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Combined Visualization of Wall Thickness and Wall Shear Stress
for the Evaluation of Aneurysms

Sylvia Glaßer, Kai Lawonn, Thomas Hoffmann, Martin Skalej, Bernhard Preim

Abstract—For an individual rupture risk assessment of aneurysms, the aneurysm’s wall morphology and hemodynamics provide
valuable information. Hemodynamic information is usually extracted via computational fluid dynamic (CFD) simulation on a previously
extracted 3D aneurysm surface mesh or directly measured with 4D phase-contrast magnetic resonance imaging. In contrast, a non-
invasive imaging technique that depicts the aneurysm wall in vivo is still not available. Our approach comprises an experiment, where
intravascular ultrasound (IVUS) is employed to probe a dissected saccular aneurysm phantom, which we modeled from a porcine
kidney artery. Then, we extracted a 3D surface mesh to gain the vessel wall thickness and hemodynamic information from a CFD
simulation. Building on this, we developed a framework that depicts the inner and outer aneurysm wall with dedicated information
about local thickness via distance ribbons. For both walls, a shading is adapted such that the inner wall as well as its distance to
the outer wall is always perceivable. The exploration of the wall is further improved by combining it with hemodynamic information
from the CFD simulation. Hence, the visual analysis comprises a brushing and linking concept for individual highlighting of pathologic
areas. Also, a surface clustering is integrated to provide an automatic division of different aneurysm parts combined with a risk
score depending on wall thickness and hemodynamic information. In general, our approach can be employed for vessel visualization
purposes where an inner and outer wall has to be adequately represented.

Index Terms—Aneurysm, IVUS, Wall Thickness, Wall Shear Stress, Brushing and Linking, Focus + Context

1 INTRODUCTION

The understanding of vascular diseases, such as coronary heart disease
and aneurysms, benefits from an expressive visualization of the vessel
wall comprising the inner border (between lumen and vessel wall) and
the outer border (between vessel wall and surrounding tissue) – which
we will refer to as inner and outer wall. Vascular diseases are not
only characterized by deposits that lead to vessel narrowing but also
by vascular wall remodeling. While widespread imaging modalities
only represent the inner vessel wall, usually enhanced with a contrast
agent, recent developments in imaging technology enable the detec-
tion of the inner and the outer wall. An expressive visualization of
the inner and outer vessel wall is a special instance of an embedded
surface visualization, where the local distances between two flexible
tube-like structures should be conveyed. The simple semi-transparent
rendering of the outer shape is not ideal to convey its shape and its spa-
tial relation to inner objects (see e.g., [21]). In this paper, we present
a new technique for this problem, inspired by but not limited to the
requirements of the diagnosis of the vascular diseases.

As a case study we consider cerebral aneurysms – pathologic di-
latations of the neurovascular vessel wall. Inherent to aneurysms is
the risk of rupture, which may cause a subarachnoid hemorrhage.
The treatment options comprise endovascular intervention and neu-
rosurgical clipping with a high rate of complications in relation to the
rupture rate of asymptomatic aneurysms.Thus, patients with asymp-
tomatic cerebral aneurysms would often benefit from a wait and see
strategy. However, they mostly chose interventional treatment due to
the psychological burden of knowing the rupture risk which underpins
the strong need for patient-specific rupture analysis.

Important for rupture risk assessment are the hemodynamic infor-
mation and the vessel wall morphology. The hemodynamic behav-
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ior, e.g., the complexity of flow patterns extracted from computa-
tional fluid dynamics (CFD), reportedly influences the rupture risk [8].
Still, a ground truth is not available since CFD may be too imprecise.
Furthermore, the internal blood flow depends on the wall morphol-
ogy. Additionally, an increased rupture rate is reported for super-thin
aneurysm walls as well as heterogeneous walls based on analyses dur-
ing neurosurgical clipping [15].

In summary, for an improved patient-specific rupture risk assess-
ment and thus improved treatment decision (e.g., endovascular ther-
apy, surgical clipping or no therapy at all), hemodynamic and wall
morphology information are needed. Thus, we investigate how the
vessel walls and the flow information based on CFD simulations may
be displayed simultaneously. We focus on the wall thickness WT and
the wall shear stress WSS. In particular, we are interested in high-
lighting parts of the vessel wall where the WT and the simulated WSS
values are in a certain range. Therefore, a comprehensive 3D visual-
ization will be presented in this paper. Our contributions are summa-
rized as follows:

• A novel simultaneous 3D visualization of the inner and outer ves-
sel wall. The WT is conveyed via distance ribbons and adapted,
view-dependent GPU shading techniques.

• Hemodynamic information (and a combination with WT ) is pro-
vided via color-coding of the inner aneurysm wall surface.

• The visual exploration of the aneurysm model comprises brush-
ing and linking (in the parameter space spanned by WT and
WSS) as well as a surface clustering to provide surface clusters
with similar parameter values on the inner vessel wall.

• Finally, a qualitative evaluation with domain experts indicates
the value of the visualization and the strong need for wall mor-
phology information.

2 RELATED WORK

In this section, we discuss related work for the visual exploration of
cardiovascular diseases and cerebral aneurysms with focus on the si-
multaneous depiction of outer and inner vessel wall. The related work
for cerebral aneurysms is extendable to general aneurysms.
Visual exploration of cardiovascular diseases. The simultaneous vi-
sualization of inner and outer vessel wall plays an important role for
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Fig. 1. Overview of our approach that is divided into a preprocessing pipeline and a rendering step. The preprocessing pipeline covers the image
acquisition and extraction of hemodynamic and vessel wall information. The rendering part is realized with our proposed framework.

