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(a) Reference image. (b) Standard post-classified Volume Rendering. (c) Our method.

(d) Reconstruction artifacts are removed. (e) Features are invariant to their surroundings. (f) Gaps between adjoining features are prevented.

Fig. 1: Continuity between data points is commonly assumed in visualization—yet our understanding of many objects is that
they consist of disjunct features with distinct boundaries. The data set used in this figure was created specifically to highlight and
categorize three types of misrepresentations that often arise in relation to boundary areas. In this paper, we present an approach
that takes feature boundaries into account during reconstruction and improves the visual representation in transition regions.

Abstract—In visualization, the combined role of data reconstruction and its classification plays a crucial role. In this paper we propose
a novel approach that improves classification of different materials and their boundaries by combining information from the classifiers
at the reconstruction stage. Our approach estimates the targeted materials’ local support before performing multiple material-specific
reconstructions that prevent much of the misclassification traditionally associated with transitional regions and transfer function (TF)
design. With respect to previously published methods our approach offers a number of improvements and advantages. For one, it
does not rely on TFs acting on derivative expressions, therefore it is less sensitive to noisy data and the classification of a single ma-
terial does not depend on specialized TF widgets or specifying regions in a multidimensional TF. Additionally, improved classification
is attained without increasing TF dimensionality, which promotes scalability to multivariate data. These aspects are also key in main-
taining low interaction complexity. The results are simple-to-achieve visualizations that better comply with the user’s understanding of
discrete features within the studied object.

Index Terms—Reconstruction, signal processing, kernel regression, volume rendering

1 INTRODUCTION

Classification is one of the core steps in the visualization pipeline and
is commonly applied either explicitly through dedicated off-line clas-
sifiers or implicitly through the visual mapping provided by, for exam-
ple, a transfer function (TF). Yet, classification based on reconstructed
data is never perfect and designing cost-efficient solutions to minimize
misclassification is an active area of research.

It is common practice in visualization applications to reconstruct
a fully continuous signal, i.e. that given two neighboring values the

• S. Lindholm, D. Jönsson, and A. Ynnerman are with the Department of
Science and Technology, Linköping University. E-mail:
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signal is assumed to pass through all other values that exist between.
This practice comes with a significant risk that the reconstructed data
values, after the visual mapping, end up representing materials at lo-
cations where they were not present in the studied object. As an exam-
ple, consider a medical Computed Tomography (CT) data set in which
the attenuation values in the data represent different materials. Bone
and air are two materials that are far apart in the attenuation spec-
trum. Then let a volume rendering ray pass from air into bone. Un-
der the assumption of continuity, the reconstruction will create val-
ues that correspond to all intermediate attenuation levels and thus take
the appearance of skin, fat, muscles, contrast agent, and other tissues.
Fig. 2 highlights this problem where the visual appearance of contrast-
enhanced vessels, observed at 400–600 Hounsfield units (HU), is not
confined to the vessels, but appear in every ray that passes through
both air (less than -800 HU) and dense bone (greater than 850 HU).

Rendering of transitions between differentiable materials has been
addressed through methods based on derivative expressions such as
gradient magnitudes. We will show that those methods are less ideal
in classifying individual materials and also inevitably lead to an in-
crease of the dimensionality of the TF with one or two dimensions.
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This adds interaction complexity, prevents the use of inherently multi-
variate TFs, and does not resolve the misclassification problem as well
as the herein proposed method. We also show that the use of meth-
ods based on segmentation masks and labeled volume rendering leaves
several issues unresolved.

Our approach to address the problem above is centered around the
reconstruction step in the visualization pipeline. Given an object of
study that consists of separate features our goal is to achieve continu-
ous visualizations within each feature while representing discontinu-
ous boundary regions between features. We thus change the objective
of the reconstruction to no longer be restricted to the reconstruction of
a single “optimal” signal, but rather to provide the overall best repre-
sentation of the object of study based on prior knowledge of its features
and their visualization.

The first step in our feature-constrained reconstruction method is
to obtain a probabilistic classification (see Section 4) which is used
to assign importance weights to the original grid points. We then re-
construct one sample value for each feature that is within the recon-
struction kernel range using the importance values as reconstruction
weights. We use a kernel regression framework that provides recon-
struction validity along with reconstructed values (see Section 5). The
reconstruction validity is used during the intermixing stage to limit the
visual contributions from all features to their respective signals’ spa-
tial support as they are combined to a final visual output (see Section
6). As can be seen in Fig. 1 and Fig. 3, the output of our method
resembles post-classified rendering within features and pre-classified
rendering between features.

It should be noted that, in contrast to previous work, we represent
features in discontinuous boundary regions through weighted extrap-
olation, not by explicitly modeling or classifying data behavior across
these regions. This has several benefits. First, the classification of a
single feature is less dependent on its surroundings, less dependent on
well defined gradients, and also less sensitive to noise. Second, mis-
classification can be addressed without increasing the dimensionality
of the TF, which allows us to maintain an easy-to-use user interface
and also increases the scalability of our method to multivariate data
such as Dual-Energy CT (DECT) data.

The main contributions of this paper can be summarized as:

� Presentation of a boundary aware approach to reconstruction of
data that handles continuity within features as well as disconti-
nuities in boundary regions.

� A novel extension of the kernel regression framework to handle
reconstruction of multiple features using anisotropic kernels.

� Reduction of the impact of partial volume effects while main-
taining high frequency details within features through adaptive
kernel sizes.

� A simple-to-use approach that seamlessly combines probabilistic
classification, adaptive reconstruction and visual mapping with-
out increasing interaction complexity.

2 RELATED WORK

When the TF was introduced by Drebin et al. [5] it was done so with an
explicitly probabilistic classification of samples. Bayesian estimates
were used to yield material mixture percentages for each voxel, which
subsequently were used to combine visual contributions from the par-
ticipating material using ‘accumulation level intermixing’ as described
by Cai and Sakas [3]. Our work uses the same level of intermixing to
combine the materials, i.e. at each step along the ray, and a similar
form of classification. However, we separate the signal reconstruction
to each material and use a validity-based weighting to combine the
material estimates, which solves many of the misclassification issues
of the original approach.

Since the work of Drebin misclassification and partial volume prob-
lems have mainly been addressed in three ways. One category relies
on the TF as a visual classifier which produces good visualizations but
does not classify voxels. A second category aims to computationally

Fig. 2: This example highlights one of the problems that arise when
data is assumed to be continuous and no prior knowledge about the
scene is used in the rendering. Left: The result of standard DVR
with continuous reconstruction. Right: The proposed method, which
achieves continuous reconstruction within each feature while prevent-
ing interpolation between features. The red “sheet” visible in the left
image is an artifact caused by the interpolation. The problem is made
more difficult by the fact that the data is acquired through Dual-Energy
CT and therefore is inherently multi-variate.

solve partial volume effects through statistical methods using models
for all materials, or combinations of materials, that may exist in the
data. A final category of works rely on explicit segmentation masks
to limit the area-of-effect of the TF.

Visual classification: Gradients of the scalar field are used by
Levoy [17] to better discriminate the material boundaries. Kindlmann
and Durkin [11] introduce the boundary emphasis function that explic-
itly targets material boundaries. It is based on an abstraction using
the scalar value, the first and the second derivatives to better visual-
ize isosurfaces, i.e. material boundaries, through opacity mapping.
This method is similar to ours in that a simplified user interface al-
lowed ease of visual classification of the underlying volume. Kniss et
al. [12] extend this idea to widget-based TF design. Their user inter-
face is, however, more complex than our technique, and we also seek
to classify individual voxels, not only creating visual representations
of material boundaries. A TF method capable of identifying sheet like
structures, e.g. material transitions, is proposed by Sato et al. [22]. The
method improves classification for recognizable shapes but carries the
same weaknesses as the derivative based methods due to the increase
of the dimensionality of the classification space.

Statistical models: A comprehensive overview of decision theory
and probabilistic models is given in the work by Bishop [1] and an
overview on image processing methods by Gonzalez and Woods [6].
Probabilistic classification for visualization is summarized by Kauf-
man and Mueller [9] and its advantages are demonstrated in several
publications, e.g. [8, 13, 14, 19, 21, 23]. Variations of the approach
have mostly been applied to pre-segmented data or incorporated in
off-line classification schemes with complete data models, i.e. all ma-
terials need to be known a priori. Laidlaw et al. [15] use a variation
of this approach in an analysis of feature space designed to estimate
percentages of material occupation inside voxels in Magnetic Reso-
nance (MR) data. The method excels in situations where a complete
segmentation of all materials is desired. A similar mixture model,
specific for DECT, is proposed by Heinzl et al. [8], which potentially
could be used in place of our interaction based classification. Prile-
pov et al. [19] propose an order dependent method for multi-material
interface reconstruction based on such percentage data. Their work
focus mainly on surface representations of binary decision boundaries
where our work retains the probabilistic nature of the data throughout
the rendering process. Kniss et al. [13] take a more visual approach
by delaying the final classification decision until render time to facil-
itate uncertainty exploration and risk analysis. Their method rely on

(a) Reference data. (b) TF mapped
reference image.

(c) Sampled data. (d) Nearest neighbor
color mapping.
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Fig. 3: Top row: A piecewise continuous object of study (a–b) com-
posed of three features (f1, f2, f3) is point-sampled to a 4× 4 grid of
raw data (c). Three widgets define the visual mappings and feature
classifications (e). The mapping is also exemplified (d). Bottom row:
Reconstruction of the object performed under the assumption of piece-
wise constant data (f), globally continuous data (g), segmented data
(h), and piecewise continuous data (i).

initial probabilistic expressions for each voxel and for all classes of
materials in the data. Visual mapping is then performed over these
classes instead of the raw data. An important difference between this
method and ours is that theirs ultimately result in a piece-wise constant
expression that does not allow for variations inside materials.

