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Multivariate Network Exploration and Presentation:

From Detail to Overview via Selections and Aggregations

Stef van den Elzen and Jarke J. van Wijk

Fig. 1. Multivariate network exploration using selections of interest, detail view (left) and high-level infographic-style overview (right).

Abstract—Network data is ubiquitous; e-mail traffic between persons, telecommunication, transport and financial networks are some
examples. Often these networks are large and multivariate, besides the topological structure of the network, multivariate data on
the nodes and links is available. Currently, exploration and analysis methods are focused on a single aspect; the network topology
or the multivariate data. In addition, tools and techniques are highly domain specific and require expert knowledge. We focus on
the non-expert user and propose a novel solution for multivariate network exploration and analysis that tightly couples structural and
multivariate analysis. In short, we go from Detail to Overview via Selections and Aggregations (DOSA): users are enabled to gain
insights through the creation of selections of interest (manually or automatically), and producing high-level, infographic-style overviews
simultaneously. Finally, we present example explorations on real-world datasets that demonstrate the effectiveness of our method for
the exploration and understanding of multivariate networks where presentation of findings comes for free.

Index Terms—Multivariate Networks, Selections of Interest, Interaction, Direct Manipulation

1 INTRODUCTION

Many real-world phenomena can be modeled as multivariate net-
works: e-mail traffic between persons within a company, a telecom-
munication network, money flowing between bank accounts, or physi-
cal objects such as airplanes flying from airport to airport or migration
of people between cities. The common theme here is the connection
(relation, link, edge) between objects (nodes, vertices). The number
of nodes and links of real-world data is generally large, in the order of
thousands. For these networks often more information on the nodes
and links is available. For example, in case of a company e-mail net-
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work we know more attributes of the persons (nodes) involved, like
age, gender, and job title. We also have more information about the
e-mails (links) such as time-sent, header-information, and body text.

The exploration and analysis of large multivariate networks is still
a challenge. Current methods are focused on either the structural as-
pect of the multivariate network, e.g., [46] or the multidimensional
data attached to the nodes and links, e.g., [35]. However, we be-
lieve the greatest insights are gained from simultaneous exploration,
as the two might be correlated or influence each other. For example,
we are not only interested in who is e-mailing to whom (structure)
or whether females or males are communicating more (multivariate
data), but we are more interested in whether females are communicat-
ing more with females or more with males and also between which
departments and what the distribution over time is (both structure and
multivariate data). For this we need to be able to inspect the attributes
in context of the underlying network topology. We provide a method
that enables users to explore both aspects in a uniform method using
selections of interest as central element. In summary, we go from De-
tail to Overview via Selections and Aggregations, which explains the
acronym we selected for our approach: DOSA. And also, a dosa is a
spicy Indian wrap, which resonates with our aim to combine existing
ingredients into a tasteful result.

For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.
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Multivariate networks are commonly visualized using node-link di-
agrams for structural analysis [36]. However, node-link diagrams do
not scale to large numbers of nodes and links and users regularly end
up with hairball-like visualizations. The multivariate data associated
with the nodes and links are encoded using visual variables like color,
size, shape or small visualization glyphs [30].

From the hairball-like visualizations no network exploration or
analysis is possible and no insights are gained or even worse, false
conclusions are drawn due to clutter and overdraw. For the non-expert
user, the large network visualizations are overwhelming, confusing
and contain too much detail. The casual user just wants a simple
(minimalistic) visualization that conveys a clear message about the re-
lation between network structure and multivariate data. We support
both expert and casual users by presenting two juxtaposed coupled
views; a detail view with all low-level network elements and a high-
level infographic-style overview with aggregated components. During
exploration in the detail view, the high-level overview is updated auto-
matically. Exploration and analysis is supported by defining selections
of interest. Domain experts can still use advanced measures like net-
work distance and centrality in an uncomplicated and uniform manner,
while a simplified overview that can, for example, be used for commu-
nication to the non-expert user, is generated for free and can be further
refined with minimal effort. The casual user is supported with intu-
itive controls and playful interaction that encourages to explore the
network.

In this paper we propose a novel method for multivariate network
exploration and analysis. More specifically, our main contributions
are:

• a tightly coupled exploration method, enabling users to explore
and analyse both network structure and multivariate data associ-
ated with the nodes and links simultaneously, using

• intuitive creation and modification of selections of interest, and

• a juxtaposed detail and high-level overview, for

• effortless production of high-level, infographic-style overviews,
focusing on the non-expert user.

The paper is organized as follows. First, related work is discussed
in Section 2. Next, our approach to multivariate network exploration
and analysis is described in Section 3. We describe the two juxtaposed
views in Sections 4 and 6, and explain how exploration is facilitated
using selections of interest in Section 5. Next, example explorations
on real-world data are given in Section 7 and limitations are discussed
in Section 8. Finally, conclusions and directions for future work are
provided in Section 9.