the evaluation of the coronary heart disease. Van Oijen et al. [40] re-
ported a higher quality of direct volume rendering in comparison to
surface rendering based on contrast-enhanced computer tomography
(CT) datasets. Hence, no wall thickness was extracted and their work
aimed at depicting the vessel lumen. Taking also the vessel wall into
account, a direct volume rendering approach was presented in [19].
No inner and outer vessel wall was explicitly extracted, but the whole
wall with pathologies like artherosclerotic plaque was automatically
highlighted with adapted transfer functions. Balzani et al. [6] intro-
duced a 3D reconstruction of geometrical models of atherosclerotic
arteries (i.e., vessel walls with atherosclerotic plaque burden) based
on multimodal image acquisition including intravascular ultrasound
(IVUS), virtual histology data and angiographic X-ray images. The
reconstructed 3D model comprises inner and outer wall. The outer
wall was transparently rendered (without any additional information)
and parameter values describing stress distributions were color-coded
on the surface of the inner vessel wall. The visualization was com-
bined with cross sections showing the virtual histology data.
Visual exploration of (cerebral) aneurysms. The visualization of
cerebral aneurysms mostly aims at depicting the lumen since no wall
information is available. Higuera et al. [20] presented an automatic
bidimensional transfer function approach for the direct volume ren-
dering of aneurysms based on contrast-enhanced CT data. For the
combined visualization with scalar hemodynamic information, cere-
bral aneurysms are usually displayed via color-coded surface views.
In [11], the parameter WSS was mapped on the aneurysm surface.
Neugebauer et al. [30] developed a 2D map display integrated into
a 3D visualization of the relevant vascular structures for an interac-
tive overview. Again, a scalar parameter was mapped on the sur-
face. The visual exploration of blood flow gains importance due to
its correlation with higher risk and more severe diseases. For the
evaluation of the blood flow, color-coded streamlines, probe planes or
glyphs were mostly employed within the application area of cerebral
aneurysms [9].
Visualization of embedded (cerebral) structures. Due to the focus
on hemodynamic information (and the missing information about the
vessel wall thickness), current aneurysm visualization approaches in-
clude the internal blood flow and combine it with the vessel anatomy,
i.e., the inner wall. The visualization of blood flow along with the
enclosing vessel wall is an active research area. For the general prob-
lem of depicting enclosing surfaces with embedded objects, Interrante

et al. [21] introduced ridge and valley lines to support the rendering
of a transparent enclosing surface shape. The surface still reveals un-
derlying objects that correspond to iso-intensity doses. For medical
applications, also cut-away views, ghost view techniques or section
views were employed to reveal inner structures [41]. Bruckner et al.
[7] presented an illustrative context-preserving volume rendering for
the interactive inspection of the interior of a volumetric data set. Their
feature-driven method selectively reduces the opacity in less important
data regions but simultaneously retains the context information.

For the visualization of an enclosing surface, i.e., the inner cere-
bral aneurysm’s vessel wall, and the internal blood flow, Gasteiger et
al. [16] employed an adapted lightning model with Fresnel shading
to show front and back faces of the enclosing surface in a different
manner. Thus, they provided information about the spatial orientation
of the vessel and revealed the inner streamlines for blood flow visu-
alization. Lawonn et al. [26] developed a curvature-based approach
to highlight convex and concave regions, but also employed dedicated
shading techniques to present the inner streamlines. Ishida et al. [22]
applied stream and particle tracing for visual exploration of measured
blood flow in cerebral aneurysms.
Brushing and linking. Our approach includes an interactive explo-
ration concept comprising a scatterplot-based brushing and linking.
Brushing and linking is well suited for the visual exploration and anal-
ysis of volume data [14]. A feature of our system that explicitly high-
lights the distance between outer and inner vessel wall was inspired
by Dick et al. [13]. They presented two approaches for the interac-
tive visualization of distances between two objects: cylindrical glyphs
that smoothly adapt their shape and color-coding to varying distances
during object movement and a set of slices that are color-coded.
Surface clustering. Furthermore, the exploration of the data set is
supported via surface clustering. The clustering on surface meshes
most often aims at reducing the amount of triangles without a con-
siderable loss of details. In contrast, we aim at the identification of
connected points on the surface with similar parameter values. There-
fore, we employ a region merging method. Another technique is the
region growing approach on surfaces, which is described in more gen-
eral in [1]. The identification of certain clusters on mesh surfaces is
also known as mesh segmentation. An application scenario is pro-
vided by the clustering and segmentation of protein surfaces [4]. De-
tailed overviews about mesh segmentation approaches can be found
in [2, 36].
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3 MEDICAL BACKGROUND

Aneurysms are dilations of blood vessels that bear the risk of rupture
causing hemorrhages. Mostly, they occur in the intracranial vessel
system as well as in the thoracic and abdominal aorta. With increasing
size, treatment is carried out to prevent the rupture. We explain the
challenges of treatment decision for the specific example of cerebral
aneurysms.

Patients with asymptomatic intracranial aneurysms often chose an
interventional treatment over a conservative monitoring due to psy-
chological factors. Hence, advanced and patient-specific rupture risk
analyses could improve the decision making. Furthermore, the ther-
apy of unruptured aneurysms may lead to complications as well.
The rupture rates of asymptomatic intracranial aneurysms are report-
edly equalled or exceeded by the mortality rate associated with treat-
ment [43]. The most important risk factors are the type (asymptomatic
or symptomatic), age, gender, size and location [42]. Although these
risk factors are already integrated in clinical treatment decision mak-
ing, the interaction of these factors is still largely unknown. To evalu-
ate the patient-specific rupture risk, biomedical researchers investigate
further factors and their influence on aneurysm initiation and growth.

The blood flow information plays an increasing role for diagnosis
and treatment of cardiovascular diseases [28]. Recent studies reported
a correlation between certain hemodynamic information (e.g., concen-
trated inflow jets, small impingement regions, complex or unstable
flow patterns) and prior aneurysm rupture [9]. The hemodynamic in-
formation is derived from CFD simulation on a previously extracted
3D aneurysm surface mesh [8] or directly measured with 4D phase
contrast magnetic resonance imaging [28]. Hence, the WSS describes
the friction of the intravascular blood flow along the inner vessel wall
and arises from the blood flow force vector component parallel to the
cross section. The WSS has a strong influence on vessel wall remod-
eling. Increased WSS was correlated with prior aneurysm rupture [10]
due to its destructive influence on the vessel wall’s remodeling. How-
ever, also microbiological factors have to be considered since oscillat-
ing (including lower) WSS values may cause this effect [12]. Hence,
no ground truth has been established yet.