Explicit Segmentation: Explicit binary segmentation, or labeled-
volume rendering, has been used to spatially constrain the TF response,
thereby successfully reducing misclassification artifacts. Label vol-
umes by Tiede et al. [25] and two-level volume rendering by Had-
wiger et al. [7] are two examples that provide smooth, but binary, de-
cision boundaries. The methods do not, however, account for signal
degeneration in the surrounding regions and can therefore only be used
to solve some of the classification artifacts described earlier. This is
studied in more detail in Section 3. Also, despite extensive research
progress, accurate segmentation masks are often not available unless
time consuming manual procedures are used.

Kernel regression: A key part of our work is based on the kernel
regression framework [24] (a generalization of, among other methods,
bilateral filtering [26] and moving least squares [2]). A number of
techniques for reconstruction based on such methods have been pre-
sented within the context of volume rendering, e.g. [16, 27]. These
works exclusively assume continuity in the signals.

We chose to use the kernel regression framework since it offers an
intuitive connection between the probabilistic classification, weighted
reconstruction, and reconstruction certainty within a unified frame-
work. Although kernel regression has traditionally not been used for
discontinuous signals we will show how this can be done and how
it can easily be integrated into existing frameworks. It should also be
noted that the kernel regression framework supports unstructured grids
even if this aspect is not utilized within this work.

3 DVR APPROACHES AND DISCONTINUITIES

To illustrate our approach in relation to the most commonly used Di-
rect Volume Rendering (DVR) methods we provide a small synthetic
point-sampled data set in Fig. 3. The reference is a piecewise contin-
uous object of study consisting of three separate features, f1,2,3 (red,
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Fig. 4: Overview of the proposed method. In order to avoid arti-
facts stemming from incorrect interpolation across features, the pro-
cessing is divided into feature-specific reconstruction operations (here
f1, f2, f3). Finally, the visual contributions from each reconstructed
value are recombined in order to produce a visual representation of
the data.

green and blue). The objective is to create a representation of the refer-
ence from sub-sampled data. Data and TF mapped images for both the
reference and the sub-sampled data (4×4 sample points) used to cre-
ate the representations are shown on the top row (a–d). The TF, which
also acts as a classifier, is shown in (e). On the bottom row (f–i), four
different results are shown: pre-classified DVR, post-classified DVR,
two-level DVR, and our method.

As evidenced by the images each method produces different repre-
sentations of both the boundaries and internal regions. Pre-classified
DVR effectively treats intermediate space between samples as uncer-
tain. This provides a representation of lost information in the boundary
area, which expresses uncertainty by combining contributions from
each of the neighboring samples. Unfortunately, this also prevents the
variations within the materials from being represented (dark streaks).
Post-classified DVR reconstructs the signal as fully continuous. This
captures the variations within the materials well, but also creates both
gaps (white areas) and sheet artifacts (e.g. the green line) in the bound-
ary regions. Two-level DVR utilizes segmentation masks to spatially
localize the TF widgets to their respective regions (post-classified DVR
is used within each region). This successfully removes the sheet arti-
facts, but interpolation of the signal near boundary regions is still an
issue, causing gaps in the rendering.

We have chosen to design our method such that variations within
features are preserved, and a representation of uncertainty in bound-
ary regions is obtained, avoiding the sharp decisions made by many
existing approaches. The approach builds on systematic modifications
of the classification, reconstruction and visual mapping stages of the
DVR pipeline as shown in Fig. 4. In the following sections we present
the details of these stages and how we can achieve the desired result
without further input beyond the existing TF.

For the remainder of the paper, x and y denote spatial position and
data value(s) respectively while index i indicates a grid point.

4 PROBABILISTIC CLASSIFICATION

This section explains two new ways to acquire feature classifiers
P(f j | yi), i.e. the probability that feature f j occurs given the data value
at grid point i. A key aspect of the two new methods is that they use a
widget-based graphical interface similar to a standard TF editor, which
is highly desirable thanks to the low latency between editing and vi-
sual result. In the first method each widget provides both classifica-
tion and visual properties (illustrated in Fig. 5(a)) and in the second
the two qualities are separated into individual widgets (illustrated in
Fig. 5(b)). When acquiring both visual properties and classification
from the same widget we derive the classification for feature f j from
the widget’s alpha channel. To further decouple the classification from
the visual mapping we normalize the response such that the classifier
returns 1 across the maximum of the widget:

P̃(f j | yi) =

√
α(yi)

αmax
,
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This adds interaction complexity, prevents the use of inherently multi-
variate TFs, and does not resolve the misclassification problem as well
as the herein proposed method. We also show that the use of meth-
ods based on segmentation masks and labeled volume rendering leaves
several issues unresolved.

Our approach to address the problem above is centered around the
reconstruction step in the visualization pipeline. Given an object of
study that consists of separate features our goal is to achieve continu-
ous visualizations within each feature while representing discontinu-
ous boundary regions between features. We thus change the objective
of the reconstruction to no longer be restricted to the reconstruction of
a single “optimal” signal, but rather to provide the overall best repre-
sentation of the object of study based on prior knowledge of its features
and their visualization.

The first step in our feature-constrained reconstruction method is
to obtain a probabilistic classification (see Section 4) which is used
to assign importance weights to the original grid points. We then re-
construct one sample value for each feature that is within the recon-
struction kernel range using the importance values as reconstruction
weights. We use a kernel regression framework that provides recon-
struction validity along with reconstructed values (see Section 5). The
reconstruction validity is used during the intermixing stage to limit the
visual contributions from all features to their respective signals’ spa-
tial support as they are combined to a final visual output (see Section
6). As can be seen in Fig. 1 and Fig. 3, the output of our method
resembles post-classified rendering within features and pre-classified
rendering between features.

It should be noted that, in contrast to previous work, we represent
features in discontinuous boundary regions through weighted extrap-
olation, not by explicitly modeling or classifying data behavior across
these regions. This has several benefits. First, the classification of a
single feature is less dependent on its surroundings, less dependent on
well defined gradients, and also less sensitive to noise. Second, mis-
classification can be addressed without increasing the dimensionality
of the TF, which allows us to maintain an easy-to-use user interface
and also increases the scalability of our method to multivariate data
such as Dual-Energy CT (DECT) data.

The main contributions of this paper can be summarized as:

� Presentation of a boundary aware approach to reconstruction of
data that handles continuity within features as well as disconti-
nuities in boundary regions.

� A novel extension of the kernel regression framework to handle
reconstruction of multiple features using anisotropic kernels.

� Reduction of the impact of partial volume effects while main-
taining high frequency details within features through adaptive
kernel sizes.

� A simple-to-use approach that seamlessly combines probabilistic
classification, adaptive reconstruction and visual mapping with-
out increasing interaction complexity.

2 RELATED WORK

When the TF was introduced by Drebin et al. [5] it was done so with an
explicitly probabilistic classification of samples. Bayesian estimates
were used to yield material mixture percentages for each voxel, which
subsequently were used to combine visual contributions from the par-
ticipating material using ‘accumulation level intermixing’ as described
by Cai and Sakas [3]. Our work uses the same level of intermixing to
combine the materials, i.e. at each step along the ray, and a similar
form of classification. However, we separate the signal reconstruction
to each material and use a validity-based weighting to combine the
material estimates, which solves many of the misclassification issues
of the original approach.

Since the work of Drebin misclassification and partial volume prob-
lems have mainly been addressed in three ways. One category relies
on the TF as a visual classifier which produces good visualizations but
does not classify voxels. A second category aims to computationally

Fig. 2: This example highlights one of the problems that arise when
data is assumed to be continuous and no prior knowledge about the
scene is used in the rendering. Left: The result of standard DVR
with continuous reconstruction. Right: The proposed method, which
achieves continuous reconstruction within each feature while prevent-
ing interpolation between features. The red “sheet” visible in the left
image is an artifact caused by the interpolation. The problem is made
more difficult by the fact that the data is acquired through Dual-Energy
CT and therefore is inherently multi-variate.

solve partial volume effects through statistical methods using models
for all materials, or combinations of materials, that may exist in the
data. A final category of works rely on explicit segmentation masks
to limit the area-of-effect of the TF.

Visual classification: Gradients of the scalar field are used by
Levoy [17] to better discriminate the material boundaries. Kindlmann
and Durkin [11] introduce the boundary emphasis function that explic-
itly targets material boundaries. It is based on an abstraction using
the scalar value, the first and the second derivatives to better visual-
ize isosurfaces, i.e. material boundaries, through opacity mapping.
This method is similar to ours in that a simplified user interface al-
lowed ease of visual classification of the underlying volume. Kniss et
al. [12] extend this idea to widget-based TF design. Their user inter-
face is, however, more complex than our technique, and we also seek
to classify individual voxels, not only creating visual representations
of material boundaries. A TF method capable of identifying sheet like
structures, e.g. material transitions, is proposed by Sato et al. [22]. The
method improves classification for recognizable shapes but carries the
same weaknesses as the derivative based methods due to the increase
of the dimensionality of the classification space.

