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A Robust Parity Test for Extracting Parallel Vectors in 3D

Tao Ju, Minxin Cheng, Xu Wang, and Ye Duan, Member, IEEE

Abstract—Parallel vectors (PV), the loci where two vector fields are parallel, are commonly used to represent curvilinear features in
3D for data visualization. Methods for extracting PV usually operate on a 3D grid and start with detecting seed points on a cell face.
We propose, to the best of our knowledge, the first provably correct test that determines the parity of the number of PV points on a
cell face. The test only needs to sample along the face boundary and works for any choice of the two vector fields. A discretization
of the test is described, validated, and compared with existing tests that are also based on boundary sampling. The test can guide
PV-extraction algorithms to ensure closed curves wherever the input fields are continuous, which we exemplify in extracting ridges
and valleys of scalar functions.

Index Terms—Parallel vectors, feature curve extraction, ridges and valleys, parity test

1 INTRODUCTION

The parallel vector (PV) operator is a general-purpose line feature rep-
resentation proposed by Peikert and Roth [8] for data visualization. It
is defined as the loci where two vector fields u,w are parallel or one of
the two vectors is zero. In 3D, PV lines consist of those points x that
satisfy

u(x)×w(x) = 0 (1)

Various types of line features can be expressed as PV with suitable
choices of u,w, including ridges and valleys of a scalar field, stream-
lines of a vector field, vortices of a velocity field, and extremal curves
of a tensor field.

As surveyed in [8], PV is usually computed on a spatial grid and
proceeds in two stages. First, possible locations of PV on a grid
cell face are computed. To differentiate them from true PV locations,
we shall refer to these computed locations as seeds. Next, seeds are
connected within a grid cell, either simply by straight line segments
[16, 2, 11] or using more sophisticated but more accurate curve trac-
ing methods [15, 13, 1, 7].

A key property that makes PV appealing is that they are generally
made up of closed curves when u,w are continuous [8]. This is in con-
trast with discontinuous features such as local maxima or minima in a
scalar field. To inherit this property in a computational algorithm, the
total number of seeds identified by the algorithm over all faces of a
cell should be even. Otherwise, any way of connecting the seeds into
curves within the cell would create either an open curve or a junction
with odd degrees, which cannot be separated into disjoint closed seg-
ments. Various methods have been proposed for computing seeds (see
a review in the next section). However, none of them comes with a
theoretical guarantee of the parity of the number of seeds either on a
cell face or in a cell, except in the special case when u,w are linear
over each face.

In this paper, we propose a provably correct test that, given any
choice of continuous fields u,w over a cell face, determines the parity
of the number of PV points on that face. The test mimics the classi-
cal zero-crossing test over an 1D interval based on signs at the ends
of the interval: it reports “true” if and only if there are odd number
of true zeros in the domain. Like zero-crossing, our test only needs
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to sample u,w on the boundary of the face, and does not require sam-
pling or subdivision of the face interior. The idea behind the test is to
consider the solution of Equation 1 as singularities in a tangent vec-
tor field over some auxiliary surface. We show that the parity of the
number of stable singularities in this field can be computed using the
classical Gauss-Bonnett and Poincare-Hopf theorems without explic-
itly constructing the auxiliary surface. A discrete implementation of
the test is presented and validated using a synthetic input whose PV
has a known and analytical form.

Using our test, a PV extraction algorithm can ensure closed curves
wherever u,w are continuous by creating one seed on each cell face
that our test returns odd. We exemplify such usage in a typical 2-stage
PV algorithm applied to extract ridge and valley lines of a scalar field.

2 RELATED WORKS

Given the scope of our work, we limit our discussion to published
methods for identifying seeds. In particular, we will focus on the com-
binatorial aspect (e.g., number and parity), rather than the geometric
location, of the seeds computed by these methods.

2.1 Analytical solution

When the face is a triangle and both fields u,w are defined by lin-
ear interpolation of vectors at the triangle vertices, the exact number
and locations of PV points can be found analytically as an eigenvector
problem [8]. However, this approach is not applicable for high-order,
non-linear fields.

2.2 Iterative root-finding

For non-linear fields u,w, solutions to Equation 1 can be sought by
using root-finding techniques over the cell face [11, 15, 13, 7]. These
methods typically start at an initial location on the face, such as its cen-
ter, and uses 2D Newton-Raphson technique either for a fixed number
of iterations or until convergence. A seed is found if the iteration ter-
minates at a PV point (within some tolerance) inside the face. How-
ever, root-finding does not guarantee to find any or all PV points on
the cell face. There is also no guarantee on the parity of total number
of seeds over all faces of a cell.

Pagot et al. [7] uses reduced affine arithmetic to conservatively esti-
mate the presence of PV points in a cell and on a face. The test is used
to recursively subdivide any cell (and any face) that might contain a
PV point. While the method can reduce the chances of missing PV
points, there is still no guarantee on the correctness of the total num-
ber or parity of the computed seeds. Also, recursive subdivision adds
computational cost, which can be substantial since the test based on
affine arithmetic is conservative. Finally, the technique is restricted to
those u,w with known, polynomial forms.

