, for this reason
recruitment was restricted to the departments of Mathematics, Physics,
Computer Science and Engineering, and in the case of students, level
2 and above. Ages ranged from 20 to 33 (Mean=23, SD=3.6). All
participants had normal or corrected to normal vision and were not
informed about the purpose of the study prior to the beginning of the
session.

Apparatus. The visual stimuli and interface were created using
custom software written in C� with DirectX as the graphics library.
Experiments were run using Intel 2.8GHz Quad-Core PCs, 4GB of
RAM and Windows 7 Enterprise. The display was 19” LCD at
1440 × 900 resolution and 32bit sRGB color mode. Each monitor
was adjusted to the same brightness and level of contrast. Partici-
pants interacted with the software using a standard mouse at a desk in
a dimmed experimental room.
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Fig. 6: The five tested markers.

cessfully identified values from their visualization. Therefore, when
deciding on markers for the user study (OOMM2-OOMM5) we did
not design them with negative significands or exponents in mind, but
they could be extended in a similar way to OOMM1. In future user
studies we would recommend using OOMM1 only, and testing both
variants of representing negative values (Fig. 4).

We developed software to experiment with different marker de-
signs. We privileged designs which favoured pre-attentive process-
ing [8] by either using minimum number of colors (e.g. min 2, max 3),
guaranteeing color and/or shape distinctiveness, associating different
colors to different shapes. We also favoured designs with low visual
complexity, where complexity was defined as the amount of detail and
intricacy in the marker visual representation [16], and computed as the
number of distinct geometrical features and colors plus the number of
overlapping graphical elements [5].

A number of prototype markers were implemented to explore differ-
ent designs showing the two-dimensional scientific number notation.
The final five marker designs developed for the user study are shown
in Fig. 6.

The first marker design OOMM1 displays the integer exponent, B,
using a stack of B coloured slabs. The real significand, A, is shown
using a narrow grey bar which is on a linear scale from 0 to 10 from
bottom to top of the marker. The aim is to provide an overview of the
size of the number using the wide blue bars and then provide detail
on demand with the narrow significand bar. Throughout we follow the
big effect/small effect convention so that the exponent which has the
biggest effect on the size of the number is represented by the wider
blue bars, and the significand by the smaller bars.

The second marker design OOMM2 uses a stack of wide blue slabs,
with intra-slab spacing, to represent order of magnitude. The signifi-
cand is embedded in the top bar as a row of coloured blocks. The total
number of blocks in the horizontal row is equal to the significand. If
the last segment is not complete then it represents the fractional part of
the significand. OOMM4 was derived from this and is identical except
that the horizontal row for the significand has taller blocks overlapping
the intra-slab spacing.

The third marker design OOMM3 uses the same idea as OOMM2
but the previous slabs that represented the order of magnitude have
been replaced by rows of dots. The significand is shown by a hor-
izontal band of colour that overlaps a number of dots equal to the
significand. Again fractional parts of a dot overlapped indicate any
fractional part of the significand. OOMM5 is derived from OOMM3
and is identical except for the taller band of colour that represents the
significand.

The OOMM-type markers can be used to represent both positive
and negative significands and positive and negative exponents. This
is illustrated by the very large and very small positive and negative
numbers shown using two variants of the OOMM1 markers in Fig. 4.
Other representations (linear, scale-stack bars) also extend to nega-
tive ranges by extending the y-axis downwards. Our representation
can also offer a more compact approach by utilising color above the

x-axis to indicate negative values. Fig. 4a represents the sign of the
exponent and the sign of the significand by colour only, while Fig. 4b
uses colour and direction to show the same information. In this case
the range of significands that can read off the same chart ranges from
-9.99 to +9.99 for all marker types and the range of exponents visible
ranges from -10 to +10. This can be helpful when viewing real data
sets such as the half-life of isotopes from the Chernobyl accident [26]
and the total activity released by those isotopes. Both these data sets
contain numbers with a very wide range of orders of magnitude, for
example, the half-life dataset ranges from 0.867 days to 137,240,000
days. These two data sets were previously visualised using the scale-
stack Bar chart [10] to good effect, though using different units on the
y-axis in both cases. Fig. 5 displays this data using OOMM1 mark-
ers where negative exponents are indicated by colour and direction.
Both marker types allow exploration of the entire data set and compar-
ison between wide ranging values. The OOMM1 provides the entire
marker height over which to display the significand and so potentially
facilitates more exact comparisons. The OOMM1 also makes clearer
the exponent being positive or negative. Examples of all the mark-
ers and a detailed description of their construction is provided in the
supplementary material.

4 USER STUDY DESIGN

We consulted with researchers in Social Sciences to identify suitable
tasks to evaluate our new visual representations. Our aim was to
choose a set of tasks that was common during the analytical process
of chartered information [23, 1], and that would still address questions
of potential interest. We identified four major tasks: target identifi-
cation, trend detection, ratio and magnitude estimation, with the latter
task relevant for analysis involving local values estimation. During the
study the four tasks were generically referred to as: Task A (magni-
tude estimation), B (target identification), C (ratio estimation) and D
(trend analysis). For conciseness of writing the same notation is used
for the remainder of the document.

Magnitude Estimation - Task A. For a question, the user is pre-
sented with one instance of a marker type representing a stimulus. The
object of the task is to estimate the quantitative value of the marker.
The user enters their estimated value via a text box and clicks on next
at which point the time to click is stored. There are two sets of stimuli
for this task which are the same for all participants. Therefore there are
16 questions. Questions are presented to users in random order within
the task. The stimulus and question order are stored in the output file
so the particular study a user experienced could be reconstructed.

Target Identification - Task B. For a question, the user is pre-
sented with thirty instances of a marker type (three rows of ten) based
on the current stimulus. The object of the task is to pick the markers
representing the largest and second largest numbers. A stimulus with
a particular marker type is presented to the user at which point a timer
is started. The time to first click to select the largest marker is stored.
The time to second click and also the interval between clicks is also

Task A: 24 Trials Task B: 24 Trials Task C: 21 Trials Task D: 24 Trials
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Fig. 7: Test phases flow-chart.

stored. There are three sets of stimuli for this task which are the same
for all participants. Therefore there are thirty questions within the
first task. Questions are presented to users in random order within the
task. Positions of the thirty markers are also randomised. The stim-
ulus, question order and positional order are all stored in the output
file so the particular study a user experienced could be reconstructed.
The aim of the task is to check whether the marker representation is
effective at allowing users to compare numbers across a 2D space.

Ratio Estimation - Task C. For a question, the user is presented
with two instances α,β of a marker type (α > β ). The object of the
task is to estimate the ratio α

β . A stimulus with a particular marker
type is presented to the user at which point a timer is started. The user
enters their estimated ratio via a text box and clicks on next at which
point the time to click is stored. There are three sets of stimuli for this
task which are the same for all participants. Therefore there are thirty
questions. Questions are presented to users in random order within the
task. The stimulus and question order are stored in the output file so
the particular study a user experienced could be reconstructed.