Statistical models: A comprehensive overview of decision theory
and probabilistic models is given in the work by Bishop [1] and an
overview on image processing methods by Gonzalez and Woods [6].
Probabilistic classification for visualization is summarized by Kauf-
man and Mueller [9] and its advantages are demonstrated in several
publications, e.g. [8, 13, 14, 19, 21, 23]. Variations of the approach
have mostly been applied to pre-segmented data or incorporated in
off-line classification schemes with complete data models, i.e. all ma-
terials need to be known a priori. Laidlaw et al. [15] use a variation
of this approach in an analysis of feature space designed to estimate
percentages of material occupation inside voxels in Magnetic Reso-
nance (MR) data. The method excels in situations where a complete
segmentation of all materials is desired. A similar mixture model,
specific for DECT, is proposed by Heinzl et al. [8], which potentially
could be used in place of our interaction based classification. Prile-
pov et al. [19] propose an order dependent method for multi-material
interface reconstruction based on such percentage data. Their work
focus mainly on surface representations of binary decision boundaries
where our work retains the probabilistic nature of the data throughout
the rendering process. Kniss et al. [13] take a more visual approach
by delaying the final classification decision until render time to facil-
itate uncertainty exploration and risk analysis. Their method rely on

(a) Reference data. (b) TF mapped
reference image.

(c) Sampled data. (d) Nearest neighbor
color mapping.
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Fig. 3: Top row: A piecewise continuous object of study (a–b) com-
posed of three features (f1, f2, f3) is point-sampled to a 4× 4 grid of
raw data (c). Three widgets define the visual mappings and feature
classifications (e). The mapping is also exemplified (d). Bottom row:
Reconstruction of the object performed under the assumption of piece-
wise constant data (f), globally continuous data (g), segmented data
(h), and piecewise continuous data (i).

initial probabilistic expressions for each voxel and for all classes of
materials in the data. Visual mapping is then performed over these
classes instead of the raw data. An important difference between this
method and ours is that theirs ultimately result in a piece-wise constant
expression that does not allow for variations inside materials.

Explicit Segmentation: Explicit binary segmentation, or labeled-
volume rendering, has been used to spatially constrain the TF response,
thereby successfully reducing misclassification artifacts. Label vol-
umes by Tiede et al. [25] and two-level volume rendering by Had-
wiger et al. [7] are two examples that provide smooth, but binary, de-
cision boundaries. The methods do not, however, account for signal
degeneration in the surrounding regions and can therefore only be used
to solve some of the classification artifacts described earlier. This is
studied in more detail in Section 3. Also, despite extensive research
progress, accurate segmentation masks are often not available unless
time consuming manual procedures are used.

Kernel regression: A key part of our work is based on the kernel
regression framework [24] (a generalization of, among other methods,
bilateral filtering [26] and moving least squares [2]). A number of
techniques for reconstruction based on such methods have been pre-
sented within the context of volume rendering, e.g. [16, 27]. These
works exclusively assume continuity in the signals.

We chose to use the kernel regression framework since it offers an
intuitive connection between the probabilistic classification, weighted
reconstruction, and reconstruction certainty within a unified frame-
work. Although kernel regression has traditionally not been used for
discontinuous signals we will show how this can be done and how
it can easily be integrated into existing frameworks. It should also be
noted that the kernel regression framework supports unstructured grids
even if this aspect is not utilized within this work.

3 DVR APPROACHES AND DISCONTINUITIES

To illustrate our approach in relation to the most commonly used Di-
rect Volume Rendering (DVR) methods we provide a small synthetic
point-sampled data set in Fig. 3. The reference is a piecewise contin-
uous object of study consisting of three separate features, f1,2,3 (red,
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Fig. 4: Overview of the proposed method. In order to avoid arti-
facts stemming from incorrect interpolation across features, the pro-
cessing is divided into feature-specific reconstruction operations (here
f1, f2, f3). Finally, the visual contributions from each reconstructed
value are recombined in order to produce a visual representation of
the data.

green and blue). The objective is to create a representation of the refer-
ence from sub-sampled data. Data and TF mapped images for both the
reference and the sub-sampled data (4×4 sample points) used to cre-
ate the representations are shown on the top row (a–d). The TF, which
also acts as a classifier, is shown in (e). On the bottom row (f–i), four
different results are shown: pre-classified DVR, post-classified DVR,
two-level DVR, and our method.

As evidenced by the images each method produces different repre-
sentations of both the boundaries and internal regions. Pre-classified
DVR effectively treats intermediate space between samples as uncer-
tain. This provides a representation of lost information in the boundary
area, which expresses uncertainty by combining contributions from
each of the neighboring samples. Unfortunately, this also prevents the
variations within the materials from being represented (dark streaks).
Post-classified DVR reconstructs the signal as fully continuous. This
captures the variations within the materials well, but also creates both
gaps (white areas) and sheet artifacts (e.g. the green line) in the bound-
ary regions. Two-level DVR utilizes segmentation masks to spatially
localize the TF widgets to their respective regions (post-classified DVR
is used within each region). This successfully removes the sheet arti-
facts, but interpolation of the signal near boundary regions is still an
issue, causing gaps in the rendering.

We have chosen to design our method such that variations within
features are preserved, and a representation of uncertainty in bound-
ary regions is obtained, avoiding the sharp decisions made by many
existing approaches. The approach builds on systematic modifications
of the classification, reconstruction and visual mapping stages of the
DVR pipeline as shown in Fig. 4. In the following sections we present
the details of these stages and how we can achieve the desired result
without further input beyond the existing TF.

For the remainder of the paper, x and y denote spatial position and
data value(s) respectively while index i indicates a grid point.

4 PROBABILISTIC CLASSIFICATION

This section explains two new ways to acquire feature classifiers
P(f j | yi), i.e. the probability that feature f j occurs given the data value
at grid point i. A key aspect of the two new methods is that they use a
widget-based graphical interface similar to a standard TF editor, which
is highly desirable thanks to the low latency between editing and vi-
sual result. In the first method each widget provides both classifica-
tion and visual properties (illustrated in Fig. 5(a)) and in the second
the two qualities are separated into individual widgets (illustrated in
Fig. 5(b)). When acquiring both visual properties and classification
from the same widget we derive the classification for feature f j from
the widget’s alpha channel. To further decouple the classification from
the visual mapping we normalize the response such that the classifier
returns 1 across the maximum of the widget:

P̃(f j | yi) =

√
α(yi)

αmax
,
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(a) Combined Editor.
Feature classifiers are extracted automati-
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(b) Classifier Editor.
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Fig. 5: Feature classifiers can be designed as separate primitives (for
full flexibility) or extracted from the visual primitives (for minimal
interaction complexity).

where αmax is the maximum opacity of the widget associated with fea-
ture f j. In our experience, this approach often provides sufficient fea-
ture delineation (Fig. 9 and 10 are good examples), is especially easy
to implement and does not require any additions to the user interface.

Unfortunately, the above approach imparts a set of restrictions on
widget design. The most obvious such restriction occurs when a clas-
sifier is meant to capture an entire feature while the visual mapping is
only meant to display a smaller part of the full feature. An example of
such a case is illustrated in Fig. 5(b) where the green widget represents
a thin range of values and thus would be too narrow to classify the full
feature.

Using dedicated classifier widgets increases the flexibility of the
system at the cost of interaction complexity due to the overall in-
creased number of widgets. Classifier widgets and visual property
widgets also need to be explicitly linked in an additional step. As
the interpretation for a classifier widget is strictly probabilistic it holds
only a scalar value. Fig. 5(b) illustrates a setup with two stacked edi-
tors. Specificity, interaction complexity and preset capabilities follows
that of a standard TF.

Relying on the user to provide classification knowledge to the sys-
tem through interaction often leaves the probabilistic model incom-
plete. To address this issue we use an approach outlined by Lundström
et al. [18] based on a null class to make the final model representative
for all data. In short, the user provided probabilities are first normal-
ized before the null class is created

P(f j | yi) =
P̃(f j | yi)

maxi ∑ j P̃(f j | yi)
(1)

P(f0 | yi) = 1−∑
j

P(f j | yi). (2)

While the methods presented above are the only forms of classifi-
cation considered in this work other sources can also be applicable.
For example, off-line classifiers such as those employed by Kniss et
al. [13] and Saad et al. [21] or modality specific methods such as those
employed by Laidlaw et al. [15] or Heinzl et al. [8] can also be con-
sidered.

5 A FRAMEWORK FOR RECONSTRUCTION OF PIECEWISE
CONTINUOUS DATA

Our reconstruction framework is based on kernel regression but ex-
tends it to handle multiple features. We will therefore briefly explain
kernel regression before detailing how it is combined with our feature
based approach. Furthermore, to handle partial volume effects, we will
describe how to adaptively choose the filter kernel size. We simplify
the notation of a single feature f j by omitting the index j to improve
the presentation.

5.1 Extending Kernel Regression to Feature-Constrained
Reconstruction

This section details how the kernel regression framework is used to
achieve continuous signal reconstruction within individual features.

The original kernel regression framework was presented for image
processing by Takeda et al. [24] to provide optimal estimations of
an unknown signal between sampled grid points. The framework de-
scribes how a series of constraints can be used to influence a recon-
struction. The framework also supports non-regular grids as well as
variations in the local expansions. We use their notation, where yi de-
note the values of the grid points and the reconstructed signal estimate
is denoted ẑ(x).

To preserve the details within a feature but discern between differ-
ent features, the kernel regression framework in our approach relies
on local approximations by Taylor expansion and is thus not defined
for reconstructions across discontinuities. Our assumption here is that
the Taylor expansion is valid within each feature and that the recon-
struction will therefore be valid as long as it is performed within the
continuity of a single feature. Furthermore, weight functions are of-
ten enforced to be strictly greater than zero over their entire domain
to avoid the risk of undefined reconstructions. We can relax this re-
quirement such that weight functions may be zero since the utilization
of the kernel regression framework will ensure that the visual impact
goes to zero when the reconstruction becomes undefined.

