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Vortex Cores of Inertial Particles
Tobias Günther and Holger Theisel

Abstract— The cores of massless, swirling particle motion are an indicator for vortex-like behavior in vector fields and to this end, a
number of coreline extractors have been proposed in the literature. Though, many practical applications go beyond the study of the
vector field. Instead, engineers seek to understand the behavior of inertial particles moving therein, for instance in sediment transport,
helicopter brownout and pulverized coal combustion. In this paper, we present two strategies for the extraction of the corelines that
inertial particles swirl around, which depend on particle density, particle diameter, fluid viscosity and gravity. The first is to deduce the
local swirling behavior from the autonomous inertial motion ODE, which eventually reduces to a parallel vectors operation. For the
second strategy, we use a particle density estimation to locate inertial attractors. With this, we are able to extract the cores of swirling
inertial particle motion for both steady and unsteady 3D vector fields. We demonstrate our techniques in a number of benchmark data
sets, and elaborate on the relation to traditional massless corelines.

Index Terms—Inertial particles, flow visualization, vortex cores

1 INTRODUCTION

The motion of solid inertial particles in gas or fluid flows is an im-
portant field of research, since they are involved in numerous sci-
entific and industrial applications, such as combustion of pulverized
coal, sediment transport, helicopter brownout, sand blasting, particu-
late pollution control, soiling of cars and many more [24, 27, 20]. In
contrast to massless particles, the objective is not to visualize the flow,
but to draw conclusions on the behavior of the inertial particles mov-
ing therein. However, massless particles have been studied by the flow
visualization community for decades, which created a pool of con-
cepts that we can draw on to develop new visualizations that facilitate
the assessment of inertial particle dynamics. Among these concepts
is the extraction of vortex core lines. Although different definitions
exist, one popular understanding is that these are the lines where par-
ticles swirl around. In the past, several methods have been proposed
to extract them, including two classes of approaches: the local and
integration-based methods. Both of the approaches extract their own
subset of vortices. The local methods detect steady vortices or vortices
moving along straight lines. The integration-based methods find only
attracting corelines, though for every kind of vortex motion. Since it
was shown that the swirling behavior is mass-dependent [9], we can
expect that the location of vortex cores also depends on the mass of
the considered particles.

For the purpose of understanding the swirling behavior of iner-
tial particles, we extend both the local Sujudi-Haimes [26] and the
integration-based particle density estimation [33] to the inertial case.
While for massless particles, the particle position only depends on the
vector field, inertial particles have their own velocity vector, which
is affected over time by inertia. The integration therefore requires
to model position, current velocity and optionally time as state vari-
ables, rendering the system 6D or 7D. Detecting the swirling behavior
within this high-dimensional space is accompanied by a large compu-
tation effort—at least for the brute force search that follows from a
direct extension of the Sujudi-Haimes method from the massless case.
However, we show that the search can actually be reduced to a 3D (or
4D) parallel vectors operation, if additional knowledge is carefully in-
cluded. In consequence, we found a method that is computationally as
expensive as an extraction of massless corelines, but can answer the
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same question for inertial particles. Moreover, due to the rich set of
long known extraction methods via parallel vectors [18], it is easily
integrated into existing visualization tools.

As a second strategy for finding core lines, we apply an integration-
based particle density estimation after a short integration span to iner-
tial particles, in order to find attracting structures that the local meth-
ods cannot correctly extract (not even for the massless case). In the
remainder of the paper, we introduce the extraction methods and con-
duct a qualitative evaluation on a number of benchmark data sets.

Notation: We denote a point/vector in 3D space by bold letters,
e.g., x,u. Points/vectors in 4D space-time are written as x̄, ū, i.e., the
last component refers to time. Since for inertial particles the direction
of movement does not only depend on the vector field u but also de-
pends on the current particle velocity v, we denote 6D points/vectors
as x̃, ũ where the first 3 components refer to the spatial locations and
the last 3 refer to the current particle velocity. Similar considerations
for time-dependent flow fields give 7D points/vectors x̂, û where the
additional last component refers to time.

We use the concept of the parallel vectors (PV) operator. Thereby,
v1 ‖ v2 denotes that the vectors v1,v2 are linearly dependent. Note
that the PV operator works in any dimensionality, and that basic com-
putation rules apply: v1 ‖ v2 ⇐⇒ v1 ‖ (αv1 +βv2) for any real α,β
and v1 �= 0.

2 RELATED WORK

Vortices are flow phenomena that are studied in many engineering
problems, for instance, they entrain dust in helicopter landing maneu-
vers, create noise at rotor blade-vortex interaction, and are reduced
by winglet design on airplanes to increase the efficiency of the ma-
chines. A number of formal vortex definitions exist in the literature
[10, 12, 13, 21], and several extraction methods have been proposed
that can be categorized into region-based methods or line-based meth-
ods.

Region-based methods extract a volume of vortex-like behav-
ior. Simple examples are thresholding pressure, vorticity or helicity,
though they require a threshold to be set that is not necessarily con-
stant along the vortex, thus they are rather impractical. In the CFD
community, other region-based measures are more established, e.g.,
the Q-criterion [12] and λ2-criterion [13].

Line-based methods search for the center line of swirling motion
within a vortex. For this, Banks and Singer [1] suggested a curve
following velocity-predictor, pressure-corrector method. Sahner et
al. [22] extracted extremum lines of the λ2-criterion and Q-criterion
by the use of feature flow fields [29]. Sahner et al. [23] extracted
both vortex and strain features as extremal structures of derived scalar
quantities in order to create vortex and strain skeletons.

Sujudi and Haimes [26] introduced the reduced vorticity criterion
that considers the eigenvalues of the Jacobian J of the flow u. Here,
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a vortex coreline is present if a pair of complex-conjugate eigenvalues
exists and the eigenvector e to the remaining real eigenvalue fulfills:
u− (uTe)e = 0. This method finds the center of swirling streamlines.
Peikert and Roth [18] formally introduced the parallel vectors (PV)
operator, which returns the set of points at which two vector fields are
parallel. They summarized different algorithms for the extraction of
these locations, including an analytic solution for triangles. The PV
operator allows to express Sujudi-Haimes equivalently as u ‖ Ju.

For unsteady data, Bauer and Peikert [2], and Theisel et al. [28]
tracked the cores of swirling streamlines over time. However, Fuchs et
al. [8] and Weinkauf et al. [30] realized that pathlines swirl around a
different coreline and thus extended the concept of Sujudi and Haimes
in different ways to find cores of swirling pathlines. Here, we follow
[30] who eventually derived a coplanarity condition that reduces to a
parallel vectors operator.

In experimental flow visualization, vortices are made visible by in-
jection of ink or smoke into the air or fluid. Following the same idea,
it is possible to inject particles in computational flow visualization and
to observe their behavior. If the vortex is attracting, the center line
can be found by integration-based methods, e.g., by measuring the
density of particles after a short integration, as in Wiebel et al. [33].
Weinkauf and Theisel [31] found these attractors by analyzing the Ja-
cobian of a derived vector field in which streaklines are tangent curves.
For a more detailed overview on vortex extraction methods we refer
to [15, 18, 19].

So far, all approaches were developed for massless particles. How-
ever, Günther et al. [9] demonstrated that the cores of inertial particles
are mass-dependent and therefore not detectable by the existing meth-
ods. In this paper, we extend the local Sujudi-Haimes method to the
mass-dependent case and apply an integration-based density estima-
tion to find attracting corelines.

3 INERTIAL PARTICLES

The motion of spherical, inertial particles in fluid flows is governed
by the Maxey-Riley equations [16]. They involve a number of forces,
such as the force exerted by the flow itself, buoyancy, Stokes drag,
the force exerted due to the mass of the fluid moving with the particle
and the Basset-Boussinesq memory term (cf. Haller and Sapsis [11]).
Depending on the application, several assumptions can be made. We
assume particles to be spherical and very small in size, which allows
to assume Stokes flow due to their small particle Reynolds number.
Also, the particle density is assumed to be far higher than the fluid den-
sity, which allows to neglect buoyancy. Further assuming dilute flow,
the particle motion is dominated by drag forces, rather than particle-
particle collision. Thus, we can neglect collision handling and as-
sume one-way coupling, i.e., the particles do not affect the surrounding
fluid. These simplifications are common and were used for instance
in [27, 14, 6, 4, 3]. They lead to the following equations of motion
according to Crowe et al. [7]:

dx
dt

= v(t) with x(0) = x0 (1)

dv
dt

=
u(x(t), t)−v(t)

r
+g with v(0) = v0 (2)

where u is the time-dependent flow field, v is the current particle ve-
locity, g is the gravity vector and r is the particle response time. The
response time is characterized by the diameter dp and density ρp of
the particle, as well as the viscosity ν of the fluid:

r =
d2

pρp

18ν
. (3)

The response time is the time required for a particle released from
rest in a gravity-free environment to acquire 63% of the velocity of the
carrying fluid, cf. [7]. For all examples in the paper, we used as particle
density ρp the density of quartz glass, i.e., ρp = 2650kg/m3. The
diameter dp varies between dp = 0 µm and dp = 300 µm. Note that the
equations of motion hold for dp � ηk, with ηk being the Kolmogorov

length scale. The surrounding medium was assumed to be air, thus the
viscosity was set to ν = 1.532·10−5 kg/(m·s).

The equations of motion (1) and (2) can be written in an au-
tonomous system making all location, current particle velocity and
time a state variable:

d
dt




x
v
t


=




v
u(x,t)−v

r +g
1


 with




x
v
t


(0) =




x0
v0
t0


 . (4)

Then, mass-dependent pathlines arise as tangent curves of this 7-
dimensional vector field.

An alternative approach is to add the material derivative Du/Dt of
the fluid to the particle equations in order to indirectly model gravity
(and/or buoyancy) as external force. Thereby, fluid motion (in Eulerian
frame) and particle motion (in Lagrangian frame) are made consistent,
cf. Benzi et al. [4]. As we later synthetically alter the gravity to gener-
ate new test cases (without recomputing the fluid flow), we use equa-
tions of particle motion that model gravity explicitly [7]. This method
is simpler in its modelling, but holds for the given assumptions.

