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Ligand Excluded Surface : A New Type of Molecular Surface
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Fig. 1. Comparison of a solvent excluded surface (SES) and a ligand excluded surface (LES) on the example of ketosteroid
isomerase (PDB-Id: 1OGZ). To simplify the comparison, both surfaces have been cut. (a) SES of isomerase with probe radius 1.4 Å.
The spherical probe is depicted in red. (c) LES of isomerase for the ligand equilenine, computed with 0.25 Å grid spacing and 200
orientations. The ligand (red) is depicted in its active position. (b) Overlaid surface cuts, showing differences between SES and LES.

Abstract— The most popular molecular surface in molecular visualization is the solvent excluded surface (SES). It provides informa-
tion about the accessibility of a biomolecule for a solvent molecule that is geometrically approximated by a sphere. During a period
of almost four decades, the SES has served for many purposes – including visualization, analysis of molecular interactions and the
study of cavities in molecular structures. However, if one is interested in the surface that is accessible to a molecule whose shape
differs significantly from a sphere, a different concept is necessary. To address this problem, we generalize the definition of the SES
by replacing the probe sphere with the full geometry of the ligand defined by the arrangement of its van der Waals spheres. We call
the new surface ligand excluded surface (LES) and present an efficient, grid-based algorithm for its computation. Furthermore, we
show that this algorithm can also be used to compute molecular cavities that could host the ligand molecule. We provide a detailed
description of its implementation on CPU and GPU. Furthermore, we present a performance and convergence analysis and compare
the LES for several molecules, using as ligands either water or small organic molecules.

Index Terms—Molecular visualization, solvent excluded surface, ligand excluded surface, cavity analysis

1 MOTIVATION

In molecular sciences, the use of molecular surfaces has a long tra-
dition, starting with the van der Waals (vdW) surface and the solvent
accessible surfaces (SAS) described by Lee and Richards in 1971 [26].
A few years later, in 1977, Richards defined the solvent excluded sur-
face (SES), which he simply named molecular surface [40]. Only one
year later, Greer and Bush [12] proposed the first method to depict
parts of the 3D structure of the SES by computing the height field of
the molecule with respect to a particular direction. In 1983, Pearl and
Honegger [37] proposed a three-dimensional grid method to compute
the complete SES, before in 1985 Conolly [6] presented a method to
directly compute a triangular surface from the analytical surface de-
scription of the SES. Since the first three-dimensional representations
of the SES, there has been a large number of publications dealing with
the computation and the visualization of the SES. However, the funda-
mental problem that almost no molecule, not even water, has a spher-
ical shape, has so far not been addressed in the computation and visu-
alization of molecular surfaces.

To address this, we propose a new molecular surface, called ligand
excluded surface (LES). It represents the surface of a receptor that is
accessible to a specific individual ligand, which is represented by its
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spatial configuration of atom spheres (rather then a single ‘approxi-
mating’ sphere). Thus receptor and ligand are geometrically repre-
sented in the same manner. An example of an LES is shown in Fig. 1,
which also demonstrates the difference to the SES. We present an al-
gorithm for computing the LES based on a grid representation. We
define the LES as an implicit function of a distance field. In order
to approximate this distance field well, we need to take into account
a possibly large number of orientations of the ligand. Since a brute-
force approach that places the ligand at all positions of the grid with a
large number of orientations would be computationally too expensive,
we apply a two-phase approach that significantly reduces the computa-
tional effort. Moreover, we implement this method on the GPU, which
further speeds up the computation.

The algorithm for computing the LES can be easily extended to
also compute cavities that are large enough to host the ligand molecule
(see, for example, Fig. 2). In addition to the geometry of the cavities,
we also obtain information about how the ligand is positioned inside
the cavities. This might be of particular interest when applying our
method for subsequent docking simulations.

2 RELATED WORK

Since our contributions concern both molecular surfaces and cavity
analysis, we have split the related work with regard to these subfields.

2.1 Molecular Surfaces

Since the ligand excluded surface is most closely related to the sol-
vent excluded surface, we will focus here on previous work dealing
with SES. As mentioned before, the SES was originally defined by
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Fig. 2. Cavities of hexameric insulin (PDB-Id: 3MTH) for methyl-
paraben, computed with the LES algorithm (with 200 orientations). The
three main cavities are depicted by their boundaries, together with
methylparaben. The insulin molecule is depicted by its secondary struc-
ture.

Richards in 1977 [40]. Since then, many approaches have been pro-
posed to compute and visualize this surface. These approaches either
compute an implicit representation of the surface or a piecewise para-
metric description.

Most implicit representations use a grid structure on which the im-
plicit surface is defined [2, 17, 35, 37]. This is done by marking the
grid points as lying either inside or outside the SES or by computing
a distance function giving the minimal distance of each grid point to
the SES. A triangular mesh of the SES can then be computed using the
marching cubes algorithm [31] or it can be rendered directly using ray
casting [13]. Instead of using a grid structure to represent the implicit
surface, Parulek et al. [34] apply a ray casting approach that computes
the distance function to the SES interactively for small molecules. An-
other way to approximate the SES is to use Gaussian models [21, 33].

The computation of a parametric description of the SES was first
addressed by Connolly [6], who also presented an algorithm to tri-
angulate the surface. More efficient algorithms were later proposed
by Sanner et al. [41] (reduced surface algorithm) and Totrov and
Abagyan [45] (contour-buildup algorithm). Due to the advent of com-
modity multi-core hardware and the advances in GPUs, it was worth-
while to consider the matter again. In 2009, Krone et al. [20] presented
a ray casting approach to render the SES based on the reduced surface
algorithm. One year later, we presented a CPU-parallelized version
of the contour-buildup algorithm which also applied ray casting for
the visualization of the SES [30]. With both approaches, it became
possible to compute and render the SES of dynamic molecules with
several thousands of atoms at interactive speed. A further accelera-
tion can be achieved by a GPU implementation of the contour-buildup
algorithm [23].

Since the LES, as defined in this work, cannot be computed ana-
lytically, we approximate the implicit description of the surface using
a discrete signed distance function. The surface can then be rendered
directly or triangulated using marching cubes.