Weighted Reconstruction

For reference, the reconstruction with a single normalized spatial ker-
nel takes the following form

ẑ(x) = ∑
yi∈ΩK

wiyi, (3)

where wi are the spatial weights of the neighboring samples and the
neighborhood ΩK is defined by the kernel size.

Feature-Constrained Reconstruction

In this work, the spatial kernel is given by a generalization of trilinear
interpolation with separable weights computed in each dimension for
all spatial weights:

wi = wXwYwZ, with wX|Y|Z = 1−
|x− xi|X|Y|Z

2σ
. (4)

Here, wX, wY and wZ are the respective weights in each spatial dimen-
sion and wi denotes the final spatial weight for grid point i. The func-
tion is scaled such that the tent shape approximates a Gaussian which
is truncated at ±2σ .

Constructing a feature-specific weight function for kernel regres-
sion is straightforward once the conditional probabilities P(f | yi) are
known. Using the framework notation, a feature weight is defined as

wf = P(f | yi). (5)

This is combined with the spatial weight function from Equation 4 to
form the feature specific reconstruction for feature f

ẑf(x) =

∑
yi∈ΩK

wiwfyi

∑
yi∈ΩK

wiwf
. (6)

Assuming a regular grid, normalized spatial kernels will always have
support and integrate to one. The feature kernels on the other hand
cannot be assumed to do so. To address this we will introduce the
concept of reconstruction validity during the visual mapping stage de-
scribed in Section 6.

Extending the framework to multiple features is done by computing
one weighted reconstruction per feature of interest defined by the user.
That is, Equation 6 is evaluated for each f j. The result is a set of esti-
mated values ẑf j (one for each feature of interest), which are processed
in the visual mapping stage described in Section 6.

5.2 Partial Volume and Kernel Size Selection
As our data model we assume an object of study to consist of a series
of continuous features (independent signals) divided by discontinuities
(step-functions). In case the data has been convolved with some form
of point spread function (PSF) causing partial volume effects the PSF
is modeled as a Gaussian with an area of influence of σPSF in accor-
dance with Kindlmann and Durkin [11]. By using the fact that the
influenced regions are restricted in the spatial domain and that their
extent is often a global property that is independent of the participat-
ing materials [10, 20] we can calculate a kernel size that captures the
effect of partial volume. We observe that, for a kernel with a size equal
to the PSF, the combined weight of all voxels that have been misclas-
sified due to partial volume is less than the combined weight of a solid
feature. However, using a large kernel across the whole domain can
suppress details in high frequency areas. Therefore, to enable our re-
construction to handle partial volume effects and at the same time pre-
serve details in high frequency data, we utilize a variable kernel size.
The maximum kernel size is based on the PSF, σmax = 2σPSF, which
also serves as an initial estimate. In order to reduce the kernel size
in regions dominated by solid features we first introduce a measure of
kernel support:

Φ(x, f,Ω) = ∑
yi∈Ω

wiwf. (7)

Note that Ω is directly related to the σ used in Equation 4. In particu-
lar, we use the term feature support for an estimation within a neigh-
borhood whose size is related to the observed PSF:

Ff = Φ(x, f,Ωmax). (8)

This feature support is used to differentiate between real features and
partial volume misclassifications. The variable kernel size is computed
as a linear combination of the minimum (σmin) and maximum (σmax)
kernels based on the feature support from Equation 8:

σf = (Ff)σmin +(1−Ff)σmax, (9)

where we use σmin = 0.25 for a smallest possible kernel size of 23

voxels. If a feature f has no support, i.e. Ff = 0, the reconstruction
of the feature is terminated since no visual output will be generated
due to a lack of valid samples. Note that the size of the reconstruction
kernel does not need to be adjusted for point-sampled data without
partial volume.

6 VISUAL MAPPING

A widget-based TF is used to assign color and opacity properties to
primitives. Section 4 presented how each TF widget is explicitly or
implicitly linked to a feature. The TF here expresses the user’s interest
in a particular part of a feature and more than one widget can be as-
signed to the same feature. We will now go through how the multiple
visual contributions are combined into a joint visual response.

6.1 Reconstruction Validity
Having reconstructed an estimated value for a specific feature we want
to know how valid this value is to use in the latter parts of the pipeline.

As a measure of validity we use the support of active reconstruction
kernel. Including the kernel validity is necessary in order to smoothly
avoid ill-posed reconstructions. For example, consider a region where
P(f | yi) ≈ 0 for a majority of samples in ΩK, i.e. almost no values
were valid to use. This may be caused by situations where only a few
far-away voxels have an impact on the reconstructed value. The kernel
regression framework still provides the best possible estimate from a
least squares’ perspective, but it will do so using a strong normaliza-
tion as the denominator in Equation 6 will be very small. To address
this issue, we interpret the strength of this normalization as a measure
of kernel validity

Vf = Φ(x, f,ΩK). (10)
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Fig. 6: The mapping function determines how sharp the transition
boundary should be between different features. The presented images
in this work use a mapping similar to (b) unless otherwise specified.

Note that the kernel validity differs from the feature support in that it
is computed on the potentially smaller neighborhood ΩK using σf for
spatial weights (cf. Equation 8).

This is similar to the interpretation as a reconstructed conditional
probability P̃(f | x) at the point of reconstruction as proposed by Kniss
et al. [13]. Due to its use as a normalization factor in the reconstruc-
tion, we prefer the interpretation of the expression as reconstruction
validity within the context of this work.

6.2 Combining Multiple Visual Contributions
The maximum number of visual contributions that need to be com-
bined is equal to the number of widgets in the TF. In practice, how-
ever, only one or two of the contributions will typically have non-zero
opacity for a given data value (i.e, there are few places where more
than two visible features overlap).

As an example, consider the visual editor in Fig. 5(b) in which two
features (f1 and f2) and three visual primitives, TFp (red, green and
white) have been defined. The red and green primitives are associated
with f1, the white primitive with f2. Computations at any point x along
the ray would then include two reconstructions and result in three vi-
sual contributions, which all need to be taken into consideration for
the final visual response at point x.

Previous works have targeted the problem of combining multiple,
uncertain or partial visual contributions. Cai and Sakas [3] provide
a categorization of intermixing schemes. Other approaches include
solutions based on decision- and risk-boundaries, fuzzy representa-
tion and probabilistic animation [4, 13, 18]. It is, however, outside of
the scope of this paper to provide a complete overview of these ap-
proaches.

In our work, we employ an accumulation level intermixing [3]
where color contributions from a single sample point are computed
individually. Each contribution is additionally weighted by its recon-
struction validity, Vf, to separate between desired and undesired con-
tributions. For our purposes we have chosen a fuzzy representation
of uncertainty based on reconstruction validity and user interest as ex-
pressed in the alpha channel of the TF. We first add a linear mapping
function to the computed validity

γ(V) = V− εa

εb − εa
, with γ clamped to [0,1]. (11)

The visual contributions for each feature are subsequently blended
into the accumulated color, Cdst, and opacity, αdst, using front-to-back
compositing:

Cdst =Cdst +(1−αdst)Csrc

αdst = αdst +(1−αdst)αsrcγ(Vf),
(12)

where Csrc and αsrc are the color and opacity from the mapping of the
reconstructed value ẑf through each associated primitive, TFp(ẑf). The
compositing in Equation 12 is thus performed once for each widget.
The blending order corresponds to the order of the widgets in the TF.
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Fig. 5: Feature classifiers can be designed as separate primitives (for
full flexibility) or extracted from the visual primitives (for minimal
interaction complexity).

where αmax is the maximum opacity of the widget associated with fea-
ture f j. In our experience, this approach often provides sufficient fea-
ture delineation (Fig. 9 and 10 are good examples), is especially easy
to implement and does not require any additions to the user interface.

Unfortunately, the above approach imparts a set of restrictions on
widget design. The most obvious such restriction occurs when a clas-
sifier is meant to capture an entire feature while the visual mapping is
only meant to display a smaller part of the full feature. An example of
such a case is illustrated in Fig. 5(b) where the green widget represents
a thin range of values and thus would be too narrow to classify the full
feature.

Using dedicated classifier widgets increases the flexibility of the
system at the cost of interaction complexity due to the overall in-
creased number of widgets. Classifier widgets and visual property
widgets also need to be explicitly linked in an additional step. As
the interpretation for a classifier widget is strictly probabilistic it holds
only a scalar value. Fig. 5(b) illustrates a setup with two stacked edi-
tors. Specificity, interaction complexity and preset capabilities follows
that of a standard TF.

Relying on the user to provide classification knowledge to the sys-
tem through interaction often leaves the probabilistic model incom-
plete. To address this issue we use an approach outlined by Lundström
et al. [18] based on a null class to make the final model representative
for all data. In short, the user provided probabilities are first normal-
ized before the null class is created

P(f j | yi) =
P̃(f j | yi)

maxi ∑ j P̃(f j | yi)
(1)

P(f0 | yi) = 1−∑
j

P(f j | yi). (2)

While the methods presented above are the only forms of classifi-
cation considered in this work other sources can also be applicable.
For example, off-line classifiers such as those employed by Kniss et
al. [13] and Saad et al. [21] or modality specific methods such as those
employed by Laidlaw et al. [15] or Heinzl et al. [8] can also be con-
sidered.