3.1 Relation to Massless Particles
Inertial particles are not used to explore the properties of a vector field,
but to assess the motion of inertial objects therein. Massless particles,
on the other hand, are used for the visualization of the underlying vec-
tor field, as their trajectory is tangential to the flow. When approaching
zero response time r → 0, the inertial equations of motion approach the
massless case. This is shown by rearranging Eq. (2) for v and substi-
tuting in Eq. 1, which yields in the limit tangent curves of u:

lim
r→0

dx
dt

= u(x(t), t)−r
dv
dt

+ r g
︸ ︷︷ ︸

0

. (5)

However, the smaller the response time becomes, the more numer-
ical problems occur, since Eq. (4) contains a division by the response
time. Such a singular perturbation problem is avoided by scaling the
time step (cf. Haller and Sapsis [11]). Assuming, a very small re-
sponse time r = ε � 1. The usual approach to integrate Eq.(4) is to
use:

d
dt




x
v
t


=




ε v
u(x, t)−v+ ε g

ε


 . (6)

Thereby, the integration of an inertial path can be very expensive due
to the potentially small step size. In the practical use, the difference
to massless trajectories becomes neglectable for very small particles.
Thus, at some point (depending on particle diameter, particle density
and viscosity), massless trajectories can be used instead.

4 CORES OF INERTIAL SWIRLING PARTICLES

Even for massless particles there is no universal coreline extraction or
vortex criterion. Several approaches exist, all having their benefits and
problems. The local methods only work for static corelines or core-
lines that move along straight lines. Integration-based methods, on the
other hand, only detect attracting behavior. Though, at present, these
are the best-established approaches. However, none is directly appli-
cable to inertial particles, which is why we extend both approaches to
the inertial case. In this section, we will show that the extraction of
vortex corelines of inertial particles reduces to a parallel vectors oper-
ation in space (3D) for steady or space-time (4D) for unsteady flows.

4.1 Local Methods in a Nutshell
Given a (steady or unsteady) flow field u with its spatial Jacobian ma-
trix J, the (necessary) local conditions for corelines are summarized in
Table 1. Here, r is the response time (3), g the gravity vector, and f is
defined as suitable combination of the partial derivatives of u:

f =
1

detJ



−det(uy,uz,ut)
+det(uz,ut ,ux)
−det(ut ,ux,uy)


 . (7)

massless inertial

steady u ‖ Ju (u+ r g) ‖ J(u+ r g)

unsteady (u− f) ‖ J(u− f) (u− f+ r g) ‖ J(u− f+ r g)

Table 1. Conditions for the presence of a core of swirling particle motion
for massless [26, 30] and inertial particles: u denotes the vector field, J
its spatial Jacobian, f the feature flow field, r the response time, g the
gravity vector. Note that in addition, the extracted line has to approxi-
mately align with the parallel vectors and that J must contain complex-
conjugate eigenvalues.

Note that Table 1 only gives necessary conditions: the extracted line
structures have to be filtered by the presence of swirling motion, i.e.,
the existence of imaginary eigenvalues of J and the tangent of the ex-
tracted coreline should approximately align with the parallel vectors.
In Table 1, the condition for the steady massless case is the Sujudi-
Haimes condition [26]. Its extension from [30] is the condition for
the unsteady massless case. The two conditions for the inertial case
(right-hand column of Table 1) are the main theoretical contributions
of this paper. Fortunately, they do not depend on the current particle
velocity v, leading to a simple 3D PV extraction which can be done
by standard methods. Although the conditions for inertial particles
are extremely simple, their derivations are not. They are presented
in the subsequent sections 4.2 and 4.3. To extract attracting corelines
we apply an integration-based method that works in both steady and
unsteady flows, as described in Section 4.4.

4.2 Local Method for Steady Case
For steady flows, we generalize the well-established Sujudi-Haimes
approach [26] to inertial particles. Following (4), we consider the 6D
steady vector field, in which inertial particle trajectories are tangent
curves:

ũ(x,v) =
(

v
u(x)−v

r +g

)
. (8)

Its Jacobian is the 6×6 matrix

J̃ =

(
03,3 I3
1
r J − 1

r I3

)
. (9)

where 03,3 is the zero matrix, I3 the identity matrix, and J the 3× 3
Jacobian of u. (The derivation is included in the additional material.)

The Jacobian J̃ characterizes the inertial particle behavior in both
the spatial and the velocity domain. Extending the Sujudi-Haimes ap-
proach to 6D, we search for all 6D locations where ũ is parallel to a
real eigenvector of J̃, i.e., we search for 6D locations with

ũ ‖ J̃ũ. (10)

Using the abbreviation

w =
u−v

r
+g (11)

we get

ũ =

(
v
w

)
, J̃ ũ =

(
w

1
r (Jv−w)

)
. (12)

(The derivation of this is also in the additional material.) From the
parallelity (10) follows the parallelity in all projections to subspaces.
Projecting (10) into the spatial subspace gives

v ‖ w (13)

which simplifies under the consideration of (11) to

v ‖ u(x)+ r g . (14)

At the moment, this condition requires a particle velocity v at posi-
tion x, which is problematic. We cannot evaluate the condition with-
out a brute-force simulation of a large number of particles in order

Fig. 1. For g = 0 inertial particles of any size have the same coreline.
Left to right: dp = 0 µm (massless), dp = 100 µm and dp = 200 µm.

to observe the different velocities of particles passing location x. We
circumvent the problem of not knowing v by introducing another con-
dition: we project the condition (10) into the v subspace. Considering
(12), this gives the condition

w ‖ 1
r
(Jv−w). (15)

By inserting (13) into (15) we get

v ‖ 1
r
(Jv−v) (16)

which further simplifies to
v ‖ Jv. (17)

Finally, we combine the parallelity conditions of both subspaces by
inserting (14) into (17), which gives the final condition

(u+ r g) ‖ J(u+ r g). (18)

Note that (18) does not contain v any more: it can be solved in the
spatial domain only by applying standard 3D PV techniques.

For massless particles, the response time is r = 0. In this case, (18)
becomes u ‖ Ju, which is the parallel vectors expression of Sujudi-
Haimes. Thus, the swirling of massless particles is a special case of
our generalized parallel vectors condition.

Condition (18) also reduces to u ‖ Ju if there is no gravity, i.e.,
g = 0. This means that all inertial particles, regardless of their re-
sponse time (i.e., diameter or density), swirl in gravity-free environ-
ments around the same coreline. We demonstrate this effect in Fig. 1.
The trajectories of inertial particles change with a varying particle di-
ameter, but the coreline remains the same.

4.3 Local Method for Unsteady Case
For unsteady flows, we extend the cores of swirling particle motion of
[30] to inertial particle flows. For this, we consider the 7D vector field

p̂(x,v, t) =




v
u(x,t)−v

r +g
1


 . (19)

which is obtained by including time as an explicit state variable. Its
Jacobian is the 7×7 matrix (see additional material for a derivation)

Ĵ =




03,3 I3 03
1
r J − 1

r I3
1
r ut

0T
3 0T

3 0


 (20)

where 03 is the 3D zero (column) vector and ut =
∂u
∂ t is the t-partial of

u. Following [30], we use the coplanar vector operator for detecting
vortex structures: we search for 7D locations where we can find two
real eigenvectors êi, ê j of Ĵ such that êi, ê j, p̂ are coplanar, i.e.,

p̂ = β êi + γ ê j (21)

for certain scalars β ,γ . The eigenvectors of Ĵ are

(
ẽ1
0

)
, ...,

(
ẽ6
0

)
, ê7 =




f
03
1


 (22)
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a vortex coreline is present if a pair of complex-conjugate eigenvalues
exists and the eigenvector e to the remaining real eigenvalue fulfills:
u− (uTe)e = 0. This method finds the center of swirling streamlines.
Peikert and Roth [18] formally introduced the parallel vectors (PV)
operator, which returns the set of points at which two vector fields are
parallel. They summarized different algorithms for the extraction of
these locations, including an analytic solution for triangles. The PV
operator allows to express Sujudi-Haimes equivalently as u ‖ Ju.

For unsteady data, Bauer and Peikert [2], and Theisel et al. [28]
tracked the cores of swirling streamlines over time. However, Fuchs et
al. [8] and Weinkauf et al. [30] realized that pathlines swirl around a
different coreline and thus extended the concept of Sujudi and Haimes
in different ways to find cores of swirling pathlines. Here, we follow
[30] who eventually derived a coplanarity condition that reduces to a
parallel vectors operator.

In experimental flow visualization, vortices are made visible by in-
jection of ink or smoke into the air or fluid. Following the same idea,
it is possible to inject particles in computational flow visualization and
to observe their behavior. If the vortex is attracting, the center line
can be found by integration-based methods, e.g., by measuring the
density of particles after a short integration, as in Wiebel et al. [33].
Weinkauf and Theisel [31] found these attractors by analyzing the Ja-
cobian of a derived vector field in which streaklines are tangent curves.
For a more detailed overview on vortex extraction methods we refer
to [15, 18, 19].

So far, all approaches were developed for massless particles. How-
ever, Günther et al. [9] demonstrated that the cores of inertial particles
are mass-dependent and therefore not detectable by the existing meth-
ods. In this paper, we extend the local Sujudi-Haimes method to the
mass-dependent case and apply an integration-based density estima-
tion to find attracting corelines.

3 INERTIAL PARTICLES

The motion of spherical, inertial particles in fluid flows is governed
by the Maxey-Riley equations [16]. They involve a number of forces,
such as the force exerted by the flow itself, buoyancy, Stokes drag,
the force exerted due to the mass of the fluid moving with the particle
and the Basset-Boussinesq memory term (cf. Haller and Sapsis [11]).
Depending on the application, several assumptions can be made. We
assume particles to be spherical and very small in size, which allows
to assume Stokes flow due to their small particle Reynolds number.
Also, the particle density is assumed to be far higher than the fluid den-
sity, which allows to neglect buoyancy. Further assuming dilute flow,
the particle motion is dominated by drag forces, rather than particle-
particle collision. Thus, we can neglect collision handling and as-
sume one-way coupling, i.e., the particles do not affect the surrounding
fluid. These simplifications are common and were used for instance
in [27, 14, 6, 4, 3]. They lead to the following equations of motion
according to Crowe et al. [7]:

dx
dt

= v(t) with x(0) = x0 (1)

dv
dt

=
u(x(t), t)−v(t)

r
+g with v(0) = v0 (2)

where u is the time-dependent flow field, v is the current particle ve-
locity, g is the gravity vector and r is the particle response time. The
response time is characterized by the diameter dp and density ρp of
the particle, as well as the viscosity ν of the fluid:

r =
d2

pρp

18ν
. (3)

The response time is the time required for a particle released from
rest in a gravity-free environment to acquire 63% of the velocity of the
carrying fluid, cf. [7]. For all examples in the paper, we used as particle
density ρp the density of quartz glass, i.e., ρp = 2650kg/m3. The
diameter dp varies between dp = 0 µm and dp = 300 µm. Note that the
equations of motion hold for dp � ηk, with ηk being the Kolmogorov

length scale. The surrounding medium was assumed to be air, thus the
viscosity was set to ν = 1.532·10−5 kg/(m·s).

The equations of motion (1) and (2) can be written in an au-
tonomous system making all location, current particle velocity and
time a state variable:

d
dt




x
v
t


=




v
u(x,t)−v

r +g
1


 with




x
v
t


(0) =




x0
v0
t0


 . (4)

Then, mass-dependent pathlines arise as tangent curves of this 7-
dimensional vector field.

An alternative approach is to add the material derivative Du/Dt of
the fluid to the particle equations in order to indirectly model gravity
(and/or buoyancy) as external force. Thereby, fluid motion (in Eulerian
frame) and particle motion (in Lagrangian frame) are made consistent,
cf. Benzi et al. [4]. As we later synthetically alter the gravity to gener-
ate new test cases (without recomputing the fluid flow), we use equa-
tions of particle motion that model gravity explicitly [7]. This method
is simpler in its modelling, but holds for the given assumptions.

3.1 Relation to Massless Particles
Inertial particles are not used to explore the properties of a vector field,
but to assess the motion of inertial objects therein. Massless particles,
on the other hand, are used for the visualization of the underlying vec-
tor field, as their trajectory is tangential to the flow. When approaching
zero response time r → 0, the inertial equations of motion approach the
massless case. This is shown by rearranging Eq. (2) for v and substi-
tuting in Eq. 1, which yields in the limit tangent curves of u:

lim
r→0

dx
dt

= u(x(t), t)−r
dv
dt

+ r g
︸ ︷︷ ︸

0

. (5)

However, the smaller the response time becomes, the more numer-
ical problems occur, since Eq. (4) contains a division by the response
time. Such a singular perturbation problem is avoided by scaling the
time step (cf. Haller and Sapsis [11]). Assuming, a very small re-
sponse time r = ε � 1. The usual approach to integrate Eq.(4) is to
use:

d
dt




x
v
t


=




ε v
u(x, t)−v+ ε g

ε


 . (6)

Thereby, the integration of an inertial path can be very expensive due
to the potentially small step size. In the practical use, the difference
to massless trajectories becomes neglectable for very small particles.
Thus, at some point (depending on particle diameter, particle density
and viscosity), massless trajectories can be used instead.

4 CORES OF INERTIAL SWIRLING PARTICLES

Even for massless particles there is no universal coreline extraction or
vortex criterion. Several approaches exist, all having their benefits and
problems. The local methods only work for static corelines or core-
lines that move along straight lines. Integration-based methods, on the
other hand, only detect attracting behavior. Though, at present, these
are the best-established approaches. However, none is directly appli-
cable to inertial particles, which is why we extend both approaches to
the inertial case. In this section, we will show that the extraction of
vortex corelines of inertial particles reduces to a parallel vectors oper-
ation in space (3D) for steady or space-time (4D) for unsteady flows.

4.1 Local Methods in a Nutshell
Given a (steady or unsteady) flow field u with its spatial Jacobian ma-
trix J, the (necessary) local conditions for corelines are summarized in
Table 1. Here, r is the response time (3), g the gravity vector, and f is
defined as suitable combination of the partial derivatives of u:

f =
1

detJ



−det(uy,uz,ut)
+det(uz,ut ,ux)
−det(ut ,ux,uy)


 . (7)

massless inertial

steady u ‖ Ju (u+ r g) ‖ J(u+ r g)

unsteady (u− f) ‖ J(u− f) (u− f+ r g) ‖ J(u− f+ r g)

Table 1. Conditions for the presence of a core of swirling particle motion
for massless [26, 30] and inertial particles: u denotes the vector field, J
its spatial Jacobian, f the feature flow field, r the response time, g the
gravity vector. Note that in addition, the extracted line has to approxi-
mately align with the parallel vectors and that J must contain complex-
conjugate eigenvalues.

Note that Table 1 only gives necessary conditions: the extracted line
structures have to be filtered by the presence of swirling motion, i.e.,
the existence of imaginary eigenvalues of J and the tangent of the ex-
tracted coreline should approximately align with the parallel vectors.
In Table 1, the condition for the steady massless case is the Sujudi-
Haimes condition [26]. Its extension from [30] is the condition for
the unsteady massless case. The two conditions for the inertial case
(right-hand column of Table 1) are the main theoretical contributions
of this paper. Fortunately, they do not depend on the current particle
velocity v, leading to a simple 3D PV extraction which can be done
by standard methods. Although the conditions for inertial particles
are extremely simple, their derivations are not. They are presented
in the subsequent sections 4.2 and 4.3. To extract attracting corelines
we apply an integration-based method that works in both steady and
unsteady flows, as described in Section 4.4.

4.2 Local Method for Steady Case
For steady flows, we generalize the well-established Sujudi-Haimes
approach [26] to inertial particles. Following (4), we consider the 6D
steady vector field, in which inertial particle trajectories are tangent
curves:

ũ(x,v) =
(

v
u(x)−v

r +g

)
. (8)

Its Jacobian is the 6×6 matrix

J̃ =

(
03,3 I3
1
r J − 1

r I3

)
. (9)

where 03,3 is the zero matrix, I3 the identity matrix, and J the 3× 3
Jacobian of u. (The derivation is included in the additional material.)

The Jacobian J̃ characterizes the inertial particle behavior in both
the spatial and the velocity domain. Extending the Sujudi-Haimes ap-
proach to 6D, we search for all 6D locations where ũ is parallel to a
real eigenvector of J̃, i.e., we search for 6D locations with

ũ ‖ J̃ũ. (10)

Using the abbreviation

w =
u−v

r
+g (11)

we get

ũ =

(
v
w

)
, J̃ ũ =

(
w

1
r (Jv−w)

)
. (12)

(The derivation of this is also in the additional material.) From the
parallelity (10) follows the parallelity in all projections to subspaces.
Projecting (10) into the spatial subspace gives

v ‖ w (13)

which simplifies under the consideration of (11) to

v ‖ u(x)+ r g . (14)

At the moment, this condition requires a particle velocity v at posi-
tion x, which is problematic. We cannot evaluate the condition with-
out a brute-force simulation of a large number of particles in order

Fig. 1. For g = 0 inertial particles of any size have the same coreline.
Left to right: dp = 0 µm (massless), dp = 100 µm and dp = 200 µm.

to observe the different velocities of particles passing location x. We
circumvent the problem of not knowing v by introducing another con-
dition: we project the condition (10) into the v subspace. Considering
(12), this gives the condition

w ‖ 1
r
(Jv−w). (15)

By inserting (13) into (15) we get

v ‖ 1
r
(Jv−v) (16)

which further simplifies to
v ‖ Jv. (17)

Finally, we combine the parallelity conditions of both subspaces by
inserting (14) into (17), which gives the final condition

(u+ r g) ‖ J(u+ r g). (18)

Note that (18) does not contain v any more: it can be solved in the
spatial domain only by applying standard 3D PV techniques.

For massless particles, the response time is r = 0. In this case, (18)
becomes u ‖ Ju, which is the parallel vectors expression of Sujudi-
Haimes. Thus, the swirling of massless particles is a special case of
our generalized parallel vectors condition.

Condition (18) also reduces to u ‖ Ju if there is no gravity, i.e.,
g = 0. This means that all inertial particles, regardless of their re-
sponse time (i.e., diameter or density), swirl in gravity-free environ-
ments around the same coreline. We demonstrate this effect in Fig. 1.
The trajectories of inertial particles change with a varying particle di-
ameter, but the coreline remains the same.

4.3 Local Method for Unsteady Case
For unsteady flows, we extend the cores of swirling particle motion of
[30] to inertial particle flows. For this, we consider the 7D vector field

p̂(x,v, t) =




v
u(x,t)−v

r +g
1


 . (19)

which is obtained by including time as an explicit state variable. Its
Jacobian is the 7×7 matrix (see additional material for a derivation)

Ĵ =




03,3 I3 03
1
r J − 1

r I3
1
r ut

0T
3 0T

3 0


 (20)

where 03 is the 3D zero (column) vector and ut =
∂u
∂ t is the t-partial of

u. Following [30], we use the coplanar vector operator for detecting
vortex structures: we search for 7D locations where we can find two
real eigenvectors êi, ê j of Ĵ such that êi, ê j, p̂ are coplanar, i.e.,

p̂ = β êi + γ ê j (21)

for certain scalars β ,γ . The eigenvectors of Ĵ are

(
ẽ1
0

)
, ...,

(
ẽ6
0

)
, ê7 =




f
03
1


 (22)
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where ẽ1, ..., ẽ6 are the eigenvectors of J̃, and ê7 is the eigenvector
belonging to the eigenvalue 0, i.e., the solution of Ĵ ê7 = 07. The
explicit solution of this equation gives the vector f as defined in (7).
Note that it has been used elsewhere [32] to track critical points in
3D unsteady vector fields. Considering the last components of (22)
and (21) gives j = 7 and γ = 1 in (21). Applying this to the first 6
components of (21) gives the condition

ũ−
(

f
03

)
‖ ẽi (23)

where ẽi is a real eigenvector of J̃. (23) means that we have reduced the
7D coplanar vectors problem to a 6D PV problem. Similar to Section
4.2, this is now further reduced to a 3D PV condition which can be
searched in 3D space only. (23) can be rewritten as

ũ−
(

f
03

)
‖ J̃

(
ũ−

(
f

03

))
. (24)

Since

J̃
(

ũ−
(

f
03

))
=

(
w

1
r (J(v− f)−w)

)
(25)

(as shown in the additional material), with w defined in (11), condition
(24) can be projected into their x and v subspace respectively:

v− f ‖ w (26)

w ‖ 1
r
(J(v− f)−w). (27)

From multiplying (11) by r and substituting in (26) we get

(v− f) ‖ (u−v+ r g) (28)

To obtain a condition in which one side is independent of v, we add
the left-hand side (v− f) to the right-hand side of (28)

(v− f) ‖ (u− f+ r g). (29)

Inserting (26) into (27) and multiplying the right-hand side by r gives

(v− f) ‖ (J(v− f)−w). (30)

Considering (26) again, we see that the w on the right of (30) is parallel
to the left-hand side and can thus be removed

(v− f) ‖ J(v− f). (31)

Inserting (29) into (31) gives the final condition

(u− f+ r g) ‖ J(u− f+ r g). (32)

Note that (32) does not contain v any more: it can be solved by ap-
plying a standard PV extractor in 3D space and subsequently filtering
the resulting lines by swirling motion, i.e., the presence of imaginary
eigenvalues of J.