Trends analysis - Task D. For a question, the user is presented
with five company results. Each company result is made up of a
chart of four years fictitious profits represented using the marker type.
Within each chart, the profits are rising in each year. The object of
the task is to determine the company with the highest growth of profits
over the entire four years. The user clicks on the company chart that
they determine to have the highest growth at which point the time to
click is stored. There are three sets of stimuli for this task which are
the same for all participants, each consisting of 20 numbers. Therefore
there are thirty questions. Questions are presented to users in random
order within the task. The company order is also randomised within
question. The stimulus, company order and question order are stored
in the output file so the particular study a user experienced could be
reconstructed.

4.1 Stimuli Design

The stimuli set was designed as follows: for each number a × 10b

both significand (a) and exponent (b) were created randomly with
0 ≤ a,b ≤ 10, a×10b ∈ Z and a×10b > 1. The integer check was in
place to guarantee fairness with text based representation (e.g. avoid
the additional complexity of reading floating point numbers). Zero
and one were not used so that log(a× 10b) > 0 and defined. For the
target selection task, where participants were asked to choose largest
and second largest elements, the largest element was designed as an
outstanding outlier, e.g., a number with an exponent a maximum of
four times greater in magnitude than the exponent of the distractors.
The second largest element, and all the distractors, were within two
exponent levels.

4.2 Pilot Study Design
During our pilot study the last three tasks (B, C and D) were tested
against all ten markers, namely, linear, logarithm, colour, text, scale-
stack bar and OOMM1-OOMM5. We use the following terms consis-
tently in the following. A stimulus is a set of numbers to be represented
to the user (three for each task, nine in total). A marker is one of the
ten markers just mentioned. A task is one of the three tasks described
in the following paragraphs. A question is a triple consisting of stim-
ulus, marker, task (90 in total). Questions are grouped by task. Users
had access to a calculator throughout the task if they felt it necessary.
Users were told that accuracy was of primary concern and speed would

also be measured. We conducted some training using a presentation.
Then before each task, there is a set of training questions using each
marker type and giving hints as to the correct answer to fully prepare
users for the study.

4.3 Pilot Study Analysis

The pilot study was carried out with six participants. Three were the
co-authors, two additional were PhD students, and one further was an
expert at user studies.

We had one concern that during the task it may become apparent
that the same three stimuli were being used for each marker type
within a task. The three non-author participants were unaware of
this factor. The user study expert participant confirmed this therefore
would not be a problem.

4.4 Main Study Design

The pilot study raised several issues that were addressed for the main
study. Of primary concern was the duration of the study at typically
60-75 minutes including training, leading to user fatigue. This led
us to seek ways to reduce the study time. Our analysis showed that
colour performed poorly, which agrees with previous work, e.g., see
Mackinlay [15]. It also showed that for the ratio task, it was unneces-
sary to include the text markers since users were able to read off the
two numbers and calculate the ratio (often using the calculator) reli-
ably and quickly. We also removed OOMM2 which at that point was
the poorest performing of our new markers. This left eight markers for
the trend analysis and target identification tasks (24 questions each),
and seven markers for the ratio task (21 questions). We also inserted
a fourth task, namely task A, at the start of the study as a measure
of how accurately participants understood the new visual representa-
tions. This check allowed also for the analysis of possible outliers, if
present, and unreliable data. Luckily no data were deemed unreliable,
this probably due to the participants selection process.

The final study therefore consisted of fours tasks, eleven stimuli and
eight markers. Supplementary material contains the presentation used
for participant training.

4.5 Experimental Setting

Participants. A total of 21 participants (2 females, 19 males) took
part in this experiment in return for a £10 book voucher. Participants
belonged to both the student and academic communities. Pre-requisite
to the experiment was a basic knowledge of Calculus and familiarity
with concepts such as graphs and logarithmic scale, for this reason
recruitment was restricted to the departments of Mathematics, Physics,
Computer Science and Engineering, and in the case of students, level
2 and above. Ages ranged from 20 to 33 (Mean=23, SD=3.6). All
participants had normal or corrected to normal vision and were not
informed about the purpose of the study prior to the beginning of the
session.

Apparatus. The visual stimuli and interface were created using
custom software written in C� with DirectX as the graphics library.
Experiments were run using Intel 2.8GHz Quad-Core PCs, 4GB of
RAM and Windows 7 Enterprise. The display was 19” LCD at
1440 × 900 resolution and 32bit sRGB color mode. Each monitor
was adjusted to the same brightness and level of contrast. Partici-
pants interacted with the software using a standard mouse at a desk in
a dimmed experimental room.
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Procedure. Fig. 7 illustrates the experimental structure. The ex-
periment began with a brief overview read by the experimenter using
a predefined script. Detailed instructions were then given through a
self-paced slide presentation. The presentation included a description
of the study and also a briefing on how to interpret each of the markers,
participants also received a colour copy of the presentation for refer-
ence during the study if desired. The experiment was divided into 4
main tasks. Within Task B and D each participant completed a total of
24 trials, Task A featured 16 trials. Task C featured instead a total of 21
trials (as the text marker was removed as discussed in section 4.4). The
4 tasks were always completed in sequential order. Given the nature of
the experiment each section assessed a different aspect of the analyt-
ical process. Maintaining the same section order for each participant
meant that each participant experienced similar experimental condi-
tions. This allowed for a robust analysis of the responses. Randomness
was introduced at trial level. Within a task, trials were randomized to
avoid learning effects. A training section preceded each task to famil-
iarize the participant with both task and markers. For Task A, B and
D and a total of 8 practice trials (one per marker) were completed, for
Task C a total of 7 trials (one per marker) were completed. Each train-
ing trial included a feedback to the participant regarding the correct
answer. Participants were invited to take a short break at the end of
each task, if needed. Participants were invited not to take breaks once
a task had been commenced. The study was closely monitored and
participants abode to the study requirements. When all tasks had been
completed each participant completed a short debriefing questionnaire.
The purpose of the questionnaire was to obtain comments and recom-
mendations concerning both the experimental procedure and design
and usability of the OOMMs. Questionnaires were accompanied by a
short post-testing interview. Due to the qualitative nature of the feed-
back, results were used to support the discussion of quantitative results
gathered from the testing phase.

4.6 Main Study Analysis
In our analysis we mainly considered the effect of task vs. marker type.
We focused on a comparison of the newly designed markers perfor-
mances against state of the art markers as this was our primary research
question. We made no distinction in terms of the use of markers across
different tasks by participant. For Task A and C correct answers were
given a 20% error tolerance, therefore in a second phase of analysis we
also looked at the performances, in these particular tasks, for varying
level of tolerance. Section 4.6.1 describes the overall results. To per-
form our analysis, as the data is not always normally distributed, we
used a non-parametric Friedman test with a standard significance level
α = 0.05 to determine statistical significance between conditions. Post
hoc analysis was performed via separate Wilcoxon signed rank-tests
on combinations of related groups for which significance was found.
The significance threshold was adjusted using a Bonferroni correction,
with corrected significance value of α = 0.002. For cases in which
both time and error data produced significant results, we performed a
correlation analysis over all participants and tasks to see if there was a
significant negative correlation, which would indicate the presence of a
trade-off effect (e.g. less time led to more errors). When data showed a
marked deviation from normality we adopted a non-parametric Spear-
man correlation measure instead of the traditional Pearson’s.