5 A FRAMEWORK FOR RECONSTRUCTION OF PIECEWISE
CONTINUOUS DATA

Our reconstruction framework is based on kernel regression but ex-
tends it to handle multiple features. We will therefore briefly explain
kernel regression before detailing how it is combined with our feature
based approach. Furthermore, to handle partial volume effects, we will
describe how to adaptively choose the filter kernel size. We simplify
the notation of a single feature f j by omitting the index j to improve
the presentation.

5.1 Extending Kernel Regression to Feature-Constrained
Reconstruction

This section details how the kernel regression framework is used to
achieve continuous signal reconstruction within individual features.

The original kernel regression framework was presented for image
processing by Takeda et al. [24] to provide optimal estimations of
an unknown signal between sampled grid points. The framework de-
scribes how a series of constraints can be used to influence a recon-
struction. The framework also supports non-regular grids as well as
variations in the local expansions. We use their notation, where yi de-
note the values of the grid points and the reconstructed signal estimate
is denoted ẑ(x).

To preserve the details within a feature but discern between differ-
ent features, the kernel regression framework in our approach relies
on local approximations by Taylor expansion and is thus not defined
for reconstructions across discontinuities. Our assumption here is that
the Taylor expansion is valid within each feature and that the recon-
struction will therefore be valid as long as it is performed within the
continuity of a single feature. Furthermore, weight functions are of-
ten enforced to be strictly greater than zero over their entire domain
to avoid the risk of undefined reconstructions. We can relax this re-
quirement such that weight functions may be zero since the utilization
of the kernel regression framework will ensure that the visual impact
goes to zero when the reconstruction becomes undefined.

Weighted Reconstruction

For reference, the reconstruction with a single normalized spatial ker-
nel takes the following form

ẑ(x) = ∑
yi∈ΩK

wiyi, (3)

where wi are the spatial weights of the neighboring samples and the
neighborhood ΩK is defined by the kernel size.

Feature-Constrained Reconstruction

In this work, the spatial kernel is given by a generalization of trilinear
interpolation with separable weights computed in each dimension for
all spatial weights:

wi = wXwYwZ, with wX|Y|Z = 1−
|x− xi|X|Y|Z

2σ
. (4)

Here, wX, wY and wZ are the respective weights in each spatial dimen-
sion and wi denotes the final spatial weight for grid point i. The func-
tion is scaled such that the tent shape approximates a Gaussian which
is truncated at ±2σ .

Constructing a feature-specific weight function for kernel regres-
sion is straightforward once the conditional probabilities P(f | yi) are
known. Using the framework notation, a feature weight is defined as

wf = P(f | yi). (5)

This is combined with the spatial weight function from Equation 4 to
form the feature specific reconstruction for feature f

ẑf(x) =

∑
yi∈ΩK

wiwfyi

∑
yi∈ΩK

wiwf
. (6)

Assuming a regular grid, normalized spatial kernels will always have
support and integrate to one. The feature kernels on the other hand
cannot be assumed to do so. To address this we will introduce the
concept of reconstruction validity during the visual mapping stage de-
scribed in Section 6.

Extending the framework to multiple features is done by computing
one weighted reconstruction per feature of interest defined by the user.
That is, Equation 6 is evaluated for each f j. The result is a set of esti-
mated values ẑf j (one for each feature of interest), which are processed
in the visual mapping stage described in Section 6.

5.2 Partial Volume and Kernel Size Selection
As our data model we assume an object of study to consist of a series
of continuous features (independent signals) divided by discontinuities
(step-functions). In case the data has been convolved with some form
of point spread function (PSF) causing partial volume effects the PSF
is modeled as a Gaussian with an area of influence of σPSF in accor-
dance with Kindlmann and Durkin [11]. By using the fact that the
influenced regions are restricted in the spatial domain and that their
extent is often a global property that is independent of the participat-
ing materials [10, 20] we can calculate a kernel size that captures the
effect of partial volume. We observe that, for a kernel with a size equal
to the PSF, the combined weight of all voxels that have been misclas-
sified due to partial volume is less than the combined weight of a solid
feature. However, using a large kernel across the whole domain can
suppress details in high frequency areas. Therefore, to enable our re-
construction to handle partial volume effects and at the same time pre-
serve details in high frequency data, we utilize a variable kernel size.
The maximum kernel size is based on the PSF, σmax = 2σPSF, which
also serves as an initial estimate. In order to reduce the kernel size
in regions dominated by solid features we first introduce a measure of
kernel support:

Φ(x, f,Ω) = ∑
yi∈Ω

wiwf. (7)

Note that Ω is directly related to the σ used in Equation 4. In particu-
lar, we use the term feature support for an estimation within a neigh-
borhood whose size is related to the observed PSF:

Ff = Φ(x, f,Ωmax). (8)

This feature support is used to differentiate between real features and
partial volume misclassifications. The variable kernel size is computed
as a linear combination of the minimum (σmin) and maximum (σmax)
kernels based on the feature support from Equation 8:

σf = (Ff)σmin +(1−Ff)σmax, (9)

where we use σmin = 0.25 for a smallest possible kernel size of 23

voxels. If a feature f has no support, i.e. Ff = 0, the reconstruction
of the feature is terminated since no visual output will be generated
due to a lack of valid samples. Note that the size of the reconstruction
kernel does not need to be adjusted for point-sampled data without
partial volume.

6 VISUAL MAPPING

A widget-based TF is used to assign color and opacity properties to
primitives. Section 4 presented how each TF widget is explicitly or
implicitly linked to a feature. The TF here expresses the user’s interest
in a particular part of a feature and more than one widget can be as-
signed to the same feature. We will now go through how the multiple
visual contributions are combined into a joint visual response.

6.1 Reconstruction Validity
Having reconstructed an estimated value for a specific feature we want
to know how valid this value is to use in the latter parts of the pipeline.

As a measure of validity we use the support of active reconstruction
kernel. Including the kernel validity is necessary in order to smoothly
avoid ill-posed reconstructions. For example, consider a region where
P(f | yi) ≈ 0 for a majority of samples in ΩK, i.e. almost no values
were valid to use. This may be caused by situations where only a few
far-away voxels have an impact on the reconstructed value. The kernel
regression framework still provides the best possible estimate from a
least squares’ perspective, but it will do so using a strong normaliza-
tion as the denominator in Equation 6 will be very small. To address
this issue, we interpret the strength of this normalization as a measure
of kernel validity

Vf = Φ(x, f,ΩK). (10)
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Fig. 6: The mapping function determines how sharp the transition
boundary should be between different features. The presented images
in this work use a mapping similar to (b) unless otherwise specified.

Note that the kernel validity differs from the feature support in that it
is computed on the potentially smaller neighborhood ΩK using σf for
spatial weights (cf. Equation 8).

This is similar to the interpretation as a reconstructed conditional
probability P̃(f | x) at the point of reconstruction as proposed by Kniss
et al. [13]. Due to its use as a normalization factor in the reconstruc-
tion, we prefer the interpretation of the expression as reconstruction
validity within the context of this work.

6.2 Combining Multiple Visual Contributions
The maximum number of visual contributions that need to be com-
bined is equal to the number of widgets in the TF. In practice, how-
ever, only one or two of the contributions will typically have non-zero
opacity for a given data value (i.e, there are few places where more
than two visible features overlap).

As an example, consider the visual editor in Fig. 5(b) in which two
features (f1 and f2) and three visual primitives, TFp (red, green and
white) have been defined. The red and green primitives are associated
with f1, the white primitive with f2. Computations at any point x along
the ray would then include two reconstructions and result in three vi-
sual contributions, which all need to be taken into consideration for
the final visual response at point x.

Previous works have targeted the problem of combining multiple,
uncertain or partial visual contributions. Cai and Sakas [3] provide
a categorization of intermixing schemes. Other approaches include
solutions based on decision- and risk-boundaries, fuzzy representa-
tion and probabilistic animation [4, 13, 18]. It is, however, outside of
the scope of this paper to provide a complete overview of these ap-
proaches.

In our work, we employ an accumulation level intermixing [3]
where color contributions from a single sample point are computed
individually. Each contribution is additionally weighted by its recon-
struction validity, Vf, to separate between desired and undesired con-
tributions. For our purposes we have chosen a fuzzy representation
of uncertainty based on reconstruction validity and user interest as ex-
pressed in the alpha channel of the TF. We first add a linear mapping
function to the computed validity

γ(V) = V− εa

εb − εa
, with γ clamped to [0,1]. (11)

The visual contributions for each feature are subsequently blended
into the accumulated color, Cdst, and opacity, αdst, using front-to-back
compositing:

Cdst =Cdst +(1−αdst)Csrc

αdst = αdst +(1−αdst)αsrcγ(Vf),
(12)

where Csrc and αsrc are the color and opacity from the mapping of the
reconstructed value ẑf through each associated primitive, TFp(ẑf). The
compositing in Equation 12 is thus performed once for each widget.
The blending order corresponds to the order of the widgets in the TF.
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Fig. 7: Comparison of reconstruction for intensity TF, 2D intensity/gradient TF, and our method using the Tooth data set. (a) 1D TF introduces
misclassified boundaries (blue sheet) and large empty space near features boundaries (top magnification). (b–d) 2D intensity/gradient TF with
minimal to high user interaction, illustrating the difficulty of achieving a desired classification through complex interfaces. None of them
manages to perform the desired classification. (e) Our method applied to the 1D TF correctly classifies the materials and handles empty space
near feature boundaries, as shown in the top and bottom magnification, with minimal additional user input.