For massless particles, i.e., r = 0, or in a gravity-free environment,
i.e., g = 0, the generalized Eq. (32) reduces to the parallel vectors
condition of cores of swirling, massless pathlines: (u− f) ‖ J(u− f),
which was described in [30]. This is similar to the steady case, shown
in Section 4.2.

4.4 Integration-based Method
Attracting corelines can be found for both steady and unsteady flows
in a number of different, yet quite similar ways: all have in common
that they are integration-based. One option is to apply the particle den-
sity estimation of Wiebel et al. [33] to inertial particles, which works
as follows: To extract the attractors at time t, seed a large number of
particles at time t − τ on a regular grid that spans the entire spatial
domain. Note that inertial corelines are found at the accuracy of the
resolution of the seeding grid. Integrate all particles for a duration τ

up to the time t. During this time, the particles will converge to the at-
tracting structures, thus their density will increase near them and will
eventually obtain its maximum directly on them. The density can be
obtained by rasterization of the particles into a second grid, which is
used for counting rasterized particles. Local maxima are found by in-
specting each density grid cell in turn in order to search for cells that
have a higher density than all adjacent cells. Optionally, the density
field can be smoothed prior to the maxima extraction if too many local
extrema exist. For the tracking of attractors over time, the procedure
is repeated for a series of observation times. For each time step, at-
tractors are extracted and are connected over time by lines by using a
correspondence heuristic, e.g., by joining with the closest attractor of
the previous observation time.

Another variant of the density estimation is to seed at each cell of
a regular grid a small group of particles and to await their contrac-
tion: if the particles within a group get very close to each other, e.g.,
the maximum pairwise distance falls below a threshold, an attractor is
found at subgrid accuracy. Moreover, the full coreline can be found by
continuing the integration until the particles leave the (temporal) do-
main, since they will stay on the attractor. Afterwards, identical lines
have to be removed. In this approach, the integration duration and the
extend of the group’s seed structure should be chosen carefully. The
closer particles are seeded, the shorter the duration until they contract.
If they are seeded too far apart, the temporal domain might not be long
enough for the particles to collapse. For time-periodic fields, this is
not a problem, since the integration can be continued until an attractor
is found. This is the approach that we followed in the paper.

A third option that was successfully applied to the massless case is
to consider the cores of swirling streaklines [31]. For this a derived
vector field is constructed, in which streaklines are tangent curves.
Then, the swirling in this derived vector field is observed, which—
for the massless case—reduced to a parallel vectors operation. This
strategy has a high computational effort, but an extension to the inertial
case is worth a study in future work.

5 RESULTS AND DISCUSSION

In the following, we show extraction results for a number of test data
sets, as we alter the gravity that acts on the inertial particles. Note
that the gravity we choose in the test cases is not the same as was
used in the computation of the given vector field. They need to be
consistent in order to draw meaningful conclusions for the application.
By varying the gravity only in the particle motion, we obtain a different
flow setting that, given the gravity, coincides after running a new fluid
simulation with the flow field that was originally given. Thus, it is not
possible to infer statements on the original field. However, it allows us
to generate more synthetic test data, in which we seed inertial particles
and extract their cores. The goal of our qualitative evaluation is not to
come up with new insights for the applications, but to show that given
a flow and a gravity: we can compute the cores of inertial particles.

5.1 Moving Center (2D unsteady)
Weinkauf et al. [30] used an analytic unsteady 2D field to demonstrate
their extraction of the centers of swirling (massless) pathlines. They
illustrated its construction, which is a linear interpolation over time
between two 2D centers. The flow is defined on the domain D×T =
[−2,2]2×[0,4], with centers located at (1,−1,0)T and (−1,1,4)T:

u(x,y, t) =
(
−y+ t

2 −1
x+ t

2 −1

)
. (33)

In this data set, the massless coreline is a line that travels on a straight
line, thus Sujudi-Haimes is known to work perfectly [30]. By using
it, we find for this simple vector field the family of corelines analyti-
cally as c(a,s) = ((a− s+ 2)/2,(a+ s− 2)/2,s)T, with a = 1+ r gz.
When varying gravity or mass, corelines might move in an unantici-
pated direction. Here, both gravity g = (0,0,gz)

T and coreline tangent
∂c/∂ s = (−1/2, 1/2,1)T are even perpendicular to the movement direc-
tion ∂c/∂a = (1/2, 1/2,0)T that arises when varying particle diameter
or gravity. Such perpendicularity is not generally the case.

(a) Inertial particle trajectories with dp = 100 µm. (b) Inertial particle trajectories with dp = 200 µm.

Fig. 3. In the BEADS FLOW, the integration-based particle density estimation (•) successfully detects the attractor of the ascending and thereby
converging inertial particles, whereas the local method (•) fails. Since g = 0, the locally extracted coreline (•) is the same for every mass. It can be
seen that the integration-based coreline (•) is mass-dependent and that for larger particles, the particles converge slower onto the attracting line.

(a) g = (0,0,−4)T, left to right: dp = 0 µm, dp = 100 µm, dp = 200 µm

(b) g = (0,0,−8)T, left to right: dp = 0 µm, dp = 100 µm, dp = 200 µm

Fig. 2. If a gravity force acts on the inertial particles, the position of
the vortex coreline (•) changes when varying the mass. The coreline of
massless particles (•) is shown as a reference.

In Fig. 1 we have shown that for no gravity, i.e., g = 0, all inertial
particles regardless of their size, swirl around a common coreline. If a
certain gravity acts, the position of the coreline depends on the mass,
as demonstrated in Fig. 2. Similarly, the coreline moves when the
mass is constant, but the gravity is varied, as apparent when comparing
columns of Figs. 1 and 2.

5.2 Beads Problem (2D unsteady)

A benchmark data set for vortex coreline extraction is the BEADS
FLOW. It is a biofluid dynamic model that was reported by Wiebel
et al. [33]. In this flow, no standard visualization tool is able to detect
the attracting coreline; neither LIC, pathlines, vector field topology nor
FTLE. It was shown that neither the tracking of the cores of swirling
streamlines over time nor the cores of swirling pathlines match the at-
tractor [31]. Only integration-based methods such as particle density
estimation [33] and the cores of swirling streaklines [31] are able to
deliver the attracting line. Consequentially, our local inertial methods
from Sections 4.2 and 4.3 are not applicable, here. Instead, we will
use the integration-based method, introduced in Section 4.4.

An analytic approximation to this data set with similar properties

Fig. 4. The attracting corelines that were found in the BEADS FLOW by
our integration-based method are mass-dependent and assemble a sur-
face. Here, this surface is shown for dp = 100. . .300 µm in the extended
domain D×T = [−3,3]2×[0,2π].

was given in [31]. It is defined in the domain D×T = [−2,2]2×[0,2π]:

u(x,y, t) =
(
−(y− 1

3 sin(t))− (x− 1
3 cos(t))

(x− 1
3 cos(t))− (y− 1

3 sin(t))

)
. (34)

Günther et al. [9] observed that inertial particles exhibit in the BEADS
FLOW a mass-dependent swirling behavior. In Fig. 3(a), we depict
swirling inertial particles with dp = 100 µm and the coreline they at-
tract to. It is shown that the core of swirling inertial pathlines (our
local method of Section 4.3) does not match the attractor. Next to it,
in Fig. 3(b), we show the same for dp = 200 µm. It can be seen that
inertial particles with higher mass, converge slower to their attracting
coreline. Moreover, the attracting corelines have a different, mass-
dependent radius. In fact, the coreline changes continuously with vary-
ing mass, which assembles a surface, shown in Fig. 4. On this surface,
isolines are depicted for dp = 100, 150, 200, 250, 300 µm (from inside
to outside). It is apparent that the radius grows exponentially with in-
creasing diameter.

5.3 Helicopter Descent (3D steady)
The HART-II test by Yu et al. [34] was a major experimental coopera-
tion program of rotorcraft engineers from Germany (DLR), the Nether-
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where ẽ1, ..., ẽ6 are the eigenvectors of J̃, and ê7 is the eigenvector
belonging to the eigenvalue 0, i.e., the solution of Ĵ ê7 = 07. The
explicit solution of this equation gives the vector f as defined in (7).
Note that it has been used elsewhere [32] to track critical points in
3D unsteady vector fields. Considering the last components of (22)
and (21) gives j = 7 and γ = 1 in (21). Applying this to the first 6
components of (21) gives the condition

ũ−
(

f
03

)
‖ ẽi (23)

where ẽi is a real eigenvector of J̃. (23) means that we have reduced the
7D coplanar vectors problem to a 6D PV problem. Similar to Section
4.2, this is now further reduced to a 3D PV condition which can be
searched in 3D space only. (23) can be rewritten as

ũ−
(

f
03

)
‖ J̃

(
ũ−

(
f

03

))
. (24)

Since

J̃
(

ũ−
(

f
03

))
=

(
w

1
r (J(v− f)−w)

)
(25)

(as shown in the additional material), with w defined in (11), condition
(24) can be projected into their x and v subspace respectively:

v− f ‖ w (26)

w ‖ 1
r
(J(v− f)−w). (27)

From multiplying (11) by r and substituting in (26) we get

(v− f) ‖ (u−v+ r g) (28)

To obtain a condition in which one side is independent of v, we add
the left-hand side (v− f) to the right-hand side of (28)

(v− f) ‖ (u− f+ r g). (29)

Inserting (26) into (27) and multiplying the right-hand side by r gives

(v− f) ‖ (J(v− f)−w). (30)

Considering (26) again, we see that the w on the right of (30) is parallel
to the left-hand side and can thus be removed

(v− f) ‖ J(v− f). (31)

Inserting (29) into (31) gives the final condition

(u− f+ r g) ‖ J(u− f+ r g). (32)

Note that (32) does not contain v any more: it can be solved by ap-
plying a standard PV extractor in 3D space and subsequently filtering
the resulting lines by swirling motion, i.e., the presence of imaginary
eigenvalues of J.

For massless particles, i.e., r = 0, or in a gravity-free environment,
i.e., g = 0, the generalized Eq. (32) reduces to the parallel vectors
condition of cores of swirling, massless pathlines: (u− f) ‖ J(u− f),
which was described in [30]. This is similar to the steady case, shown
in Section 4.2.