Magnitude Estimation: Task A. Performance in Task A, as a
function of marker type, is summarized in Fig. 8. A noticeable varia-
tion is visible across markers, the Friedman’s test showed a significant
main effect in both accuracy (χ2 = 42.75, p � 0.05) and response
time (χ2 = 50.143, p � 0.05). A closer analysis showed:

• Mean Accuracy
– OOMM1 markers (mean = .88) were significantly more

accurate than logarithmic (mean = .52) (p � 0.002);
– OOMM3 markers (mean = .88) were significantly more

accurate than logarithmic (mean = .52) and scale-stack bar
(mean = .69) (p � 0.002);

– OOMM4 markers (mean = .88) were significantly more
accurate than logarithmic (mean = .52) (p � 0.002).

– OOMM5 markers (mean = .84) were significantly more
accurate than logarithmic (mean = .52) (p � 0.002), and
scale-stack bar (mean = .69) (p � 0.002).

• Mean Response Time

– OOMM1 markers (mean = 19.63) were significantly faster
than linear (mean = 34.45) (p � 0.002) and OOMM4
(mean = 19.14) (p = 0.002);

– OOMM3 markers (mean = 17.8) were significantly faster
than linear (mean = 34.45), logarithmic (mean = 25.88),
scale-stack bar (mean = 29.49) (p � 0.001).

– OOMM4 markers (mean = 19.14) were significantly faster
than linear (mean = 34.45) and logarithmic (mean = 25.88)
(p � 0.002). OOMM4 markers were significantly slower
than text (mean = 13.48) (p � 0.002).

No other significant differences were found.

Target Identification: Task B. Performance in Task B, as a func-
tion of marker type, are summarized in Fig. 8. A noticeable variation is
visible across markers, the Friedman’s test showed a significant main
effect in both accuracy (χ2 = 82.205, p � 0.05) and response time
(χ2 = 78.444, p � 0.05). A closer analysis showed:

• Mean Accuracy

– OOMM1 markers (mean = .82) were significantly more
accurate than linear (mean = .41), logarithmic (mean = .42)
and scale-stack bar (mean = .52) (p � 0.002);

– OOMM3 markers (mean = .93) were significantly more
accurate than linear (mean = .41), logarithmic (mean =
.42), scale-stack bar (mean = .52) and OOMM1 (mean =
.82) (p � 0.002);

– OOMM4 markers (mean = .93) were significantly more
accurate than linear (mean = .41), logarithmic (mean =
.42), scale-stack bar (mean = .52) and OOMM1 (mean =
.82) (p � 0.002);

– OOMM5 markers (mean = .88) were significantly more
accurate than linear (mean = .41), logarithmic (mean = .42)
and scale-stack bar (mean = .52) (p � 0.002).

• Mean Response Time

– OOMM1 markers (mean = 17.95) were significantly
slower than linear (mean = 11.22) and significantly faster
than scale-stack bar (mean = 24.71) (p � 0.002). As
OOMM1 markers are slower but more accurate than lin-
ear, a correlation test of time vs. accuracy was performed
to detect any trade-off effect. The correlation result was
non-negative (0.043) meaning that faster responses did not
led to more errors (and vice-versa);

– OOMM3 markers (mean = 14.56) were significantly
slower than linear (mean = 11.22) (p � 0.002), and signif-
icantly faster than OOMM1 (mean = 17.95), logarithmic
(mean = 19.42), scale-stack bar (mean = 24.71), text (mean
= 18.98) and OOMM4 (mean = 16.48) (p � 0.002). As
OOMM3 markers are slower but more accurate than lin-
ear a correlation test of time vs. accuracy was performed
to detected any trade-off effect. The correlation result was
non-negative (0.032) meaning that faster responses did not
led to more errors (and vice-versa);

– OOMM4 markers (mean = 16.48) were significantly
slower than linear (mean = 11.22) and OOMM3 (mean
= 14.56) (p � 0.002), and significantly faster than scale-
stack bar (mean = 24.71) and OOMM5 (mean = 14.19)
(p � 0.05). As OOMM4 markers are slower but more ac-
curate than linear, a correlation test of time vs. accuracy
was performed to detect any trade-off effect. The corre-
lation result was non-negative (0.010) meaning that faster
responses did not led to more errors (and vice-versa);

– OOMM5 markers (mean = 14.19) were significantly
slower than linear (mean = 11.22) and OOMM4 (mean =
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Fig. 8: Analysis of performance results for Tasks A and B, (mean, median) values are indicated below each bar. Error bars show 95% confidence
intervals. Bars are colour-coded using RColorBrewer package [18].
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Fig. 9: Analysis of performance results for Task C and D, (mean, median) values are indicated below each bar. Error bars show 95% confidence
intervals.

16.48) (p � 0.05). OOMM5 markers were significantly
faster than logarithmic (mean = 19.42 ), scale-stack bar
(mean = 24.71), text (mean = 18.98) and OOMM1 (mean
= 17.95) (p � 0.002). As OOMM5 markers are slower
but more accurate than linear, a correlation test of time
vs. accuracy was performed to detect any trade-off effect.
The correlation result was non-negative (0.436) meaning
that faster responses did not led to more errors (and vice-
versa);

No other significant differences were found.

Ratio Estimation: Task C. Performance in Task C, as a function
of marker type, is summarized in Fig. 9. As aforementioned, due to the
nature of the task (computing the ratio of two numbers) performances
related to text based stimula were not considered. A noticeable varia-
tion is visible across markers, the Friedman’s test showed a significant
main effect in both accuracy (χ2 = 88.85, p � 0.05) and response
time (χ2 = 55.111, p � 0.05). A closer analysis showed:

• Mean Accuracy

– OOMM1 markers (mean = .88) were significantly more
accurate than linear (mean = .22), logarithmic (mean = .55)
and scale-stack bar (mean = .63) (p � 0.002);

– OOMM3 markers (mean = .87) were significantly more
accurate than linear (mean = .22) and logarithmic (mean
= .55). A trend towards significance was found between
OOMM3 and scale-stack bar (mean = .63) (p = 0.018),
further analysis showed a small effect size (r = .29);

– OOMM4 markers (mean = .88) were significantly more
accurate than linear (mean = .22) and logarithmic (mean =
.55) (p � 0.002).

– OOMM5 markers (mean = .88) were significantly more
accurate than linear (mean = .22), logarithmic (mean = .55)
and scale-stack bar (mean = .63) (p � 0.002).

• Mean Response Time

– OOMM1 markers (mean = 30.94) were significantly faster
than OOMM4 (mean = 36.24) (p � 0.002).

– OOMM3 markers (mean = 30.63) were significantly faster
than OOMM4 (mean = 36.24) and scale-stack bar (mean =
37.23) (p � 0.002);

– OOMM4 markers (mean = 36.24) were significantly
slower than logarithmic (mean = 28.39), OOMM1 and
OOMM3 (p � 0.05). As OOMM4 markers are slower but
more accurate than logarithmic, a correlation test of time
vs. accuracy was performed to detect any trade-off effect.
The correlation result was non-negative (0.271) meaning
that faster responses did not led to more errors (and vice-
versa).

No other significant differences were found.