Appropriate values for εa and εb naturally depend on the charac-
teristics of the data. For point sampled data without partial volume
the mapping is reduced to a stylistic expression of certainty, as exem-
plified in Fig. 6, ranging from full uncertainty visualization to a best-
guess representation. All renderings based on point sampled data in
this paper use εa = 0.25 and εb = 0.75. For imaging data with partial
volume, the less precise classification often lowers the expected recon-
struction validity. For this type of data, we use εa = 0.25 and εb = 0.5
for all renderings, which suppress most partial volume effects while
also providing full opacity within features.

For non-expert users, εa and εb can remain hidden. The only
parameter that we then choose to expose to the user is the option to
manually fine-tune σmax in case the initial estimate proves incorrect.
The interpretation of the parameter is straightforward as a ‘high fre-
quencies’ vs. ‘partial volume artifacts’ tradeoff discussed earlier.

7 RELATION TO EXISTING METHODS

The problem of correctly classifying features or transitions between
features is not new. One of the dominant ways to address the problem
has traditionally been to rely on derivative models of the data, i.e. lo-
cal descriptions for the gradient and curvature. This section provides
an analysis of how such methods can be used to achieve the piecewise
continuous representations of an object of study that are the target of
our work. Gradient models offer greater specificity in delineating dif-
ferent transitional regions, e.g. the blue sheet observable in Fig. 7(a).
Traditionally, this information has been used to visualize specific tran-
sitions in an isosurface like manner. This information can, however,
also be used to classify a single solid feature.

As a first example, one can create a minimal intensity/gradient TF
that only classifies and visualizes those parts of the feature that have
low gradient magnitudes.1 Unfortunately, this results in severe gaps in
the visualization between the two visualized materials, as illustrated
in Fig. 7(b) top magnification. To fill the gaps and to create a more
reasonable representation of the feature one may extend the classifier
widgets in the intensity/gradient domain to include the nearest parts of
all transition arcs associated with the targeted feature. However, as il-
lustrated in the bottom magnification of Fig. 7(c), this can introduce a
different form of undesirable artifacts as the specificity between differ-
ent transitions is worse near an arc base than at its apex. Crossing arcs
also contribute to similar misclassification problems. While some of
the misclassification introduced by the arcs can be removed by manu-
ally adjusting the widgets, misclassification still appears, as illustrated
in the bottom magnification in Fig. 7(d). This adjustment is also
both ad-hoc and time consuming. Furthermore, the number of arcs
that need to be adjusted is dependent on the number of other features

1Low here refers to gradient magnitudes caused by natural variations within
features which are assumed to be smaller than the magnitudes observed in tran-
sitional regions, as assumed by Kindlmann and Durkin [11].

(a) (b)

Fig. 8: Displaying renderings of original synthetic data (left) and with
added noise (right) for post-classified DVR in (a) and our method in
(b). With post-classified DVR, noise-disturbed samples will affect also
their surroundings (see outlined regions). The same artifacts are much
less prominent using our reconstruction method. Thus, our method
can help reduce the visual impact of noise.

Table 1: Specifications of data sets and visualizations employed. “Fea-
ture overlap” refers to overlap in value ranges.

Fig. Source Partial Feature Size, reference size σmax

volume overlap
1 Synthetic No No 128×64×1, 1024×512×1 0.5
2,9 DECT scan Yes Partial 512×512×512, N/A 1.25
3,6 Synthetic No No 4×4×1, (procedural) 0.5
8 Synthetic No Yes 16×16×16, N/A 0.55
7 CT scan Yes Yes 128×128×128, N/A 1.75
10 DECT scan Yes Yes 256×256×256, N/A 1.25

the current feature-of-interest is neighboring. This means that we may
end up having to manually adjust a potentially large number of arcs
even if our visualization only concerns a single feature. Whereby the
visualization becomes implicitly dependent on a complete data model
that includes all features that may exist in the data.

8 IMPLEMENTATION

The presented feature-constrained reconstruction is summarized in
Algorithm 1. The prototype implementation that has been used to
present the images in this paper is based on GLSL code and required
only minor changes to an existing software implementation of post-
classification DVR. TF widgets are rendered individual layers in look-
up tables (1D- and 2D-array textures, respectively) to allow each wid-
get to be sampled independently. To demonstrate the ease of imple-
mentation, and further promote the reproducibility of our approach,
we provide annotated GLSL code in the supplementary material. The
file contains two functions: globally continuous reconstruction and
feature-constrained reconstruction.
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Fig. 9: These renderings exemplify a small region of interest (ROI) of the CT angiography scene introduced earlier in Fig. 2. (a) shows the raw
data of the ROI which contains a cross section of a main artery neighbored by a smaller dense material. The following two sub-images show the
data as mapped through the TF with; (b) linear interpolation and (c) our feature constrained reconstruction. The visual difference (CIE76 Lab
distance) between linear interpolation and our method is highlighted in (d). For reference, we provide the TF mapping with no data interpolation
(e) and 3D renderings of and an extended region with linear data interpolation (f) and and our method (g). As seen in both the 2D and 3D
renderings, our method prevent the smaller pieces of dense material from appearing as if they were covered in a layer of contrast agent.

Algorithm 1 Feature-Constrained Reconstruction.

Require:
A set of visualized features f j and a set of TF primitives TFp
Access to P(f j | yi), either precomputed or as a set of parametric
functions (see Section 4)

Algorithm:
for all points x along view ray do

for all features f j do
1) Compute feature support Ff j (Eq. 8)
2) Select reconstruction kernel size based on Ff j (Eq. 9)
3) Reconstruct ẑf j (x) w.r.t. P(f j | yi) (Eq. 6)
4) Compute reconstruction validity Vf j (Eq. 10)
if Validity Vf j > 0 then

5) Extract visual properties through TFp
(
ẑf j (x)

)
6) Compute visual contributions (Eq. 12)
7) Blend to buffer

end if
end for

end for

9 RESULTS

We have applied the framework to several synthetic and real world data
sets. Specifications of the data sizes and origin as well as parameters
for the visualizations can be found in Table 1. Dedicated classifier
widgets in a separate editor were used to generate Fig. 1 and 8. For all
other figures, classifiers derived from the TF widgets were sufficient.

Initially we focus on the highlighted regions in Fig. 1 representing
erroneous visual effects that commonly arise in a continuous model.
The first highlight (Fig. 1(d)) shows the well-known sheet artifact that
appears in transitional regions between features where a visual map-
ping of an unrelated feature incorrectly is shown. The same problem
has been discussed in relation to Fig. 2.

The second highlight (Fig. 1(e)) demonstrates a similar sheet arti-
fact but this time manifesting itself within, as opposed to outside, the
visualized feature. In this region of the data set, the values within the
’O’ are higher than what the user has selected to show. Outside the ’O’
the values are all zero, which the TF also defines as transparent. How-
ever, due to the continuous interpolation, a blue sheet appears at the
boundary even though the user expects a transparent output in this re-
gion. For point sampled data, our method removes this artifact through
the weighted reconstruction. For data with partial volume, the effect
is hard to separate from what may be natural value shifts within the
feature. The effect is dependent on the number of voxels that have
been erroneously labeled in the initial classification and can thereby
be addressed through improved classifier specificity.

A different type of artifact is shown in the third highlight (Fig. 1(f)).
Gaps are formed between adjoining features due to a shrinking effect
of both features. This effect always occurs when their respective visual
primitives in the TF are disjunct, since reconstructed intermediate val-
ues are mapped to transparency. The artifact is even more noticeable
in the presence of partial volume as illustrated in Fig. 7 and discussed
in Section 7. As highlighted in the inset images of Fig. 7, our method
improves the representation of both visualized features without intro-
ducing the misclassification that appears in other methods.

The effects of adapting the kernel size to preserve high frequencies
within features can be seen in Fig. 7. Here, the kernel size is increased
for both features near the transition, yet the solid materials still show
the high frequency variations that exist when a global small kernel
is used (compare sub-figures (a) and (e)). Another example of how
increased kernel size is used to reduce small scale effects of partial
volume is evident in Fig. 9 where the high frequencies near transitional
regions are misleading. In Fig. 8, a synthetic data set with two features
are given overlapping value ranges by adding noise. The sheet-type
artifact discussed above causes single noise-disturbed samples to also
affect their respective local neighborhoods. Our method avoids the
sheet effect by restraining the spatial spread and therefore reduces the
visual impact of the noise.
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Fig. 7: Comparison of reconstruction for intensity TF, 2D intensity/gradient TF, and our method using the Tooth data set. (a) 1D TF introduces
misclassified boundaries (blue sheet) and large empty space near features boundaries (top magnification). (b–d) 2D intensity/gradient TF with
minimal to high user interaction, illustrating the difficulty of achieving a desired classification through complex interfaces. None of them
manages to perform the desired classification. (e) Our method applied to the 1D TF correctly classifies the materials and handles empty space
near feature boundaries, as shown in the top and bottom magnification, with minimal additional user input.

Appropriate values for εa and εb naturally depend on the charac-
teristics of the data. For point sampled data without partial volume
the mapping is reduced to a stylistic expression of certainty, as exem-
plified in Fig. 6, ranging from full uncertainty visualization to a best-
guess representation. All renderings based on point sampled data in
this paper use εa = 0.25 and εb = 0.75. For imaging data with partial
volume, the less precise classification often lowers the expected recon-
struction validity. For this type of data, we use εa = 0.25 and εb = 0.5
for all renderings, which suppress most partial volume effects while
also providing full opacity within features.