2.2 Cavity Analysis
Methods for computing molecular cavities sometimes are classified
according to the particular type of cavity (void, pocket and tunnel). We
do not make this distinction and refer to all of these types as ‘cavity’.
Instead, we subdivide the methods according to whether the primary
structures being computed are volumetric representations of the cavi-
ties or molecular paths, which can be considered as centerlines of the
cavities. While it is easy to compute a volumetric representation from

a path representation, the opposite is generally not true.
One of the first approaches to compute a volumetric representation

of cavities was presented by Levitt and Banaszak [27]. Their approach
creates a regular grid. A point on this grid is defined as cavity point
if it lies outside the molecule and at least for one of the three main
axes, the protein is hit in both directions. Finally, neighbored cavity
points are clustered to define a cavity. A similar strategy was used
by a few other approaches that consider more axes, define the protein
grid points differently, or cluster cavity points in a different way [16,
19, 47]. Laskowski [24] identifies cavities by placing spheres between
two non-intersecting atoms. If other atoms intersect this sphere, its
radius is decreased until no atom is intersected anymore. Spheres of
appropriate size describe cavities. Brady et al. [5] also place spheres
from which the final cavities are computed. However, they start with
an initial coating that is iteratively extended layer by layer, until no
more spheres can be placed. Alpha shapes have also been used to
compute molecular cavities [3, 9]. Recently, a computation of internal
cavities using alpha shapes was presented that is more robust regarding
perturbations of atom radii [44]. A meta-approach to cavity analysis
was presented by Huang [18], who combined several approaches [5,
19, 24, 25] to improve the prediction quality. Another approach uses
volume rendering to determine cavities [22]. Here, the molecule is
represented as a continuous density sampled on a grid. The density
can be efficiently computed and the cavity analysis is interactive, such
that it can be applied to analyze molecular dynamics trajectories.

One of the earliest methods to compute molecular paths was pre-
sented by Smart et al. [43]. Starting from a user-defined point inside
a cavity, their method computes a path to the outside of the molecule
using simulated annealing. Petřek et al. [39] also compute paths from
a cavity to the outside by utilizing shortest paths on a weighted graph
that is computed from the distance field of the molecule. In a subse-
quent work [38], they improve their method by using the Voronoi dia-
gram of the atom positions for the graph computation. Further works
employing Voronoi diagrams of points include the ones by Yaffe et
al. [48] and Medek et al. [32]. More recently [29], we developed an
approach based on the Voronoi diagram of spheres, which takes cor-
rectly into account the size of the atoms. In a subsequent work [28],
we extended this approach to dynamic molecular paths computed from
molecular trajectories. Two of the few approaches that compute pos-
sible molecular paths based on the correct geometry of a ligand are
the methods by Cortes et al. [7, 8] and Haranczyk & Sethian [14].
While Cortes et al. use rapidly exploring random trees, Haranczyk
& Sethian sample the ligand orientation space to compute possible
molecular paths.

The cavities we compute are volumetric representations given by
the ligand structure on a discrete grid. Additionally, at each grid point
the possible orientations of the ligand are known. This information
can be used to quickly compute and display the cavity surfaces.

3 LES DEFINITION

Informally, the LES of a receptor can be defined as the surface enclos-
ing the space around the receptor that is not accessible to a specific
ligand. Below we give a mathematical definition of the LES.

We start with some formalization: Let the receptor molecule r, for
which we want to compute the LES, consist of n atoms with positions
pr

i ∈ R3 and atomic radii rr
i ∈ R, with i = 1...n. Furthermore, let the

flexibility of the ligand l be given by a set of c conformations and
let the ligand consist of m atoms with positions pl

jk ∈ R3 and radii

rl
j ∈ R, with j = 1...m and k = 1...c. The state of the ligand is given

by a conformation k, a translation T , and an orientation R, which is
given by a rotation. We define the state of the ligand as valid if no
ligand atom intersects any atom of the receptor molecule. This can be
formulated using a binary function Ir,l : (N,R3,SO3)→{0,1}, which
is 1 if the state is valid and 0 otherwise.

Ir,l(k,T,R) =

{
1,

∥∥∥pr
i − (Rpl

jk +T )
∥∥∥≥ rr

i + rl
j,∀i = 1...n,∀ j = 1...m

0, else.
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Fig. 3. Illustration of our algorithm: (a) The gray spheres depict the receptor molecule and the grid points show the discretization of the space
around the molecule. Red dots mark sample positions where the ligand inscribed sphere (red circles) cannot be placed without intersecting the
receptor; blue dots mark sample positions where the ligand bounding sphere (blue circles) can be placed without intersecting the receptor. The
red and blue dots are the result of phase I of the algorithm. The yellow dots mark the remaining sample positions, which need to be processed in
phase II. (b) The distance field after completing phase I. The resulting implicit surface is equal to the SES of the ligand bounding sphere. The yellow
spheres depict the ligand molecule enclosed by its ligand bounding sphere. (c) The distance field and resulting LES after completing phase II.

Now we can define the ligand excluded surface as the surface that
encloses all points in R3 that are not reachable by a valid ligand state.
This can be mathematically described by a ligand-dependent distance
function dr,l with

dr,l(p) = max
k=1...c,

T∈R3,R∈SO3




max
j=1...m

rl
j −

∥∥∥p− (Rpl
jk +T )

∥∥∥ , Ir,l(k,T,R) = 1

−∞, else.

The ligand excluded surface is then given as implicit function of all
points p with dr,l(p) = 0. Note that dr,l is not completely equal to the
Euclidean distance function of the LES, but they are equal inside the
LES and within a local distance outside the LES. Furthermore, for a
‘ligand’ consisting of a single atom, the LES is equal to the SES; thus
the LES is a generalization of the SES.

In contrast to the SES, the ligand excluded surface cannot be com-
puted in an analytical way. We can only approximate the surface geo-
metrically by discretizing the space of ligand states. Since we use a
finite set of c conformations, the dynamics of the ligand is already
discretized. Additionally we need to discretize the orientations and
positions of the ligand. To do so, we introduce two parameters, the
number o ∈ N of sample orientations and the spacing g ∈ R of the
cubic grid being used for uniform sampling of the positions.

4 ALGORITHM

First, we give an overview of the computation of the ligand ex-
cluded surface (LES) (Sect. 4.1). Then, the two phases (Sect. 4.2 and
Sect. 4.3) for the construction of the discrete distance function defin-
ing the LES are described in detail. We conclude with a description
about how we can exploit our approach to compute cavities (Sect. 4.4).
Note that the distance field we compute only correctly approximates
the distance function defined in Sect. 3 in the local vicinity of of the
LES.