Trend Analysis: Task D. Performance in Task D, as a function
of marker type, is summarized in Fig. 9. A small variation is visible
across markers for accuracy, while a more noticeable variation is visi-
ble for response time. The Friedman’s test showed a significant main
effect in both accuracy (χ2 = 18.667, p � 0.05) and response time
(χ2 = 61.667, p � 0.05). A closer analysis showed:
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Procedure. Fig. 7 illustrates the experimental structure. The ex-
periment began with a brief overview read by the experimenter using
a predefined script. Detailed instructions were then given through a
self-paced slide presentation. The presentation included a description
of the study and also a briefing on how to interpret each of the markers,
participants also received a colour copy of the presentation for refer-
ence during the study if desired. The experiment was divided into 4
main tasks. Within Task B and D each participant completed a total of
24 trials, Task A featured 16 trials. Task C featured instead a total of 21
trials (as the text marker was removed as discussed in section 4.4). The
4 tasks were always completed in sequential order. Given the nature of
the experiment each section assessed a different aspect of the analyt-
ical process. Maintaining the same section order for each participant
meant that each participant experienced similar experimental condi-
tions. This allowed for a robust analysis of the responses. Randomness
was introduced at trial level. Within a task, trials were randomized to
avoid learning effects. A training section preceded each task to famil-
iarize the participant with both task and markers. For Task A, B and
D and a total of 8 practice trials (one per marker) were completed, for
Task C a total of 7 trials (one per marker) were completed. Each train-
ing trial included a feedback to the participant regarding the correct
answer. Participants were invited to take a short break at the end of
each task, if needed. Participants were invited not to take breaks once
a task had been commenced. The study was closely monitored and
participants abode to the study requirements. When all tasks had been
completed each participant completed a short debriefing questionnaire.
The purpose of the questionnaire was to obtain comments and recom-
mendations concerning both the experimental procedure and design
and usability of the OOMMs. Questionnaires were accompanied by a
short post-testing interview. Due to the qualitative nature of the feed-
back, results were used to support the discussion of quantitative results
gathered from the testing phase.

4.6 Main Study Analysis
In our analysis we mainly considered the effect of task vs. marker type.
We focused on a comparison of the newly designed markers perfor-
mances against state of the art markers as this was our primary research
question. We made no distinction in terms of the use of markers across
different tasks by participant. For Task A and C correct answers were
given a 20% error tolerance, therefore in a second phase of analysis we
also looked at the performances, in these particular tasks, for varying
level of tolerance. Section 4.6.1 describes the overall results. To per-
form our analysis, as the data is not always normally distributed, we
used a non-parametric Friedman test with a standard significance level
α = 0.05 to determine statistical significance between conditions. Post
hoc analysis was performed via separate Wilcoxon signed rank-tests
on combinations of related groups for which significance was found.
The significance threshold was adjusted using a Bonferroni correction,
with corrected significance value of α = 0.002. For cases in which
both time and error data produced significant results, we performed a
correlation analysis over all participants and tasks to see if there was a
significant negative correlation, which would indicate the presence of a
trade-off effect (e.g. less time led to more errors). When data showed a
marked deviation from normality we adopted a non-parametric Spear-
man correlation measure instead of the traditional Pearson’s.

Magnitude Estimation: Task A. Performance in Task A, as a
function of marker type, is summarized in Fig. 8. A noticeable varia-
tion is visible across markers, the Friedman’s test showed a significant
main effect in both accuracy (χ2 = 42.75, p � 0.05) and response
time (χ2 = 50.143, p � 0.05). A closer analysis showed:

• Mean Accuracy
– OOMM1 markers (mean = .88) were significantly more

accurate than logarithmic (mean = .52) (p � 0.002);
– OOMM3 markers (mean = .88) were significantly more

accurate than logarithmic (mean = .52) and scale-stack bar
(mean = .69) (p � 0.002);

– OOMM4 markers (mean = .88) were significantly more
accurate than logarithmic (mean = .52) (p � 0.002).

– OOMM5 markers (mean = .84) were significantly more
accurate than logarithmic (mean = .52) (p � 0.002), and
scale-stack bar (mean = .69) (p � 0.002).

• Mean Response Time

– OOMM1 markers (mean = 19.63) were significantly faster
than linear (mean = 34.45) (p � 0.002) and OOMM4
(mean = 19.14) (p = 0.002);

– OOMM3 markers (mean = 17.8) were significantly faster
than linear (mean = 34.45), logarithmic (mean = 25.88),
scale-stack bar (mean = 29.49) (p � 0.001).

– OOMM4 markers (mean = 19.14) were significantly faster
than linear (mean = 34.45) and logarithmic (mean = 25.88)
(p � 0.002). OOMM4 markers were significantly slower
than text (mean = 13.48) (p � 0.002).

No other significant differences were found.

Target Identification: Task B. Performance in Task B, as a func-
tion of marker type, are summarized in Fig. 8. A noticeable variation is
visible across markers, the Friedman’s test showed a significant main
effect in both accuracy (χ2 = 82.205, p � 0.05) and response time
(χ2 = 78.444, p � 0.05). A closer analysis showed:

• Mean Accuracy

– OOMM1 markers (mean = .82) were significantly more
accurate than linear (mean = .41), logarithmic (mean = .42)
and scale-stack bar (mean = .52) (p � 0.002);

– OOMM3 markers (mean = .93) were significantly more
accurate than linear (mean = .41), logarithmic (mean =
.42), scale-stack bar (mean = .52) and OOMM1 (mean =
.82) (p � 0.002);

– OOMM4 markers (mean = .93) were significantly more
accurate than linear (mean = .41), logarithmic (mean =
.42), scale-stack bar (mean = .52) and OOMM1 (mean =
.82) (p � 0.002);

– OOMM5 markers (mean = .88) were significantly more
accurate than linear (mean = .41), logarithmic (mean = .42)
and scale-stack bar (mean = .52) (p � 0.002).

• Mean Response Time

– OOMM1 markers (mean = 17.95) were significantly
slower than linear (mean = 11.22) and significantly faster
than scale-stack bar (mean = 24.71) (p � 0.002). As
OOMM1 markers are slower but more accurate than lin-
ear, a correlation test of time vs. accuracy was performed
to detect any trade-off effect. The correlation result was
non-negative (0.043) meaning that faster responses did not
led to more errors (and vice-versa);

– OOMM3 markers (mean = 14.56) were significantly
slower than linear (mean = 11.22) (p � 0.002), and signif-
icantly faster than OOMM1 (mean = 17.95), logarithmic
(mean = 19.42), scale-stack bar (mean = 24.71), text (mean
= 18.98) and OOMM4 (mean = 16.48) (p � 0.002). As
OOMM3 markers are slower but more accurate than lin-
ear a correlation test of time vs. accuracy was performed
to detected any trade-off effect. The correlation result was
non-negative (0.032) meaning that faster responses did not
led to more errors (and vice-versa);

– OOMM4 markers (mean = 16.48) were significantly
slower than linear (mean = 11.22) and OOMM3 (mean
= 14.56) (p � 0.002), and significantly faster than scale-
stack bar (mean = 24.71) and OOMM5 (mean = 14.19)
(p � 0.05). As OOMM4 markers are slower but more ac-
curate than linear, a correlation test of time vs. accuracy
was performed to detect any trade-off effect. The corre-
lation result was non-negative (0.010) meaning that faster
responses did not led to more errors (and vice-versa);

– OOMM5 markers (mean = 14.19) were significantly
slower than linear (mean = 11.22) and OOMM4 (mean =
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Fig. 8: Analysis of performance results for Tasks A and B, (mean, median) values are indicated below each bar. Error bars show 95% confidence
intervals. Bars are colour-coded using RColorBrewer package [18].
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Fig. 9: Analysis of performance results for Task C and D, (mean, median) values are indicated below each bar. Error bars show 95% confidence
intervals.