Neurosurgeons report a relationship between wall thickness and
risk of rupture. This relationship is poorly documented since no
in vivo technique is available to measure aneurysm wall thickness.
Studies based on analyses during neurosurgical clipping report in-
creased rupture rates for super-thin as well as heterogeneous aneurysm
walls [15]. Histological and intraoperative observational studies iden-
tified an aneurysm wall as a highly variable region (with a thickness
from 16 to 400 µm) that contains areas of thick, intermediate and
super-thin translucent tissue [24].

In summary, for an individual rupture risk assessment, the treatment
decision would strongly benefit from the integration from hemody-
namic and vessel wall information. This can be extended to aneurysms
in general, e.g., rupture of abdominal aortic aneurysms is associated
with thin vessel walls [32] and thoracical aortic aneurysms are charac-
terized by pathological changes in the aorta’s media wall [37]. We pro-
vide a framework that includes a pipeline that assesses the aneurysm
wall with IVUS. This is motivated by cardiovascular diseases where
IVUS provides valuable information about the coronary wall morphol-
ogy [39]. Since the intravascular imaging of cerebral vessel wall is an
active research area, we focus on the application scenario of cerebral
aneurysms.

4 IMAGE ACQUISITION AND PREPROCESSING

Our approach can be divided into a preprocessing and a rendering step,
see Figure 1. In this section, the preprocessing is explained, including
the dissection and probing of the saccular artery aneurysm. Next, the
extraction of the surface mesh, the WT and the hemodynamic informa-
tion is explained. Finally, we describe the surface clustering approach.
Based on the extracted 3D model, a comprehensive 3D visualization
was developed, which will be explained in more detail in Section 5.
The visualization allows for assessment of the vessel’s WT as well as
the simultaneous evaluation of thickness and hemodynamic informa-
tion like WSS.

Fig. 2. Preparation of the saccular aneurysm. Left, the porcine kidney
is shown. In the middle, an artery with a bifurcation is dissected. Right,
the artery branch was shortened of ca. 4 mm and closed yielding the
aneurysm.

4.1 Dissection and Image Acquisition of the Saccular
Artery Aneurysm Dataset

To overcome the missing in vivo imaging technique to depict the ves-
sel wall, we dissected an artificial aneurysm from a porcine kidney
artery of a dead pig, see Figure 2. Dissection was carried out within
a clinical environment. We selected an artery with a bifurcation and
shortened and closed the smaller branch. The preparation exhibits sim-
ilar attributes like cerebral arteries, but can be probed with IVUS.

The dissected aneurysm was put on tubes and integrated into an ar-
tificial blood flow circle. Hence, no pumping was simulated. Next,
IVUS was probed along the parent vessel with an IVUS system (Vol-
cano Corp., San Diego, USA). During image acquisition, a saline so-
lution was injected, see Figure 3. A catheter was inserted into the
vessel and pulled back along the parent vessel with constant velocity
yielding a stack of 2D grayscale images that depict the vessel cross
sections. The typical image parameters are: 512 × 512 pixels, IVUS
diameter 20 mm and a pullback speed of 1 mm/s.

4.2 Extraction of the 3D Surface Mesh
Vessel wall detection algorithms as well as surface net generation ap-
proaches were adapted to the resulting IVUS dataset such that a 3D
aneurysm model was created. For this purpose, a software proto-
type was developed with MATLAB. Our postprocessing was inspired
by [18], where the inner coronary artery wall was segmented based on
the following steps:

1. Preprocessing of the IVUS image.

2. Initial segmentation of the inner vessel wall.

3. Iterative adaption of an active contour to the initial inner wall
segmentation.

4. Extraction of the outer wall by repeating steps 2 and 3.

5. Optionally: One-click user interaction for additional parts.

6. Combining inner and outer wall into a 3D surface mesh.

1. Preprocessing of the IVUS image. Due to the image acquisition,
the catheter reflection is mapped on each vessel’s cross section, see
Figure 4(a). This reflection is masked out, and the boundary region
around the circular mask is smoothed via Gaussian filtering to prevent

Fig. 3. Probing of the aneurysm. During IVUS data acquisition, a saline
solution was continuously injected (without pumping).
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Fig. 4. Preprocessing of the IVUS image data. In (a) and (b), the original dataset is depicted. The initial contour (red) extraction can be seen in (c)
and (d). The result of the iterative snake (green) adaption is illustrated in (e).

sharp edges in the boundary region (see Fig. 4(b)). The distance marks
are removed by replacing these predefined intensities by the mean val-
ues of their surrounding voxels. Due to the ultrasound inherent prop-
erties like low dynamic range, (blood) speckle and the low signal-to-
noise ratio [33], the whole image data is again smoothed with Gaussian
filtering to reduce the high frequency noise. We employed a 2D 3×3
kernel and a σ -value of 2.0, similar to the approach presented in [18].
In [33], more complex preprocessing methods and combinations for
3D ultrasound data are described, comprising speckle removal meth-
ods for contour smoothing, median filters for gap closing in addition
to the Gaussian filtering for noise reduction. In our case, the final seg-
mentation result was sufficient based on the described filtering.
2. Initial segmentation of the inner vessel wall. For the initial seg-
mentation, a transformation into polar coordinates was carried out.
Thus, the vessel walls can be detected as horizontal structures, see
Figure 4(c)-(d). As proposed in [18], a binary threshold segmentation
yields line segments of the initial contour. Hence, for each angle ϑ the
voxel with smallest radius that exhibits a signal intensity larger than
the threshold is selected yielding the initial inner vessel wall.
3. Iterative adaption of an active contour. In contrast to [18] where
(based on the initial contour) ellipses were fitted to the IVUS im-
ages, we employed cubic B-splines to approximate the vessel wall.
Hence, an aneurysm may exhibit an arbitrary morphology including
varying cross sections. We iteratively adapted an active contour, also
called snake [25]. The active contour segmentation is an established
method in cardiology image analysis [39]. The snake is a parametrized
curve v(s). It is influenced by image forces that pull it towards fea-
tures. The actual parametric position of a snake can be represented as
v(s) = (x(s),y(s))T with its energy functional:

Esnake(v(s)) =
∫ 1

0
Eint(v(s))+Eext(v(s))ds. (1)

The term Eint(v(s)) refers to the internal spline energy, i.e., a first-
order term and a second-order term, controlled by α(s) and β (s):

Eint(v(s)) = α(s)|dv
ds

|2 +β (s)|d
2v

ds2 |
2. (2)

Eext(v(s)) refers to the external energy:

Eext(v(s)) = w1 f (x,y)−w2 |∇(Gσ (x,y)∗ f (x,y))|2 , (3)

where w1 and w2 are weights which represent the influence of the gray
value f (x,y) and the gradient ∇(G). The gray values are assumed to be
normally distributed with the standard deviation σ . The initial snake
was created as a parametrized spline based on the initial line (back-
projected to Cartesian coordinates and connected to ensure a closed
curve). We empirically determined the following weights: α = 0.3,
β = 3.0, w1 = 1, w2 = 0.8. Hence, small changes of these parame-
ters hardly influenced the segmentation result. The iterative process
terminates after no significant improvements were achieved. Since the
extraction of inner and outer wall was carried out during preprocess-
ing, the time consumption was not of interest. The resulting snake is
depicted in Figure 4(e).

4. Extraction of the outer wall. The outer vessel wall was extracted
in the same way. That means, the voxels with largest radius (see
Fig. 4(d)) that exhibit a signal intensity larger than the threshold were
selected and the process as described above is performed.
5. One-click user interaction for additional parts. With this optional
step, the segmentation result can be improved. For the special case of
overlapping structures, i.e., aneurysm parts that cannot be character-
ized by a single spline in an IVUS cross-sectional view (see Fig. 5(b)),
we include a one-click user interaction. Hence, the user clicks into
the lumen of the additional aneurysm part to define a seeding point.
Then, a 2D region growing algorithm is applied for this slice which is
feasible due to the small area of such additional parts. A second snake
is initialized based on the border of the extracted region and fitted.
6. Combining inner and outer wall into a 3D surface mesh. We
employ the parametrized splines to create two 3D surface meshes for
the inner and outer wall. That means, for two subsequent contours, the
discrete positions (we chose n = 128) are extracted from the splines
and joined with triangles, see Figure 5(a). If a slice of the IVUS image
holds two contours (due to the optional manual addition of overlapping
aneurysm parts), the triangulation is adapted to this branching. There-
fore, we resample and split the contour of the previous slice from n
points to 2n-2. The split yields two new contours with n points since
the contours share an edge. This edge is automatically determined
by minimizing the distances between the contours of the subsequent
slices. The triangulation is then carried out individually for each of
the slice contours (see Fig. 5(c)). If the current slice holds one contour
and the previous slice holds two contours, i.e., the overlapping part
stopped, the contour with larger distance is triangulated, i.e., filled
with triangles itself. Our described problem is a special case of the
branching problem, see [29] for more information. Due to the variable
spline parametrization, the triangulation could be easily adapted.

4.3 Extraction of the Wall Thickness and the Hemody-
namic Information

Due to their importance for rupture risk assessment, we focus on the
two parameters wall thickness (WT ) and wall shear stress (WSS). The
extraction of these parameters is described in the following.

As a preprocessing step, the initial 3D surface meshes comprising
inner and outer wall are optimized with respect to mesh quality. There-
fore, an advancing front approach is applied that employs edge col-
lapses and edge flips [35]. Next, an unstructured volume mesh is cre-
ated based upon the inner wall mesh. Afterwards, the hemodynamic
information was gained via CFD simulation employing the unstruc-
tured volume mesh. The mesh optimization results in an improved
volume mesh and ensures convergence of the simulation. Hence, the
blood flow was modeled as incompressible Newtonian fluid with rigid
walls [8]. For the presented framework, we focus on the WSS. We
extracted the parameter wall thickness WT for each point on the opti-
mized inner surface mesh as minimum possible distance to the points
of the outer surface mesh.

4.4 Surface Clustering
To support the subsequent visual exploration and analysis of the ex-
tracted aneurysm, we clustered all points of the inner surface mesh.
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Fig. 5. Triangulation of two segmented contours from two subsequent
image slices (a). In case of additional contours due to overlapping struc-
tures (b), the first spline is resampled with 2n−2 points and triangulation
is carried out as illustrated in (c).

We adapted the bottom-up hierarchical clustering region merging
where only neighbored clusters could be merged into a new cluster.
Cluster ci and cluster c j are neighbored, if ci contains a point that is
connected to a point of cluster c j via an edge on the 3D surface mesh.
Initially, each point forms a single cluster. Then, the two neighbored
clusters with the overall best similarity are iteratively merged into a
new cluster. If the best similarity exceeds a certain threshold ε , the
region merging terminates. We define the risk vector −→ri for a vertex i:

−→ri =

(
WSSi

1−WTi

)
(4)

For the extraction of −→r , both parameter spaces are normalized to the
interval [0,1]. Thus, points on the surface with low WT and high WSS
yield larger values for ||−→r || than points with a local thick wall and
low WSS values. The definition of the−→r was approved by the medical
experts with whom we discussed and evaluated the presented work.
The similarity simi j between clusters ci and c j is extracted as

simi j = ||−→Ri −
−→
R j||, (5)

where
−→
Ri is defined as the average value of WSS and (1−WT ) for a

cluster ci, precisely:
−→
Ri =

∫
ci

−→r dx∫
ci

dx
. (6)

To support various divisions of the surface into clusters, we precom-
pute the clustering result for ε ∈ {0.05,0.1,0.15,0.2,0.25}. During
clustering, all regions are stored in a region adjacency graph.

5 VISUALIZATION FRAMEWORK

In this section, we describe the different visualization and exploration
techniques of our framework. As depicted in Figure 1, the render-
ing step comprises the shading of the outer wall (Sect. 5.1) and the
color-coding of the inner wall’s surface mesh (Sect. 5.2). Hence, the
visualization is adapted to avoid occlusions. The third part describes
the exploration of the 3D scene in more detail (Sect. 5.3).