2.3 Boundary sampling

A class of methods detect the presence of PV points over a cell face
by examining u,w on the face boundary [2, 14, 5, 10]. The rationale

For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014 ate of
publication 2014; date of current version 2014.11  Aug.  9     Nov.  

D.

Digital Object Identifier 10.1109/TVCG.2014.2346412



2527JU ET AL.: A ROBUST PARITY TEST FOR EXTRACTING PARALLEL VECTORS IN 3D

comes from the well-known fact that the parity of the number of first-
order critical points in a 2D vector field z in a closed region can be
obtained by the winding number (total number of 2π turns) of z as it
travels along the region boundary. These methods typically start by
projecting the 3D vectors whose zeros are being sought on the face
boundary onto a common plane, and then analyze the winding of the
projected 2D vector field.1 The 3D vectors can be either u×w or (u×
w)×u, the projection of w onto plane orthogonal to u. The projection
plane could be the supporting plane of the face [2, 5] or the plane
orthogonal to the averaged u vectors along the face boundary [14, 10].

An appealing property of this approach is that it does not need to
sample the interior of the face. However, current tests only capture the
zeros in the projected 2D vector field rather than those in the original
3D vector field v. As we will demonstrate in Section 4, the winding
of the projected 2D field can be a poor indicator for the parity of zeros
of v. In addition, since the choice of the projection plane in current
methods varies for different faces of the cell, there is no guarantee on
the correct parity of the entire set of seeds in a cell.

Similar to these methods, our method also samples the 3D vector v
along the face boundary and examines its winding. The key difference
is that we compute the winding on varying planes that are orthogonal
to u at each boundary location. Since these planes always contain v,
we avoid the inaccuracy associated with projection.

3 BACKGROUND

As we shall see in the next section, we will formulate the problem of
detecting PV points as identifying critical points of a tangent vector
field over a surface. Our method builds upon classical results on dif-
ferential geometry and vector field topology, which we shall briefly
review first. We refer interested readers to introductory materials such
as [3] for in-depth coverage of these concepts. Below we assume S is
a differentiable, genus-zero surface in R3 with a smooth boundary ∂S.

3.1 Vector fields along curves

We start by considering vectors that are tangent to the surface S
and move continuously along a differentiable curve on the surface
τ : [0,1] → S. An example is the (unit) tangent vector field along τ ,
noted as gτ (shown in blue in Figure 1 (a)).

An operator used frequently for vector field analysis is how much
one vector field v1 turns with respect to another field v2 along the
curve. To formalize turning, note that the vector v1(t) and the sur-
face normal defines a coordinate frame in the tangent plane at τ(t).
The turning from v1 to v2 along τ on the surface S, denoted as
Turnτ ,S (v1,v2), is the total counter-clockwise angle traced by v2 in
this coordinate frame. Figure 1 illustrates the turning from a vector
field v (red) to the tangent vector field gτ (blue).

(a) (b)

Fig. 1. (a) The tangent vector field gτ (blue) and another vector field v

(red) along a curve τ on a unit sphere S. (b) Plotting gτ in the coordinate
frame defined by v and the turn from v to gτ .

1The approach used by Medioni and co-workers [2, 14], which is based on

signs of the coordinate components of the projected v only at the four corners of

the face, can be considered as a discrete way of computing the winding number.

tangent field 

a parallel field

Fig. 2. Comparing the tangent fields (blue) and parallel fields (red) along
the boundary of a hemisphere (left) and a flat disk (right). Noted under
each picture are the total geodesic curvature of the boundary curve (de-
fined as the turning from the parallel field to the tangent field) and the
total Gaussian curvature of the surface.

3.2 Parallel transport and geodesic curvature

A vector field is parallel along τ if its derivative has zero component
in the tangent plane along τ . The tangent field gτ is also parallel only
when τ is a geodesic on S. Unlike the tangent field, there are infinitely
many parallel fields on a given curve. In fact, there exists a parallel
field starting from any given vector at one end of the curve τ(0). This
is known as the parallel transport of that starting vector.

An important property of parallel transport is that it only depends
on the surface normal along τ and is independent of the geometry of
τ . That is, parallel transport of a same initial vector along two curves
τ1,τ2 will produce the same sequence of vectors if τ1(t) has the same
normal direction as τ2(t) for all t ∈ [0,1].

Figure 2 compares tangent fields and parallel fields on two exam-
ples. When τ is the equator of a sphere (left), the tangent field is also
parallel, since τ is a geodesic. When τ is a circle on a plane (right),
the tangent field turns a full circle around τ while a parallel field stays
constant.

The turning from one parallel field to another is always zero. The
turning from any parallel field to some fixed vector field v is the same,
which we simply denote as Turnτ ,S(v). The total geodesic curvature
of τ is defined as the turning from a parallel field to the tangent field,
or Turnτ ,S (gτ ). This quantity reflects how much the curve τ twists on
the surface S. The total geodesic curvature of a geodesic curve is zero,
since the tangent field is also parallel. In the examples of Figure 2, the
total geodesic curvature of the sphere equator and the planar circle is
respectively 0 and 2π .