16.48) (p � 0.05). OOMM5 markers were significantly
faster than logarithmic (mean = 19.42 ), scale-stack bar
(mean = 24.71), text (mean = 18.98) and OOMM1 (mean
= 17.95) (p � 0.002). As OOMM5 markers are slower
but more accurate than linear, a correlation test of time
vs. accuracy was performed to detect any trade-off effect.
The correlation result was non-negative (0.436) meaning
that faster responses did not led to more errors (and vice-
versa);

No other significant differences were found.

Ratio Estimation: Task C. Performance in Task C, as a function
of marker type, is summarized in Fig. 9. As aforementioned, due to the
nature of the task (computing the ratio of two numbers) performances
related to text based stimula were not considered. A noticeable varia-
tion is visible across markers, the Friedman’s test showed a significant
main effect in both accuracy (χ2 = 88.85, p � 0.05) and response
time (χ2 = 55.111, p � 0.05). A closer analysis showed:

• Mean Accuracy

– OOMM1 markers (mean = .88) were significantly more
accurate than linear (mean = .22), logarithmic (mean = .55)
and scale-stack bar (mean = .63) (p � 0.002);

– OOMM3 markers (mean = .87) were significantly more
accurate than linear (mean = .22) and logarithmic (mean
= .55). A trend towards significance was found between
OOMM3 and scale-stack bar (mean = .63) (p = 0.018),
further analysis showed a small effect size (r = .29);

– OOMM4 markers (mean = .88) were significantly more
accurate than linear (mean = .22) and logarithmic (mean =
.55) (p � 0.002).

– OOMM5 markers (mean = .88) were significantly more
accurate than linear (mean = .22), logarithmic (mean = .55)
and scale-stack bar (mean = .63) (p � 0.002).

• Mean Response Time

– OOMM1 markers (mean = 30.94) were significantly faster
than OOMM4 (mean = 36.24) (p � 0.002).

– OOMM3 markers (mean = 30.63) were significantly faster
than OOMM4 (mean = 36.24) and scale-stack bar (mean =
37.23) (p � 0.002);

– OOMM4 markers (mean = 36.24) were significantly
slower than logarithmic (mean = 28.39), OOMM1 and
OOMM3 (p � 0.05). As OOMM4 markers are slower but
more accurate than logarithmic, a correlation test of time
vs. accuracy was performed to detect any trade-off effect.
The correlation result was non-negative (0.271) meaning
that faster responses did not led to more errors (and vice-
versa).

No other significant differences were found.

Trend Analysis: Task D. Performance in Task D, as a function
of marker type, is summarized in Fig. 9. A small variation is visible
across markers for accuracy, while a more noticeable variation is visi-
ble for response time. The Friedman’s test showed a significant main
effect in both accuracy (χ2 = 18.667, p � 0.05) and response time
(χ2 = 61.667, p � 0.05). A closer analysis showed:
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Fig. 10: Task A and C - Comparison of measured accuracy at different
levels of error tolerance. Points, from left to right, depict the perfor-
mances at 2%,5%,10%,20% tolerance values respectively, data are
plotted using power trendlines of measured accuracy.

• Mean Accuracy

– OOMM1 markers (mean = .809) were significantly less
accurate than linear (mean = .98) (p � 0.002);

– OOMM3 markers (mean = .79) were significantly less ac-
curate than linear (mean = .98) (p � 0.002);

• Mean Response Time

– OOMM1 markers (mean = 8.93) were significantly slower
than linear (mean = 3.67), logarithmic (mean = 6.73),
OOMM4 (mean = 7.4) and OOMM5 (mean = 7.41) (p �
0.002);

– OOMM3 markers (mean = 8.17) were significantly slower
than linear (mean = 3.67) (p � 0.05), and significantly
faster than text (mean = 10.43) (p � 0.002);

– OOMM4 markers (mean = 7.4) were significantly slower
than linear (mean = 3.67). OOMM4 markers were signifi-
cantly faster than text (mean = 10.43) (p � 0.05);

– OOMM5 markers (mean = 22.08) were significantly
slower than linear (mean = 3.67) (p � 0.002). OOMM5
markers were significantly faster than text (mean = 10.43)
(p � 0.002).

No other significant differences were found.

4.6.1 Varying Error Tolerance
Measurements of physical quantities are subject to inaccuracies also
referred to as uncertainties. Value estimation is likely to deviate from
the unknown, true, value of the quantity. Task A and Task C both
involved estimation of an unknown value therefore answers were con-
sidered correct if falling within a predefined error tolerance (e.g., de-
viation from the actual value). We empirically chose three levels of
tolerance: 20%, 10%, 5% and 2%. We compared accuracy results by
varying tolerance level and found significant differences. The Fried-
man’s test showed a significant main effect in accuracy for both Task A
and Task C. In particular for Task A: at 2% (χ2 = 96.709, p � 0.05),
at 5% (χ2 = 80.595, p � 0.05), at 10% (χ2 = 58.214, p � 0.05).
For Task C: at 2% (χ2 = 71.186, p � 0.05), at 5% (χ2 = 55.818,
p � 0.05), at 10% (χ2 = 71.277, p � 0.05). A comparison of perfor-
mance behaviours in terms of accuracy is depicted in Fig. 10. In ta-

Table 1: Task A results. p-values of post-hoc results analysis, using a
Bonferroni corrected significance value of α = 0.002, for the effects
of varying error tolerance level on accuracy. Pairwise significant dif-
ferences are highlighted in light blue, if the first member of the pair
is significantly more accurate than the second member, and red, if the
second member of the pair is significantly more accurate than the first.
SSB=Scale-Stack Bar.

Task A
Error Tolerance

2% 5% 10% 20%

Pa
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is
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ns

OOMM1 vs. Linear 0.13 0.73 0.059 0.024
OOMM1 vs. Log � .001 � .001 � .001 � .001
OOMM1 vs. SSB � .001 � .001 0.02 0.134
OOMM1 vs. Text � .001 0.20 0. 20 0.317
OOMM3 vs. Linear � .001 � .001 0.10 0.317
OOMM3 vs. Log 0.059 � .001 � .001 � .001
OOMM3 vs. SSB � .001 1.0 � .001 0.002
OOMM3 vs. Text � .001 � .001 0.52 0.7
OOMM4 vs. Linear 0.28 1.0 0.1 0.059
OOMM4 vs. Log � .001 � .001 � .001 � .001
OOMM4 vs. SSB � .001 � .001 � .001 0.16
OOMM4 vs. Text 0.01 0.52 0.73 0.73
OOMM5 vs. Linear � .001 � .001 0.2 0.1
OOMM5 vs. Log 0.41 � .001 � .001 � .001
OOMM5 vs. SSB 0.83 0.52 0.002 0.001
OOMM5 vs. Text � .001 � .001 0.2 0.73
OOMM1 vs. OOMM3 � .001 � .001 1.0 0.48
OOMM1 vs. OOMM4 0.15 1.0 0.76 1.0
OOMM1 vs. OOMM5 � .001 � .001 0.36 0.73
OOMM3 vs. OOMM4 � .001 � .001 0.65 0.31
OOMM3 vs. OOMM5 0.41 1.0 0.25 0.31
OOMM4 vs. OOMM5 � .001 � .001 0.25 0.65

bles 1 and 2 we report the significant differences between markers. In
Task A a trend is visible in which OOMM1 and OOMM4 outperform
logarithmic across all four threshold levels, and scale-stack bar for the
first three threshold levels. In Task C OOMM1 outperforms linear,
logarithmic and scale-stack bar, followed by OOMM4 and OOMM5
which outperform linear and logarithmic across all four threshold lev-
els.