4.4 Integration-based Method
Attracting corelines can be found for both steady and unsteady flows
in a number of different, yet quite similar ways: all have in common
that they are integration-based. One option is to apply the particle den-
sity estimation of Wiebel et al. [33] to inertial particles, which works
as follows: To extract the attractors at time t, seed a large number of
particles at time t − τ on a regular grid that spans the entire spatial
domain. Note that inertial corelines are found at the accuracy of the
resolution of the seeding grid. Integrate all particles for a duration τ

up to the time t. During this time, the particles will converge to the at-
tracting structures, thus their density will increase near them and will
eventually obtain its maximum directly on them. The density can be
obtained by rasterization of the particles into a second grid, which is
used for counting rasterized particles. Local maxima are found by in-
specting each density grid cell in turn in order to search for cells that
have a higher density than all adjacent cells. Optionally, the density
field can be smoothed prior to the maxima extraction if too many local
extrema exist. For the tracking of attractors over time, the procedure
is repeated for a series of observation times. For each time step, at-
tractors are extracted and are connected over time by lines by using a
correspondence heuristic, e.g., by joining with the closest attractor of
the previous observation time.

Another variant of the density estimation is to seed at each cell of
a regular grid a small group of particles and to await their contrac-
tion: if the particles within a group get very close to each other, e.g.,
the maximum pairwise distance falls below a threshold, an attractor is
found at subgrid accuracy. Moreover, the full coreline can be found by
continuing the integration until the particles leave the (temporal) do-
main, since they will stay on the attractor. Afterwards, identical lines
have to be removed. In this approach, the integration duration and the
extend of the group’s seed structure should be chosen carefully. The
closer particles are seeded, the shorter the duration until they contract.
If they are seeded too far apart, the temporal domain might not be long
enough for the particles to collapse. For time-periodic fields, this is
not a problem, since the integration can be continued until an attractor
is found. This is the approach that we followed in the paper.

A third option that was successfully applied to the massless case is
to consider the cores of swirling streaklines [31]. For this a derived
vector field is constructed, in which streaklines are tangent curves.
Then, the swirling in this derived vector field is observed, which—
for the massless case—reduced to a parallel vectors operation. This
strategy has a high computational effort, but an extension to the inertial
case is worth a study in future work.

5 RESULTS AND DISCUSSION

In the following, we show extraction results for a number of test data
sets, as we alter the gravity that acts on the inertial particles. Note
that the gravity we choose in the test cases is not the same as was
used in the computation of the given vector field. They need to be
consistent in order to draw meaningful conclusions for the application.
By varying the gravity only in the particle motion, we obtain a different
flow setting that, given the gravity, coincides after running a new fluid
simulation with the flow field that was originally given. Thus, it is not
possible to infer statements on the original field. However, it allows us
to generate more synthetic test data, in which we seed inertial particles
and extract their cores. The goal of our qualitative evaluation is not to
come up with new insights for the applications, but to show that given
a flow and a gravity: we can compute the cores of inertial particles.

5.1 Moving Center (2D unsteady)
Weinkauf et al. [30] used an analytic unsteady 2D field to demonstrate
their extraction of the centers of swirling (massless) pathlines. They
illustrated its construction, which is a linear interpolation over time
between two 2D centers. The flow is defined on the domain D×T =
[−2,2]2×[0,4], with centers located at (1,−1,0)T and (−1,1,4)T:

u(x,y, t) =
(
−y+ t

2 −1
x+ t

2 −1

)
. (33)

In this data set, the massless coreline is a line that travels on a straight
line, thus Sujudi-Haimes is known to work perfectly [30]. By using
it, we find for this simple vector field the family of corelines analyti-
cally as c(a,s) = ((a− s+ 2)/2,(a+ s− 2)/2,s)T, with a = 1+ r gz.
When varying gravity or mass, corelines might move in an unantici-
pated direction. Here, both gravity g = (0,0,gz)

T and coreline tangent
∂c/∂ s = (−1/2, 1/2,1)T are even perpendicular to the movement direc-
tion ∂c/∂a = (1/2, 1/2,0)T that arises when varying particle diameter
or gravity. Such perpendicularity is not generally the case.

(a) Inertial particle trajectories with dp = 100 µm. (b) Inertial particle trajectories with dp = 200 µm.

Fig. 3. In the BEADS FLOW, the integration-based particle density estimation (•) successfully detects the attractor of the ascending and thereby
converging inertial particles, whereas the local method (•) fails. Since g = 0, the locally extracted coreline (•) is the same for every mass. It can be
seen that the integration-based coreline (•) is mass-dependent and that for larger particles, the particles converge slower onto the attracting line.

(a) g = (0,0,−4)T, left to right: dp = 0 µm, dp = 100 µm, dp = 200 µm

(b) g = (0,0,−8)T, left to right: dp = 0 µm, dp = 100 µm, dp = 200 µm

Fig. 2. If a gravity force acts on the inertial particles, the position of
the vortex coreline (•) changes when varying the mass. The coreline of
massless particles (•) is shown as a reference.

In Fig. 1 we have shown that for no gravity, i.e., g = 0, all inertial
particles regardless of their size, swirl around a common coreline. If a
certain gravity acts, the position of the coreline depends on the mass,
as demonstrated in Fig. 2. Similarly, the coreline moves when the
mass is constant, but the gravity is varied, as apparent when comparing
columns of Figs. 1 and 2.

5.2 Beads Problem (2D unsteady)

A benchmark data set for vortex coreline extraction is the BEADS
FLOW. It is a biofluid dynamic model that was reported by Wiebel
et al. [33]. In this flow, no standard visualization tool is able to detect
the attracting coreline; neither LIC, pathlines, vector field topology nor
FTLE. It was shown that neither the tracking of the cores of swirling
streamlines over time nor the cores of swirling pathlines match the at-
tractor [31]. Only integration-based methods such as particle density
estimation [33] and the cores of swirling streaklines [31] are able to
deliver the attracting line. Consequentially, our local inertial methods
from Sections 4.2 and 4.3 are not applicable, here. Instead, we will
use the integration-based method, introduced in Section 4.4.

An analytic approximation to this data set with similar properties

Fig. 4. The attracting corelines that were found in the BEADS FLOW by
our integration-based method are mass-dependent and assemble a sur-
face. Here, this surface is shown for dp = 100. . .300 µm in the extended
domain D×T = [−3,3]2×[0,2π].

was given in [31]. It is defined in the domain D×T = [−2,2]2×[0,2π]:

u(x,y, t) =
(
−(y− 1

3 sin(t))− (x− 1
3 cos(t))

(x− 1
3 cos(t))− (y− 1

3 sin(t))

)
. (34)

Günther et al. [9] observed that inertial particles exhibit in the BEADS
FLOW a mass-dependent swirling behavior. In Fig. 3(a), we depict
swirling inertial particles with dp = 100 µm and the coreline they at-
tract to. It is shown that the core of swirling inertial pathlines (our
local method of Section 4.3) does not match the attractor. Next to it,
in Fig. 3(b), we show the same for dp = 200 µm. It can be seen that
inertial particles with higher mass, converge slower to their attracting
coreline. Moreover, the attracting corelines have a different, mass-
dependent radius. In fact, the coreline changes continuously with vary-
ing mass, which assembles a surface, shown in Fig. 4. On this surface,
isolines are depicted for dp = 100, 150, 200, 250, 300 µm (from inside
to outside). It is apparent that the radius grows exponentially with in-
creasing diameter.

5.3 Helicopter Descent (3D steady)
The HART-II test by Yu et al. [34] was a major experimental coopera-
tion program of rotorcraft engineers from Germany (DLR), the Nether-
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Fig. 5. Vortices detaching from a helicopter in descent. Smaller particles
get closer to the corelines, whereas larger particles move on a larger
orbit due to inertia. Top dp = 0 µm (massless), bottom: dp = 100 µm.

lands (ONERA) and the United States (NASA). Its main objective was
to study the analytical modeling capabilities of noise and vibrations
that arise due to the interaction of rotor blades with wake vortices.
The velocity field data was acquired experimentally by particle image
velocimetry (PIV) in the German-Dutch Windtunnel (DNW).

We used and modified this data to better suit our visualization pur-
poses. First, the inflow velocity (0,−0.11,0)T was subtracted in order
to make the wake vortices apparent. (The y-axis is the forward flight
direction.) Sujudi-Haimes would find the vortices with and without
the inflow velocity, though in the original state they are not visible to
the eye. Consequentially, the velocity field had to be scaled (by factor
300) in order to get the wind up to speed again, so that the gravity
g = (−9.8065,0,0)T is not acting overly strong. In Fig. 5, we released
particles with dp = 0 µm (left) and dp = 100 µm (right). The resulting
corelines differ only marginally, though the inertial trajectories exhibit
an interesting behavior that we have similarly experienced in the pre-
vious BEADS FLOW. Larger particles appear to swirl around the core-
line at a larger distance than smaller or massless particles. This seems
reasonable due to the acting inertia.

5.4 Delta Wing (3D steady)
The DELTA WING data set is a simulation of a triangular surface in up-
stream flow. It was provided by Markus Rütten and contains two large
wake vortices. The gravity is set to g = (0,−9.8065,0)T. Originally,
this vector field exhibits very high wind speeds. Thus, the trajectories
of inertial particles are nearly identical to the massless case. In order
to create benchmarking data that showcases inertial corelines that dif-
fer from the massless case, we scaled the vector field by 0.006. With

Fig. 6. Two large vortices detach from the DELTA WING surface. Due
to gravity inertial particles are forced into a lower altitude. The inertial
corelines vary only marginally. Top dp = 0 µm , bottom: dp = 100 µm.

this, gravity is proportionally stronger. Pathlines and their corelines
are depicted in Fig. 6.

5.5 Hurricane Bonnie (3D steady)
In August 1998, a tropical wave emerged off the coast of Africa and
turned into a major hurricane, named Bonnie. Zhu et al. [35, 36] con-
ducted a weather simulation of the northern hemisphere and we picked
one particular region of interest that features the hurricane. For this
data set, we explored what happens, if gravity is exaggerated. There-
fore, we increased the gravity up to g = (0,−40,0)T, whereas the ve-
locity field was scaled by 0.01, so that small particles of different mass
follow trajectories that are apparently different. In Fig. 7, the hurricane
is shown from the same camera view for two different masses, i.e., for
dp = 0 µm (massless) and dp = 20 µm. The increased gravity in the
right image, forces the inertial particles faster to the ground. The ex-
tracted corelines are shown, and it is apparent that close to the ground
the corelines still match. At higher altitudes, however, they vary con-
siderably.

Fig. 7. Corelines for different sizes of a particles. The difference is large
to due the high gravity. Left dp = 0 µm (massless), right: dp = 20 µm.