3.3 Gaussian curvature

The geodesic curvature of the boundary curve is closely related to the
curvature over the interior of the surface. Consider the Gauss map,
which maps a point x ∈ S to a point n(x) on the unit sphere B such that
n(x) is the unit outward normal of S at x. The total Gaussian curvature
of S, denoted by kS, is the signed area of the image of S on B under the
Gauss map. The sign of the area at a location x is determined by the
Jacobian determinant of the Gauss map at x.

Gauss-Bonnet theorem states that the sum of total Gaussian curva-
ture of S (that is, kS) and the total geodesic curvature of the boundary
∂S (that is, Turn∂ S,S (g∂ S)) is 2π times the Euler characteristic of S.
Since S being considered here has an Euler characteristic of 1, we
have

kS = 2π −Turn∂ S,S (g∂ S) (2)

We use the convention that ∂S is oriented such that S is on the “left”
of the curve, or more formally, the cross-product of the normal of S
and g∂ S always points towards the interior of S. In the examples of
Figure 2, the total Gaussian curvature is respectively 2π and 0 for the
hemisphere and the flat disk.

3.4 Vector fields on a surface

Consider a continuous vector field v over S that is tangential to S. We
assume the generic situation where zeros of v are isolated and away
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from ∂S. These critical points can be characterized using the Poincare
index. Given any point x ∈ S, consider a disk neighborhood D of x
small enough to not contain any other critical points of v except x.
Given a continuous tangent coordinate frame over D, the index at x
is the total counter-clockwise angle swept by v as it travels along ∂D
in the counter-clockwise orientation divided by 2π (also known as the
winding number of v).

The index is zero if x is a regular point, and can assume positive
or negative integers if x is a critical point. While a critical point can
have any integer index, only ones with index +1 (sources or sinks or
foci) and -1 (saddles) are stable with respect to small perturbation in
the field [12]. Higher-order critical points can be decomposed into
lower-order critical points under slight perturbation.

If v is orthogonal to the boundary ∂S and points towards the exterior
of S, the Poincare-Hopf theorem states that the sum of all critical point
indices, denoted as IndS(v), is exactly the Euler characteristic of S,
which is 1. Morse [6] generalized the theorem to an arbitrary vector
field v by considering the turning of v from the tangent vectors along
∂S,

IndS(v) = 1+
Turn∂ S,S (g∂ S,v)

2π
(3)

As an example, consider the three vector fields in Figure 3 on a flat
disk S. The three fields exhibit turnings of 0, −2π , and −4π from the
boundary tangent, correctly calculating the total index of 1 (a source),
0 (no critical points), and -1 (a saddle) inside S.

Fig. 3. Examples demonstrating the generalized Poincare-Hopf theo-
rem, relating the total index IndS(v) of a vector field v over a disk surface
S to the turning of v from the tangents g∂ S along the boundary ∂S.

4 THE PARITY TEST

Our key idea is to treat the solution of Equation 1 as critical points in a
tangent vector field over some auxiliary surface. The total index of the
critical points, which has the same parity as the number of stable crit-
ical points, can then be obtained by observing the boundary behavior
of u,w. We start with a theoretical derivation of our test in the contin-
uous setting, and then present a discrete implementation. We end with
validation of the test and comparison to previous methods.

4.1 Theory

Suppose we have a surface M in R3 that is homeomorphic to a disk
(e.g., a cell face) and two continuous vector fields u,w on M. We make
several assumptions of generic inputs. First, at least one of the fields,
say u, is non-zero on M. Second, the PV consists of 1-dimensional
curves, and these curves intersect with only the interior of M at a finite
set of points. Note that these generic assumptions may be violated in
the discrete implementation, which we shall address in the next sec-
tion.

4.1.1 Index of a PV point

We start by defining the index of a PV point on M. Each PV point
is a zero of the cross-product field v = u×w. Equivalently, it is also
the zero of the field v = (u×w)×u, which has a geometric interpre-
tation as the projection of w onto the plane orthogonal to u. These
two choices of v are closely related; in fact they differ by a rotation of

π/2 around u. We use the latter definition, which is adopted in exist-
ing tests based on boundary sampling [2, 14], but our results apply to
either definition.

The index of a PV point is defined similarly as the Poincare index
of a critical point on a surface. Given any point x ∈ M, consider a disk
neighborhood D ⊂ M around x small enough to not contain any other
zeros of v except x. We establish a continuous coordinate frame on
each orthogonal plane to u(y) for all y ∈ D. This is possible because
u is continuous and non-vanishing. The PV index at x is the winding
number of v(y) in this frame as y travels in counter-clockwise orienta-
tion along ∂D. The notations are explained in Figure 4.

� �� � � �� � �� � � � � � ���� �

PV index = -1

Fig. 4. Notations for defining the PV index.