2 RELATED WORK

The most well-known and widely used method to visualize networks
is a node-link diagram. Each object is represented by a dot and if there
is a connection between two objects a line is drawn in between. Much
work is focusing on computing two-dimensional layouts (embeddings)
for node-link diagrams that best convey network topology while taking
aesthetic criteria into account to improve readability [4]. Multivariate
data associated with the nodes and links is commonly depicted using
visual variables, such as color, size, and shape of both the nodes and
links [7, 16, 27, 30, 31, 36]. Also, glyphs are used to represent the
nodes [43] and motif glyphs enable structural insight [12].

As opposed to emphasizing topological properties of the net-
work, multivariate data can be used to compute attribute-based lay-
outs [3, 15], such as the spherical Self-Organizing Maps [47] and Jaun-
tyNets [24], to provide more insight in the multivariate data involved.
Furthermore, multivariate data can be used to directly define a layout
by using a scatterplot for the nodes and superimposing edges onto this,
as in the GraphDice system [5]. Readability of node-link diagrams for
large networks is challenging due to overlap, overdraw and clutter in
general, this is aggravated further by the use of visual variables to con-
vey associated multivariate data.

A broadly used metaphor to prevent clutter in node-link diagrams
are lenses practicing focus+context techniques [6, 37]. Lenses are
used to enable inspection of dense areas of the network [46] and
show more information for nodes of interest by displaying in-situ vi-
sualizations [23] or extract subparts of the network for further explo-
ration [21]. Our solution also involves selections of interest, repre-
sented by boxes partially based on ideas of lenses.

A method specifically designed for multivariate network explo-
ration and closest to our technique is Semantic Substrates [35]. In Se-
mantic Substrates non-overlapping regions are introduced represent-
ing different categorical node attributes. In each region, nodes can be
layed-out directly according to the node attribute values or nodes po-
sitions can be computed via a force-directed layout algorithm. Edge
visibility is controlled via graphical user interface controls to prevent
clutter; for each region, visibility of an edge to another (or the same)
region can be set. Our selections of interest are similar to the non-
overlapping regions of Semantic Substrates, albeit more flexible. Se-
mantic Substrates regions are restricted to a single categorical node at-
tribute and link attributes are not taken into account. We support both
n-dimensional regions as well as link attributes. Furthermore, link vis-
ibility is controlled globally, while we implement a more fine-grained
local region control.

PivotGraphs provide an aggregated view on the network by showing
two axes with categorical node attributes and positioning the nodes on
the grid according to their associated attribute values [44]. This pro-
vides abstraction and a means to explore categorical node attributes
supported by pivot and roll-up operations, inspired by database OLAP

(online analytical processing [9]) actions. Unfortunately, due to ag-
gregation, network topology is not preserved, turning structural explo-
ration into a challenge as multiple operations need to be performed
for a comprehensive image. Aggregation is also used in the Graph-
Trail system [11] for multivariate network exploration. Here the focus
is mainly on capturing the user interaction and integrating this into a
history trail. Familiar charts are shown for the exploration of the mul-
tivariate data.

Pretorius and Van Wijk [28] enable multivariate network explo-
ration by treating links as first class citizens. Link labels are placed
in sequence top-to-bottom in a rectangular region centered between
source and target nodes on both sides. Each node is contained in a
hierarchy defined by associated multivariate data rendered as an icicle
plot that is positioned on both sides of the edge labels. Next, each node
is connected with a line to the according edge label. This is extended
to multiple hierarchies in the Parallel Node-Link Bands approach [18].
Users can interactively inspect and query the graph, however, due to
the bipartite node layout it is difficult to explore network topology.

The field of multivariate network visualization and interaction is
large and we only discussed the most relevant related work. For a more
complete overview, we refer to survey papers on the visual analysis
of large graphs [19, 41] and a recent book on multivariate network
visualization [25].

In summary, current methods are focused either towards structural
exploration or multivariate data exploration. No method facilitates
both the structural and multivariate analysis in a tightly coupled ex-
ploration technique. Also, no system provides users with an easy to
understand simplified overview showing both structure and associated
multivariate data, except for PivotGraph, but there the low-level details
are missing.

3 FROM DETAIL TO OVERVIEW

Large multivariate network exploration is a challenge due to size and
inability to explore node and link attributes in context of the under-
lying network topology. Furthermore, to non-expert users a low-level
visualization showing all individual elements is overwhelming, con-
fusing and provides too much detail. They rather need an aggregated
overview showing the most important components. Also, the expert
user needs this as a means of communication to stakeholders. In sum-
mary, to support this, we need:

• a scalable interactive method to simultaneous explore network
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structure and associated multivariate data for the nodes and links
using direct manipulation, and

• the ability to see both the low-level details and aggregated high-
level elements, all using

• familiar metaphors.