5.6 Stuart Vortex (3D unsteady)
Another analytic data set that was used in [30] for the extraction of
cores of swirling pathlines is the following variant of the STUART
VORTEX:

ū(x,y,z, t) =




sinh(y)/(cosh(y)− 1
4 cos(x− t))+1

− 1
4 sin(x− t)/(cosh(y)− 1

4 cos(x− t))
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 (35)

The vortex is moving constantly over time in x-direction to the right
and the vector (1,0,0)T is superimposed on the spatial coordinates.
We consider the domain D×T = [−4,4]×[−2,2]×[−1,1]×[0,1]. For
the inertial particles, gravity acts with g = (0,9.8065,0)T (the y-axis
goes down).

When only considering the streamlines of one time step the swirling
cannot be faithfully observed. In Fig. 8 for instance, a center is visible
that is not the core of swirling particle motion, seen in Fig. 9(a). How-
ever, taking the temporal derivatives into account allows to extract the

Fig. 8. Line integral convolution of the STUART VORTEX at t = 0. Stream-
lines show a center at the top of the domain.

(a) Particles with dp = 0 µm (massless) swirl around the massless pathline core
(•). It can be extracted with [30] and is also a special case of our method.

(b) In this image a LIC is utilized to illustrate the vector field u− f+ r g, in
which we extract the coreline (•) using the standard PV operator. Note that
for dp = 0 µm the response time is r = 0, according to Eq. (3). Thus, for the
massless case we find standard pathline cores in u− f.

(c) Inertial particles with dp = 50 µm first fall due to gravity and are then lifted
up by the vortex. The common center of rotation is at the inertial coreline (•).
The massless pathline core (•) is shown for reference. It is clearly off.

(d) Here, LIC is used to depict the vector field u− f+ r g for dp = 50 µm. Note
that inertial particles have their common coreline (•) later down the flow.

Fig. 9. The STUART VORTEX at time t = 0. Particles are seeded repeatedly at the left border of the image. Essentially, this resembles a particle-
based streakline construction. Streaklines proved useful for the observation of swirling behavior of particles [31].

(a) Particles with dp = 0 µm (massless) and their massless pathline core (•). (b) LIC illustration of the vector field u− f+ r g for dp = 0 µm (massless).

(c) For inertial particles with dp = 50 µm a second inertial coreline appears. (d) The second vortex is apparent in the LIC of the vector field u− f+ r g for
dp = 50 µm.

Fig. 10. The STUART VORTEX at time t = 1. All particles and their vortices move to the right over time. As the field is periodic, other vortices will
enter from the left.



2541GÜNTHER AND THEISEL: VORTEX CORES OF INERTIAL PARTICLES

Fig. 5. Vortices detaching from a helicopter in descent. Smaller particles
get closer to the corelines, whereas larger particles move on a larger
orbit due to inertia. Top dp = 0 µm (massless), bottom: dp = 100 µm.

lands (ONERA) and the United States (NASA). Its main objective was
to study the analytical modeling capabilities of noise and vibrations
that arise due to the interaction of rotor blades with wake vortices.
The velocity field data was acquired experimentally by particle image
velocimetry (PIV) in the German-Dutch Windtunnel (DNW).

We used and modified this data to better suit our visualization pur-
poses. First, the inflow velocity (0,−0.11,0)T was subtracted in order
to make the wake vortices apparent. (The y-axis is the forward flight
direction.) Sujudi-Haimes would find the vortices with and without
the inflow velocity, though in the original state they are not visible to
the eye. Consequentially, the velocity field had to be scaled (by factor
300) in order to get the wind up to speed again, so that the gravity
g = (−9.8065,0,0)T is not acting overly strong. In Fig. 5, we released
particles with dp = 0 µm (left) and dp = 100 µm (right). The resulting
corelines differ only marginally, though the inertial trajectories exhibit
an interesting behavior that we have similarly experienced in the pre-
vious BEADS FLOW. Larger particles appear to swirl around the core-
line at a larger distance than smaller or massless particles. This seems
reasonable due to the acting inertia.

5.4 Delta Wing (3D steady)
The DELTA WING data set is a simulation of a triangular surface in up-
stream flow. It was provided by Markus Rütten and contains two large
wake vortices. The gravity is set to g = (0,−9.8065,0)T. Originally,
this vector field exhibits very high wind speeds. Thus, the trajectories
of inertial particles are nearly identical to the massless case. In order
to create benchmarking data that showcases inertial corelines that dif-
fer from the massless case, we scaled the vector field by 0.006. With

Fig. 6. Two large vortices detach from the DELTA WING surface. Due
to gravity inertial particles are forced into a lower altitude. The inertial
corelines vary only marginally. Top dp = 0 µm , bottom: dp = 100 µm.

this, gravity is proportionally stronger. Pathlines and their corelines
are depicted in Fig. 6.

5.5 Hurricane Bonnie (3D steady)
In August 1998, a tropical wave emerged off the coast of Africa and
turned into a major hurricane, named Bonnie. Zhu et al. [35, 36] con-
ducted a weather simulation of the northern hemisphere and we picked
one particular region of interest that features the hurricane. For this
data set, we explored what happens, if gravity is exaggerated. There-
fore, we increased the gravity up to g = (0,−40,0)T, whereas the ve-
locity field was scaled by 0.01, so that small particles of different mass
follow trajectories that are apparently different. In Fig. 7, the hurricane
is shown from the same camera view for two different masses, i.e., for
dp = 0 µm (massless) and dp = 20 µm. The increased gravity in the
right image, forces the inertial particles faster to the ground. The ex-
tracted corelines are shown, and it is apparent that close to the ground
the corelines still match. At higher altitudes, however, they vary con-
siderably.

Fig. 7. Corelines for different sizes of a particles. The difference is large
to due the high gravity. Left dp = 0 µm (massless), right: dp = 20 µm.

5.6 Stuart Vortex (3D unsteady)
Another analytic data set that was used in [30] for the extraction of
cores of swirling pathlines is the following variant of the STUART
VORTEX:

ū(x,y,z, t) =




sinh(y)/(cosh(y)− 1
4 cos(x− t))+1

− 1
4 sin(x− t)/(cosh(y)− 1

4 cos(x− t))
z
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 (35)

The vortex is moving constantly over time in x-direction to the right
and the vector (1,0,0)T is superimposed on the spatial coordinates.
We consider the domain D×T = [−4,4]×[−2,2]×[−1,1]×[0,1]. For
the inertial particles, gravity acts with g = (0,9.8065,0)T (the y-axis
goes down).

When only considering the streamlines of one time step the swirling
cannot be faithfully observed. In Fig. 8 for instance, a center is visible
that is not the core of swirling particle motion, seen in Fig. 9(a). How-
ever, taking the temporal derivatives into account allows to extract the

Fig. 8. Line integral convolution of the STUART VORTEX at t = 0. Stream-
lines show a center at the top of the domain.

(a) Particles with dp = 0 µm (massless) swirl around the massless pathline core
(•). It can be extracted with [30] and is also a special case of our method.

(b) In this image a LIC is utilized to illustrate the vector field u− f+ r g, in
which we extract the coreline (•) using the standard PV operator. Note that
for dp = 0 µm the response time is r = 0, according to Eq. (3). Thus, for the
massless case we find standard pathline cores in u− f.

(c) Inertial particles with dp = 50 µm first fall due to gravity and are then lifted
up by the vortex. The common center of rotation is at the inertial coreline (•).
The massless pathline core (•) is shown for reference. It is clearly off.

(d) Here, LIC is used to depict the vector field u− f+ r g for dp = 50 µm. Note
that inertial particles have their common coreline (•) later down the flow.

Fig. 9. The STUART VORTEX at time t = 0. Particles are seeded repeatedly at the left border of the image. Essentially, this resembles a particle-
based streakline construction. Streaklines proved useful for the observation of swirling behavior of particles [31].

(a) Particles with dp = 0 µm (massless) and their massless pathline core (•). (b) LIC illustration of the vector field u− f+ r g for dp = 0 µm (massless).

(c) For inertial particles with dp = 50 µm a second inertial coreline appears. (d) The second vortex is apparent in the LIC of the vector field u− f+ r g for
dp = 50 µm.

Fig. 10. The STUART VORTEX at time t = 1. All particles and their vortices move to the right over time. As the field is periodic, other vortices will
enter from the left.
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(a) Massless particles form a von Kármán vortex street in the wake of the
square cylinder. The corelines of the shed vortices (•) are shown for dp = 0 µm.

(b) For the massless case, pathline cores (•) are extracted by the PV operator
in the flow u− f, which is depicted here using LIC.

(c) Due to gravity, inertial particles, here with dp = 50 µm, do not form a per-
fectly symmetric vortex street. Their pathline cores (•) are shown to differ
slightly from the massless case (•).

(d) The cores of swirling inertial particles (•) are extracted by applying the PV
operator to the flow u− f+ r g. This flow is shown by LIC.

Fig. 11. Extraction results in the SQUARE CYLINDER sequence at time t = 88. Particles are released on the left hand side of the domain.

blue coreline, shown in Fig. 9(a). This massless pathline core can be
found by standard PV extraction methods on the field u− f, as demon-
strated in Section 4.3. Fig. 9(b) shows a LIC of this field, revealing the
core centers. The inertial particles are subject to gravity and inertia,
which affects the trajectories considerably. In fact, a number of parti-
cles exit the domain because of them. First the particles, released at the
left hand side of the image, fall down, and are then uplifted by the vor-
tex above. The inertial particles exhibit a swirling behavior later down
the flow, which can be seen by the particles in Fig. 9(c). The common
center of rotation is apparent by the translated coreline, found in the
derived flow field in Fig. 9(d). It is noticeable that the massless and
the inertial coreline differ.

The difference is clearer in the next time step, shown in Fig. 10.
In the moving STUART VORTEX flow, the vortices advance in x-
direction. Since the flow is periodic, a new coreline enters from the
left in Fig. 10(c). While the rotation of the newly entering vortex is
not very prominent in the particle visualization (as it is located shortly
behind the seeding line), the LIC visualization of the derived vector
field u− f+ r g in Fig. 10(d) is clearly showing the streamline core
that our method extracts.

5.7 Square Cylinder (3D unsteady)

The SQUARE CYLINDER sequence shows the development of a von
Kármán vortex street, i.e., a periodic shedding of vortices in the un-
steady flow around an obstacle. In this case, the obstacle is a confined
square cylinder that is positioned symmetrically between two parallel
walls. The incompressible fluid flow solution was computed by Ca-
marri et al. [5] by the use of a direct Navier-Stokes solver. A uniformly
resampled version of the flow was provided by Tino Weinkauf.

Fig. 11(a) shows the von Kármán vortex street for massless parti-
cles. The pathline cores are extracted by the parallel vectors operator
on the field u− f, which is shown via LIC in Fig. 11(b). As shown in
Fig. 11(c), the inertial particles with dp = 50 µm are pulled down by
the gravity with g = (0,−9.8065,0)T and as a consequence, some of
them exit the domain at the bottom. The remaining particles are lifted
up and are trapped by the shed vortices. Their centers of rotation are
shown in Fig. 11(d), together with the massless cores for reference. It
can be seen that the inertial corelines differ from the massless case.
The inertial cores were extracted on the field u− f+ r g, which is vi-
sualized in Fig. 11(d).

6 IMPLEMENTATION AND EVALUATION

6.1 Coreline Extraction and Filtering
In Section 4, we have shown that the extraction of inertial pathline
cores can be reduced to a parallel vectors operation. Therefore, any
of the existing PV extraction methods can be used, see Peikert and
Roth [18] for a comprehensive overview. Because of this, our method
can be easily integrated into standard visualization libraries. In fact,
we implemented the extraction process in the visualization toolkit
Amira [25] by using existing standard modules. Only the integration
of inertial particle trajectories was precomputed in a separate tool, for
which we used a fourth-order Runge-Kutta integrator.

Peikert and Roth [18] have shown an analytic parallel vectors so-
lution for triangles, which is implemented in Amira and works as fol-
lows. First, a uniform grid is placed in the domain. Its resolution
is shown for our data sets in Table 2. Following the recommenda-
tion of Weinkauf and Theisel [30], we used the resolution of the data
sets. For every grid vertex that has complex eigenvalues, i.e., exhibits
swirling behavior, the two vector fields are computed according to Ta-
ble 1. Then, each face of the grid cells is subdivided into two triangles
at which the locations of parallelity are computed analytically. In a
next step, the line segments of adjacent cells are merged if the tangent
is aligned and the end points are identical.

Afterwards, the resulting line set is further filtered to only contain
line segments that are tangential to the parallel vectors, which is stan-
dard procedure for Sujudi-Haimes. Then, to fill in gaps, lines search
near their endpoints for nearby segments to join with. Eventually, lines
are filtered by length by a threshold given in Table 2. An unfiltered re-
sult is shown in Fig. 12.

Data Set (Section) Grid Resolution Filter Length
MOVING CENTER (5.1) 64×64×64 —

BEADS FLOW (5.2) 64×64×128 —
HELI DESCENT (5.3) 192×262×309 13.5
DELTA WING (5.4) 250×125×100 4.3
HURRICANE (5.5) 64×64×64 8.0

STUART VORTEX (5.6) 128×64×64 —
SQUARE CYLINDER (5.7) 192×64×48 1.0

Table 2. Grid resolutions used for the parallel vector operator and the
used filter lengths, given in the unit of the data set scale.

Fig. 12. The coreline extraction by parallel vectors creates a number of
false positives (•), which are usually filtered. In this image, the filtering
by approximate tangent alignment with the parallel vectors is disabled.
The corelines are shown (•) in the SQUARE CYLINDER for t = 94.2.

6.2 Performance

Our test system is equipped with an Intel Core i7-2600K CPU with
3.4 GHz and 24 GB RAM. Table 3 lists the timings for the three steps
in the extraction process. Note that these steps are the same as for the
massless Sujudi-Haimes [26] using parallel vectors [18] and its un-
steady variant [30]. For unsteady data, first the feature flow field f is
computed, which took for the grid resolutions that we used less than
two seconds. Then, the pathline cores are extracted in our derived vec-
tor field, resulting in the inertial pathline cores. For this, the standard
parallel vectors module of Amira is used. In summary, this took less
than a minute on all our test data sets, most of them in a span of just a
few seconds. The runtime depends not only on the grid resolution, but
also on the presence of swirling. The DELTA WING for instance, has
a high resolution, but only few voxels exhibit swirling behavior, i.e.,
have complex-conjugate eigenvalues in the Jacobian, thus large por-
tions of the domain can safely be skipped. In the MOVING CENTER
and BEADS FLOW, on the other hand, every voxel has swirling behav-
ior. For these two data sets, the runtime linearly scales with the resolu-
tion. The extraction can be significantly accelerated, if parallel vectors
are computed in a region of interest, which can be found by manual
inspection of the parallel vector fields. In the SQUARE CYLINDER,
for instance, this reduced the extraction time from 13.67s to 1.58s.
Finally, it is common to filter the extracted line geometry to only keep
lines that are approximately tangential to the parallel vectors. This
step is in the order of milliseconds. If the filtering was not required for
a particular data set, we left the entry in the table blank. In general,
the overhead for the consideration of inertial properties is compared to
the massless case close to zero. In its essence, only the constant vector
field r g is added prior to the standard extraction, which takes about
0.002%–0.08% of the total extraction time.

Since all operations are local, the computation of the PV operator
can be done iteratively per cell without memory overhead. In fact, the
memory scales linearly with the size of the output coreline set.

For the time-periodic BEADS FLOW in Section 5.2, the integration-
based method took about 1.1 seconds. Since all particles are attracted
by the same coreline, we only had to integrate one group of 5 particles.
Once they converged, we continued the integration by one time period
to record the complete coreline.

6.3 Limitations

Even for the massless case, the existing vortex coreline extractors are
not able to handle all scenarios. The local method of Sujudi and
Haimes [26] only finds corelines moving along straight lines (or not
moving at all). Weinkauf and Theisel [31] have shown that an applica-
tion of the method of Sujudi and Haimes to pathlines [30], does not re-
veal the apparent attractor in the BEADS FLOW. The integration-based
methods [33, 31], on the other hand, only detect attracting corelines.
A simple data set in which none of the methods will work is a center
moving along an ellipse. As our techniques are extensions of existing
methods from the massless to the inertial case, they do not fill these
gaps.

When considering time sequences, the coreline is extracted for each
frame individually. A problem of standard local PV extractors is that

Data Set (Section) Field f Coreline Filtering
MOVING CENTER (5.1) — 15.21 s —

BEADS FLOW (5.2) — 29.68 s —
HELI DESCENT (5.3) — 57.18 s 2.27 ms
DELTA WING (5.4) — 6.43 s 0.48 ms
HURRICANE (5.5) — 1.49 s 2.49 ms

STUART VORTEX (5.6) 1.87 s 7.79 s —
SQUARE CYLINDER (5.7) 1.08 s 13.67 s 4.30 ms

Table 3. Timings for the individual computation steps: Computation of
the feature flow field f (only for unsteady data), the extraction of the
corelines in Amira, and the runtime of the additionally applied filtering, if
it was necessary.

they do not explicitly enforce frame coherence, which is apparent in
the slightly oscillating corelines of the SQUARE CYLINDER sequence
in the accompanying video.

Also Sujudi-Haimes cannot extract a coreline if a real eigenvalue
is zero, i.e., detJ = 0. This happens, for instance, in a center without
movement in the non-swirling direction: u(x,y,z) = (−z,0,x)T. This
case can be detected and then handled with 2D techniques, since in the
swirling plane, spanned by the eigenvectors to the complex-conjugate
eigenvalues, the velocity magnitude will vanish to zero at the coreline.

The advantage of the Sujudi-Haimes method in terms of computa-
tion effort is that it is a local method. As a consequence, it detects
corelines without regarding if particles could actually appear in a cer-
tain region of the flow. This, in turn, would actually require an in-
tegration of a large number of particles from the inlet zones to see
if any of them is reaching the region in question. This has an im-
plication for inertial vortex cores. Particles of a certain size might
never reach higher altitudes due to gravity. Though, since our method
is based on the local Sujudi-Haimes, vortex cores might be extracted
that are never visited by particles of a certain size. This means, an
additional (integration-based) filtering is in order. However, this filter-
ing process is completely orthogonal to the coreline extraction and the
performance advantages of being local are considerable.

7 CONCLUSION

In this paper, we extended an established local vortex coreline extrac-
tor for massless particles to the inertial case. The problem, actually
in 6D or 7D (space, velocity and optional time), reduces to a 3D or
4D parallel vectors operation, which can be solved efficiently using
standard implementations. The method is therefore easily added to
existing flow analysis tools. In fact, except for the integration of in-
ertial particles, we could implement all components in Amira [25] by
using existing modules. Moreover, we demonstrated the use of an
integration-based extractor that detects attracting corelines.

The particle model we used is designed for the prediction of small
particles. If the velocity magnitude is high compared to the acting
gravity, the resulting inertial corelines are quite similar for the masses
considerable by the simplified inertial equations of motion. In fact, dif-
ferences are observable in particular for low wind speeds. For this rea-
son, we synthetically altered some of our test data to showcase the ex-
traction of mass-dependent corelines. Further sources for differences
are additional forces, such as buoyancy or drag, which are typically
neglected for small particles. A derivation of a coreline extraction for
larger inertial particles is an avenue for future research. Also the visual
analysis of where and why differences occur is interesting; not only
for the analysis of vortex cores, but also for mass-dependent integral
curves. Considering the uncertainty of vortices of inertial particles
in the spirit of [17] is also an interesting topic. A more quantitative
evaluation, including inertial particles and fluids of different densities
might help to better understand the underlying physical effects. So far,
we extended the local Sujudi-Haimes and the integration-based parti-
cle density estimation. Another possibility to explore is to apply the
streakline-based extraction method of Weinkauf and Theisel [31].
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(a) Massless particles form a von Kármán vortex street in the wake of the
square cylinder. The corelines of the shed vortices (•) are shown for dp = 0 µm.

(b) For the massless case, pathline cores (•) are extracted by the PV operator
in the flow u− f, which is depicted here using LIC.

(c) Due to gravity, inertial particles, here with dp = 50 µm, do not form a per-
fectly symmetric vortex street. Their pathline cores (•) are shown to differ
slightly from the massless case (•).

(d) The cores of swirling inertial particles (•) are extracted by applying the PV
operator to the flow u− f+ r g. This flow is shown by LIC.

Fig. 11. Extraction results in the SQUARE CYLINDER sequence at time t = 88. Particles are released on the left hand side of the domain.

blue coreline, shown in Fig. 9(a). This massless pathline core can be
found by standard PV extraction methods on the field u− f, as demon-
strated in Section 4.3. Fig. 9(b) shows a LIC of this field, revealing the
core centers. The inertial particles are subject to gravity and inertia,
which affects the trajectories considerably. In fact, a number of parti-
cles exit the domain because of them. First the particles, released at the
left hand side of the image, fall down, and are then uplifted by the vor-
tex above. The inertial particles exhibit a swirling behavior later down
the flow, which can be seen by the particles in Fig. 9(c). The common
center of rotation is apparent by the translated coreline, found in the
derived flow field in Fig. 9(d). It is noticeable that the massless and
the inertial coreline differ.

The difference is clearer in the next time step, shown in Fig. 10.
In the moving STUART VORTEX flow, the vortices advance in x-
direction. Since the flow is periodic, a new coreline enters from the
left in Fig. 10(c). While the rotation of the newly entering vortex is
not very prominent in the particle visualization (as it is located shortly
behind the seeding line), the LIC visualization of the derived vector
field u− f+ r g in Fig. 10(d) is clearly showing the streamline core
that our method extracts.

5.7 Square Cylinder (3D unsteady)

The SQUARE CYLINDER sequence shows the development of a von
Kármán vortex street, i.e., a periodic shedding of vortices in the un-
steady flow around an obstacle. In this case, the obstacle is a confined
square cylinder that is positioned symmetrically between two parallel
walls. The incompressible fluid flow solution was computed by Ca-
marri et al. [5] by the use of a direct Navier-Stokes solver. A uniformly
resampled version of the flow was provided by Tino Weinkauf.

Fig. 11(a) shows the von Kármán vortex street for massless parti-
cles. The pathline cores are extracted by the parallel vectors operator
on the field u− f, which is shown via LIC in Fig. 11(b). As shown in
Fig. 11(c), the inertial particles with dp = 50 µm are pulled down by
the gravity with g = (0,−9.8065,0)T and as a consequence, some of
them exit the domain at the bottom. The remaining particles are lifted
up and are trapped by the shed vortices. Their centers of rotation are
shown in Fig. 11(d), together with the massless cores for reference. It
can be seen that the inertial corelines differ from the massless case.
The inertial cores were extracted on the field u− f+ r g, which is vi-
sualized in Fig. 11(d).

6 IMPLEMENTATION AND EVALUATION

6.1 Coreline Extraction and Filtering
In Section 4, we have shown that the extraction of inertial pathline
cores can be reduced to a parallel vectors operation. Therefore, any
of the existing PV extraction methods can be used, see Peikert and
Roth [18] for a comprehensive overview. Because of this, our method
can be easily integrated into standard visualization libraries. In fact,
we implemented the extraction process in the visualization toolkit
Amira [25] by using existing standard modules. Only the integration
of inertial particle trajectories was precomputed in a separate tool, for
which we used a fourth-order Runge-Kutta integrator.

Peikert and Roth [18] have shown an analytic parallel vectors so-
lution for triangles, which is implemented in Amira and works as fol-
lows. First, a uniform grid is placed in the domain. Its resolution
is shown for our data sets in Table 2. Following the recommenda-
tion of Weinkauf and Theisel [30], we used the resolution of the data
sets. For every grid vertex that has complex eigenvalues, i.e., exhibits
swirling behavior, the two vector fields are computed according to Ta-
ble 1. Then, each face of the grid cells is subdivided into two triangles
at which the locations of parallelity are computed analytically. In a
next step, the line segments of adjacent cells are merged if the tangent
is aligned and the end points are identical.

Afterwards, the resulting line set is further filtered to only contain
line segments that are tangential to the parallel vectors, which is stan-
dard procedure for Sujudi-Haimes. Then, to fill in gaps, lines search
near their endpoints for nearby segments to join with. Eventually, lines
are filtered by length by a threshold given in Table 2. An unfiltered re-
sult is shown in Fig. 12.

Data Set (Section) Grid Resolution Filter Length
MOVING CENTER (5.1) 64×64×64 —

BEADS FLOW (5.2) 64×64×128 —
HELI DESCENT (5.3) 192×262×309 13.5
DELTA WING (5.4) 250×125×100 4.3
HURRICANE (5.5) 64×64×64 8.0

STUART VORTEX (5.6) 128×64×64 —
SQUARE CYLINDER (5.7) 192×64×48 1.0

Table 2. Grid resolutions used for the parallel vector operator and the
used filter lengths, given in the unit of the data set scale.

Fig. 12. The coreline extraction by parallel vectors creates a number of
false positives (•), which are usually filtered. In this image, the filtering
by approximate tangent alignment with the parallel vectors is disabled.
The corelines are shown (•) in the SQUARE CYLINDER for t = 94.2.

6.2 Performance

Our test system is equipped with an Intel Core i7-2600K CPU with
3.4 GHz and 24 GB RAM. Table 3 lists the timings for the three steps
in the extraction process. Note that these steps are the same as for the
massless Sujudi-Haimes [26] using parallel vectors [18] and its un-
steady variant [30]. For unsteady data, first the feature flow field f is
computed, which took for the grid resolutions that we used less than
two seconds. Then, the pathline cores are extracted in our derived vec-
tor field, resulting in the inertial pathline cores. For this, the standard
parallel vectors module of Amira is used. In summary, this took less
than a minute on all our test data sets, most of them in a span of just a
few seconds. The runtime depends not only on the grid resolution, but
also on the presence of swirling. The DELTA WING for instance, has
a high resolution, but only few voxels exhibit swirling behavior, i.e.,
have complex-conjugate eigenvalues in the Jacobian, thus large por-
tions of the domain can safely be skipped. In the MOVING CENTER
and BEADS FLOW, on the other hand, every voxel has swirling behav-
ior. For these two data sets, the runtime linearly scales with the resolu-
tion. The extraction can be significantly accelerated, if parallel vectors
are computed in a region of interest, which can be found by manual
inspection of the parallel vector fields. In the SQUARE CYLINDER,
for instance, this reduced the extraction time from 13.67s to 1.58s.
Finally, it is common to filter the extracted line geometry to only keep
lines that are approximately tangential to the parallel vectors. This
step is in the order of milliseconds. If the filtering was not required for
a particular data set, we left the entry in the table blank. In general,
the overhead for the consideration of inertial properties is compared to
the massless case close to zero. In its essence, only the constant vector
field r g is added prior to the standard extraction, which takes about
0.002%–0.08% of the total extraction time.

Since all operations are local, the computation of the PV operator
can be done iteratively per cell without memory overhead. In fact, the
memory scales linearly with the size of the output coreline set.

For the time-periodic BEADS FLOW in Section 5.2, the integration-
based method took about 1.1 seconds. Since all particles are attracted
by the same coreline, we only had to integrate one group of 5 particles.
Once they converged, we continued the integration by one time period
to record the complete coreline.

6.3 Limitations

Even for the massless case, the existing vortex coreline extractors are
not able to handle all scenarios. The local method of Sujudi and
Haimes [26] only finds corelines moving along straight lines (or not
moving at all). Weinkauf and Theisel [31] have shown that an applica-
tion of the method of Sujudi and Haimes to pathlines [30], does not re-
veal the apparent attractor in the BEADS FLOW. The integration-based
methods [33, 31], on the other hand, only detect attracting corelines.
A simple data set in which none of the methods will work is a center
moving along an ellipse. As our techniques are extensions of existing
methods from the massless to the inertial case, they do not fill these
gaps.

When considering time sequences, the coreline is extracted for each
frame individually. A problem of standard local PV extractors is that

Data Set (Section) Field f Coreline Filtering
MOVING CENTER (5.1) — 15.21 s —

BEADS FLOW (5.2) — 29.68 s —
HELI DESCENT (5.3) — 57.18 s 2.27 ms
DELTA WING (5.4) — 6.43 s 0.48 ms
HURRICANE (5.5) — 1.49 s 2.49 ms

STUART VORTEX (5.6) 1.87 s 7.79 s —
SQUARE CYLINDER (5.7) 1.08 s 13.67 s 4.30 ms

Table 3. Timings for the individual computation steps: Computation of
the feature flow field f (only for unsteady data), the extraction of the
corelines in Amira, and the runtime of the additionally applied filtering, if
it was necessary.

they do not explicitly enforce frame coherence, which is apparent in
the slightly oscillating corelines of the SQUARE CYLINDER sequence
in the accompanying video.

Also Sujudi-Haimes cannot extract a coreline if a real eigenvalue
is zero, i.e., detJ = 0. This happens, for instance, in a center without
movement in the non-swirling direction: u(x,y,z) = (−z,0,x)T. This
case can be detected and then handled with 2D techniques, since in the
swirling plane, spanned by the eigenvectors to the complex-conjugate
eigenvalues, the velocity magnitude will vanish to zero at the coreline.

The advantage of the Sujudi-Haimes method in terms of computa-
tion effort is that it is a local method. As a consequence, it detects
corelines without regarding if particles could actually appear in a cer-
tain region of the flow. This, in turn, would actually require an in-
tegration of a large number of particles from the inlet zones to see
if any of them is reaching the region in question. This has an im-
plication for inertial vortex cores. Particles of a certain size might
never reach higher altitudes due to gravity. Though, since our method
is based on the local Sujudi-Haimes, vortex cores might be extracted
that are never visited by particles of a certain size. This means, an
additional (integration-based) filtering is in order. However, this filter-
ing process is completely orthogonal to the coreline extraction and the
performance advantages of being local are considerable.

7 CONCLUSION

In this paper, we extended an established local vortex coreline extrac-
tor for massless particles to the inertial case. The problem, actually
in 6D or 7D (space, velocity and optional time), reduces to a 3D or
4D parallel vectors operation, which can be solved efficiently using
standard implementations. The method is therefore easily added to
existing flow analysis tools. In fact, except for the integration of in-
ertial particles, we could implement all components in Amira [25] by
using existing modules. Moreover, we demonstrated the use of an
integration-based extractor that detects attracting corelines.

The particle model we used is designed for the prediction of small
particles. If the velocity magnitude is high compared to the acting
gravity, the resulting inertial corelines are quite similar for the masses
considerable by the simplified inertial equations of motion. In fact, dif-
ferences are observable in particular for low wind speeds. For this rea-
son, we synthetically altered some of our test data to showcase the ex-
traction of mass-dependent corelines. Further sources for differences
are additional forces, such as buoyancy or drag, which are typically
neglected for small particles. A derivation of a coreline extraction for
larger inertial particles is an avenue for future research. Also the visual
analysis of where and why differences occur is interesting; not only
for the analysis of vortex cores, but also for mass-dependent integral
curves. Considering the uncertainty of vortices of inertial particles
in the spirit of [17] is also an interesting topic. A more quantitative
evaluation, including inertial particles and fluids of different densities
might help to better understand the underlying physical effects. So far,
we extended the local Sujudi-Haimes and the integration-based parti-
cle density estimation. Another possibility to explore is to apply the
streakline-based extraction method of Weinkauf and Theisel [31].
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