Similar to the Poincare index, the PV index is zero if v(x) is non-
zero, and can assume positive or negative integers otherwise. By the
same argument in [12], only PV points with indices +1 and -1 are
stable with respect to small perturbation in the field, whereas other PV
points can be decomposed into these stable ones.

Since a stable PV point has an odd index, the total index of all PV
points on M has the same parity as the total number of stable PV
points. In the following, we shall derive a formula for the total PV
index on M.

4.1.2 Total index

To explain our formula intuitively, we will assume for now that there
exists a mapping f from M to some auxiliary surface S such that,
for every point x ∈ M, the outward unit normal at the mapped point
f (x) ∈ S is the unit vector u̇(x) = u(x)/|u(x)| (see Figure 5). As such,
v becomes a tangent field on S, and the PV index at a point x ∈ M is
the same as the Poincare index of v at f (x)∈ S. Now our task becomes
computing the total index of v on S.

Since we do not know the geometry of ∂S, we cannot directly apply
the generalized Poincare-Hopf theorem (Equation 3) to compute the
total index of v. We need a different formula that would allow us to
compute this index with only the knowledge of the normal field of
S, which is u. To do so, we make note of the following property of
turning,

Turnτ ,S (v1,v2) = Turnτ ,S(v2)−Turnτ ,S (v1) (4)

That is, the turning from one vector field v1 to another field v2 along
a curve τ is the difference between the turning from the parallel field
to v2 and the turning from the parallel field to v1. Substituting this
identity and the Gauss-Bonnet theorem (Equation 2) into the Poincare-
Hopf theorem (Equation 3) yields

IndS(v) =
Turn∂ S,S(v)+kS

2π
(5)

Note that the quantities on the right-hand side of this equation can
be obtained by the Gauss map from S to the unit sphere B. The total
Gaussian curvature, kS, is the signed area of the mapped region on B.
The turning of v from the parallel field along the boundary curve ∂S is
the same as the turning of v from the parallel field along the mapped
curve ∂S on B, because the two curves share the same normal field.

On the other hand, this Gauss map can be directly defined from M
and u, without the need to construct the auxiliary surface S. In fact,
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Gauss map

Fig. 5. Illustration of the mapping f from M to S, and the Gauss map
from S to u̇(M) on the unit sphere B.

the image of a point x ∈ M after first mapping to S (via f ) and then to
the unit sphere (via Gauss map) is exactly u̇(x). We can now write the
image of S under the Gauss map as u̇(M), which is bounded by curve
u̇(∂M) (see Figure 5). Denoting the signed area of u̇(M) as Au̇(M),

Equation 5 translates to a practical formula for total PV index:

Lemma 4.1 The sum of PV indices on M equals

Turnu̇(∂ M),B(v)+Au̇(M)

2π
(6)

In words, the total PV index equals the sum of signed area covered
by the spherical region u̇(M) and the turning of v along this region’s
boundary from a parallel vector field divided by 2π . While our deriva-
tion above assumes the existence of the auxiliary surface S, we can
nevertheless prove without this assumption (see Appendix A).

4.1.3 Parity of PV points

Lemma 4.1 requires knowledge of u over the interior of M to compute
the signed area Au̇(M). To avoid such need, we make the following

observation (see proof in Appendix B):

Lemma 4.2 Let z be any continuous, non-zero vector field on M such
that z(x) = u(x) for all x ∈ ∂M, and let ż(x) = z(x)/|z(x)|. Then

Au̇(M) = Aż(M) (mod 4π) (7)

We illustrate this result using an example in Figure 6. Here M is
a unit disk on the XY plane centered at the origin. For a point on the

disk with coordinates x = {a,b,0}, define u(x) =
{

a,b,
√

1−a2 −b2
}

(top-left) and z(x) =
{

a,b,−
√

1−a2 −b2
}

(bottom-left). Note that

the two vector fields are identical on the boundary of the disk. While u̇
maps M to the top hemisphere of the unit sphere with a positive Jaco-
bian determinant, ż maps M to the bottom hemisphere with a negative
Jacobian determinant (as revealed by the inverted color order at the
pole). The signed areas of the two images, u̇(M) and ż(M), are respec-
tively 2π and −2π . Their difference is 4π , which agrees with Lemma
4.2.

The benefit of Lemma 4.2 is that we can replace Au̇(M) in Equation

6 by Aż(M) without affecting the parity of the quotient. Since the only

requirement of z is to match u on the boundary ∂M, such replacement
avoids the need to probe the interior of M. Recall that the total PV
index over M has the same parity as the number of stable PV points,
we arrive at our main result,

North pole

South pole

Fig. 6. An example illustrating Lemma 4.2.

Theorem 4.3 The number of stable PV points on M equals, modulo
2,

Turnu̇(∂ M),B(v)+Aż(M)

2π
(8)

where z is any continuous, non-zero vector field on M such that z(x) =
u(x) for all x ∈ ∂M, and ż(x) = z(x)/|z(x)|.