5.1 Visualization of the Outer Wall
The outer wall is displayed with a ghosted-view approach based on the
Fresnel shading according to [17]. They employed a Fresnel-reflection
model [34] and mapped this to the aneurysm’s wall opacity. The suit-
ability of this technique for that purpose was validated in a perceptual
user study [3]. The opacity o is determined by o = 1−|〈v,n〉|r, where
〈·, ·〉 denotes the dot product, n is the surface normal, v is the view
vector, and r ≥ 0 is the edge fall-off parameter. As a standard setting
we use r = 1.5. With smaller values (e.g., r = 1), the salient regions

on the outer wall would disappear. Higher values would interfere with
the visibility of the inner wall. As this information is only important
for gaining an impression of the thickness, a white color is used. This
avoids a distraction of mixed colors when focusing on the inner wall.
Hence, the color of the outer wall is determined by colorOuter = 1I ·o,
where 1I =

(
1 1 1 1

)
represents the RGBA values. If the user is

interested in certain areas of the inner wall and zooms to this area, the
outer wall may disturb the systematic investigation. To prevent this
effect, a fade-out is implemented. The opacity of the outer wall frag-
ments depends on the distance to the view point. Thus, the final color
is determined by:

colorOuter = 1I ·o ·dist .

The distance dist is measured in camera space. Therefore, a slight
fading effect guarantees that the outer wall disappears when the view
point is close, see Figure 6.

5.2 Visualization of the Inner Wall
For the inner wall visualization, we employ a color-coding with re-
spect to a selected parameter (WT , WSS or ||−→r ||). We chose a 1D
white to brown colormap, see also Figure 6. The parameter spaces
are scaled into the interval [0,1] to employ the color map for the inner
surface mesh points. Beyond the direct representation of each point’s
parameter values, we computed a surface clustering to provide surface
clusters (recall Sect. 4.4). For color-coding, the surface integral S for
each cluster ci of the riskiness ||−→r || is determined:

Si =

∫
ci
||−→r ||dx∫
ci

dx
.

As the value of Si lies in the interval [0,1], we again assign the 1D
color map from [0,1] to every cluster ci (as shown in Fig. 6). Thus,
every fragment of the inner wall is colored according to its associated
cluster region. For a better differentiation of adjoined cluster regions, a
border is displayed additionally. As the underlying vessel structure is a
triangulated surface mesh, three cases may occur (see Fig. 7). First, all
triangle points belong to the same cluster and the triangle is rendered
with the assigned cluster’s color. In the second case, two of three
points in a triangle share the same surface cluster, and in the third
case all points are associated to different clusters. For the second case,
the border is created by connecting the midpoints of the lines that are
incident to the point of the divergent cluster. For the last case, the
triangle’s centroid is connected to the midpoint of the edges.

5.3 Data Analysis
Our framework contains a 3D view where the representation of the
outer wall serves as context object and the inner wall with its surface
clusters is our focus object. Based on in-depth discussions with our
clinical experts, we provide additional techniques to explore the 3D
scene. First, the estimation of WT is supported by adaption of distance
ribbons, which will be explained in more detail. Second, we devel-
oped the global and local scatterplot, including a brushing and linking
facility, for the interactive exploration of the data. Furthermore, the

0

1

Fig. 6. Illustration of the fading effect of the outer vessel wall visual-
ization. From left to right, the distance to the view point is decreased
yielding a fully transparently rendered outer wall. The 1D color map is
depicted on the far right.
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Fig. 7. Adaption of the rendering to depict the clustering result.

slice view conveys cross-sectional views of the inner and outer wall.
Finally, the surface clustering can be employed for a cluster-based ex-
ploration. The framework is depicted in Figure 10.
Distance ribbons. In general, the WT could be visualized via color-
coding. However, in our framework color-coding is already employed
to depict the surface clusters. Dick et al. [13] presented different ways
to illustrate distances of inner and outer structures – in their case a bone
and an implant. To convey the thickness, we use distance ribbons.
Similar to slices, which were used by Dick et al., the distance ribbons
wrap the inner and outer structure. They are color-coded from dark
to bright blue depending on whether the distances are small or high.
Additionally, the distance ribbons on the back side of the outer wall are
dashed to impart a spatial impression of the surface, recall Figure 10.
They support the depiction of WT especially in static images.
Global scatterplot. The global scatterplot is used to display the WT
and the WSS of the inner wall, which is divided into different surface
clusters visually represented by different colors (recall Sect. 4.4). Ac-
cording to their associated surface clusters, the corresponding points
in the global scatterplot are colored identically. The global scatterplot
provides an overview of the underlying data of the vessel. For the
examinations of data in the global scatterplot, a brushing and linking
approach is integrated. The user can brush in the global scatterplot
which accentuates the region in the global scatterplot as well as the
corresponding parts of the inner wall. If he is interested in, e.g., re-
gions with a high WSS and medium WT , he can brush this specific
polygonal region in the global scatterplot and the corresponding re-
gion parts are emphasized with a different colormap, see Figure 8. An
eraser tool is also provided to deselect parts of the brushed region.
Local scatterplot. Furthermore, a local scatterplot is included. Here,
only the data that can be seen in the current 3D scene are plotted. This
supports the local examination of the vessel. If the medical expert is
interested in specific regions, the local scatterplot allows representing
the data of the local observation, see Figure 9.
The slice view. For assessing the wall thickness, a 2D slice view is
provided. The slice view provides the cross-section of the vessel along
the vessel’s centerline and the inner and outer wall is depicted, see
Figure 10(d). The parts of the inner wall are color-coded according
to their cluster representation. We employed a grid to provide quan-
titative information and the size of a quadratic grid cell is annotated.
In the 3D scene, the position of the currently shown cross-section is
highlighted with a green frame (see Fig. 10(a)). The frame can be
translated along the vessel and the slice view is updated accordingly.
The intersections with the current frame and the inner and outer wall
are depicted in the 3D scene as well. For an improved differentiation
from the distance ribbons, a small cone-shaped glyph is pointing at the
slice view frame in the 3D scene.

Fig. 8. If the user is interested in regions of high WSS and medium WT ,
he can brush a polygonal region in the global scatterplot (inlet) and the
region will be emphasized with a different colormap from green to white.

Fig. 9. The local scatterplot (inlet) adapts its appearance according to
the specific 3D scene. Therefore, the expert gains insight about the data
distribution in the current scene.

Visual exploration of the surface clustering. As described in Sec-
tion 4.4, different ε values are used to obtain different cluster results.
Therefore, the user can change the ε values to investigate the results.
Furthermore, the user can also choose specific clusters. To support
medical experts, the clusters are ranked according to their average
||−→r || value. If the expert selects one cluster, only this cluster is color-
coded on the surface, whereas all other surface parts are shaded in
gray. If the cluster is currently hidden, it is gradually made visible. For
this purpose, an automatic camera path from the current view point to
the selected cluster’s center is determined. This concept was inspired
by [31], where similar camera paths were employed and appreciated
by the medical experts.

6 GPU IMPLEMENTATION

In this section, the rendering part of our framework is described in
more detail regarding the GPU implementation.

Our surface visualization is divided in a part for the inner wall and
a part for the outer wall. The outer wall is conveyed using a Fresnel
shading term. The inner wall is color-coded according to the selected
parameter space or to the cluster’s average parameter. The colorings
as well as the corresponding cluster borders are generated in the frag-
ment shader. Therefore, the different cases which may occur will be
tested in the geometry shader (recall also Fig. 7). If two vertices have
the same cluster ID but not the third vertex, the two vertices are as-
signed to -1 and the third vertex is assigned to 1. These values were
interpolated on the triangle in the fragment shader and therefore the
fragment is assigned to a gray value at the zero crossing. This en-
sures a gray cluster border in the triangle. If all vertices correspond
to different surface clusters, every vertex is assigned to the unit vec-
tor (1,0,0),(0,1,0),(0,0,1). The cluster border consists of three lines
connecting the triangle’s edge mid points to the triangle’s barycenter.

For the illustration of the scatterplots and the slice view, the exten-
sion EXT SHADER IMAGE LOAD STORE is used. This extension
allows drawing on specific coordinates on an image. Both scatterplots
are initialized as images. The global scatterplot is drawn in an extra
shader. Here, all WSS and WT data are available. These values are
scaled according to the image size and plotted on the global scatter-
plot. The local scatterplot is generated in the fragment shader of the
surface visualization. Hence, only fragments are drawn which can be
seen in the 3D scene. Thus, the local scatterplot only depends on the
fragments of the current 3D scene. The corresponding fragments in-
herit WSS and WT information. Thus, every fragment stores its WSS
and WT in the image of the local scatterplot.

The slice view is also generated in an additional shader as slab ren-
dering. A global variable is used to specify the position of the slice
view. The shader has also vertex position information. The vertex po-
sition will be sent to the fragment shader independently of its visibility
in the current view. The fragment shader tests if the 3D coordinates are
in the range of the position of the slice view. In this case, the position
is drawn on the image of the slice view.

The camera path is determined by using the center of each cluster.
With the center’s normal, the viewing direction’s destination position
is determined. Then, a path is extracted from the current viewing po-
sition to the end point. Furthermore, the center’s normal is employed
for a smooth change of the current viewing direction.
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Fig. 10. Presentation of our framework for the exploration of aneurysm wall thickness and wall shear stress. The main area (a), holds the
visualization of the inner and the outer wall as well as distance ribbons. On the top right, the global scatterplot (b) and the local scatterplot (c) are
depicted. The slice view (d) depicts the vessel wall’s cross section. Its position is marked with the green rectangle in (a). Interactive brushing and
linking is carried out in the global scatterplot and parameter choices can be set in the user panel (e).

7 EVALUATION

For an evaluation of our combined visualization of WT and WSS, we
prepared a questionnaire. Eleven subjects (one female, ten male, aged
26-41 years) participated in our user study, comprising two experi-
enced neuroradiologists and nine biomedical engineers familiar with
vascular diagnosis. The user study began with a short demonstration
of the framework and a description of different viewing techniques.
Afterwards, each facility was explained in more detail and the users
were encouraged to explore the scene on their own in order to answer
the questions. They had to try each exploration technique as well as
to identify the most suspicious aneurysm parts. We noted the spoken
comments of the participants. We used cerebral aneurysms as special
application area.

7.1 Questionnaire
For all questions, pre-defined choices were provided to make the re-
sults comparable. Besides simple “yes” or “no” and multiple choice
questions, a Likert-type scale [27] was employed to rate the suitability
of selected techniques. That means, the user can select between - -, -,
0, +, ++. The questionnaire comprises the following aspects.
General aspects. First, we asked for the subject’s opinion about the
importance of the WT for the evaluation of cerebral aneurysms in
general. They should also state if they would use our framework.
Then, we requested which of the techniques (general exploration of
color-coded surface view of inner wall, exploration via clustering, ex-
ploration via brushing and linking) is best suited for assessing WT .
Hence, we were interested in the favorite exploration technique. Fi-
nally, the subject should rate the provided distance ribbons, the shaded
outer wall, and the slice view regarding their ability to depict the WT .
We declared the last techniques as supplemental techniques.
Brushing and linking. The second aspect aims at the suitability of the
scatterplot-based exploration and the brushing and linking facilities.
The users rated the ability to detect critical regions via brushing and
linking. Second, they rated the possibility to brush their own parameter
combinations, e.g., regions with low WSS and low WT . Furthermore,
they chose how well the distribution of WSS and WT can be extracted
from the global and the local scatterplot.
Clustering. For the presented clustering view, the users should rate if
the color-coded clusters are appropriate to identify spatially connected
regions with increased ||−→r ||. They could choose the Likert score “- -”

if they didn’t like the clusters at all but preferred a direct color-coding
of parameters on the inner wall surface. Also, they should rate if the
color-coding is well suited to separate regions with high risk from re-
gions with low risk. Next, the subjects rated the ε-based exploration
of the clustering results. Finally, they evaluated the selection of single
clusters to detect dangerous regions. Furthermore, they should assess
if various datasets could be compared based on the clustering, i.e.,
small and many regions indicate a more heterogeneous distribution of
WT and WSS.
Navigation and general remarks. Two questions are related to the
navigation. First, the complexity of the necessary navigation to inspect
and explore the whole scene was requested. Second, the suitability
of the automatic camera path animation had to be rated. Finally, we
asked for additional remarks or possible extensions for the presented
framework.

7.2 Results
For the interpretation of our pre-defined Likert score categories, we
provide the mode value m, i.e., the most frequent answer, and num-
ber P of participants who chose “+” or “++”. All users assigned a
high importance of wall thickness evaluation for treatment planning of
cerebral aneurysms (m = “++”; P = 11/11) and would employ the pre-
sented framework. When choosing their favorite facility to explore the
parameters WT and WSS between color-coded surface visualization,
cluster exploration and brushing and linking, the 11 participants chose
the brushing and linking (6 users including the medical experts) and
the color-coded surface visualization (5 users), see also Figure 11(a).
Brushing and linking was chosen due to the direct visual feedback,
i.e., the interactive highlighting of surface parts corresponding to the
brushed region in the scatter plot. When rating the supporting visual-
ization techniques, the slice view was ranked best with m = “+”/ “++”
and P = 10/11 (see Fig. 11(b)). All users attested an easy navigation
(m = “++” P = 11/11 for the usability of navigation and the automatic
camera paths), since all of them could easily explore the scene in an
intuitive way.

The exploration via brushing and linking was substantial for eval-
uating the 3D aneurysm model and the users most often rated it
with m = “++” (P = 10/11). They also rated the possibility to
detect own parameter combinations via brushing and linking with
m = “++”(P = 9/11), see Figure 11(c). Especially the medical experts
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Fig. 11. Selected results of our user study. The box-whisker-plots depict
the lower q1 (25%) and upper q3 (75%) quartile as well as the median,
min and max value. Histograms depict the complete ranking, M1 and M2
represent the answers of the medical experts. The extreme values are
considered to be outliers (*) if they are at least two interquartile ranges
below q1, or at least two interquartile ranges above q3.

pointed out that a ground truth for the most dangerous parameter com-
bination is still missing. Although they agreed with the pre-defined
combination of WT and WSS as riskiness −→r , they stated that for some
aneurysm characteristics (e.g., monitoring during longitudinal studies)
a modified parameter combination is needed for exploration. Com-
pared to the brushing and linking facility, not all users appreciated the
exploration based on the global and local scatterplot (m = “+”; P = 7/11
for both). They named the missing spatial information as shortcoming
of the scatterplot-based exploration. The users liked the adaptive fad-
ing of the outer wall visualization very much (m = “++”; P = 11/11),
see Figure 11(d). Hence, the users were not asked to compare the
techniques, but rather to rate each of them individually.

The clustering-based exploration enabled the fast detection of dan-
gerous, spatially connected regions (m = “++”; P = 9/11) and the
color-coding favored a fast separation into normal regions of the inner
wall and regions with high riskiness (m = “++”; P = 11/11). Hence,
a variation between usefulness of the selection of individual clusters
(m = “+”/ “++” and P = 8/11) and the exploration of the clustering’s
hierarchy by varying ε (m = “+” and P = 9/11) could be seen, since
one participant did not want to use the automatic division into clusters
(see also Fig. 11(e)). Interestingly, the clinical experts approved the
clustering-based exploration. When asked for a Likert score regarding
the possibility of comparison different datasets based on the clustering
results, the users answered with m = “+”/ “++” and P = 11/11.

8 DISCUSSION

All users quickly adapted to the presented framework. The informal
evaluation and especially the discussion with the medical experts indi-
cated the importance of WT for aneurysm evaluation. The participants

c)

a) b)

WSS
[0.04..34.88]

WT
[0.79..5.78]

Fig. 12. Selected aspects during the user exploration. In (a), the salient
region is shown. In (b), an important finding is visualized. During the
brushing of a user-defined parameter combination, the highlighted re-
gions at the bottom of the parent vessel were identified. In (c), different
cluster results (based on varying ε values) still reveal the salient region.