5 FINDINGS AND DISCUSSION

OOMM markers performances. The overall performance of
OOMM markers varied considerably across tasks. When explicit
quantitative evaluation (e.g. Task A and C) was required OOMM
markers performed consistently more accurately than logarithmic and
scale-stack bars (for tolerance 10%, Task A) and linear, logarithmic
and scale-stack bars (for tolerances 10% and 2%, Task C), see tables 1
and 2. Task C involved the computation of ratio between two num-
bers, the increase in the dynamic range introduced by OOMM markers
made it easier to the user to provide more accurate answers.

When the task involved target identification (e.g. Task B) OOMM
markers performed consistently more accurately than linear, loga-
rithmic and scale-stack bars and consistently faster than logarithmic
(OOMM1, OOMM3, OOMM4 and OOMM5) and scale-stack bar
(OOMM3, OOMM4, OOMM5, OOMM5). Within the same task
OOMM markers were also consistently slower than linear. Percep-
tual load associated with the increase in visual details and features of
the new markers can be one of the reason behind the increase in re-
sponse time. Cognitive load is also augmented by the learning toll
induced by the novelty of the OOMMs visual design, as we recall par-
ticipants needed to be familiar with concepts such as logarithmic scale
and standard charts. It is however interesting to notice how the novelty
effect should not be considered when analysing performances against
scale-stack bars. It is interesting to note that faster responses did not

Table 2: Task C results. p-values of post-hoc results analysis, using
a Bonferroni corrected significance value of α = 0.0027, for the ef-
fects of varying error tolerance level on accuracy. Pairwise significant
differences are highlighted in light blue, if the first member of a pair
is significantly more accurate than the second member, and red, if the
second member of a pair is significantly more accurate than the first.

Task C
Error Tolerance

2% 5% 10% 20%
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OOMM1 vs. Linear � .001 � .001 � .001 � .001
OOMM1 vs. Log � .001 � .001 � .001 � .001
OOMM1 vs. SSB � .001 � .001 � .001 0.001
OOMM3 vs. Linear � .001 � .001 � .001 � .001
OOMM3 vs. Log � .001 0.07 � .001 � .001
OOMM3 vs. SSB � .001 0.8 0.04 0.04
OOMM4 vs. Linear � .001 � .001 � .001 � .001
OOMM4 vs. Log � .001 � .001 � .001 � .001
OOMM4 vs. SSB � .001 0.1 � .001 0.07
OOMM5 vs. Linear � .001 � .001 � .001 � .001
OOMM5 vs. Log � .001 � .001 � .001 � .001
OOMM5 vs. SSB � .001 0.4 � .001 0.002
OOMM1 vs. OOMM3 � .001 0.01 0.1 0.52
OOMM1 vs. OOMM4 0.59 0.08 0.56 0.76
OOMM1 vs. OOMM5 � .001 0.002 0.24 0.73
OOMM3 vs. OOMM4 0.24 0.09 0.2 073
OOMM3 vs. OOMM5 0.15 0.2 0.31 0.7
OOMM4 vs. OOMM5 0.03 0.24 0.73 1.0

lead to more errors and that slower responses did not imply a loss in
accuracy either.

When the task involved both target identification and quantitative
evaluation (e.g. Task D) OOMM markers were consistently less ac-
curate and slower than linear. It is interesting to notice how OOMM1
markers were also significantly slower than scale-stack bar, this re-
sult could derive from the higher semantic complexity of the OOMM1
markers.

Semantic complexity, lack of familiarity are all elements which
could have affected performances of OOMM markers, and, to be fair,
scale-stack bars as well. Future investigations should address both
aspects by looking at the marker’s design features which, if consid-
ered in the context of large datasets, experience similar limitations to
that of glyph design, and learnability, by assessing the learning curve
of users [2, 3, 13]. Semantic complexity and learnability are closely
related concepts, simpler representations are easier to learn, the chal-
lenge is to find the appropriate trade-off between simplicity and ex-
pressiveness.

Text based visualization performances. A full comparison of per-
formances across all representations showed significant differences in
accuracy and reaction time of textual representations, versus other vi-
sual representations such as linear, logarithmic and scale-stack bars, in
tasks involving magnitude estimation or target identification (e.g. Task
A and B). For magnitude estimation (Task A), text representations per-
formed significantly faster than linear, logarithmic and scale-stack bars
but more accurately only for low threshold levels (e.g. 2% and 5%).
For Task A, results are somehow expected since participants only had
to read in the value of a number in decimal form.

For target identification (Task B) textual representations performed
significantly more accurately than linear, logarithmic and scale-stack
bar, behaviour similar to that of OOMM markers, but interestingly not
faster. Task B had a similar requirement to Task A: users still had to
read in an explicit numerical value, which explains accuracy results.
Task B however required to perform visual search within a more com-
plex display than that of Task A: stimuli included 29 distractor ele-
ments. This overall behaviour prompts interesting questions on how
performances might be affected in scenarios where data aggregation is

a necessity. When dealing with extremely large displays the advantage
of explicit textual representation is inevitably lost to the lack of avail-
able visualization space, also, in terms of visual search, the reaction
time to identify a target increases at least linearly with the number of
distractors.

Participants’ feedback. Participants’ feedback was overall ex-
tremely positive, they appeared to engage with the new visual rep-
resentations and keen to see their application in more complex con-
texts. None of the participants complained about the length of the
study and found it easier to interpret the new representations as the
test progressed. This last comment in particular suggests that some
learning was taking place, further investigation though would be re-
quired to support the hypothesis.

Display of numerical magnitude. For linear, logarithmic and
scale-stack bars, a height of p pixels will result in at most p quanti-
ties represented from the range of the source data. For colour, using a
b-bit linear scale we are limited to 2b different quantities (usually 256,
although some monitors only achieve 8 bits through temporal dither-
ing). Text offers the lowest quantization error, being limited by font
size and available space. For example, with marker sizes of 150px, 23
digit numbers are readable,
although as our study shows, text markers can be difficult to interpret.
Our markers can offer a 10× increase of dynamic range compared to
previous markers, thus with a corresponding reduction in quantization
error. If s exponents can be represented clearly within the pixel height
(s = 10 in our study), then we offer s× the range compared to other
markers.