We wish to choose a field z whose resulting signed area Aż(M) can be

easily evaluated. In this work, we use linear interpolation in a radial
parameterization of M. Define some mapping from the unit disk to
M so that the origin of the disk maps to some location c ∈ M. Let
z(c) = z0 where z0 is an arbitrary unit vector. Each ray of the unit
disk is mapped to a curve on M that starts from c and ends on some
boundary point x ∈ ∂M. For each point y on this ray, define the vector
z(y) by interpolating z(c) and u(x) along the ray. By this definition,
the image ż(M) on the unit sphere is made up of great arcs from z0 to
unit vectors u̇(x) for all x ∈ ∂M. As we shall see next, the signed area
of ż(M) can be computed discretely over the spherical curve u̇(∂M).

4.2 Discrete computation

The parity test in Equation 8 can be easily discretized and computed
using basic spherical geometry. We assume that the surface boundary
∂M is sampled by a finite sequence of points, {p0, . . . , pn} such that
p0 = pn. We use ui,vi, u̇i to denote the vectors u,v = (u×w)×u, u̇ =
u/|u| at a sampled location pi.

To discretize Equation 8, we approximate the spherical curve
u̇(∂M) by a piecewise smooth curve made up of great arcs of B con-
necting successive samples in the sequence {u̇0, . . . , u̇n}. We next give
details on computing the two quantities, Turnu̇(∂ M),B(v) and Aż(M).

Note that our computation gives the exact result on this piecewise
spherical curve, and hence the sum of the two quantities will still be
an exact multiple of 2π (subject to numerical imprecisions). We end
this section with a discussion on choosing the sample points.

4.2.1 Discretizing turning

The first quantity, Turnu̇(∂ M),B(v), can be computed as the sum of turn-

ing over each arc in the piecewise approximation of u̇(∂M).
To compute the turning on the arc between {u̇i, u̇i+1}, we first

parallel-transport vector vi along the arc from u̇i to u̇i+1, producing
a new vector v∗i at u̇i+1 (see Figure 7 left). There are several ways to
compute v∗i . One can rotate vi around the axis orthogonal to u̇i, u̇i+1 by
the angle between u̇i and u̇i+1. However, the computation of the rota-
tion axis requires a cross-product, which can be numerically unstable
when the angle between u̇i and u̇i+1 is small. We take the more stable
approach of Wang et al. [17], which involves only dot products.

The formulation given in [17] is used to transport normal vectors
along a spatial curve. We first re-formulate our problem as normal
transportation as follows. Let g0,g1 be the unit tangent vector of the
great arc from u̇i to u̇i+1 at the two ends of the arc, and consider now
the great arc on the sphere from g0 to g1. Note that u̇i and u̇i+1 are
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Fig. 7. Notations for discretizing the parity test.

tangent vectors of this arc, and vi is a normal vector of the arc at g0.
Our goal is to transport vi to another normal vector v∗i at the other end
of the arc, g1.

Following [17], v∗i is obtained by two reflection transformations.
The first reflection uses the bisecting plane between g0,g1 (Figure 8
(a)). Observe that the unit normal of this plane can be obtained by
n = (u̇i + u̇i+1)

/

|(u̇i + u̇i+1)|. The reflection of any vector ξ by this
plane can be written as

R(ξ ) = ξ −2(ξ ·n)n (9)

After reflection, R(vi) remains orthogonal to R(u̇i), and the latter is
identical with −u̇i+1. The second reflection uses the bisecting plane
between R(u̇i) and u̇i+1 (see Figure 8 (b)). Since R(vi) is parallel to
this reflection plane, it is unchanged by the reflection. Hence we obtain
v∗i = R(vi).

(a) (b)

Fig. 8. Parallel transport from u̇i to u̇i+1 by two reflections.

The turning on the arc between {u̇i, u̇i+1} is simply the angle from
v∗i to vi+1 in the counter-clockwise orientation in the tangent plane at
u̇i+1.

∠(v∗i ,vi+1) = cos−1

(

v∗i · vi+1
∣

∣v∗i
∣

∣ |vi+1|

)

δi (10)

Here, δi is 1 (resp. -1) if u̇i+1 ·
(

v∗i ×vi+1

)

is positive (resp. negative).
The summation of the angles over all arc segments gives the desired

turning over the entire curve,

Turnu̇(∂ M),B(v) =
n−1

∑
i=0

∠(v∗i ,vi+1) (11)

4.2.2 Discretizing spherical area

Using the choice of z as discussed earlier, the region ż(M), bounded by
u̇(∂M)), is made up of n spherical triangles. Each triangle is formed
by z0, a randomly chosen unit vector, and unit vectors u̇i, u̇i+1 for i =
0, . . . ,n−1.