To tackle the scalability problem there are two main approaches,
top-down [34] and bottom-up [39] exploration. In a top-down ap-
proach, exploration starts with an overview of the entire network.
From this overview interesting features are identified and the explo-
ration continues with a more narrow focus on sub-structures of the
network. This is difficult with a large node-link diagram; due to clut-
ter and overdraw interesting features are hard to discern. Inversely, a
bottom-up approach starts with a (predetermined) single node of inter-
est and then continues the exploration to neighboring nodes.

Here we pursue a hybrid approach; we do not limit the exploration
to just one node but to a number of selections of interest (see Sec-
tion 5) that each contain one or more nodes and we simultaneously
always show both the low-level detail (see Section 4) and high-level
overview (see Section 6). Our novel DOSA exploration process using
the described elements is schematically shown in Figure 2.

4 DETAIL VIEW

To provide an overview of the network, each individual node is shown
in the detail view. The position of the nodes is determined by a cus-
tomizable two-dimensional projection of the network based on node
attributes. Note that this is not limited to a scatterplot-like visualiza-
tion, but can also be a (precomputed) force-directed network layout or
more familiar geographic plot as both can be encoded via attributes of
the nodes. The axes involved in the projection can be shown or hidden
on demand. Animation is used to show the relation between projec-
tions upon change and maintain the notion of a unified information
space. Users are enabled to freely zoom-and-pan the projection space
to navigate and explore.

To prevent clutter, edges are initially not shown. We only show the
edges involved in the selections of interest, more on this is described
in the next section. The two main approaches to depict edge direction
are arrows and color, e.g., [20]. Here, we choose to render edges us-
ing quadratic curves in a clock-wise fashion to convey directionality
(see Figure 3a). This prevents overdraw of bidirectional edges, avoids
clutter because arrow-heads do not have to be drawn and finally, the
visual variable color can be used to convey a different attribute, here
visual association between different selections of interest.

Alongside the available multivariate data at the nodes, we also
compute structural network properties for each node such as degree
and centrality measures closeness and betweenness. By changing the
projection, exploration can start from an interesting multivariate data
property, e.g., cities with a low population and high crime rate, or from
an interesting structural node property such as high betweenness, a ge-
ographical region, or a combination of these. The creation and inter-
action with these selections of interest is described in the next section.

5 SELECTIONS

In the multivariate network exploration process, users need to be able
to focus on subparts of the network and then aggregate these to per-
form high-level comparison and inspection. For the selection of inter-
esting subparts, the following candidate solutions can be employed:

• brushing selection: one set consisting of the current brushed
items is highlighted, the rest of the items are treated as back-
ground.

• partitioning: multiple sets of items, supported by, e.g., brushing
with different colors in Xmdv [26, 42] or automatically coloring
of items by conditional formatting as in Microsoft Excel.

There are two underlying principles that enable the creation of se-
lections: painting and querying. For painting the elements are pointed

Fig. 2. The DOSA exploration process with selections of interest as cen-
tral element. The analyst (bottom) refines selections of interest, which
influences both the detail and overview visualizations from which insight
is gained on a low detail and aggregated high level. Finally, insights can
be communicated directly to stakeholders in a simplified, infographic-
style visualization conveying a clear message.

at with the mouse cursor and colored accordingly. For querying, a list
of predicates on attributes is specified.

We want a method that is both expressive and simple. How-
ever, in general these requirements are conflicting, for example the
DataMeadow approach [14] is expressive but complex. We selected to
use an approach based on partitioning and (visual) querying, because
this provides better support for scanning and exploring the data.

We provide a visual querying mechanism to explore multivariate
networks based on a node partitioning. Our solution for node selection
is based on the following familiar metaphors:

1. draw boxes,

2. select ranges,

3. order selections (similar to arranging layers in Adobe Photoshop,
or arranging objects in Microsoft PowerPoint), all using

4. direct manipulation.

Users can create selections of interest by adding boxes to the current
projection in the detail view. The nodes belonging to this selection are
the nodes contained in the box, i.e., within the ranges of the two pro-
jected attributes. Users can freely reposition the box by dragging in the
projection, this dynamically changes the ranges of the selection. Also,
the size of the box can be adjusted via standard selection controls, such
as drag handles, to directly influence the associated ranges. We sup-
port users to quickly set a similar attribute range to all selections. If
this attribute option is active then the according range is synchronized
over all boxes.

We choose for boxes here over other alternatives such as freeform
selection to support intuitive simple interaction: the selections of in-
terest are easy to visualize, and, the boundaries of the box directly
translate to ranges for the two projected attributes in the detail view,
this enables intuitive and simple manipulation, in both the detail view
and the scented widget controls.

Boxes and contained nodes have a (adjustable) color for visual asso-
ciation. Upon changing the projection, the previously defined ranges
for a selection of interest are maintained. The position, width and
height of the box are adjusted to reflect the current ranges for the pro-
jected attributes. Users are enabled to shift their focus to specific boxes
while maintaining a context using smooth zoom and pan methods [40].

Each selection is shown in a selection component (see Figure 3d),
that has additional operations such as hide and lock, similar to the layer
approach in Adobe Photoshop. Furthermore, the color and name of a
selection can freely be changed to something semantically meaning-
ful. The selection component provides a box selection mechanism and
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Fig. 3. Graphical user interface of the implemented prototype showing all coherent components: a) Low-level detail view showing a two-dimensional
projection of the nodes based on available attributes. The projection and other visual attributes can be set using controls at the bottom (e). Four
selections of interest are shown in the detail view, visualized using boxes for direct manipulation. All selections of interest show between edges,
the green, blue, and, orange selections also show within edges. The orange selection additionally shows edges with the background selection.
b) High-level overview showing aggregations of the selections of interest including associated aggregated edges. For each of the selections an
interactive histogram visualization is shown. Visual representation and attribute mapping are configurable to users needs with controls at the
bottom (f). c) Attribute component showing all available attributes with according Scented Widgets for the nodes and links in different tab-pages.
The Scented Widgets provide information on the distribution of attributes and can be used to directly control the ranges of the multidimensional
selections of interest. d) Selection component containing a list of all selections. Selection priority (order) is controlled via drag and drop operations.
Additionally, selections can be hidden or locked here.

simultaneously serves to resolve conflicts in the selections; as a result
of our partition approach, a node can only belong to a single selec-
tion. If there is overlap of the boxes, then the order of the selections is
decisive. Selections higher in the list bind stronger. The sequence of
the selections can be changed using drag and drop or button controls
to enable fast switching of possible box configurations in the selection
component. The selection order can also be influenced using a context
menu with arrangement controls on the boxes in the detail view, e.g.,
bring to front, sent to back.

Initially users are provided with a single background selection that
contains all nodes. This approach is twofold: it provides an overview
of the entire network showing dense and sparse areas to start the ex-
ploration, and it provides a context to the selections made.

The underlying formal model with technical details on the realiza-
tion is described in the next section.

5.1 Model

We have a network G = (N,E) with nodes n ∈ N and edges e ∈ E.
Furthermore, nodes can have attributes ai ∈ Anodes, also, edges can
have a number of attributes a j ∈ Aedges. Each node n ∈ N has associ-
ated attribute values vi for each node attribute ai ∈ Anodes. Similarly,
each edge e ∈ E has associated attribute values v j for each edge at-
tribute a j ∈ Aedges. Both the node and edge attributes can be ordinal
(continuous or discrete) or categorical.

A predicate Pk over an attribute k has either the form [vk1
,vk2

] (de-
fault vk1

= vkmin
, vk2

= vkmax
) if the attribute is ordinal (representing a

range), or is of the form 0 (all) or vk (single value) in case of a cate-
gorical attribute.

A selection of interest Si now consists of a set of predicates {Pki
}.

To determine whether a node is in a selection, we use order of the
selections to prevent conflicts, i.e., a node u ∈ N always belongs to
only one selection Si:

u ∈ Si if u �∈ S j, j = 1 . . . i−1 and u.vi ∈ {Pai
}∀ai ∈ Anodes. (1)

A node is contained in a selection if it is not already contained in a
selection that is higher in the ordering, and its attribute values adhere
to each of the selection predicates.

5.2 Interaction and Direct Manipulation

Following from the previously described selections of interest, we
need to support three basic direct manipulation operations to enable
visual querying:

• select current set,

• adapt range, and,

• change order.

For this we designed three different components in the graphical
user interface; box visualizations representing the selections of interest
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(a) Within. (b) Between. (c) Background. (d) Combined.

Fig. 4. Different types of edges involved in a node selection. a) Within edges showing all internal connections of a selection; both source and target
node are contained in the selection. b) Between edges show all connections between two selections; both source and target node are contained
in different selections. c) Background edges show all connections from a selection to the background selection. d) Combined, showing all involved
edges for a selection, within, between and background.

in the detail view (see Figure 3a), an attribute component to adapt
selection ranges (see Figure 3c), and a selection component to control
the ordering (see Figure 3d).

In the attribute component, all node attributes are enlisted using
Scented Widgets [45]. For each continuous attribute a scented span
slider is shown and for each nominal or discrete ordinal attribute a
scented selection widget is shown. In a different tab-page all edge
attributes are shown, similar to the node attributes, using scented wid-
gets. These attribute controls are directly linked to the current selec-
tion of interest. If a box is selected, either by point and clicking in the
detail view or selection in the selection component, the scented wid-
gets are updated to reflect the current attribute ranges or values. At
any projection all attribute ranges can be adapted, also the ones cur-
rently not shown, to refine the current selection. Upon repositioning
of the box in the detail view, the currently projected attribute ranges
are updated.

Being able to slice-and-dice each attribute to refine the selection
and directly gain feedback both on a structural- as well as the attribute-
level provides users with a powerful exploration mechanism. For ex-
ample, first two (or more) geographical regions of interest can be cre-
ated in a latitude-longitude projection. Next, the projection is
changed to age (x-axis) versus income (y-axis). Now the selection
boxes can be freely repositioned and resized to slice-and-dice through
the currently projected attributes while still maintaining the earlier de-
fined geographic regions. Note that also dynamic network exploration
is supported by being able to shift through time for both the nodes
and edges if time is available as an attribute. See the video in the
supplemental material for a demonstration of the different interaction
methods.

5.3 Exploration

Next to the available attributes of nodes, additional derived attributes
can be added based on a selection of interest. This enables, next to
multivariate exploration, also exploration of the structure of the net-
work. For example, in structural understanding it is interesting to find
the nodes that are distance 1,2,3... etc. away from a certain node or
group of nodes, or to identify the nodes that are not reachable from a
certain group of nodes. For this, users can add a dynamic attribute that
computes the distance (in terms of link hops) to a selection Si. A value
or range for this derived attribute can then be set to support structural
exploration. The derived attributes are dynamically updated in real-
time upon changing the associated multidimensional boundaries of the
selection box by running Dijkstra shortest path algorithm [10] for all
n nodes involved, having run time O(n×|E|log|E|+|V |).

For each selection consisting of nodes, there are three types of edges
involved: within, between and background edges. For within edges
both involved nodes are within the same selection, see Figure 4(a).
Between edges have one node contained in one selection and the other
in a different selection, see Figure 4(b). For background edges one
node is contained in the selection and the other node is contained in
the background selection, see Figure 4(c).

More formally, for a current selection of interest Si an edge e with
source and target nodes es and et respectively, has type etype:

etype =











within if es ∈ Si and et ∈ Si;

between if es ∈ Si and et �∈ Si and et ∈ S j, j = 1 . . .n;

background if es ∈ Si and et �∈ S j, j = 1 . . .n.

For between and background edges, we further distinguish between
incoming and outgoing edges. Users can define for each selection
which types of edges should be shown. Initially, for each new selec-
tion within and between edges are shown and background edges are
hidden. Further filtering on the edges is supported similar to node fil-
tering using Scented Widgets. Despite filtering options, there may be
many edges involved for a selection, which clutters the view and pre-
vents the identification of involved nodes and hides network structure.
We improve upon this by introducing the option to enable transparent
drawing of edges in combination with additive blending, see Figure 5.

Upon the creation of a new selection by adding a box to the current
projection in the detail view, a linked aggregated visual representation
is created automatically in the high-level infographic-style overview,
discussed in the next section.

6 HIGH-LEVEL INFOGRAPHIC-STYLE OVERVIEW

The high-level infographic-style overview provides users with abstrac-
tion, insight, enables communication to a broader audience and is cre-
ated semi-automatically based on the selections of interest. When a
new selection box is created in the detail view, a linked visualization,
sharing the same outline color, is added to the high-level overview.

The linked box shows aggregate information about the nodes in a
selection. By default this is simply the number of nodes, shown tex-
tually, but also more detail can be shown. The visual representation
can be changed to different multivariate visualization types. Currently
we support scatter-plots, parallel-coordinate plots [22], histograms and
(squarified) treemaps [8, 33]. For each of the visualizations the visual
variables involved, such as what to show on the axes, can be changed to
support further exploration and analysis (Figure 3f). We also support
a small multiple exploration style similar to Van den Elzen et al. [38]
in which multiple visualizations are created, one for each value of a
visual variable, to enable comparison and guidance in the exploration.

(a) Standard rendering. (b) Opacity enabled. (c) Additive blending.

Fig. 5. A selection of interest containing many edges that clutter the
view making it impossible to identify involved nodes and local structure.
We improve upon (a) standard rendering by enabling (b) transparent
drawing of lines and enabling (c) additive blending.
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If the ranges of the selections of interest are updated then the associ-
ated visualizations in the overview are also updated automatically to
reflect the changes. The visualizations can be freely positioned and re-
sized using standard editing controls found in visual editing programs.
We considered an automatic lay-out here, but since the number of se-
lections is typically small (2-6) and because the structure is highly
dependent on the semantics, we opted for supporting manual lay-out.

The visible edges in the detail view are aggregated and also shown
in the high-level overview. Within edges are shown as self-loops of
the associated visualization. Between edges are rendered between the
associated selection visualizations and finally, background edges are
drawn gradually semi-transparent to the background, not attached to
anything. The width of the edges is proportional to the count or sum
of a selected link attribute. Initially this is the number of edges. Users
are enabled to show the actual values in textual form rendered on top of
the edges. Aggregated edges in the overview can be filtered by setting
a range using a scented span slider. For the color we use a gradient
from the colors of start selection to the end selection.