As a specific example, with s = 10 and p = 150 we can repre-
sent 1500 quantities, n, with 0 ≤ n < 1× 1011. Scale-stack bars can
represent 150 quantities, n, with 0 ≤ n < 1× 1010. There is one re-
duction in magnitude since the absence of a mark on the exponent
scale for ours represents 0− 10 whereas scale-stack bars require an
explicit 0 − 10 scale at the bottom of the marker. If we assume a
range of 0 ≤ n < 1 × 1010 for each other marker apart from ours,
we can obtain this example: For an example range of 1,000,000 to
2,000,000, on linear, these numbers fall below the first pixel and so
are represented with zero pixels rendered. On the logarithmic scale,
the 90th (1,000,000) to 94th (1,847,850) pixels cover the range. For
SSB, the 92nd (1,333,333) and 93rd (2,000,000). Ours, with the ex-
ponent appropriately rendered, the significand is rendered from pixel
15 (1,000,000) to 30 (2,000,000). We can also pick example situations
such as 9,000,000 ≤ n < 1×107 (on the same example scale), where
ours has a range of 15 pixels, and the other markers do not change.

6 CONCLUSIONS

In this work we have presented new visual designs to support the dis-
play of large value ranges. An empirical study has shown how the
increase in expressive power of OOMM markers, and mostly in their
numerical dynamic range, outweighs the cognitive load introduced
by the novelty of the design. In tasks involving quantitative analy-
sis of large value ranges the OOMM markers outperform state of the
art techniques. Our results confirm previous work by Hlawatsch et
al. [10] showing that there exist real case study scenarios where mark-
ers, which considerably increase the space of representable quantities,
make evaluation tasks not only easier but also more accurate. It is of
interest to the authors to further the investigation of the OOMM mark-
ers performances in terms of lower level cognitive processing such as
memorability, learnability and concept grasping and to quantitatively
assess their effectiveness in much more complex contexts such as ex-
tremely large data displays.
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Fig. 10: Task A and C - Comparison of measured accuracy at different
levels of error tolerance. Points, from left to right, depict the perfor-
mances at 2%,5%,10%,20% tolerance values respectively, data are
plotted using power trendlines of measured accuracy.

• Mean Accuracy

– OOMM1 markers (mean = .809) were significantly less
accurate than linear (mean = .98) (p � 0.002);

– OOMM3 markers (mean = .79) were significantly less ac-
curate than linear (mean = .98) (p � 0.002);

• Mean Response Time

– OOMM1 markers (mean = 8.93) were significantly slower
than linear (mean = 3.67), logarithmic (mean = 6.73),
OOMM4 (mean = 7.4) and OOMM5 (mean = 7.41) (p �
0.002);

– OOMM3 markers (mean = 8.17) were significantly slower
than linear (mean = 3.67) (p � 0.05), and significantly
faster than text (mean = 10.43) (p � 0.002);

– OOMM4 markers (mean = 7.4) were significantly slower
than linear (mean = 3.67). OOMM4 markers were signifi-
cantly faster than text (mean = 10.43) (p � 0.05);

– OOMM5 markers (mean = 22.08) were significantly
slower than linear (mean = 3.67) (p � 0.002). OOMM5
markers were significantly faster than text (mean = 10.43)
(p � 0.002).

No other significant differences were found.

4.6.1 Varying Error Tolerance
Measurements of physical quantities are subject to inaccuracies also
referred to as uncertainties. Value estimation is likely to deviate from
the unknown, true, value of the quantity. Task A and Task C both
involved estimation of an unknown value therefore answers were con-
sidered correct if falling within a predefined error tolerance (e.g., de-
viation from the actual value). We empirically chose three levels of
tolerance: 20%, 10%, 5% and 2%. We compared accuracy results by
varying tolerance level and found significant differences. The Fried-
man’s test showed a significant main effect in accuracy for both Task A
and Task C. In particular for Task A: at 2% (χ2 = 96.709, p � 0.05),
at 5% (χ2 = 80.595, p � 0.05), at 10% (χ2 = 58.214, p � 0.05).
For Task C: at 2% (χ2 = 71.186, p � 0.05), at 5% (χ2 = 55.818,
p � 0.05), at 10% (χ2 = 71.277, p � 0.05). A comparison of perfor-
mance behaviours in terms of accuracy is depicted in Fig. 10. In ta-

Table 1: Task A results. p-values of post-hoc results analysis, using a
Bonferroni corrected significance value of α = 0.002, for the effects
of varying error tolerance level on accuracy. Pairwise significant dif-
ferences are highlighted in light blue, if the first member of the pair
is significantly more accurate than the second member, and red, if the
second member of the pair is significantly more accurate than the first.
SSB=Scale-Stack Bar.

Task A
Error Tolerance

2% 5% 10% 20%
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ir

w
is
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om
pa
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ns

OOMM1 vs. Linear 0.13 0.73 0.059 0.024
OOMM1 vs. Log � .001 � .001 � .001 � .001
OOMM1 vs. SSB � .001 � .001 0.02 0.134
OOMM1 vs. Text � .001 0.20 0. 20 0.317
OOMM3 vs. Linear � .001 � .001 0.10 0.317
OOMM3 vs. Log 0.059 � .001 � .001 � .001
OOMM3 vs. SSB � .001 1.0 � .001 0.002
OOMM3 vs. Text � .001 � .001 0.52 0.7
OOMM4 vs. Linear 0.28 1.0 0.1 0.059
OOMM4 vs. Log � .001 � .001 � .001 � .001
OOMM4 vs. SSB � .001 � .001 � .001 0.16
OOMM4 vs. Text 0.01 0.52 0.73 0.73
OOMM5 vs. Linear � .001 � .001 0.2 0.1
OOMM5 vs. Log 0.41 � .001 � .001 � .001
OOMM5 vs. SSB 0.83 0.52 0.002 0.001
OOMM5 vs. Text � .001 � .001 0.2 0.73
OOMM1 vs. OOMM3 � .001 � .001 1.0 0.48
OOMM1 vs. OOMM4 0.15 1.0 0.76 1.0
OOMM1 vs. OOMM5 � .001 � .001 0.36 0.73
OOMM3 vs. OOMM4 � .001 � .001 0.65 0.31
OOMM3 vs. OOMM5 0.41 1.0 0.25 0.31
OOMM4 vs. OOMM5 � .001 � .001 0.25 0.65

bles 1 and 2 we report the significant differences between markers. In
Task A a trend is visible in which OOMM1 and OOMM4 outperform
logarithmic across all four threshold levels, and scale-stack bar for the
first three threshold levels. In Task C OOMM1 outperforms linear,
logarithmic and scale-stack bar, followed by OOMM4 and OOMM5
which outperform linear and logarithmic across all four threshold lev-
els.

5 FINDINGS AND DISCUSSION

OOMM markers performances. The overall performance of
OOMM markers varied considerably across tasks. When explicit
quantitative evaluation (e.g. Task A and C) was required OOMM
markers performed consistently more accurately than logarithmic and
scale-stack bars (for tolerance 10%, Task A) and linear, logarithmic
and scale-stack bars (for tolerances 10% and 2%, Task C), see tables 1
and 2. Task C involved the computation of ratio between two num-
bers, the increase in the dynamic range introduced by OOMM markers
made it easier to the user to provide more accurate answers.