also stated that wall morphology and thickness are the most important
missing information for rupture risk (due to the missing in vivo imag-
ing technique) based on their clinical experience. In general, the users
would definitely employ our framework for simultaneous evaluation
of WSS and WT . During evaluation, two main techniques were dis-
cussed in depth: the brushing and linking and the clustering. These
aspects will be described in the following. Next, minor improvements
and suggestions are listed. Finally, we discuss general aspects regard-
ing the image acquisition and provide a short discussion for another
application area to demonstrate the practicalness of our method.
Brushing and linking. Most users chose the brushing and linking-
based exploration since they could also highlight own parameter com-
binations (see Fig. 11(a)). Hence, the clinical experts referenced the
missing gold standard of rupture risk parameters, recall Section 3.
They pointed out that the brushing and linking and thus the highlight-
ing of certain surface parts support the communication and sharing
of knowledge. During exploration, all participants explored the re-
gions with high WSS and low WT at the most salient surface part, see
Figure 12(a). Pointed out by one user, an interesting feature was de-
tected at the bottom of the aneurysm parent vessel, see Figure 12(b).
Hence, a thin wall and low WSS values were brushed yielding the high-
lighted surface parts. In clinical practice, these regions are important
to completely characterize the relationship between vessel topology
and hemodynamic behavior. The clinicians stated that also areas with
wall thinning (and thus increased rupture risk) can be a consequence
of reduced blood flow and lower but oscillating WSS values (recall
Sect. 3). One medical expert asked for an additional feature: a re-
versed brushing and linking concept. That means, a brushing in the
dataspace (on the inner vessel wall surface) causes a linked highlight-
ing in the attribute space (the local and global scatterplots). Although
this relationship can be explored via cluster selection (selected clus-
ter is highlighted on the surface, as well as its parameter values in the
scatterplots) a brushing and linking concept in this domain seems to
be interesting. As a first alternative, we included a 2D transfer func-
tion to map the combination of WT and WSS in our framework, see
Figure 13. Therefore, the user can choose between the 1D color map
(for WSS, WT or ||−→r ||, see Fig. 6) and the novel 2D color map.
Clustering-based exploration. The pre-extracted clusters were dis-
cussed controversially. On the one hand, many users (8 of 11) liked the
clustering as well as the ε-based exploration of the hierarchical clus-
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tering structure (recall Sect. 5.3). That means, with smaller ε values,
the region merging process is stopped earlier. Therefore, more clusters
at heterogeneous regions, i.e., regions with strong variations for the pa-
rameter values, will remain and not be merged, see Figure 12(c). The
users didn’t request a clustering based on different parameter combina-
tions but instead combined it with the brushing and linking technique
for this purpose. The user who did not like the clustering, explained
that he did not get any benefit from the clustering. Hence, we sug-
gest to use the direct color-coding of one of the parameters WT , WSS
or ||−→r ||. We also want to clarify that our clustering visualization is
purely supplemental. At the moment, it is not aiming at any automatic
parameter extraction or classification.
Minor aspects. After the evaluation, minor improvements were re-
quested by the users. For example, the inclusion of measurement tools
to approximate the WT was suggested. Also, they asked for addi-
tional quantitative information about the cluster’s average parameter
values. Furthermore, a user suggested distance ribbons with varying
width adapted to WT . This would lead to very broad ribbons in ar-
eas of thicker walls and induce occlusion problems. Finally, we have
to consider a possible improvement of our snake-based segmentation.
Although it works fine for our prepared aneurysm, more approaches,
e.g., level sets, exist. We adapted the level set method as well, but em-
pirically achieved worse results compared to the snake-based segmen-
tation. In [5], a comparison of different IVUS 2D and 3D segmentation
techniques is provided. Also, a co-registration with biplane angiogra-
phy image data is possible. Due to the presented setup, i.e., the parent
vessel was fixated along the z-axis, this step was not necessary.
Outlook. The presented framework can be extended to various ap-
plication areas comprising aneurysms in general as well as inner and
outer vessel walls. Furthermore, the work can be adapted to surfaces
enclosing a focus structure. Therefore, we examined a study of func-
tional MRI datasets of the left ventricle, i.e., the heart muscle also
called myocardium, from patients that suffered from a heart attack. Al-
though contrast-enhanced datasets are acquired to locate the infarction
scar and the myocardial viability, the functional MRI data holds valu-
able information about the heart muscle’s contractility. Typically, the
infarction causes a reduced ability of muscle tension. Hence, the clini-
cal expert does not only want to locate the infarction scar and necrotic
tissue, but to assess the influence of the infarction for the myocardial
function as well. For clinical evaluation, the heart cycle is analyzed
from the time of end diastole (the myocardium is fully relaxed) until
end systole (maximum contraction is achieved).

The adaption of our framework is demonstrated in Figure 14. It
is related to the CoViCAD approach [38], where the left ventricular
wall is mapped to a volumetric bull’s eye plot with additional anatom-
ical context. Hence, the wall thickness is mapped to the height of
a cylinder or depicted as region of interest mapped on a rectangle.
The left ventricle consisting of epicardium and endocardium, i.e., the
myocardium, is visualized with the outer wall shading and the color-
coded surface view. The myocardial contractility is extracted as wall
thickening. Therefore, the wall thickness at end diastole and end sys-
tole is approximated. The wall thickening is then calculated as in-
creased wall thickness at end systole and color-coded.

This whole work was accomplished as part of a large research
project where the refinement and miniaturization of catheters is a ma-

a) b) 0
0

1

1

W
T

WSS

Low WT and WSS

Increased WT and WSS

Low WT and 
increased WT

Fig. 13. The 2D color map for the combined depiction of WT and WSS.

Fig. 14. Adaption of our framework to assess myocardial infarctions.
Hence, the myocardial contractility is analyzed to detect regions on the
myocardial surface with reduced wall thickening from end diastole to
end systole. Parts of the myocardium are characterized by reduced wall
thickening due to a heart attack (see arrow).

jor project goal. Thus, the measurement of vessel wall properties in
the cerebral arteries is intended in the future to provide real clinical
data.

9 CONCLUSION AND FUTURE WORK

In this paper, we presented a framework for the simultaneous explo-
ration of hemodynamic information, i.e., the WSS, and the wall thick-
ness WT . Our work is a first step towards the integration of the ves-
sel wall morphology in the image-based evaluation of aneurysms and
similar vascular diseases. More generally, the presented visualization
and exploration concepts can be applied to the inner and outer vessel
wall and additional information, like the extracted WSS. Our frame-
work depicts the outer and inner wall and avoids occlusions. Color-
coding is employed on the inner vessel wall surface to depict (cluster-
based) parameter values. Furthermore, the exploration is improved
with a global and a local scatterplot (including brushing and linking
facilities) as well as a slice view and the clustering-based exploration.
The presented framework is the first framework that provides a com-
bined visualization of wall thickness and hemodynamic information
for a dissected cerebral aneurysm. It was developed for the medical
researcher to simultaneously examine WSS and WT .

Our pipeline covers IVUS imaging of vessel walls – a scenario that
could be applied to cerebral aneurysms in near future. Due to the
novelty of this research area, many extensions are possible. An ex-
ample is the improved CFD simulation that accounts for the vessel
wall thickness and its elastographic properties. Also, the influence of
different image acquisition techniques, like optical coherence tomog-
raphy (OCT) [22], will be examined in the near future. For instance,
improved image modalities, i.e., higher resolution image datasets, will
not only provide the vessel wall thickness but also the vessel wall’s
pathologic parts, e.g., plaque burden, calcified parts of the vessel wall
as well as its elastographic properties. Recently, OCT yielded promis-
ing results in intravascular coronary imaging and a better image res-
olution than IVUS [23]. However, similar to IVUS, no admission for
the in vivo imaging of the cerebral vascular system is available yet.
Finally, we are working on the inclusion of streamline visualization to
reveal additional information like hemodynamic vortices or increased
inflow jets.
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[6] D. Balzani, D. Böse, D. Brands, R. Erbel, A. Klawonn, O. Rheinbach,
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