For non-expert users, εa and εb can remain hidden. The only
parameter that we then choose to expose to the user is the option to
manually fine-tune σmax in case the initial estimate proves incorrect.
The interpretation of the parameter is straightforward as a ‘high fre-
quencies’ vs. ‘partial volume artifacts’ tradeoff discussed earlier.

7 RELATION TO EXISTING METHODS

The problem of correctly classifying features or transitions between
features is not new. One of the dominant ways to address the problem
has traditionally been to rely on derivative models of the data, i.e. lo-
cal descriptions for the gradient and curvature. This section provides
an analysis of how such methods can be used to achieve the piecewise
continuous representations of an object of study that are the target of
our work. Gradient models offer greater specificity in delineating dif-
ferent transitional regions, e.g. the blue sheet observable in Fig. 7(a).
Traditionally, this information has been used to visualize specific tran-
sitions in an isosurface like manner. This information can, however,
also be used to classify a single solid feature.

As a first example, one can create a minimal intensity/gradient TF
that only classifies and visualizes those parts of the feature that have
low gradient magnitudes.1 Unfortunately, this results in severe gaps in
the visualization between the two visualized materials, as illustrated
in Fig. 7(b) top magnification. To fill the gaps and to create a more
reasonable representation of the feature one may extend the classifier
widgets in the intensity/gradient domain to include the nearest parts of
all transition arcs associated with the targeted feature. However, as il-
lustrated in the bottom magnification of Fig. 7(c), this can introduce a
different form of undesirable artifacts as the specificity between differ-
ent transitions is worse near an arc base than at its apex. Crossing arcs
also contribute to similar misclassification problems. While some of
the misclassification introduced by the arcs can be removed by manu-
ally adjusting the widgets, misclassification still appears, as illustrated
in the bottom magnification in Fig. 7(d). This adjustment is also
both ad-hoc and time consuming. Furthermore, the number of arcs
that need to be adjusted is dependent on the number of other features

1Low here refers to gradient magnitudes caused by natural variations within
features which are assumed to be smaller than the magnitudes observed in tran-
sitional regions, as assumed by Kindlmann and Durkin [11].

(a) (b)

Fig. 8: Displaying renderings of original synthetic data (left) and with
added noise (right) for post-classified DVR in (a) and our method in
(b). With post-classified DVR, noise-disturbed samples will affect also
their surroundings (see outlined regions). The same artifacts are much
less prominent using our reconstruction method. Thus, our method
can help reduce the visual impact of noise.

Table 1: Specifications of data sets and visualizations employed. “Fea-
ture overlap” refers to overlap in value ranges.

Fig. Source Partial Feature Size, reference size σmax

volume overlap
1 Synthetic No No 128×64×1, 1024×512×1 0.5
2,9 DECT scan Yes Partial 512×512×512, N/A 1.25
3,6 Synthetic No No 4×4×1, (procedural) 0.5
8 Synthetic No Yes 16×16×16, N/A 0.55
7 CT scan Yes Yes 128×128×128, N/A 1.75
10 DECT scan Yes Yes 256×256×256, N/A 1.25

the current feature-of-interest is neighboring. This means that we may
end up having to manually adjust a potentially large number of arcs
even if our visualization only concerns a single feature. Whereby the
visualization becomes implicitly dependent on a complete data model
that includes all features that may exist in the data.

8 IMPLEMENTATION

The presented feature-constrained reconstruction is summarized in
Algorithm 1. The prototype implementation that has been used to
present the images in this paper is based on GLSL code and required
only minor changes to an existing software implementation of post-
classification DVR. TF widgets are rendered individual layers in look-
up tables (1D- and 2D-array textures, respectively) to allow each wid-
get to be sampled independently. To demonstrate the ease of imple-
mentation, and further promote the reproducibility of our approach,
we provide annotated GLSL code in the supplementary material. The
file contains two functions: globally continuous reconstruction and
feature-constrained reconstruction.
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Fig. 9: These renderings exemplify a small region of interest (ROI) of the CT angiography scene introduced earlier in Fig. 2. (a) shows the raw
data of the ROI which contains a cross section of a main artery neighbored by a smaller dense material. The following two sub-images show the
data as mapped through the TF with; (b) linear interpolation and (c) our feature constrained reconstruction. The visual difference (CIE76 Lab
distance) between linear interpolation and our method is highlighted in (d). For reference, we provide the TF mapping with no data interpolation
(e) and 3D renderings of and an extended region with linear data interpolation (f) and and our method (g). As seen in both the 2D and 3D
renderings, our method prevent the smaller pieces of dense material from appearing as if they were covered in a layer of contrast agent.

Algorithm 1 Feature-Constrained Reconstruction.

Require:
A set of visualized features f j and a set of TF primitives TFp
Access to P(f j | yi), either precomputed or as a set of parametric
functions (see Section 4)

Algorithm:
for all points x along view ray do

for all features f j do
1) Compute feature support Ff j (Eq. 8)
2) Select reconstruction kernel size based on Ff j (Eq. 9)
3) Reconstruct ẑf j (x) w.r.t. P(f j | yi) (Eq. 6)
4) Compute reconstruction validity Vf j (Eq. 10)
if Validity Vf j > 0 then

5) Extract visual properties through TFp
(
ẑf j (x)

)
6) Compute visual contributions (Eq. 12)
7) Blend to buffer

end if
end for

end for

9 RESULTS

We have applied the framework to several synthetic and real world data
sets. Specifications of the data sizes and origin as well as parameters
for the visualizations can be found in Table 1. Dedicated classifier
widgets in a separate editor were used to generate Fig. 1 and 8. For all
other figures, classifiers derived from the TF widgets were sufficient.

Initially we focus on the highlighted regions in Fig. 1 representing
erroneous visual effects that commonly arise in a continuous model.
The first highlight (Fig. 1(d)) shows the well-known sheet artifact that
appears in transitional regions between features where a visual map-
ping of an unrelated feature incorrectly is shown. The same problem
has been discussed in relation to Fig. 2.

The second highlight (Fig. 1(e)) demonstrates a similar sheet arti-
fact but this time manifesting itself within, as opposed to outside, the
visualized feature. In this region of the data set, the values within the
’O’ are higher than what the user has selected to show. Outside the ’O’
the values are all zero, which the TF also defines as transparent. How-
ever, due to the continuous interpolation, a blue sheet appears at the
boundary even though the user expects a transparent output in this re-
gion. For point sampled data, our method removes this artifact through
the weighted reconstruction. For data with partial volume, the effect
is hard to separate from what may be natural value shifts within the
feature. The effect is dependent on the number of voxels that have
been erroneously labeled in the initial classification and can thereby
be addressed through improved classifier specificity.

A different type of artifact is shown in the third highlight (Fig. 1(f)).
Gaps are formed between adjoining features due to a shrinking effect
of both features. This effect always occurs when their respective visual
primitives in the TF are disjunct, since reconstructed intermediate val-
ues are mapped to transparency. The artifact is even more noticeable
in the presence of partial volume as illustrated in Fig. 7 and discussed
in Section 7. As highlighted in the inset images of Fig. 7, our method
improves the representation of both visualized features without intro-
ducing the misclassification that appears in other methods.

The effects of adapting the kernel size to preserve high frequencies
within features can be seen in Fig. 7. Here, the kernel size is increased
for both features near the transition, yet the solid materials still show
the high frequency variations that exist when a global small kernel
is used (compare sub-figures (a) and (e)). Another example of how
increased kernel size is used to reduce small scale effects of partial
volume is evident in Fig. 9 where the high frequencies near transitional
regions are misleading. In Fig. 8, a synthetic data set with two features
are given overlapping value ranges by adding noise. The sheet-type
artifact discussed above causes single noise-disturbed samples to also
affect their respective local neighborhoods. Our method avoids the
sheet effect by restraining the spatial spread and therefore reduces the
visual impact of the noise.
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(a) (b) 

Fig. 10: This example is rendered from a contrast enhanced DECT data
set of a human head. Using a second energy level in the CT acquisi-
tion provides improved differentiability between the contrast enhanced
vessels and the skull. Even so, classification is still problematic, re-
sulting in severe misclassifications, primarily along the inside of the
skull (a). Our method (b) is capable of eliminating much of the thin
artifacts, resulting in a more easily interpretable image.

Table 2: Performance measurements for 2D and 3D scalar fields. In-
teractive performance can be achieved for 2D scalar fields and small
3D scalar fields.

Data set size Post (HW) Post (SW) σmax = 0.5 σmax = 1.0 σmax = 1.5
ΩK = 23 ΩK = 23 Ωmax = 23 Ωmax = 43 Ωmax = 63

5122 (2D slice) 0.002 s 0.002 s 0.003 s 0.004 s 0.010 s
163 (3D ROI) 0.002 s 0.005 s 0.008 s 0.050 s 0.184 s
1283 (3D focus) 0.002 s 0.006 s 0.008 s 0.031 s 0.094 s
1283 (3D) 0.004 s 0.022 s 0.036 s 0.171 s 0.516 s

Finally we also provide examples to demonstrate that the approach
scales well and supports data of higher dimensions. This is illustrated
in Fig. 2, 9 and 10 which are rendered from data acquired through
DECT, i.e. inherently dual-variate data. Fig. 2 and 9 originate from the
same data set and depict a CT angiography study of human blood ves-
sels which has been infused with a contrast agent. Fig. 10 similarly
depicts a study on vessel anatomy focusing on vessels inside a human
head. Dual-energy CT is used in both cases to increase the differen-
tiability between the contrast agent and bone. The differentiation is
sufficient to derive acceptable material classifiers directly from the TF
(as described in Section 4), and our method is thus applied with next
to zero overhead in interaction complexity. For the small focus region
in Fig. 9, our method prevents red sheets from obscuring important
features. The difference image, showing CIE76 Lab color distances
(pixel values in the [0,1] range), highlights that the vessel is also less
affected by thinning due to partial volume. In Fig. 10 the vascular tree
is made more visible by our method as the artifacts near the skull are
filtered away. Reconstruction of the two energy levels was performed
separately while the classification was performed in the full 2D space.