Users are enabled to freely zoom and pan the high-level overview.
Level-of-detail zooming is implemented for the visualizations; if users
zoom in on a specific visualization or enlarge the visualization, more
detail becomes available, for example, the name of the attributes
shown on the axes. Visualizations are drawn semi-transparent to en-
able comparison of charts by (temporarily) overlaying one visualiza-
tion on top of another.

7 EXAMPLES AND USE CASES

Below we describe some example DOSA explorations of real-world
multivariate network data. We show how a tightly coupled exploration
is achieved by starting with either multivariate data or the underlying
network topology and show this in context of the other to find correla-
tions, anomalies and patterns.

7.1 US Migration and Census

United States county to county migration data was obtained from year-
to-year address changes reported on individual income tax returns filed
with the IRS [1]. Next, this data was augmented with geographic lo-
cation of the counties and according state and finally, combined with
county census data provided by the United States Census Bureau [2].
The final dataset consists of 3,221 nodes (counties) and 78,294 edges
(migrations), 14 node attributes and 10 edge attributes.

By using a standard spring-embedder algorithm [17] to lay out the
nodes of the network, we hope to see structure, such as hubs, com-
munities, and disconnected components. However, we are presented
with a typical hairball-like visualization from which no insights can
be gained and exploration is impossible, see Figure 6(a) left. Next, we
switch to a more familiar geographical plot by using a longitude,
latitude projection. We add a selection box to this projection that
encloses all nodes, to see whether network structure is revealed, which
unfortunately, is not the case, see Figure 6(a) right. Therefore, the box
is resized to a smaller region to enable more focus.

7.2 Balance

We are interested in whether there are regions or states that are more
inbound, outbound or balanced. To support this exploration, we dis-
able within edges and enable background edges such that we can di-
rectly see the total incoming and outgoing aggregated migrations for
our current selection box in the high-level overview, see Figure 6(b).
Now, we can drag our box around in the detail view to quickly scan
for unbalanced regions. We see that North-East, around the New York
region, migration is more outbound, see Figure 6(c). In the South,
the regions around Texas and Florida, migration is more inbound, see
Figure 6(d), also Alaska is slightly inbound. If we resize the box and
extend the selection to compare West with East, we find that both are
balanced. If we next compare North with South, by adding another
selection box, we find that North is more outbound and South is more
inbound. By adding two more selection boxes we can refine the divi-
sion of the United States into four regions. Now we see, Figure 7, that
all migrations are balanced except for the North-East region; there,

(a) Hairball obtained using a standard spring-embedder lay out algorithm (left)

and geographic plot by projecting longitude and latitude (right).

(b) Inbound and outbound migration, detail (left) and summary aggregation of

the selection (right).

(c) New York area: outbound.

(d) Texas area: inbound.

Fig. 6. United States migration data exploration scanning for inbound,
outbound and balanced regions.

migration is more outbound to both South-East and South-West selec-
tions. We can conclude that North is more outbound due to people
leaving from the North-West region. For the rest of the country migra-
tion is mostly balanced and no other anomalies are found.
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Fig. 7. United States migration data exploration testing for predomi-
nantly inbound or outbound regions with detail (top) and overview (bot-
tom). Number of counties in each selection, shown on the boxes, is
approximately equal to achieve fair comparisons. The North-East re-
gion is outbound with migrations mainly going to the South-East and
South-West regions. The rest of the migrations are fairly balanced. The
North-West has the least internal migrations and North-East the most
(middle).

7.3 Crime

Next, we show how exploration of attribute and edge occurrence cor-
relation is supported. For example, we want to investigate whether a
high crime rate correlates with outbound migration:

• First, the nodes are positioned by selecting crime-rate and
population as our current projection attributes, focusing on
high population counties.

• We create two selections, dividing the top 25 highest population
counties, one low crime-rate and the other high crime-rate.

• For both we enable within and between edges.

We now see that migration from high-crime counties to low-crime
counties is higher than the other way around. We also see that migra-
tion within low crime areas is twice as high as within high crime areas.
If we also enable outgoing background migration we see that signifi-
cantly more people are leaving from high crime counties compared to
low crime areas, see Figure 8.

Fig. 8. Migration of highly populated low and high crime regions.

Fig. 9. Testing for correlation between age and migration.

7.4 Age

A similar investigation can be made for testing correlation between age
and edge occurrence (migration). We project state versus age and
create three selections: counties where average age is low, middle and
high. We keep the number of counties roughly equal in each selection
to be able to make fair comparisons. From the high-level overview we
see that people from low-age counties tend to move to other low-age
counties. We also see that they prefer to move to middle-age coun-
ties compared to high-age counties. People from low-age counties
tend to move most, followed by people from middle-age counties and
finally people from high-age counties. From the overview we also
see in the geographical visualizations, that most part of Alaska con-
tains young-aged persons, also some middle-aged but is not dominated
by old-aged persons. Hawaii, however, does not contain dominantly
young-aged counties. Finally, Florida mostly contains old-aged coun-
ties. Also, interesting observations from the detail view can be made,
we already concluded that people from young-counties tend to mi-
grate to other young-counties and people from old-counties tend to
migrate to other old-counties. In the detail view we see that there is an
additional pattern; people from young-counties move to other young-
counties mostly in a different state, while people from old-counties
mostly migrate to other old-counties within the same state. See Fig-
ure 9 for an overview.
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Fig. 10. Network path exploration, finding indirect routes from New
York to Washington. Aggregated visual representations show number
of nodes (counties) contained in them. Aggregated edges show num-
ber of edges. From New York there are 102 possible routes to 17 coun-
ties in the Florida region, from these 17 counties another 48 routes lead
to Washington. From top to bottom we display: (top) Direct links (mi-
grations) between New York and Washington, (middle) counties in New
York that have exactly distance two to the counties selected for Wash-
ington, and (bottom) all outgoing links from the counties in the New York
selection and a selection in the Florida region containing counties that
connect New York with Washington.

7.5 Visual path discovery

Now, we show how structural exploration is supported with simulta-
neous multivariate data analysis. Assume, we are interested in finding
patterns A to B, B to C. We want to find a region (B) where people
from the state New York (A) are migrating to, and also people from
this region are migrating to the state Washington (C). We introduce
two selections in a geographical projection; one selection S1 filtered
on the state attribute New York, the other selection S2 on Washington,
both positioned to their according regions. Now we see the direct mi-
grations between the two states, see Figure 10 (top). We introduce a
new attribute, distance to New York, D(S1) and add this as a constraint
to S2, to only show nodes with distance 2 from S1, see Figure 10 (mid-
dle). Next, we enable background out edges for S2 and we are pre-
sented with all the counties via which people migrate from New York
to Washington. We can now add another selection to be able to see
the number of nodes and edges involved for one possible route, see
Figure 10. This process can be repeated to find, for example, paths
of length 3. Note that while performing these structural operations we
can still filter on node and edge attributes per selection for combined
multivariate analysis.

7.6 Enron Email corpus

All email traffic of Enron (former energy service company) corpo-
ration was made publicly available during the legal investigation of
the biggest American bankruptcy due to accounting fraud [32]. The
dataset is cleaned, private messages are removed, and, augmented with
employee function. Furthermore, sentiment analysis was performed
on the email body texts and added as multivariate link data. This
dataset consists of 149 nodes (employees) and 185,506 edges (emails),
5 node attributes and 15 edge attributes.

Fig. 11. Enron email communication exploration using two selections of
interest: one representing the managers, the other the rest of the em-
ployees. Managers stand out due to a large self-loop (11,560 emails).
After refinement the cause appears to be a single manager emailing
himself all the time (9,577 emails).

Assume we are working at the human-resources department and
want to explore the email behavior of our company. First we start by
projecting the nodes according to jobtitle (x-axis) and degree

(y-axis). Note that we are mixing multivariate data with a structural
property here. This provides an overview of the distribution of em-
ployees in the different jobtitle groups and also who is emailing most
within these groups. Next, we are going to explore the email behavior
of the different groups. Therefore, we introduce two selections, one to
select a specific group and the other containing the rest of the employ-
ees. For the latter selection we disable within edges to be able to focus
on the between communication. We use the first group to shift through
the different function groups. We see that:

• CEOs are more sending email,

• directors are more receiving,

• managers are heavily biased towards sending email, and,

• the managers stand out because they have a large self-loop in the
overview.

From the overview visualization we see two persons having an un-
usual high degree. We identify the highest person via details on de-
mand in the visualization and refine our selection to only contain this
person, see Figure 11. Now it becomes clear, by refining the selection
to show cc and to emails, that the high self-loop is indeed due to
this person who cc-ed himself 9,422 times and directly sent himself
another 155.

7.7 C-Level communication

Now assume we want to inspect CEO communication behavior.
Therefore, we introduce another few selections and only show com-
munication from and to the CEOs. We see that CEOs are mostly com-
municating with Vice presidents and managers. However, we also see
that regular employees are communicating with CEOs, which is not
what we would expect. By refining our selection we see that it is only
one person, Jeff Dasovich, who is heavily communicating with the
CEOs and mainly broadcasting, see Figure 12 (left). By filtering on
the sentiment attributes we also see that his emails are mainly nega-
tive. After googling it appears that Jeff Dasovich is Enron’s Govern-
ment Relation Executive, who had to communicate to the CEOs when
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Fig. 12. Typical C-level communication: CEOs are heavily communicating with Vice presidents and managers. However, also communication is
present between CEOs and regular employees, which turns out is only one person heavily broadcasting to the CEOs (right).

things went wrong for Enron, mislabeled here as a regular employee.
If we now keep this configuration and refine the selection to contain
only emails with strong problem sentiment in it, we see it contains
only one-way communication of the vice-presidents and Jeff Daso-
vich to the CEOs, see Figure 12 (right). We refine the selection again
on time and see that these emails were mostly sent during the critical
period for Enron.