4.1 Overview
Instead of directly computing the LES, we compute a signed distance
field that is negative inside the LES and positive outside. Thus, the
LES is implicitly defined by the zero level set of this distance field. To
compute the LES, we do not need the exact distance field; it needs to
be exact only in the vicinity of the LES. We compute the distance field
iteratively on a discrete grid. In order to approach the correct distance
field values close to the LES, we apply a two-phase approach.

In the first phase, a sphere completely enclosing the ligand is used
to update the distance field at positions of the grid where the lig-
and can rotate around its center without ever intersecting any atom
of the molecule. In the following, we call this sphere ligand bounding
sphere. For the positions at which we can place the ligand bounding
sphere (blue points in Fig. 3(a)), we update the distance field for all
grid points inside the bounding box of the ligand bounding sphere.

The resulting distance field is depicted in Fig. 3(b) together with its
implicit surface. This implicit surface is a discrete representation of
the SES for a probe sphere equal to the ligand bounding sphere. Note
that after computing the distance field, the largest distance value will
be equal to the radius of the ligand bounding sphere. This value is set
at all positions where the ligand bounding sphere could be placed. In
addition to modifying the distance field, we also mark the positions
where the ligand bounding sphere could be placed. These positions
do not need to be considered any further. In the first phase, a second
sphere is used to conservatively mark grid points at which no ligand
can be placed without intersecting the molecule, including grid points
inside the molecule but also some grid points close to the LES. These
grid points are depicted in Fig. 3(a) as red points.

The second phase of our approach completes the computation of the
distance field in the vicinity of the LES. It uses all information com-
puted in the first phase, in particular the grid positions that are neither
marked blue nor red. These are marked as yellow points in Fig. 3(a)
and represent the remaining sampling positions to be considered. At
these positions, it will now be tested whether the ligand can be placed
without intersecting with any atom sphere of the molecule. To ap-
proach the distance field as well as possible, the ligand will be rotated
at each of these positions. Furthermore, if the ligand is flexible, more
than one conformation can be considered. For each rotation and each
conformation for which the ligand does not intersect any atom of the
molecule, the distance field of all grid points inside the bounding box
of the ligand will be updated. Note, however, that the distance values
will be updated only if the values increase. The result of phase II is
illustrated in Fig. 3(c).

4.2 Phase I
In phase I, we sample the discrete grid with two spheres. The first
one is a small sphere that is inscribed in the ligand atom spheres and
is therefore referred to as ligand inscribed sphere (see red spheres in
Fig. 3(b)). The second sphere is usually much larger than the first one
and completely contains all ligand atom spheres. In the following, we
refer to it as ligand bounding sphere (see blue spheres in Fig. 3(b)).
These spheres are used to initialize the distance field and to make later
computations more efficient.

4.2.1 Ligand Bounding Sphere
We define the ligand bounding sphere as the smallest sphere com-
pletely containing all ligand atom spheres. If pb ∈ R3 is the posi-
tion and rb ∈ R is the radius of the ligand bounding sphere, then∥∥pb − pl

i
∥∥+ rl

i ≤ rb, for all i = 1...m, and no smaller sphere exists
for which the inequality also holds. The minimal bounding sphere of
a set of spheres can be tangent to more than four input spheres, but
it is already defined uniquely by at most four spheres. An illustration
of the ligand bounding sphere is depicted in Fig. 3(b) as blue circle.
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Fig. 4. Illustration of local discrete distance fields. (a) The bottom
image shows the local distance field of the ligand bounding sphere (top),
which is used in phase I of the algorithm. (b) and (c) Local distance
fields (bottom) for two ligand orientations (top). These distance fields
are used in phase II.

We compute the minimal bounding sphere using a simple iterative al-
gorithm. More efficient algorithms have been proposed [10], but since
the number of atoms in a ligand is generally small and the computation
has to be performed only once per conformation, the simple algorithm
is sufficient. We start by computing the minimal bounding sphere of
four randomly selected input spheres [11]. Then, the bounding condi-
tion of this bounding sphere is checked for all remaining input spheres.
If a sphere is not enclosed by the current bounding sphere, the sphere
is interchanged with one of the previous four selected spheres such
that the radius of the new minimal bounding sphere becomes maxi-
mal. This procedure is repeated until all input spheres are enclosed by
the current bounding sphere.

We compute the ligand bounding sphere for each ligand conforma-
tion separately. Then, the overall ligand bounding radius rmax ∈ R is
the maximum of the radii of all ligand bounding radii rb computed for
all conformations. The sphere with radius rmax can be used to deter-
mine positions on the grid, where all ligand conformations, no matter
what orientations they have, can be placed without intersecting any
receptor atom sphere. This is illustrated in Fig. 3(b).

4.2.2 Ligand Inscribed Sphere
The ligand inscribed sphere is also computed for each ligand con-
formation separately. To determine the ligand inscribed sphere for
a single conformation, we place the sphere at the center of the ligand
bounding sphere. We then determine the maximal radius such that the
sphere is completely enclosed by the atoms of the ligand. The ligand
inscribed sphere is illustrated as red circle in Fig. 3(b). Note that the
ligand inscribed sphere has a negative radius, if the center of the ligand
bounding sphere lies completely outside the ligand conformation.

From the ligand inscribed spheres of all ligand conformations we
compute the radius rmin ∈ R as the minimum radius of the ligand in-
scribed spheres over all conformations. The sphere with radius rmin
will be used to exclude grid positions from being tested with either the
ligand bounding sphere or the ligand geometries. The reason for this is
that if a sphere with radius rmin intersects the protein atoms, all ligand
conformations placed at the same position, no matter what orientations
they have, will also intersect the protein atoms (see Fig. 3(a)).

The two spheres with radii rmax and rmin allow us to speed up the
surface computation as will be described next.

4.2.3 Distance Field Initialization
In phase I, we uniformly sample the ligand positions and initialize the
discrete distance function. Note that we use the same samples for the
ligand positions and the distance function. In addition, we detect all
positions for which we have to investigate all ligand conformations
and orientations.

To compute the discretization of the sample positions and the dis-
tance field, we first compute the minimal axis-aligned bounding box of
the atom spheres of the receptor molecule. This box is then extended
in all directions by rmax. Afterwards, the box is uniformly sampled in
all directions with a user-defined grid spacing g.