When the kernel size is fixed the proposed framework only re-
quires a small number of extra instructions per primitive compared to
an equivalent continuous reconstruction kernel (software implementa-
tion). More specifically, feature weights need to be fetched or proce-
durally generated, validity computed, and the final result normalized
(steps 3–7 in Algorithm 1). For variable kernel sizes, our prototype

implementation currently uses a brute force approach, which computes
the kernel size for each sample position by sampling the neighborhood
(step 1–2 in Algorithm 1), and is therefore only interactive for 2D
scalar fields or for smaller focus/context lenses (subset of full view-
port) or regions-of-interest of 3D scalar fields. We performed perfor-
mance measurements using variable sized kernels, no shading, an early
ray termination threshold of 0.98, and two TF primitives on a system
with an Intel Core i7 3.6 GHz CPU with 16 GB RAM and a Nvidia
GTX 770 graphics card with a single sample per voxel. A viewport
size of 5122 was used for all cases except the focus/context lens which
used a 2562 viewport with a reduced field-of-view. Performance mea-
surements are available in Table 2. Measurements on 3D data were
performed on the Tooth data from Fig. 7 while the 2D measures were
performed on a 16-bit CT image. The results show that the method in
its current form supports interactive exploration for 2D slices at high
frame rates, and that it also can be applicable to 3D scalar fields if the
rendering is focused on a subsection of the volume. Rendering a full
volume at interactive frame rates would require further performance
optimization. A performance analysis shows that the overhead is pri-
marily introduced by the evaluation of Equation 8, which represents
the sampling needed to determine the kernel size. Determining the
kernel size through methods with lower computational overhead, such
as gradient analysis, provides opportunities for performance improve-
ments.

10 CONCLUSIONS AND FUTURE WORK

Separation between the object of study (what the user wants to see),
the measurable signal (what can be measured) and the measured sig-
nal (the sampled data) in the context of signal reconstruction for vi-
sualization is the underpinning concept in this work. We made two
crucial points; that the user’s conceptual understanding of the object
of study in many cases consists of multiple disjoint features, and that
applying a continuous model in such cases results in severe artifacts in
the rendered image.

To address the identified issues we presented a novel boundary
aware visualization model that improves upon previous work by utiliz-
ing knowledge about features to be accounted for in the reconstruction
stage of the visualization pipeline. The approach is general for all vi-
sualization work requiring a color mapping and we have exemplified
it using slice based and volumetric rendering.

The new framework enabled the use of a piecewise continuous data
model by performing a per-feature reconstruction. The theoretical
foundation for this was realized by extending kernel regression to con-
strain reconstruction within single features. Knowledge about features
was introduced using a probabilistic interpretation of classification.
As this probabilistic interpretation is common in the field of visual-
ization our work is widely applicable. Since our method does not rely
on any single implementation to derive the probabilistic classifications
it offers great flexibility in the trade-off between classification speci-
ficity versus computational and interaction overhead. Notably, one of
the proposed probabilistic classification implementations was entirely
based on the TF and thus does not introduce any extra user defined
parameters.

Although performance is currently a weakness of our approach, it
is applicable for slice based rendering as well as for smaller focus re-
gions of volumetric data. Addressing performance by improving the
selection of kernel sizes remains an interesting possibility for future
work. Other avenues for future work include gradient reconstruction,
semi-automatic creation of support functions, and an extension of rep-
resentation of transitions between regions.
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(a) (b) 

Fig. 10: This example is rendered from a contrast enhanced DECT data
set of a human head. Using a second energy level in the CT acquisi-
tion provides improved differentiability between the contrast enhanced
vessels and the skull. Even so, classification is still problematic, re-
sulting in severe misclassifications, primarily along the inside of the
skull (a). Our method (b) is capable of eliminating much of the thin
artifacts, resulting in a more easily interpretable image.

Table 2: Performance measurements for 2D and 3D scalar fields. In-
teractive performance can be achieved for 2D scalar fields and small
3D scalar fields.

Data set size Post (HW) Post (SW) σmax = 0.5 σmax = 1.0 σmax = 1.5
ΩK = 23 ΩK = 23 Ωmax = 23 Ωmax = 43 Ωmax = 63

5122 (2D slice) 0.002 s 0.002 s 0.003 s 0.004 s 0.010 s
163 (3D ROI) 0.002 s 0.005 s 0.008 s 0.050 s 0.184 s
1283 (3D focus) 0.002 s 0.006 s 0.008 s 0.031 s 0.094 s
1283 (3D) 0.004 s 0.022 s 0.036 s 0.171 s 0.516 s

Finally we also provide examples to demonstrate that the approach
scales well and supports data of higher dimensions. This is illustrated
in Fig. 2, 9 and 10 which are rendered from data acquired through
DECT, i.e. inherently dual-variate data. Fig. 2 and 9 originate from the
same data set and depict a CT angiography study of human blood ves-
sels which has been infused with a contrast agent. Fig. 10 similarly
depicts a study on vessel anatomy focusing on vessels inside a human
head. Dual-energy CT is used in both cases to increase the differen-
tiability between the contrast agent and bone. The differentiation is
sufficient to derive acceptable material classifiers directly from the TF
(as described in Section 4), and our method is thus applied with next
to zero overhead in interaction complexity. For the small focus region
in Fig. 9, our method prevents red sheets from obscuring important
features. The difference image, showing CIE76 Lab color distances
(pixel values in the [0,1] range), highlights that the vessel is also less
affected by thinning due to partial volume. In Fig. 10 the vascular tree
is made more visible by our method as the artifacts near the skull are
filtered away. Reconstruction of the two energy levels was performed
separately while the classification was performed in the full 2D space.

When the kernel size is fixed the proposed framework only re-
quires a small number of extra instructions per primitive compared to
an equivalent continuous reconstruction kernel (software implementa-
tion). More specifically, feature weights need to be fetched or proce-
durally generated, validity computed, and the final result normalized
(steps 3–7 in Algorithm 1). For variable kernel sizes, our prototype

implementation currently uses a brute force approach, which computes
the kernel size for each sample position by sampling the neighborhood
(step 1–2 in Algorithm 1), and is therefore only interactive for 2D
scalar fields or for smaller focus/context lenses (subset of full view-
port) or regions-of-interest of 3D scalar fields. We performed perfor-
mance measurements using variable sized kernels, no shading, an early
ray termination threshold of 0.98, and two TF primitives on a system
with an Intel Core i7 3.6 GHz CPU with 16 GB RAM and a Nvidia
GTX 770 graphics card with a single sample per voxel. A viewport
size of 5122 was used for all cases except the focus/context lens which
used a 2562 viewport with a reduced field-of-view. Performance mea-
surements are available in Table 2. Measurements on 3D data were
performed on the Tooth data from Fig. 7 while the 2D measures were
performed on a 16-bit CT image. The results show that the method in
its current form supports interactive exploration for 2D slices at high
frame rates, and that it also can be applicable to 3D scalar fields if the
rendering is focused on a subsection of the volume. Rendering a full
volume at interactive frame rates would require further performance
optimization. A performance analysis shows that the overhead is pri-
marily introduced by the evaluation of Equation 8, which represents
the sampling needed to determine the kernel size. Determining the
kernel size through methods with lower computational overhead, such
as gradient analysis, provides opportunities for performance improve-
ments.

10 CONCLUSIONS AND FUTURE WORK

Separation between the object of study (what the user wants to see),
the measurable signal (what can be measured) and the measured sig-
nal (the sampled data) in the context of signal reconstruction for vi-
sualization is the underpinning concept in this work. We made two
crucial points; that the user’s conceptual understanding of the object
of study in many cases consists of multiple disjoint features, and that
applying a continuous model in such cases results in severe artifacts in
the rendered image.

To address the identified issues we presented a novel boundary
aware visualization model that improves upon previous work by utiliz-
ing knowledge about features to be accounted for in the reconstruction
stage of the visualization pipeline. The approach is general for all vi-
sualization work requiring a color mapping and we have exemplified
it using slice based and volumetric rendering.

The new framework enabled the use of a piecewise continuous data
model by performing a per-feature reconstruction. The theoretical
foundation for this was realized by extending kernel regression to con-
strain reconstruction within single features. Knowledge about features
was introduced using a probabilistic interpretation of classification.
As this probabilistic interpretation is common in the field of visual-
ization our work is widely applicable. Since our method does not rely
on any single implementation to derive the probabilistic classifications
it offers great flexibility in the trade-off between classification speci-
ficity versus computational and interaction overhead. Notably, one of
the proposed probabilistic classification implementations was entirely
based on the TF and thus does not introduce any extra user defined
parameters.

Although performance is currently a weakness of our approach, it
is applicable for slice based rendering as well as for smaller focus re-
gions of volumetric data. Addressing performance by improving the
selection of kernel sizes remains an interesting possibility for future
work. Other avenues for future work include gradient reconstruction,
semi-automatic creation of support functions, and an extension of rep-
resentation of transitions between regions.

ACKNOWLEDGMENTS

The authors wish to thank the Center for Medical Image Science and
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tering and segmentation using high-level shading languages. In IEEE
Visualization, pages 309–316, 2003.