8 DISCUSSION AND LIMITATIONS

The basic ideas presented in this paper are all simple in nature: 1) com-
bined structural and multivariate exploration and analysis through vi-
sual queries using 2) selections of interest, based on (derived) node and
link attributes, controlled by Scented Widgets and playful interaction
on two 3) juxtaposed and linked views showing network detail using
(derived) attribute projections and showing a high-level infographic-
style summary overview simultaneously. However, combined they are
novel and enable a strong visual query mechanism that is intuitive and
effective.

In an earlier stage of the research, the prototype only contained a
single view: the detail view. The aggregated visualizations in the
overview were directly rendered on top of the selections of interest.
However, this had several disadvantages; upon dragging the selection
it was difficult to track changes in the visualization due to the motion
and also internal edges of a selection where no longer visible due to
the overlapping visualization. Therefore, it was decided that two jux-
taposed views would benefit users in the exploration and analysis. This
enabled also the possibility to have the easy to understand high-level
overview as a means of presentation and communication to people
who are not interested in the low-level details.

We also consider it a strong point of our system that it is simple in
design and not much explanation is needed. Quite some effort is put
into keeping interaction intuitive, uniform and minimalistic, e.g., sim-
ilar interaction methods in both views (select, drag, change size), sim-
ilar interaction to deal with node and edge attributes (uniform Scented
Widgets), uniform and combined interaction for structural and mul-
tivariate exploration based on attributes. Also, visual coherence be-
tween the different components is achieved by using color. Visual
elements are kept to a minimum to reduce visual noise and support a
broad audience.

There are, however, some limitations such as scalability with re-
spect to number of attributes and scalability with respect to number of
selections. We believe that in general users are content with about 5
or at most 10 selections of interest in order to answer their questions
and still being able to understand the involved complexity. But if the
number of selections of interest becomes large, for example due to au-
tomatic clustering or community detection algorithms, then both the
detail and overview become cluttered. In the overview, edges below a
certain threshold can be filtered as well as in the detail view, however,
this is only partly a solution.

Currently we are relying on a node partitioning and nested or over-
lapping selections of interest are not possible. Enabling this allows for
more powerful queries but also increases interpretation difficulty and
selection mechanism conflicts. Also, since we are relying on ranges
as multidimensional boundaries for the selections, we only allow for
box-shaped selection widgets. Brushing capabilities could be intro-
duced such that users can freely color nodes for a certain selection.
However, the uniform selection mechanism based on scented widgets
would break, as now nodes are no longer identifiable by range but only
based on unique identifier. This implies that potentially a large num-
ber of gaps appear in the attribute ranges making interaction of the
Scented Widgets a challenge.

If the number of attributes associated with the nodes and edges is
large, the list of Scented Widgets becomes difficult to interact with
due to a large scrolling area. Also, the number of available projections
for the detail view quickly grows (n2, for n attributes) making it more
likely that interesting features in the data are missed. A solution here
could be feature selection, to only select the most interesting features,
as a preprocessing step of the data before loading it into the tool either
automatic or manually using visualization techniques [5, 13, 29].

9 CONCLUSIONS

We presented novel interaction methods for both domain-expert and
casual users to explore and analyse multivariate networks concurrently
on network topology as well as the multivariate data. This enables
users to see outliers, patterns and trends for the combined elements.
Furthermore, we support users in the simultaneous creation of a high-
level infographic-style overview. This helps in understanding the net-
work due to a simple image, provides abstraction and aggregation and
presents a means for communication to a broader audience. Both inter-
action methods are facilitated by using selection sets as a central ele-
ment and the juxtaposition of detail and overview. We have shown the
effectiveness of our DOSA approach through several elaborated exam-
ples on real-world datasets. Furthermore, we have shown this method
is not just limited to multivariate networks, but also functions when
only multivariate data or network structure is available. Finally, due to
the general and flexible setup, this method is domain-independent.

9.1 Future work

For future work it is interesting to enable the partitioning of the net-
work not only on the nodes but also on the edges. This could en-
able richer exploration by showing aggregate visualizations also for
the edges. However, intuitive interaction and facilitation of this is not
trivial. Also, the adaption of the interaction methods would benefit
from the enhancement of the detail view to support different visual-
izations such as matrix visualization or ultimately generalize the tech-
niques to any network visualization. Finally, functionality could be
added to export the high-level infographic-style overview to an exter-
nal editing tool such as Microsoft PowerPoint or Adobe Illustrator for
further fine-tuning, editing and enrichment, e.g., for publication.
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