The signed area of each triangle can be obtained by

△(z0, u̇i, u̇i+1) = (α1 +α2 +α3 −π)ηi (12)

where α1,α2,α3 are the dihedral angles between the planes forming
the cone spanned by the spherical triangle and the origin (see Figure
7 right), and ηi captures the orientation of the triangle. Specifically,
define nk as the unit normal of the plane opposite to angle αk for k =
1,2,3,

n1 =
u̇i × u̇i+1

|u̇i × u̇i+1|
,n2 =

u̇i+1 × z0

|u̇i+1 × z0|
,n3 =

z0 × u̇i

|z0 × u̇i|
(13)

The angles αk are computed as

α1 = cos−1 (n2 ·n3) ,α2 = cos−1 (n3 ·n1) ,α3 = cos−1 (n1 ·n2) (14)

The sign ηi is 1 (resp. -1) if u̇i+1 ·(n1 ×n2) is positive (resp. negative).
The summation of the signed areas over all triangles gives the desired
total signed area over ż(M),

Aż(M) =
n−1

∑
i=0

△(z0, u̇i, u̇i+1) (15)

4.2.3 Boundary sampling

Our discrete algorithm correctly computes the parity of PV points
given the discrete samples on ∂M. However, it may fail to capture
the true parity on M if u or v exhibits excessive variation between the
sampled locations. To keep the variations low, we use a simple adap-
tive sampling strategy. Starting from a face edge, we calculate the
angular difference between the u (and v) vectors at the two ends and
create a sample at the mid point of the edge if the difference is greater
than a user-defined threshold (we used 10 degrees). The new sample
divides the edge into two segments, and the same process is repeated
for each segment until either no more samples need to be created or a
maximum subdivision depth is reached (we used 10).

While we have not encountered such cases in our tests, it is possible
that our generic assumptions (e.g., non-zero u and v on ∂M) may be
violated at a sample location p due to numerical evaluations. To deal
with such degeneracy, one can perturb the location of p by a small
spatial amount and re-sample u,v there. As long as such perturbation
is done consistently for all surfaces that use p as a boundary sample,
the parity test can still guarantee closedness of the PV curves.

4.3 Comparison and Validation

Our parity test is similar in spirit to several existing methods for de-
tecting zeros of v [2, 14, 5, 10] in that they also monitor the winding of
v on the face boundary in some 2D coordinate system. The key differ-
ence is that these existing methods use a single plane to establishing
the coordinate system. Since this plane almost never contains v, v
has to be first projected onto this plane. In contrast, our method uses
variable planes orthogonal to u, which always contain v, and hence
no projection is needed. The 2D coordinate systems on these planes
are established by parallel vectors along the spherical curve u̇(∂M).
Equation 6 essentially computes the winding of v in these coordinate
frames (Turnu̇(∂ M),B(v)) corrected by the turning of the frames them-

selves (Au̇(M)).

To validate our method, we designed a synthetic example whose
PV has a known form. The fields u,w are chosen so that the solution
to Equation 1 can be expressed analytically but still has a non-trivial
curve geometry. Specifically, for a spatial location {a,b,c}, we let w
be a constant vector, and define u as a linear rotation field composed
by successively rotating w around the X, Y, Z axes by angles a,b,c:

w(a,b,c) = {1,1,1}
u(a,b,c) = RZ(c) ·RY (b) ·RX (a) ·w(a,b,c)T

where RΠ(α) is the 3D rotation matrix around a given axis Π by angle
α (in radian). The solution to Equation 1 can be found using a sym-
bolic package (e.g., Mathematica), and it is the union of straight lines
and sinusoidal curves. For any real number t and integers c1,c2, there
are 4 PV points of the following types:

• Type 1:
{

t,2c2π − π
2 ,−t +2c1π − π

2

}
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• Type 2:
{

t,2c2π + π
2 ,t +2c1π −π

}

• Type 3:
{

t,2tan−1
(

cos(a)+sin(a)+1

cos(a)+sin(a)−1

)

+2c2π,t +2c1π
}

• Type 4:
{

t,2 mod
(

tan−1
(

cos(a)+sin(a)−1

−cos(a)−sin(a)−1

)

,2π
)

+2c2π,−t +2c1π + π
2

}

Points of the first two types lie on two groups of parallel lines, whereas
points of the last two types lie on two groups of parallel sinusoidal
curves. These PV curves are shown in Figure 9.

Fig. 9. PV curves of our synthetic vector fields. PV points of types 1, 2,
3, 4 are colored red, green, blue, magenta. The plot range is [−5,5] in
X, [−4.3,3.7] in Y, and [−4.5,3.5] in Z.

We test our method at different grid resolutions. At each resolution,
we compare the output of our test Tour to the true parity of PV points
on each grid face Ttrue. A face is colored gray, red, blue, or not shown
if the pair {Tour,Ttrue} has value {Odd, Odd}, {Odd, Even}, {Even,
Odd}, or {Even, Even}. The result is shown in Figure 10, first row.
Note that our test always matches the true parity even at an extremely
coarse grid resolution, where the vector field on a cell face may vary
significantly and there may be multiple PV points on one face.