When the task involved target identification (e.g. Task B) OOMM
markers performed consistently more accurately than linear, loga-
rithmic and scale-stack bars and consistently faster than logarithmic
(OOMM1, OOMM3, OOMM4 and OOMM5) and scale-stack bar
(OOMM3, OOMM4, OOMM5, OOMM5). Within the same task
OOMM markers were also consistently slower than linear. Percep-
tual load associated with the increase in visual details and features of
the new markers can be one of the reason behind the increase in re-
sponse time. Cognitive load is also augmented by the learning toll
induced by the novelty of the OOMMs visual design, as we recall par-
ticipants needed to be familiar with concepts such as logarithmic scale
and standard charts. It is however interesting to notice how the novelty
effect should not be considered when analysing performances against
scale-stack bars. It is interesting to note that faster responses did not

Table 2: Task C results. p-values of post-hoc results analysis, using
a Bonferroni corrected significance value of α = 0.0027, for the ef-
fects of varying error tolerance level on accuracy. Pairwise significant
differences are highlighted in light blue, if the first member of a pair
is significantly more accurate than the second member, and red, if the
second member of a pair is significantly more accurate than the first.

Task C
Error Tolerance

2% 5% 10% 20%
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OOMM1 vs. Linear � .001 � .001 � .001 � .001
OOMM1 vs. Log � .001 � .001 � .001 � .001
OOMM1 vs. SSB � .001 � .001 � .001 0.001
OOMM3 vs. Linear � .001 � .001 � .001 � .001
OOMM3 vs. Log � .001 0.07 � .001 � .001
OOMM3 vs. SSB � .001 0.8 0.04 0.04
OOMM4 vs. Linear � .001 � .001 � .001 � .001
OOMM4 vs. Log � .001 � .001 � .001 � .001
OOMM4 vs. SSB � .001 0.1 � .001 0.07
OOMM5 vs. Linear � .001 � .001 � .001 � .001
OOMM5 vs. Log � .001 � .001 � .001 � .001
OOMM5 vs. SSB � .001 0.4 � .001 0.002
OOMM1 vs. OOMM3 � .001 0.01 0.1 0.52
OOMM1 vs. OOMM4 0.59 0.08 0.56 0.76
OOMM1 vs. OOMM5 � .001 0.002 0.24 0.73
OOMM3 vs. OOMM4 0.24 0.09 0.2 073
OOMM3 vs. OOMM5 0.15 0.2 0.31 0.7
OOMM4 vs. OOMM5 0.03 0.24 0.73 1.0

lead to more errors and that slower responses did not imply a loss in
accuracy either.

When the task involved both target identification and quantitative
evaluation (e.g. Task D) OOMM markers were consistently less ac-
curate and slower than linear. It is interesting to notice how OOMM1
markers were also significantly slower than scale-stack bar, this re-
sult could derive from the higher semantic complexity of the OOMM1
markers.

Semantic complexity, lack of familiarity are all elements which
could have affected performances of OOMM markers, and, to be fair,
scale-stack bars as well. Future investigations should address both
aspects by looking at the marker’s design features which, if consid-
ered in the context of large datasets, experience similar limitations to
that of glyph design, and learnability, by assessing the learning curve
of users [2, 3, 13]. Semantic complexity and learnability are closely
related concepts, simpler representations are easier to learn, the chal-
lenge is to find the appropriate trade-off between simplicity and ex-
pressiveness.

Text based visualization performances. A full comparison of per-
formances across all representations showed significant differences in
accuracy and reaction time of textual representations, versus other vi-
sual representations such as linear, logarithmic and scale-stack bars, in
tasks involving magnitude estimation or target identification (e.g. Task
A and B). For magnitude estimation (Task A), text representations per-
formed significantly faster than linear, logarithmic and scale-stack bars
but more accurately only for low threshold levels (e.g. 2% and 5%).
For Task A, results are somehow expected since participants only had
to read in the value of a number in decimal form.

For target identification (Task B) textual representations performed
significantly more accurately than linear, logarithmic and scale-stack
bar, behaviour similar to that of OOMM markers, but interestingly not
faster. Task B had a similar requirement to Task A: users still had to
read in an explicit numerical value, which explains accuracy results.
Task B however required to perform visual search within a more com-
plex display than that of Task A: stimuli included 29 distractor ele-
ments. This overall behaviour prompts interesting questions on how
performances might be affected in scenarios where data aggregation is

a necessity. When dealing with extremely large displays the advantage
of explicit textual representation is inevitably lost to the lack of avail-
able visualization space, also, in terms of visual search, the reaction
time to identify a target increases at least linearly with the number of
distractors.

Participants’ feedback. Participants’ feedback was overall ex-
tremely positive, they appeared to engage with the new visual rep-
resentations and keen to see their application in more complex con-
texts. None of the participants complained about the length of the
study and found it easier to interpret the new representations as the
test progressed. This last comment in particular suggests that some
learning was taking place, further investigation though would be re-
quired to support the hypothesis.

Display of numerical magnitude. For linear, logarithmic and
scale-stack bars, a height of p pixels will result in at most p quanti-
ties represented from the range of the source data. For colour, using a
b-bit linear scale we are limited to 2b different quantities (usually 256,
although some monitors only achieve 8 bits through temporal dither-
ing). Text offers the lowest quantization error, being limited by font
size and available space. For example, with marker sizes of 150px, 23
digit numbers are readable,
although as our study shows, text markers can be difficult to interpret.
Our markers can offer a 10× increase of dynamic range compared to
previous markers, thus with a corresponding reduction in quantization
error. If s exponents can be represented clearly within the pixel height
(s = 10 in our study), then we offer s× the range compared to other
markers.

As a specific example, with s = 10 and p = 150 we can repre-
sent 1500 quantities, n, with 0 ≤ n < 1× 1011. Scale-stack bars can
represent 150 quantities, n, with 0 ≤ n < 1× 1010. There is one re-
duction in magnitude since the absence of a mark on the exponent
scale for ours represents 0− 10 whereas scale-stack bars require an
explicit 0 − 10 scale at the bottom of the marker. If we assume a
range of 0 ≤ n < 1 × 1010 for each other marker apart from ours,
we can obtain this example: For an example range of 1,000,000 to
2,000,000, on linear, these numbers fall below the first pixel and so
are represented with zero pixels rendered. On the logarithmic scale,
the 90th (1,000,000) to 94th (1,847,850) pixels cover the range. For
SSB, the 92nd (1,333,333) and 93rd (2,000,000). Ours, with the ex-
ponent appropriately rendered, the significand is rendered from pixel
15 (1,000,000) to 30 (2,000,000). We can also pick example situations
such as 9,000,000 ≤ n < 1×107 (on the same example scale), where
ours has a range of 15 pixels, and the other markers do not change.

6 CONCLUSIONS

In this work we have presented new visual designs to support the dis-
play of large value ranges. An empirical study has shown how the
increase in expressive power of OOMM markers, and mostly in their
numerical dynamic range, outweighs the cognitive load introduced
by the novelty of the design. In tasks involving quantitative analy-
sis of large value ranges the OOMM markers outperform state of the
art techniques. Our results confirm previous work by Hlawatsch et
al. [10] showing that there exist real case study scenarios where mark-
ers, which considerably increase the space of representable quantities,
make evaluation tasks not only easier but also more accurate. It is of
interest to the authors to further the investigation of the OOMM mark-
ers performances in terms of lower level cognitive processing such as
memorability, learnability and concept grasping and to quantitatively
assess their effectiveness in much more complex contexts such as ex-
tremely large data displays.
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