The distance field is initialized with the negative value of the max-
imal atomic radius rr of the receptor. Then we iterate over all sam-
ple positions T and perform at each position an intersection test of
the receptor atom spheres with the minimal ligand inscribed sphere
with radius rmin. If an atom i intersects the sphere, which means that∥∥pr

i −T
∥∥ < rr

i + rmin, all ligand conformations and orientations also
intersect this atom. Hence, the position can be ignored for further in-
vestigations. In case that the minimal ligand sphere does not intersect
the receptor, we perform a second intersection test with the maximal
ligand bounding sphere having radius rmax. If this sphere does not
intersect the receptor atom spheres, all ligand conformations and ori-
entations at this position are valid, that is, they do not intersect the
receptor. In this case, we set the distance value at this position to rmax.
For all remaining positions T̃ , where the maximal ligand sphere inter-
sects the receptor and the minimal ligand sphere does not, we have to
investigate all ligand orientations and conformations. These positions
are marked by yellow points in Fig. 3(a).

Finally, we iterate over all sample positions T at which the distance
field has a value equal to rmax. If one of the 26 neighboring grid points
has a distance that is smaller than rmax, we update the distance func-
tion in the neighborhood of the maximal ligand bounding sphere using
the distance function that is depicted in Fig. 4(a). This function has
a value of rmax in the center, 0 at the border of the sphere, and out-
side the sphere, the values take on the negative distance to the sphere
border. The new distance at a neighboring position p is set to the max-
imum of the old distance and rmax −‖p−T‖. After this phase, the
implicit function defined by the current distance function represents
the discrete SES with probe radius rmax (see Fig. 3(b)).

4.3 Phase II

In the second phase of the algorithm, the discrete distance function is
refined in the vicinity of the LES. For this, we consider all the sample
points (yellow points in Fig. 3(a)) that might contribute to this refine-
ment. At all these points, all conformations of the ligand are placed
one after another and the distance field is updated accordingly. Of
course, considering only a single orientation per ligand conformation
will lead to large errors in approximating the LES. Therefore, we use
a user-defined number o of orientations for each ligand conformation.
These orientations should be sampled such that the space of all orien-
tations is well represented. In the following, we describe this sampling
before we describe the final refinement step.

4.3.1 Precomputation of Ligand Orientations

To obtain the most different ligand orientations, the computation of
the orientations is done for each conformation separately. Consider a
single conformation with m atoms whose positions are pl

i ∈ R3 and
atomic radii are rl

i ∈ R, with i = 1...m. For the purpose of sampling
the ligand orientations, we transform the ligand such that the center of
its ligand bounding sphere lies in the origin. The transformed atom
positions p̃l

i ∈ R3 are given by p̃l
i = pl

i − pb, for all i = 1...m. Due to
transforming the ligand such that its bounding sphere center lies in the
origin, for each rotation of the transformed ligand, all atoms are always
inside the ligand bounding sphere with radius rb. For the computation
of the o orientations, we first uniformly sample points on the surface
of the unit sphere. The vectors from the center of the unit sphere to
the sampled points represent the axes for the rotations of the orienta-
tions. Furthermore, the angles for the rotations around each axis are
uniformly sampled. We initially compute õ = 10 · o orientations. Af-
terwards, the differences between orientations are computed and the
most significant o orientations are selected. Thus we aim at maximiz-
ing the minimal distance between the ligand orientations. This allows
us to filter unnecessary orientations due to, for example, symmetry
properties of the ligand. Let R j be the initial sampled rotations with
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j = 1...õ, õ � o. We approximate the difference between the orienta-
tions by the root mean square metric (RMSM) of the atom positions.
Let D∈Rõ,õ be the symmetric matrix that stores the distances between
the orientations, then

d j,k =

√
m

∑
i=1

(R j p̃l
i −Rk p̃l

i)
2.

with d j,k being the matrix element in row j and column k. The goal
is to find the o most different orientations of the õ orientations. This
can be mathematically formulated by finding the set of o orientations
where the minimal distance becomes maximal. We approximate the
solution to this optimization problem using k-means clustering, which
is much faster than computing the optimal solution. The k-means clus-
tering algorithm starts by randomly selecting o orientations as cluster
centers. Then, each orientation Ri is assigned to the cluster center R j
with the minimal distance di, j. This creates o clusters of orientations.
In each cluster, the orientation whose maximal distance within the
cluster becomes minimal is computed. If this orientation is different to
the previous selected center, the orientations are interchanged. Then
the assignments and the new cluster centers are recomputed. This is
repeated until no cluster center changes anymore. To achieve an even
better solution, the algorithm can be run several times. The best solu-
tion is then the one with the maximal minimal distance.

4.3.2 Distance Field Refinement
Now that we have computed a discretization of the grid as well as the
orientations of the ligand conformations, we can describe the final part
of the algorithm. During this last step, we need to perform intersection
tests between the ligand and the receptor molecule for all orientations
R and all conformations k at the precomputed positions T̃ . If the lig-
and does not intersect the protein for a certain position, orientation,
and conformation, the distance function is updated in its local neigh-
borhood using a distance function similar to those depicted in Fig. 4(b)
and (c). In detail we perform the following steps.

1: for k = 1...c do
2: for all orientations R do
3: for all ligand positions T̃ do
4: if Ir,l(k, T̃ ,R) = 1 then
5: for all distance samples p ∈ R3 do

6: dr,l(p) = max
(

dr,l(p), max
j=1...m

rl
j −

∥∥∥p− (Rpl
jk + T̃ )

∥∥∥
)

7: end for
8: end if
9: end for

10: end for
11: end for

Note that the values of the distance function are only updated if they
become larger. During the distance updates, points reachable by a lig-
and become positive and unreachable points stay negative, but might
still increase. Since the ligand excluded surface is the surface which
separates positive and negative values, it is defined by the implicit de-
scription dr,l(p) = 0.

4.4 Cavity Structure
Apart from computing the LES, our sampling approach can also be
used to extract the cavity structure of the receptor. Since we have
already computed all valid and invalid ligand states, we simply need to
store this information. To do so, we maintain a bit array of length c ·o
at each sample point. In this bit array, for each ligand conformation
and orientation, we store whether it is valid or not. If the conformation
and orientation is valid, we set the bit to 1. If it is not valid, it is set to
0. Note that for sample points where we can place the maximal ligand
bounding sphere, all bits of the array are set to 1. On the other hand,
all bits of the array are set to 0 if the minimal ligand inscribed sphere
intersects the receptor molecule. Thus we only have to store this bit
array for all sample points T̃ (see yellow points in Fig. 3(a)).

All points with at least one bit set to 1 define valid sample points
of a cavity. However, usually we are only interested in positions that

0 Å 2 Å

Fig. 5. Difference between the SES (left) and the LES (right) for an en-
zyme (PDB-Id: 4DFR). The LES was computed for methotrexate (red).
Each surface point is colored according to its minimal distance to the
other surface.

represent real cavities. Therefore, we remove sample points that are
outside the molecule by utilizing ambient occlusion as it was done be-
fore [29]. For each sample position with at least one valid ligand state,
we cast a set of uniformly distributed rays from this position. The am-
bient occlusion value for this sample is the quotient of the number of
rays that hit any receptor atom sphere and the overall number of rays.
Thus, the higher the ambient occlusion value the less ambient light is
received at this position and the deeper the sample lies inside the recep-
tor molecule. All sample points with a value less than a user-defined
threshold are removed from the following considerations.

The remaining sample positions are then clustered to get the cores
of the cavities. Two neighboring sample positions belong to the same
cluster if at least one entry is 1 at the same position in both bit ar-
rays. This means, for all samples of the same cluster, the ligand can
move from one sample position to a neighboring one without chang-
ing the orientation or conformation. At a sample position, the ligand
can change its orientation or conformation to another valid state. Each
cluster defines a core of a cavity. Additionally, small clusters can be
filtered out according to a user-defined minimal cluster size.

From the cores of a cavity, its surface can be easily generated using
again a discrete distance field. This is also initialized with a negative
value, for example −rr. Then the distance field is updated according
to the maximum of all distance functions of valid ligand states of the
cavity. The surface of the cavity is then defined as the implicit surface
given by this distance field. Due to the fact that we store for each
sample point its valid states, we can easily compute trajectories of the
ligand from inside the cavity to the outside or vice versa.

5 IMPLEMENTATION

In this section, we describe implementational details for the two most
expensive steps of the algorithm.

5.1 Intersection Tests
During the execution of the algorithm, many intersection tests between
spheres have to be carried out. In phase I, we need intersection tests
between the minimal ligand inscribed sphere and the maximal ligand
bounding sphere with the atom spheres of the receptor. In phase II, in-
tersection tests between the ligand atoms and the receptor atoms need
to be computed. Without using a data structure to reduce the number of
intersection tests, n ·m sphere-sphere intersections tests need to be car-
ried out for a single receptor ligand intersection test in the worst case,
where n is the number of receptor atoms and m the number of ligand
atoms. We can stop if the first intersection has been found, but if the
molecules do not intersect, all intersection tests are needed. Hence, a
data structure is required to reduce the number of intersection tests.

Since the receptor molecule is static, we can store the atoms in a 3-
dimensional grid. In each cell of this grid, we record all receptor atoms
that intersect with the cell. For molecular data, typically a uniform
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(a) (b) (c)

Fig. 6. SES and LES with cavity cores of a dendritic core multi-shell nanotransporter: (a) SES, (b) LES of morphine, (c) LES of fentanyl. In the
image, the probe sphere and the ligands have been scaled by a factor of 3. The surface of the nanotransporter is depicted in yellow, the cut of the
surface is gray, and the cavity cores are colored according to their clustering.

grid is used with a grid size of approximately 1 Å. Then, in order to
compute the intersection of a sphere with the atoms of the receptor, all
grid cells are accumulated that intersect with the sphere. Only atoms
stored in all accumulated grid cells need to be tested for intersection,
which enormously reduces the number of intersection tests. Since the
atom spheres of a molecule cannot be arbitrarily dense, because they
have a fixed minimal distance to each other, the number of atoms that
need be tested is much smaller than n. With this, the complexity for an
intersection test of a single sphere with the receptor molecule reduces
from linear to constant [46].

In addition to the usage of a 3-dimensional grid as accelerator, we
can further speed-up the intersection tests by computing them in par-
allel. This is possible since intersection tests of spheres with the re-
ceptor molecule are independent of each other. On the CPU, we can
use OpenMP. Faster computations can be achieved by running the in-
tersection tests on the GPU. In order to be platform independent, we
used OpenCL [1]. In our implementation, each thread computes the
intersection of one sphere with the receptor molecule. Here, the grid is
stored using two arrays, one containing an integer value for each cell
that represents an index to the second array with floating point values.
The second array stores all spheres per cell, where each sphere con-
sists of four values, three for the position and one for the radius. The
integer array maps to the first sphere of the corresponding cell. All
remaining spheres of the cell are stored in the consecutive entries. The
end of the list is indicated by a sphere with negative radius.

5.2 Distance Field Updates
The distance field updates are the most expensive part of the algorithm.
Recall that distance field updates are needed for two types of instances,
that is, for the maximal ligand bounding sphere and for the ligand
conformations with different orientations. If we place any of these
instances at a particular sample position, updating the distance field
means that for each point in the distance field, we have to compute
the distance to the boundary of this instance. For the maximal ligand
bounding sphere, this boundary is the sphere surface. For a ligand
conformation, this boundary is the van der Waals surface of the ligand
atoms, which is the surface enclosing all ligand atom spheres.

Since the distance field defining the LES is negative inside the LES
and positive outside, the signs of the distances we compute to the in-
stance boundaries need to have inversed signs. That is, we need to
have positive distances inside the instance and negative distances out-
side. Recall that we have initialized the distance field with the negative
maximal atom radius of the receptor. If we wanted to compute the cor-
rect distance field, we would have to initialize the distances with −∞.
However, since we are not interested in the distance field itself but only

in the implicit surface defined by dr,l(p) = 0, only the grid points close
to the LES need to have the correct values. For all other grid points,
it suffices to have the correct distance sign. Once we have computed
the distance of a particular grid point to the instance boundary, the
distance is updated only if the new distance value is larger than the
current one. That is, the values of the distance field only increase.

Now, if s is the number of grid points and we update the distance
field in the naı̈ve way, that is, all grid points for each instance at each
sample position, the time complexity is O(s2). Even for medium-sized
grids, this would result in very long computation times. Hence, in the
following, we describe two ways to reduce this run time.

5.2.1 Local Distance Fields
The first observation is that we do not have to update the whole dis-
tance field, but only a part that is in the local neighborhood of the
sample point. Here, the size of the neighborhood is defined by the
particular instance. In fact, it is sufficient to consider all those grid
points p that are inside the axis-aligned bounding box of the instance
plus those points within a distance ‖p− pbb‖∞ ≤ g to the bounding
box (see Fig. 4). Thus, the instance will be completely surrounded by
grid points with negative distance to the instance.

Since we use the same points for the distance field and the sample
points of the instances, we can precompute the distances for the local
neighborhood of each instance. To do so, we compute local distance
fields placed in the origin with the same grid spacing g. We do this
for each instance, that is, for the maximal ligand bounding sphere and
all ligand conformations and orientations (see Fig. 4). Then, during
an update step, the local distance field only needs to be moved to the
current position and we can compare the values of the global distance
field with those of the local distance field directly. The maximum of
these two values determines the new value.

Since the average size s̃ of the local distance field is usually much
smaller than s, the run time reduces from s2 to s̃ · s. However, since
s̃ is a fixed fraction of s, that is, s̃ = αs, where α is constant, the
complexity of the algorithm remains O(s2).

5.2.2 Use of KD-Tree
A second observation can be used to further reduce the number of grid
points that need to be updated: The only grid points defining the im-
plicit surface dr,l(p) = 0 are the ones in whose neighborhood the sign
of the distance values changes. Furthermore, recall that the distance
values only increase over the duration of the algorithm. Hence, if a
grid point p has a positive value and all of its 26 neighbors also have
positive distance values, p will not contribute to the definition of the
implicit surface. Hence, we do not need to consider p any further.
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Fig. 7. LES (blue) depicted for four selected time steps of a simulation trajectory of β -lactamase (data courtesy of Gregory L. Bowman and Philipp
L. Geissler [4]). During the simulation, the active site of the β -lactamase opens. The sequence of images shows the computed positions of the
CBT ligand (yellow) closest to the active site.

For this purpose, we maintain a KD-tree that only contains those
sample points that possibly need further updates. Using the KD-tree,
these points can be quickly queried. Furthermore, we dynamically up-
date the KD-tree by removing all samples that become positive and
also have only positive neighbors. Thus, if we have placed an instance
at a particular sample point T , we use the KD-tree to quickly iden-
tify the grid points in the local neighborhood of T with respect to the
instance size and only update those points, if needed.

5.2.3 Parallel Distance Updates on the GPU

While we used the KD-tree to accelerate the CPU implementation, for
the GPU we implemented a parallel distance field update. For this, the
OpenCL kernel gets three inputs: the overall distance field, the local
distance field, and a set of valid ligand positions for this field. Each
thread corresponds to one sample point of the ligand distance field.
The thread iterates over the ligand positions and detects in each step
the corresponding sample point in the distance field. If the value in
the distance field is smaller than the value in the ligand distance field,
it is replaced by the new value. Note that this can lead to concurrent
accesses of different threads on the same sample point in the distance
field. However, as mentioned before, the values in the distance func-
tion can only increase. Thus, if we run the OpenCL kernel several
times, the distance values converge to the correct result. To ensure the
correct result, we use a single boolean variable, which is initialized
with ‘false’ before each call of the kernel. If during the call a distance
value has changed, the variable is set to true. The kernel is called again
as long as the variable is ‘true’. Thus we call the kernel at least two
times and in practice on average three to four times.

6 VISUALIZATION

The results of the above algorithms are a discrete scalar field describ-
ing the distance function in the local vicinity of the LES, and the cav-
ities given by all their valid ligand states. In this section, we briefly
describe how we render the LES and the cavities.

The LES can be visualized either by extracting a triangular mesh
with the marching cubes algorithm [31] or by direct isosurface ray
casting [13]. With todays GPU implementations of marching cubes,
the surface can be generated nearly as fast as with direct ray cast-
ing. With some additional effort, the triangular surface can be col-
ored according to arbitrary molecular properties. It can also be used
to measure the area of the surface and its enclosed volume. Since
the discrete distance function describing the LES is a signed distance
function which is positive outside the LES and negative inside, ray
casting the LES can be further accelerated. Outside the LES, the dis-
tance in the distance field is always smaller or equal to the minimal
Euclidean distance to the LES. Hence, instead of a constant step size
for the direct isosurface ray casting, we can directly use the distance
in the discrete field. This is similar to the classical sphere tracing by
Hart [15], which is usually faster than a ray casting with constant step
size.

The cavities can be visualized both by its cores and their surfaces.
To render their surfaces, we construct for each cavity a distance field

similar to the LES distance field and render it in the same way (Fig. 2).
The cavity cores are visualized by placing at each core sample posi-
tion a small sphere (Fig. 6). For the sphere rendering, we use a modern
GPU-based ray casting [42]. The depth perception of all representa-
tions can be improved by ambient occlusion or surface cuts.

7 RESULTS

All results have been produced on an Intel Xeon X5650 E5540
2.66 GHz with 6 cores and an Nvidia GeForce GTX 680. For mea-
suring the quality and performance, we used several molecules from
the PDB [36] as well as two other data sets.

7.1 Parameters

Although the surface definition is independent of parameters, the al-
gorithm requires parameters due to the discretization. The two pa-
rameters used for the LES computation are the grid spacing g and the
number of orientations o. In Fig. 8, we have plotted how the enclosed
volume and the surface area change depending on the number of orien-
tations. For this we used ketosteroid isomerase with ligand equilenine
(PDB-Id: 1OGZ, Fig. 1). We computed the LES with 10 to 200 ori-
entations by increasing the number of orientations by 5 in each step.
From 200 to 1,000 orientations, we increased the number of orienta-
tions by 100 each, and from 1,000 to 10,000 orientations, a step size
of 1,000 orientations was used. For each number of orientations, we
generated a triangular mesh of the LES and computed its surface area
and the enclosed volume. It can be observed that the main changes
in surface area and volume occur between 10 and 1,000 orientations.
Furthermore, it can be observed that for a smaller grid spacing the
changes are more rapid than for larger grid spacings.

In our experiments, we generally used 200 or fewer orientations.
Only in the case of the HIV-protease with inhibitor amprenavir we
were not able to find the binding site with this number of orientations.
With 1,000 orientations, however, we found the binding site even with
a grid spacing of 0.75 Å (Fig. 9).

The cavity analysis only needs one parameter, which determines
when a sample point is considered to lie outside the molecule. To
determine the degree of burriedness we used ambient occlusion by
casting a fixed number of rays. We always used 100 rays. The user
can then set a threshold at what ambient occlusion value a sample point
is considered to lie outside the molecule.

7.2 Performance

Let s ∈ N be the number of sample positions which is defined by the
grid spacing g and the size of the receptor. Note that s grows cubically
when linearly decreasing g. Because of the grid data structure, the
cost of each intersection test with the receptor molecule is constant,
Hence, the intersection tests have a complexity of O(c · o · s). An up-
per bound for the number of values in the local distance field of the
ligand is α · s, where α is the ratio of the volume of the local field and
the overall distance field. Hence the updates of the distance field have
a complexity of O(c · o ·α · s2). The k-means clustering is the most
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Table 1. Run times (given in seconds) for LES and cavity computation for different receptors, ligands, grid spacings (g) and number of orientations
(o) both on CPU (*without KD-tree) and GPU. Phases I and II are split into the two most time-consuming steps: intersection tests (IT) and distance
updates (DU). Note that for 1HPV, four conformations of amprenavir were used with 1,000 orientations each.

system receptor
(#atoms)

ligand
(#atoms)

g
(in Å)

o phase I
IT

phase I
DU

phase II
IT

phase II
DU

LES boundary
detection

core com-
putation

cavity
surface

overall

CPU 1GRM (272) water (3) 0.25 200 0.2 0.7 32.8 114.7 148.4 11.5 0.1 14.1 174
GPU 1GRM (272) water (3) 0.25 200 0.1 0.2 4.6 16.2 21.1 0.6 0.1 1.5 23

CPU* 1OGZ (944) equilenine (20) 0.5 200 0.4 5.6 265.4 1057.1 1328.5 16.3 0.1 3.5 1348
CPU 1OGZ (944) equilenine (20) 0.5 200 0.4 5.6 255.4 383.1 644.4 15.7 0.1 3.6 664
GPU 1OGZ (944) equilenine (20) 0.5 200 0.1 0.4 29.5 50.9 80.9 0.7 0.1 0.5 82

CPU nanotrans. (16487) water (3) 0.5 200 0.4 1.6 87.7 297.7 387.3 125.2 1.6 128.0 642
CPU nanotrans. (16487) sulfate (5) 0.5 200 0.5 3.3 159.2 557.1 720.1 122.7 0.9 236.1 1080
CPU nanotrans. (16487) morphine (40) 0.5 200 2.8 13.1 2175.6 762.4 2955.1 131.7 0.4 533.0 3620
GPU nanotrans. (16487) water (3) 0.5 200 0.4 1.2 15.8 51.9 69.3 4.5 1.6 11.7 87
GPU nanotrans. (16487) sulfate (5) 0.5 200 0.4 1.2 18.2 58.5 78.3 3.9 0.9 20.4 104
GPU nanotrans. (16487) morphine (40) 0.5 200 0.8 0.9 367.1 139.2 508.1 4.2 0.4 82.4 595

GPU 1HPV (1516) amprenavir (35) 1.0 4000 0.1 0.1 345.2 152.7 498.1 0.3 0.1 0.1 499
GPU 1HPV (1516) amprenavir (35) 0.5 4000 0.3 0.9 2436.7 1970.2 4408.1 1.7 0.1 0.2 4410
GPU 1HPV (1516) amprenavir (35) 0.25 4000 1.2 21.9 18540.9 66939.2 85503.2 11.8 0.5 6.3 85522

System: Intel Xeon X5650 E5540 2.66 GHz with an Nvidia GeForce GTX 680.

expensive part for the computation of the orientations. It grows poly-
nomially with o. However, compared to the rest of the algorithm, in
practice the computation of the orientations is negligible.

The maximal memory requirements for the algorithm are given by
the following data structures. The global distance field with a space
complexity of O(s), the local distance field with O(α · s), the grid
data structure of the receptor molecule with O(n), the KD-tree with a
worst case complexity of O(s), and the ligand orientations at all sam-
ple points with a complexity of O(s · o · c). For the intersection tests
on the GPU, the grid of the receptor molecule and a set of spheres are
required. For the distance updates on the GPU, the global and local
distance fields and a set of update positions given by sample indices
are required. Based on performance tests, for each call of an OpenCL
kernel, we set the number of spheres for the intersection tests to 65,536
and the number of positions for the distance updates to 1,024.

In phase I we detect all sample positions that have to be investigated
for each ligand conformation and orientation. This preprocessing ac-
celerates the algorithm because many of the sample positions can be
ignored in phase II. The amount of acceleration depends mainly on the
size of the ligand and the ratio between this size and the size of the re-
ceptor, but also on the geometrical complexity of the receptor. During
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Fig. 8. For the graphs shown above, the LES of ketosteroid isomerase
(PDB-Id: 1OGZ; also see Fig. 1) with respect to the ligand equilenine
was computed for different grid spacings and an increasing number of
orientations. Note, however, that the used orientations were indepen-
dent of each other. The graphs in the two images plot the enclosed vol-
ume (top) of the LES and the surface area (bottom) of the LES against
the number of ligand rotations used for computing the LES.

our tests, we observed that for water, which has a bounding radius of
1.52 Å, approximately 90% of the sample positions can be ignored in
phase II. For morphine, with a bounding radius of 5.44 Å, still around
75% of the sample positions can be ignored and for fentanyl, whose
bounding radius is 8.47 Å, approximately 68% can be ignored. For
all tested ligands, on average the number of sample points was higher
than 60%. Note that the percentages for each ligand were averaged
over a couple of receptors of different size, ranging from 272 atoms to
58,870 atoms.

Detailed timings for all parts of the algorithm are given in Table 1.
In all our examples, we observed that the computations for common
receptor-ligand systems were 6 to 10 times faster on the GPU com-
pared to the CPU with KD-tree. On the CPU, the use of the KD-tree
accelerated the computation by a factor of at least two. Furthermore,
we observed that the intersection tests can be slower than the distance
updates, although the complexity of the distance updates is worse (see,
for example, 1HPV or the nanotransporter with morphine).

Most of the memory is required to store the valid ligand orienta-
tions at each sample position. For the nanotransporter and morphine
in Table 1, this structure requires approximately 50 MB. For 1HPV
and amprenavir with a grid spacing of 0.25 Å, approximately 3 GB are
required. However, this memory is only temporarily needed if cavities
are computed. The largest memory consumption on the GPU is due to
the global distance field. For the nanotransporter and morphine, this
field requires approximately 25 MB. For 1HPV and amprenavir with a
grid spacing of 0.25 Å, approximately 66 MB are required. Detailed
memory requirements for the data sets in Table 1 are given in the sup-
plementary material.

While the SES can be computed interactively, the computation of
the LES usually takes several minutes up to hours depending on the
grid spacing and the number of orientations (see Table 1). On the
other hand, the LES better reflects the actual accessibility of a certain
ligand, which can be seen in Figs 1, 5, and 6.

8 FEEDBACK BY DOMAIN SCIENTISTS

Apart from an evaluation in terms of computational complexity and
performance, we carried out a small survey about the usability of the
proposed new molecular surface by performing a structured interview
about potential advantages and disadvantages of the LES. We inter-
viewed four senior experts from different labs, working in molecular
dynamics simulation and dealing with a wide range of applications. In
the following we summarize the most important statements.

Advantages: All experts agreed that the LES provides valuable
ligand-specific information. In particular, the LES can help identify
binding sites that have so far been unknown from experimental data.
Furthermore, the LES allows one to discard cavities that are poor can-
didates as hosts for a ligand. Thus, more expensive methods comput-
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ing the binding free energies or molecular dynamics simulations using
force fields can be applied more effectively. If a protein can bind dif-
ferent ligands, the LES might also enable the identification of different
binding sites for different ligands. The pure visualization of the LES
is of interest, because in many applications of molecular modeling,
the chemical intuition of the observer is an important addition to fully
automatic methods. This intuition is even further supported by the
identified cavities.

Disadvantages: If both the protein and the ligand are highly flexi-
ble, the computation of the LES is expensive. Then it might be favor-
able to use the SES to identify binding sites and cavities and compute
the LES only for a few time steps or locally near the binding site.

9 DISCUSSION

The most crucial parameter of our algorithm is the number of orien-
tations. We tried to investigate the quality of the results depending
on the number of orientations by plotting the surface area and the en-
closed volume versus the number of orientations (Fig. 8). It is clear
that both curves will converge, but the plots gives us a good indication,
how fast this convergence will be. What can be clearly seen is that the
largest changes occur between 10 and 1,000 orientations. This sug-
gests that with less than 1,000 orientations the LES can be very well
approximated. In our experiments, we typically used 200 or even less
orientations and were able to reproduce most known cavities. In rare
cases, however, it might be necessary to use more than this number or
even more than 1,000 orientations. Hence, if the run time is of minor
importance, we suggest using between 500 and 1,000 orientations.

More important in terms of run time is the choice of the grid spac-
ing. The run time grows quadratically with the number of grid points,
which again grows inversely cubically with the grid spacing. For grid-
based cavity analysis, commonly a minimal grid spacing of 0.5 Å is
used. We either used a grid spacing of 0.5 Å or 0.25 Å. While the
latter is clearly favorable in terms of precision, in our experiments, we
measured an approximate 28-fold run time. Furthermore, in all our
experiments, a grid spacing of 0.5 Å was sufficient to find the known
binding sites. Hence, we suggest using a grid spacing of 0.5 Å.

If the ligand binding site is very tight and the flexibility of the ligand
is high, it might be necessary to use a large number of conformations.
Since the run time depends linearly on the number of conformations,
this is expensive. In this case, it might be possible to reduce the com-
plexity by taking into account the redundancy in the conformations.

10 CONCLUSION AND FUTURE WORK

We have defined a new type of molecular surface, the ligand excluded
surface (LES), which naturally extends the definition of the solvent ex-
cluded surface (SES). Instead of approximating the ligand by a probe,
the LES considers the complex geometry of a ligand described by its
van der Waals atoms. Thus, the LES represents a more accurate ap-
proximation of the regions accessible to the ligand than the SES. We
have presented a grid-based algorithm to compute an approximation of
the LES. This algorithm has a complexity of O(s2), where s is the num-
ber of grid points. Despite this complexity, we show that it is feasible
to calculate the LES for typical receptors and ligands in a reasonable
time. This is possible because we identified the most time-consuming
parts of the algorithm and optimized these parts algorithmically but
also by parallelizing them on the CPU and the GPU.

We have also shown that with a minor extension of the algorithm,
the cavity structure of the molecule with respect to the ligand can be
computed with almost no run-time overhead. In addition to the po-
sitions, we also obtain the possible orientations and conformations of
the ligand. This information might be exploited to steer molecular
docking simulations, where the ligand binding path into the active site
is detected (see Fig. 7).

It is obvious that with the calculation of the LES, a new computa-
tional challenge is associated. Below we outline some ideas on how
the computation could be improved and extended.

First, the fixed user-defined number of orientations might be elimi-
nated by measuring the error rate between increasing numbers of ori-
entations. For this, we might start with a few orientations and subse-

quently add more orientations while at the same time measuring the
rate of change of the volume. As long as the change is larger than a
predefined fraction, we would continue adding more orientations. This
strategy, however, requires a suitable way to successively pick new
orientations from a large set of orientations such that the distances be-
tween neighbored orientations remains similar. But it is not obvious,
how the selection can be done most efficiently.

Currently, each sample position with at least one valid ligand state
belongs to exactly one cavity core. However, it is possible that the
ligand cannot continuously change from one valid state to another
valid state at the same sample position without intersecting the recep-
tor molecule. Hence, the cavity cores might have to be split at such
positions which also means that a sampling position can belong to dif-
ferent cavities and, thus, that the cores can overlap. In the future, we
want to handle such situations more correctly. For this, it is neces-
sary to define valid changes of orientations and conformations within
a sample position.

Despite our algorithmic optimizations, the run time of the algorithm
can still be very long, particularly for large molecules and a small grid
spacing. In terms of cavity analysis, one is often only interested in
cavities existing in certain regions. Thus, it might be sensible to re-
strict the cavity computation to user-defined regions. Furthermore, a
combination of our approach with one that approximates the ligand by
a sphere, such as our molecular path computation [29], might signifi-
cantly speed up the computation.

We would also like to investigate whether the use of tetrahedral
meshes with the same number of grid points as for hexahedral meshes
improves the surface quality and leads to a faster convergence.

The focus of this work was the definition and computation of a
purely geometry-based representation of the accessibility of a receptor
with respect to a ligand molecule. The definition of the LES could be
extended further by considering physico-chemical properties, such as
the binding affinity of the ligand. By considering only those positions
and orientations for which the binding affinity is high, the LES might
even better reflect the true accessibility of the ligand.
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Fig. 9. LES of HIV protease (PDB-Id: 1HPV) for ligand amprenavir
(red) with different grid resolutions. For the computation of the LES,
four ligand conformations with 1,000 orientations were considered. For
a grid spacing of 1.0 Å, the ligand binding site was not found.
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