We also tested existing methods based on boundary-sampling. In
our implementation, we use the same boundary samples of the cell
face M as in our method, and we compute the winding number of
v at the samples after projecting to either the supporting plane of M
[2, 5] (which we call the Face Plane test) or the plane orthogonal to the
average of samples of u along ∂M [14, 10] (which we call the Average
Plane test). The output of a test is the parity of the winding number.
The results of these two tests, compared with the true parity, are shown
in the second and third rows of Figure 10. Note that the Face Plane test
consistently produces errors even at fine grid resolutions. The Average
Plane test tends to make accurate decisions as a finer grid resolution,
but fails at a low grid resolution.

We take a closer look at the failure cases of previous methods in
Figures 11 and 12. Figure 11 examines a face with no PV point, but
an odd winding number is reported by both Face Plane and Average
Plane tests (i.e., a false positive). Figure 12 examines a face with one
PV point, but an even winding number is reported by these tests (i.e.,
a false negative). Note that the choice of the projection plane in these
tests has a significant impact on the winding of the projected 2D vec-
tors (e.g., compare the lower pictures in (c,d) in each figure). On the
other hand, our test does not require projection, and the correct parity
is reported in both cases.

5 APPLICATION: EXTRACTING RIDGE AND VALLEY LINES

Our test can be used in conjunction with a PV-extraction algorithm to
ensure the closedness of the resulting curves wherever u,w are contin-
uous. All that is needed for the algorithm is to compute seeds on a cell

face whose parity matches the outcome of our test. For example, one
can create one seed for each face where our test reports odd. For prac-
tical inputs, however, discontinuity of u,w generally exists. While the
correctness of our parity test does not hold on faces containing such
discontinuity, using our test still helps ensure well-connected curves
elsewhere. We shall give an example of using our test in a typical 2-
stage PV extraction framework for computing ridge and valley lines.

5.1 Method

The ridge and valley lines of a 3D scalar field s : R3 → R can be de-
fined using the gradient g and the eigenvectors of the Hessian H [9].
Let ε1,ε2,ε3 be the three eigenvectors of H ordered such that their
corresponding eigenvalues λ1,λ2,λ3 have increasing absolute values.
A point lies on the ridge or a valley if g is parallel to ε1. The values
of λ1,λ2 are both negative (resp. positive) if the point is on the ridge
(resp. valley).

We can express ridges and valleys as PV by setting u = ε1 and
w = g. However, since ε1 does not carry an orientation, it is tech-
nically a line field rather then a vector field. There are two approaches
to resolve this difficulty. First, one can attempt to orient ε1 locally
on each cell face M by tracing along its boundary. The attempt will
always succeed unless ε1 is discontinuous somewhere on M [4], in
which case our parity test would not be applicable anyway. Second,
as done in several previous work [8, 9, 7], one can use an alternative
PV definition of u = Hg, and select from the computed curves those
that are parallel to only ε1. The second approach avoids the need for
orienting ε1 and is more efficient because the eigen-problem is only
solved during the selection process. However, the selection step may
fail at locations on the curves where g and ε1 are not aligned (e.g., due
to numerical errors), which would lead to unnecessary disconnections
in the resulting curves. Since our emphasis is on curve connectivity,
our implementation takes the first approach.

In seed-extraction stage, we produce samples along the face bound-
ary in an adaptive manner to ensure low variability of u,v. This is done
using a recursive binary splitting strategy that adds a sample point be-
tween two existing ones until either the angle between u (and v) at
successive samples falls under a given threshold or the distance be-
tween the samples is shorter than another threshold. After applying
our parity test using Equations 8,11,15, and if the test reports odd,
we compute a seed by applying a few 2D Newton-Raphson iterations
starting from the face centroid. In seed-connection stage, we follow
the simple strategy of connecting seeds by straight segments within a
cell (more complicated tracing methods can also be applied). To deal
with different number of seeds in a consistent manner, we additionally
create a vertex (at the centroid of the face seeds) within a cell that has
more than one seed and connect this vertex to each seed.

5.2 Results

We first test our method on a smooth distance field defined on a point
set. The initial scalar value at a grid point is the Euclidean distance to
the nearest point in the set. The grid is then smoothed using Gaussian
kernels, and the scalar function s is defined by tricubic interpolation.
An example result of our method for a Trefoil Knot is shown in Figure
13. We also compare with the results using the Face Plane test and the
Average Plane test instead of our parity test. Note that the Face Plane
test results in a large amount of spurious branches. While the Average
Plane test produces much fewer noise, the resulting valley curve still
contains disconnection and branching, due to a low grid resolution
(203). On the other hand, our parity test gives a continuous knot as the
valley curve.

Figure 14 shows the result of our method applied to two real-world
data sets. One is the cryo-electron microscopy scan of a protein
(BVP8), where the high density region is the protein backbone. The
other one is a CT scan of blood vessels in the brain. In both data, ridge
lines capture the meaningful features. For practical data like these,
there is usually a fair amount of spurious ridge and valley lines that
need to be pruned. A number of strategies for pruning ridge and valley
lines have been used in the past [9]. Here we applied simple pruning
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Fig. 10. Comparison of three parity tests on our synthetic data at four different grid resolutions (we used grid spacings 3.31, 2.31, 1.31, 0.31). Red
(resp. blue) cell faces are where the test reports odd (resp. even) whereas the true parity is even (resp. odd).

by thresholding the scalar value at the extracted PV points and remov-
ing short curve segments.

Since our parity test involves independent operations on each cell
face, it can be easily parallelized. Our tests are performed on an Intel
Xeon E5-2440 machine with 8 core 2.40G Hz CPU. The computa-
tional time, including both the parity test and curve extraction, ranges
from 10 seconds for the protein data (on a 963 grid) to 20 minutes for
the vessel data (on a 5123 grid).

6 CONCLUSION

We derive, for the best of our knowledge, the first robust test for the
parity of the number of PV points on a genus zero surface with bound-
ary in 3D. Similar to classical zero-crossing tests, our test only requires
sampling along the boundary of the domain. A discretization of the
test is described, validated, and compared with existing tests that are
also based on boundary sampling. We also showed an application of
the test for extracting continuous ridges and valleys.

Our parity test can be applied to arbitrarily shaped cell faces (e.g.,
triangles, hexagons, etc.) and even curved faces, and hence it is well
suited for PV extraction in unstructured grids. Our test can also be
used as an additional criteria for grid subdivision (e.g., subdivide if
the parity is odd), which is particularly useful for tracing PV in higher-
order fields [7].

While our test is restricted to disk-like surfaces in three dimensions,
it would be interesting to explore its extension beyond this setting.
As a starting point, we have verified that Lemma 4.1 should hold for
surfaces of higher genus as well.
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A PROOF OF LEMMA 4.1

Proof: If the Jacobian determinant of u̇ is positive everywhere on M,
u̇(M) is a smooth surface whose unit normal vector at a point u̇(x)
is exactly u̇(x). Hence Lemma 4.1 holds by the derivation in Section
4.1.2, letting S = u̇(M).

If the Jacobian determinant of u̇ is negative everywhere, u̇(M) is still
a smooth surface but the normal at a point u̇(x) is −u̇(x). Since v is
tangent to u̇(M), Equation (5) still holds for S = u̇(M). However, due
to the flipping of normal orientation, the PV index at a PV point x ∈ M
is the negative Poincare index of v at u̇(x) ∈ S. Similarly, we have
Turnu̇(∂ M),B(v) = −Turn∂ S,S(v), and Au̇(M) = −kS. Hence Lemma 4.1

still holds.

Now consider the scenario where the Jacobian determinant of u̇ has
mixed signs over M. In general, the loci where u̇ has zero Jacobian
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Fig. 13. Ridge (red) and valley (green) lines extracted from a smoothed distance field to a point cloud (representing a Trefoil Knot) using different
parity tests (grid resolution: 203). The two rows view the same data from different angles.

Fig. 14. Ridge lines extracted from real-world data.

determinant forms a graph, which partitions M into patches {Mi} such
that the Jacobian determinant of u̇ has the same sign within a patch.
Since Lemma 4.1 holds within each Mi, the total PV index over M,
which is the summation of total index over each Mi, equals

∑i Turnu̇(∂ Mi),B(v)+∑i Au̇(Mi)

2π

To prove Lemma 4.1 over entire M, it suffices to establish the fol-
lowing two identities

Au̇(M) = ∑
i

Au̇(Mi),

Turnu̇(∂ M),B(v) = ∑
i

Turnu̇(∂ Mi),B(v)

The first identify holds because of the integral nature of the signed
area. To show the second identity, consider the graph of the curves that
partition M into patches Mi. Each edge in the graph is either shared
by the boundaries of two patches (traversed in opposite directions by
the two boundaries) or lying on ∂M. Now, write Turnu̇(∂ Mi),B(v) for

each patch Mi as the sum of turnings over edges in the graph (note that
a parallel vector field is continuous even at C0 corners of a curve). In
the summation ∑i Turnu̇(∂ Mi),B(v), the turnings on an edge shared by

two patches cancel each other out, and hence only the turnings along
the edges that are on ∂M remain, which is exactly Turnu̇(∂ M),B(v). �

B PROOF OF LEMMA 4.2

Proof: Consider the surface M̄ that is identical with M but with an
opposite orientation (so that the normal field of M̄ is opposite to that
of M). Create a glued surface H = M ∪ M̄. H is a closed surface
homeomorphic to a sphere. Define mapping h : H → B (where B is the
unit sphere) as

h(x) = { u̇(x), if x ∈ M

ż(x), if x ∈ M̄

Since z,u are identical along the boundary of M and M̄, h is contin-
uous. It is a well-known fact that the signed area of h(H) is the area
of the unit sphere, 4π , times the topological degree of the mapping
h, which is an integer. Hence we arrive at Equation 7 by noting that
Ah(M) = Au̇(M) +Aż(M̄) and Aż(M) = −Aż(M̄). �


